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A brief introduction to the fractional continuous-time linear systems is presented. It
will be done without needing a deep study of the fractional derivatives. We will show
that the computation of the impulse and step responses is very similar to the classic.
The main difference lies in the substitution of the exponential by the Mittag-Leffler
function. We will present also the main formulae defining the fractional derivatives.

Abstract

I. Introduction

T
he Fractional Calculus (FC) is a generalization of the traditional calculus
that leads to similar concepts and tools, but with wider generality and
applicability. By allowing derivative and integral operations of arbitrary

real or complex order, it is to traditional calculus what the real or complex num-
bers are to the integers.

For almost 300 years fractional derivative was seen as an interesting, but
abstract, mathematical concept. The development of the fractional calculus
was mainly in the hands of mathematicians. This led to a number of compet-
ing definitions of the derivative and integral operators, originating a some-
what chaotic situation as people tried to extend the specific definitions of the
traditional integer order to the more general arbitrary order context. Since
the early 1990’s more practically oriented scientists and engineers have been
working with these various forms and felt the need for converging on physi-
cally meaningful formalisms.

We believe that the fractional calculus is ready for use in all aspects of Signals
and Systems. What is necessary for researchers is to have access to the impor-
tant tools of the theory. This is the main objective of this article: to introduce the
fractional linear systems and offer some insights into how the involved mathe-
matics is applied to very practical problems. 
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It is already known that the non-integer order systems
can describe dynamical behavior of materials and process-
es over vast time and frequency scales with very concise
and computable models [4], [8], [12], [13], [16], [26], [29],
[47]–[50], [53]–[56]. Nowadays well known concepts are
being extended to the development robust control sys-
tems [4], [22], [23], [32], [49]–[51], [62]–[64], as well as sig-
nal filtering methods [8], [12], [36], [47], [60]. Of particular
interest is the fact that the fractional systems exhibits both
short and long term memory. While the short term memo-
ry corresponds to the “distribution of time constants’’
associated with the distribution of isolated poles and
zeroes in the complex plane, the long term memory corre-
sponds to infinitely many interlaced close to each other
poles and zeros that in the limit originate a branch cut line
[3], [39], [41], [42], [50], [62]. This translates to a lack spe-
cific time scale and, therefore, no new resonance or other
instability effects and incorporates the power law behavior
found in natural systems that show the greatest robust-
ness to variation of environmental parameters. 

Another interesting property of fractional derivatives lies
in the intrinsic causality characteristic it enjoys forcing us to
include time ordering into the setup of differential equations.
As known, in integer order linear systems a given transfer
function defines several systems—causal, anti-causal, and
several acausal systems—accordingly to the region of con-
vergence that we attach to it. In the fractional case, we only
have two: causal and anti-causal systems [36]. 

In this paper we intend to present a simple approach
to the basic structure underlying almost all the practical
applications: the fractional linear systems. This presenta-
tion follows a way similar to the classic as described in
most textbooks. In particular, we will show how to com-
pute the impulse and step responses. 

There is also a class of discrete-time fractional linear sys-
tems. However they are based on fractional delay difference
equations and seem not to have any relation to the fractional
derivatives (see [21], [37], [38]). The space-time systems will
not be studied either [14], [27], [33]. The derivatives relative-
ly to the space are not causal neither anti-causal and are con-
veniently described by central fractional derivatives [40].

II. The Fractional Continuous-Time Linear Systems

A Simple Example
Consider the circuit in Figure 1. The capacitors in the
circuit are fractors [4] with impedance equal to

K
(jωτ)1/2 that we write as 1

C1/2(jω)1/2 to have a format sim-
ilar to the usual. Working in the frequency domain,
we can write:

V0(ω)

Vi(ω)
= 1

R2C2
1/2(jω) + 3RC1/2(jω)1/2 + 1

Putting s = jω, as usually, we obtain the transfer func-
tion of the circuit:

H(s) = V0(s)
Vi(s)

= 1

R2C2
1/2s + 3RC1/2s1/2 + 1

Let us assume that the transform of a derivative prop-
erty of the Laplace transform remains valid:

TL[f(α)(t)] = sαF(s) Re(s) > 0

It is not hard to show that the input-output relation is
given by:

a3.Dvo(t) + a1.D
1/2vo(t) + vo(t) = vi(t)

where D is the derivative operator and a1 = 3RC1/2 and
a2 = R2C2

1/2. We conclude that the above circuit is
described by a fractional differential equation. We are
going to show how to study this kind of systems.

General Description
Here, we will study the systems described by constant
coefficient linear fractional differential equations: frac-
tional linear time-invariant (FLTI) systems. They assume
the general format

N∑
n=0

anDνn y(t) =
M∑

m=0

bmDνm x(t) νn < νn+1 (1)

where D means derivative and νn n = 0, 1, 2, . . . are
derivative orders that we will assume to be positive
real numbers. With this definition, we are in condi-
tions to define and compute the Impulse Response
and Transfer Function. Being a linear system the sys-
tem described by (1) has the exponential as eigen-
function. Letting x(t) = est , where s ∈ C and t ∈ R, we
obtain y(t) = H(s).est , where H(s) is the transfer func-
tion given by

THIRD QUARTER 2008 IEEE CIRCUITS AND SYSTEMS MAGAZINE

R

vi(t ) vo(t)vo(t) Ca Cp

R

Figure 1. Electrical circuit using fractional capacitors.
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H(s) =

M∑
m=0

bmsνm

N∑
n=0

ansνn

(2)

provided that Re(s) > 0 or Re(s) < 0. With s = jω, we
obtain the Frequency Response, H(jω), and can represent
the Bode diagrams as in the usual systems. It is interest-
ing to remark that the asymptotic amplitude Bode dia-
grams are constituted by straight lines with slopes that
may assume any value, contrarily to the usual case where
the slopes are multiples of 20 dB/decade.

The system represented by sα is called differintegra-
tor. However, we must be careful when dealing with sα

that is a multivalued expression defining an infinite num-
ber of Riemann surfaces. Each Riemann surface defines
one function. Therefore, (1) can represent an infinite num-
ber of linear systems. However, only the principal
Riemann surface may lead to a real system. Constraining
sα by imposing a region of convergence, we define a trans-
fer function. Choosing the left half real axis as branch cut
line we obtain the transfer function of the causal system.
Its impulse response is given by

δ
(α)
+ (t) = t−α−1u(t)

�(−α)
(3)

�(.) is the Euler gamma function. In the anti-causal case
we choose the right half real axis as branch cut line to
obtain the impulse response

δ
(α)
− (t) = − t−α−1u(−t)

�(−α)
(4)

With α = −1, we obtain the normal integrator impulse
responses. With those impulse responses, we can obtain
fractional the differintegrated of a given signal by the
convolution. We are led to the forward

D(α)
+ f(t) = 1

�(−α)

∞∫
0

f(t − τ).τ−α−1dτ (5)

and backward

D(α)
− f(t) = (−1)−α

�(−α)

∞∫
0

f(t + τ).τ−α−1dτ (6)

differintegrations. These formulae were obtained first
by Liouville [9]. The second is also called Weyl differin-
tegration [55].

From the Transfer Function 
to the Impulse Response
The general case represented in (1) is not easy to solve,
because, it is difficult to find the poles. For this reason, in
the following, we shall be restricting our attention to the
cases in which

1. the νn are irrational numbers but multiples of a
given ν; 

2. the νn are any rational numbers. In this case, write
them in the format pn/qn.

Let ν be the greater common divider of the νn. Then
νn = n.ν. We will assume that ν < 2, for stability reasons.
A differential equation with ν = 1/2 is said semi-differen-
tial [5]. The coefficients and orders do not coincide nec-
essarily with the previous ones, since some of the
coefficients can be zero. For example, the equation
[aD1/3 + bD1/2]y(t) = x(t) transforms into [bD 3.1/6+
aD2.1/6 + 0.D1/6]y(t) = x(t).

With this formulation, the equations (1) and (2)
assume the general formats

N∑
n=0

anDnνy(t) =
M∑

m=0

bmDmνx(t) (7)

and

H(s) =

M∑
m=0

bm smν

N∑
n=0

an snν

(8)

With a Transfer Function as in (8) we can perform the
inversion quite easily, by following the steps:

1. Transform H(s) into H(z), by substitution of sv for z.
We are assuming that H(z) is a proper fraction; oth-
erwise, we have to decompose it in a sum of a poly-
nomial (inverted separately) and a proper fraction.

2. The denominator polynomial in H(z) is the indicial
polynomial [5] or characteristic pseudo-polynomial
[36]. Perform the expansion of H(z) in partial fractions. 

3. Substitute back sv for z, to obtain the partial frac-
tions in the form

F(s) = 1
(sν − a)k

k = 1, 2, . . . (9)

4. Invert each partial fraction.
5. Add the different partial Impulse Responses.

Partial Fraction Inversion
We are going to see how to invert F(s) = 1

sv−a . Using
the properties of the geometric series, it is a simple
task to obtain:

F(s) = s−ν
∞∑

n=0

an s−nν (10)

with Re(s) > |a|1/v defining the region of convergence.
However, all the terms of the series are analytic for
Re(s) > 0. For this reason, we can invert this series term
by term, to obtain:

IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2008
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f(t) = tν−1
∞∑

n=0

antnν

�(nν + ν)
.u(t) (11)

that is a special case of the two parameter Mittag-Leffler
function that is a generalization of the exponential to
what it reduces when ν = 1. This function is well studied
{see [1], [7], [19], [51], [54]}. An interesting implementa-
tion was done by Prof. Podlubny and can be found at the
site of MatLab. It is an implementation of the two param-
eter generalized Mittag-Leffler function with precision
control—usage: mlf(alfa, beta, z, p). Equation (11) sug-
gests us to work with the step response instead of the
impulse response to avoid derivatives or working with
non-regular functions near the origin.

The k > 1 case in (9) does not present great difficulties
except some additional work. It can be obtained from the
k = 1 case by repeated convolution or by differentiation.
For example: 

1
(sν − a)2

= − 1

νs1−ν

d
ds

[ 1
sν − a

]
(12)

1
(sν − a)2

= s−2ν
∞∑

n=0

(n + 1)anS−nν (13)

We do not go further, since this example shows how we
can proceed in the general case. We can use formula (13)
to obtain the corresponding formula.

Example—Third Order LP Butterworth filter

The Stability Problem
The impulse and step responses of this filter are shown
in Figures 2 and 3, respectively. In Figure 4, we present
the corresponding Bode plots. The study of the stability
of the FLTI systems we are going to do is based on the
BIBO stability criterion that implies stability when the
impulse response is absolutely integrable.

The simplest FLTI system is the system with transfer
function H(s) = sν with s belonging to the principal
Riemann surface. If ν > 0, the system is definitely
unstable, since the impulse response is not absolutely
integrable, even in a finite interval. If −1 < ν < 0, the
impulse response remains a limited function when t
increases indefinitely and it is absolutely integrable in
every finite interval. Therefore, we will say that the
system is wide sense stable. This case is interesting to
the study of the fractional stochastic processes. If
ν = −1, the normal integrator, the system is wide sense
stable. The case ν < −1 corresponds to an unstable
system, since the impulse response is not a limited
function when t goes to +∞. 

Consider the LTI systems with transfer function H(s) a
quotient of two polynomials in sν . The transformation
w = zq, transforms the sector 0 ≤ θ ≤ 2π/q{θ = arg(z)}
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Figure 2. Third Order HP Butterworth Step Response.
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Figure 3. Third Order HP Butterworth Impulse Response.
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into the entire complex plane. So, the sector
π
2q ≤ θ ≤ π

2q + π
q is transformed in the left half plane.

Consider the first Riemann surface of z = sν defined by
θ = arg(s) ∈ (−π;π]. This domain is transformed into
ϕ = arg(z) ∈ (−πα;πα]. However the poles leading to
instability must be inside the sector (−πα/2;πα/2). We
have two situations leading to stability:

1. There are no poles inside the sector (−πα;πα].
2. There are poles but they are in the sectors:

(−πα;−πα/2) and (πα/2;πα).
The poles with argument equal to ±πα/2 may lead to

wide sense stable systems as in the usual systems. These
conclusions come from properties of the Mittag-Leffler
function. To give a simple example, consider the transfer
function H(s)= 1

sα+1 , with 0 < α < 2. It is easy to see that
there is no pole in the principal Riemann surface. So, it
represents a stable system.

The Applications
The applications to physics and engineering are not
recent; the application to viscosity dates back to the thir-
ties in the last century. The works of Mandelbrot in the
field of fractals had great impact and attracted the atten-
tion to fractional calculus. During the last 20 years the
application domains of fractional calculus increased sig-
nificantly. Here is a brief list of some of the reasons why
the fractional calculus is catching on:

■ There is evidence that several biological and man
made signals have spectra that do not increase or
decrease by multiples of 20 dB. This happens, for
example, with ECG, speech, music, etc [13], [28],
[29], [58], [59], [65]–[68]. The electric power line is
a channel with such characteristics.

■ The long range processes (1/f noises)—the fraction-
al Brownian motion (fBm) is the most famous—have
been attracting the attention because their impor-
tance in many practical systems [18]–[20], [30],
[31]. Although there are several methods for analy-
sis and synthesis of such signals, for example, using
wavelets; modelling with fractional derivatives has
proven to be more efficient and natural [43], [44].

■ The famous Curie law stating that the current in
an insulator increases proportionally to a nega-
tive power of the time leads to the known “super-
capacitors’’ that have impedance proportional to
1/sα , with 0 < α < 1 [67]. Electrochemists have
used the Constant Phase Elements (CPE) descrip-
tion for over 60 years. The new terminology is
“fractance’’ to indicate an impedance with frac-
tional order response. As these devices become
available commercially, we will be rewriting many
of the rules for design of filters and controllers
[4], [6], [26], [57], [61].

This explains why we can find fractional calculus in 
■ Materials Theory [13], [16], [53], [59]
■ Control [4], [23], [32], [47]–[50], [62]–[64]
■ Viscoelasticity [28]
■ Electromagnetism [10], [11]
■ Statistical Mechanics [58]
■ Diffusion Theory [14], [15], [27], [33]
■ Internet Traffic [68]
■ Bioengineering [25]

and in other areas [1], [24], [25], [45], [46], [54]. Very
interesting are the engineering applications of A.
Oustaloup and his group [22], [48]–[50], [53], Vinagre
et al. [32], [56], [62]–[64], Machado et al. [2], [3], [23],
and the applications in Physics by Agrawal, Baleanu, and
Nigmatullin (see the papers in [1], [24], [45], [46], [54]).

Modeling, Identification, and Implementation
As in the usual systems, modeling, identification, and
implementation are very interesting tasks. In the frac-
tional case, they are slightly more difficult due to the
fact of having, at least, one extra degree of freedom: the
fractional order. However, this difficult increments the
possibilities of obtaining more reliable and robust sys-
tems. This is challenging and people working in the area
has been giving different interesting answers. We can
refer the following approaches:

1. Circuit implementations with fractional elements—It
consists of using the classic circuit theory, but with
fractional capacitors [4], [26], [61] and coils [57].

2. Trans-finite circuits—The infinite transmission lines
are circuits with fractional behavior [7], [17], [51],
[52], but there are other interesting circuits with
similar characteristics like the tree fractance ( a tree
of RC circuits) and chain fractance (a series of par-
allel RC) circuits. 

3. Band-limited approximations—It is an engineer
approach. There are several ways of doing the
design and implementation we can refer a) the
CRONE that uses the Bode diagrams [47]–[50],
[56] band b) the continued fraction approaches
[62]–[64]. Both construct pole-zero systems with
interlaced poles and zeros.

4. Identification from frequency data—It consists on a
least-squares approach in the frequency domain.
The more interesting algorithm uses a generalized
Levy method [54], [60].

5. Discrete-time implementations—there are several
algorithms that start from an s to z conversion and
design an ARMA model [2], [3], [6], [23], [41], [42]. 

Although there is no consensus neither standard design
rules, there are several interesting applications where the
implemented systems proved to be better than the corre-
sponding integer order systems.
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III. On the Derivative Definitions

Some Considerations
In the previous sections the fractional linear systems
were studied in a formal way very close to the ordinary.
Strangely the notion of fractional derivative was intro-
duced but a formal defintion was not presented. This
means that the formalism just develop avoids the need
for a concrete fractional derivative definition. However,
there are applications where we need to use the definition
of fractional derivative. One of these cases is the discrete-
time realization of fractional linear systems considered
above. However, the derivative definition will be present-
ed together with a sequence of integral representations.
There are several texts on fractional calculus interesting
from a mathematical point of view [19], [34], [35], [55].
However, they may not be interesting from an engineering
approach at least when starting. The reason lies in the
introduction of fractional derivative definitions that are
not useful for engineering applications. 

From Differences to Derivatives
Let f(z) be a complex variable function and introduce �d

and �r as finite “direct’’ and “reverse’’ [39] order one dif-
ferences defined by:

�df(z) = f(z) − f(z − h) (14)

and
�rf(z) = f(z + h) − f(z) (15)

with h ∈ C and, as before, we assume that Re(h) > 0. For
any order (including the negative integer case) we have
[39], [55]:

�α
df(z) =

∞∑
k=0

(−1)k (
α
k
)

f(z − kh) (16)

and

�α
r f(z) = (−1)α

∞∑
k=0

(−1)k (
α
k
)

f(z + kh) (17)

where 
(
α
k

)
are the binomial coefficients. 

Divide (16) by hα to obtain the fractional incremental
ratio. Performing the computation of its limit as h → 0+, we
obtain the direct Grünwald-Letnikov derivative given by:

Dα
df(z) = lim

h→0+

∞∑
k=0

(−1)k (
α
k

)
f(z − kh)

hα
(18)

where h is any complex number in the right hand com-
plex plane. Making a substitution h → −h {or using (17)},
we obtain the reverse Grünwald-Letnikov derivative. 

Dα
r f(z) = lim

h→0+
(−1)α

∞∑
k=0

(−1)k (
α
k

)
f(z + kh)

hα
(19)

Expression (18) corresponds to the forward Grünwald-Let-
nikov fractional derivative [39], [51], [55] while (19) is the
backward Grünwald-Letnikov fractional derivative [39]. It
is interesting to remark that these definitions were pro-
posed first by Liouville [9]. 

Although we are not concerned here with existence
problems, we must refer that in general we can have
the direct derivative without existence of the reverse
one and vice-versa. For example, let us apply both def-
initions to the function f(z) = e az . If Re(a) > 0,
expression (18) converges to Dα

df(z) = aα eaz, while
(19) diverges. On the other hand, if f(z) = e−az equa-
tion (18) diverges while (19) converges to
Dα

r f(z) = (−a)αe−az . It is interesting to remark that, if z
and h are real, in (18) we are using the current and
past values of the function: it is a causal derivative; On
the other hand in (19) we use the current and future
values: it is an anti-causal derivative. 

Integral Representations of Derivatives
Let f(z) be a complex variable function analytic in a region
that includes a half straight line starting at z and defined
by z − nh, with n ∈ Z; h is any complex in the right hand
d’Argand plane. Consider the U shaped contour repre-
sented in Figure 5.

Assume that this line is inside the analyticity region.
With the above definitions and conditions we can state

the following result [34], [39]

Dα+f(z) = �(α + 1)

2π i

∮
C

f(w)
1

(w − z)α+1
dw (20)

The right hand side is the generalized Cauchy derivative.
C is the U-shaped path in Figure 5 lying in the left half
plane defined by the straight line passing over z. Making

Cd

z-nh

z-3h
z-2h

z-h
z

Figure 5. U shaped contour.
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a substitution h → −h we obtain a generalized Cauchy
with a branch cut line on the right half plane

Dα−f(z) = �(α + 1)

2π i

∮
C

f(w)
1

(w − z)α+1
dw (21)

We must remark that the right hand side remains the
same excepting the integration path. Now, it lies in the
right hand complex plane defined by a vertical straight
line passing over z.

We can go a bit further by deforming the contour used
in (20) and (21) in order to transform it in the Hankel path
[39], [51]. We obtain:

Dα±f(z) = ej(π−θ)α

�(−α)

×
∞∫

0

[
f(x.ejθ + z) −

N∑
0

f(n)(z)
n! ejnθ xn

]

xα+1
dx

(22)

where θ is the angle between the positive real axis and the
branch cut line. This is a regularized integral “a la Hadamard’’,
but, contrarily to the usual, obtained without rejecting any
infinite part. If θ = π(+), we have the forward derivative,
while with θ = 0(−), we obtain the backward one.

For functions with LT, we obtain (5) and (6) [39].

IV. Conclusions

We made a brief introduction to the fractional linear sys-
tems. We did it without needing a deep study of the frac-
tional derivatives. We showed that the computation of the
impulse and step responses is very similar to the classic.
The main difference lies in the substitution of the expo-
nential by the Mittag-Leffler function. We presented also
the main formulae defining the fractional derivatives. 

Some applications and implementations were consid-
ered. From them we can predict a great future for frac-
tional systems. We agree with Prof. Nishimoto when he
that says that fractional calculus is the 21st century cal-
culus and say that fractional systems will be the 21st cen-
tury systems. The number of published papers in
different areas has been increasing and will continue to
grow up in parallel with the diffusion of the theory.
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