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Abstract 

CONSTRAINT SOLVING OVER MULTI-VALUED 
LOGICS — APPLICATION TO DIGITAL 

CIRCUITS 

by Francisco de Moura e Castro Ascensão de Azevedo 

Supervisor:   Professor Pedro M. C. C. Barahona 
Departamento de Informática 

Due to usage conditions, hazardous environments or intentional causes, physical and virtual systems 
are subject to faults in their components, which may affect their overall behaviour. In a ‘black-box’ 
agent modelled by a set of propositional logic rules, in which just a subset of components is 
externally visible, such faults may only be recognised by examining some output function of the 
agent. A (fault-free) model of the agent’s system provides the expected output given some input. If 
the real output differs from that predicted output, then the system is faulty. However, some faults 
may only become apparent in the system output when appropriate inputs are given. A number of 
problems regarding both testing and diagnosis thus arise, such as testing a fault, testing the whole 
system, finding possible faults and differentiating them to locate the correct one. The corresponding 
optimisation problems of finding solutions that require minimum resources are also very relevant in 
industry, as is minimal diagnosis. 

In this dissertation we use a well established set of benchmark circuits to address such 
diagnostic related problems and propose and develop models with different logics that we formalise 
and generalise as much as possible. We also prove that all techniques generalise to agents and to 
multiple faults. The developed multi-valued logics extend the usual Boolean logic (suitable for fault-
free models) by encoding values with some dependency (usually on faults). Such logics thus allow 
modelling an arbitrary number of diagnostic theories. Each problem is subsequently solved with 
CLP solvers that we implement and discuss, together with a new efficient search technique that we 
present. We compare our results with other approaches such as SAT (that require substantial 
duplication of circuits), showing the effectiveness of constraints over multi-valued logics, and also 
the adequacy of a general set constraint solver (with special inferences over set functions such as 
cardinality) on other problems. In addition, for an optimisation problem, we integrate local search 
with a constructive approach (branch-and-bound) using a variety of logics to improve an existing 
efficient tool based on SAT and ILP. 
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Sumário 

RESOLUÇÃO DE RESTRIÇÕES SOBRE LÓGICAS 
MULTI-VALOR – APLICAÇÃO EM CIRCUITOS 

DIGITAIS 

por Francisco de Moura e Castro Ascensão de Azevedo 

Orientador: Professor Doutor Pedro M. C. C. Barahona 
Departamento de Informática 

Os sistemas físicos como os circuitos digitais estão sujeitos a falhas nos seus componentes devido a 
erros de fabrico, uso intenso ou ambientes hostis, entre outras causas. Tais falhas podem afectar o 
comportamento global do sistema mas apenas serem discerníveis em certas condições, uma vez que 
comummente este se apresenta como uma ‘caixa negra’ onde apenas um sub-conjunto de 
componentes é observável. Nesses casos, o efeito da falha torna-se vísivel por uma função de saída 
do sistema quando sujeito a uma certa entrada. Se a saída prevista pelo modelo do sistema sem 
falhas difere da real, então o sistema está defeituoso. O facto de nem todas as entradas possíveis 
garantirem a verificação de uma falha coloca vários problemas de teste e diagnóstico destes sistemas 
que, em geral, são agentes (eventualmente virtuais) modelados por um conjunto de regras em lógica 
proposicional. Esses problemas incluem o teste de uma falha e de todo o sistema, procura de falhas 
possíveis, distingui-las e localizar a correcta. Os problemas de optimização correspondentes 
(encontrar soluções requerendo recursos mínimos) são também extremamente relevantes na 
indústria, como é o problema do diagnóstico mínimo. 

Nesta dissertação, utilizamos um conhecido conjunto de circuitos de teste para abordar estes 
problemas, desenvolvendo modelos com lógicas multi-valor que estendem a tradicional lógica 
boleana (suficiente para modelar teorias normais, sem falhas) ao introduzir valores extra que 
denotam alguma dependência (normalmente, de falhas). Assim, um número arbitrário de teorias de 
diagnóstico pode ser codificado para modelar os diversos problemas que são então solucionados 
por resolvedores de restrições que também desenvolvemos. Também provamos que as técnicas 
desenvolvidas se generalizam a agentes e a falhas múltiplas e, adicionalmente, apresentamos uma 
nova e eficiente técnica de pesquisa. Comparamos os resultados com outras abordagens como SAT, 
mostrando a aplicabilidade de resolução de restrições sobre as lógicas multi-valor. Nomeadamente, 
desenvolvemos um eficiente resolvedor de restrições sobre conjuntos, onde funções como a 
cardinalidade são particularmente exploradas, e para o qual mostramos a aplicabilidade e 
declaratividade para modelação e resolução destes e de outros problemas. Adicionalmente, para um 
problema de optimização, usámos várias lógicas multi-valor e integrámos uma pesquisa local num 
método construtivo de procura do óptimo, melhorando uma ferramenta baseada em SAT e ILP. 



 

vi 



 

vii 

GLOSSARY OF ACRONYMS 

AC Arc Consistency 
AI Artificial Intelligence 
ATG Automatic Test Generation 
ATMS Assumption-Based TMS 
BAC Bounded Arc Consistency 
BB Branch and Bound 
BIST Built-In Self-Test 
Bit Binary Digit 
CLP Constraint Logic Programming 
CNF Conjunctive Normal Form 
CSP Constraint Satisfaction Problem 
CP Constraint Programming 
CPU Central Processing Unit 
CUT Circuit Under Test 
DAC Directional Arc Consistency 
DTG Differential Test Generation 
ECAD Electronic Computer-Aided Design 
FC Forward Checking 
FD Finite Domain 
FF First-Fail 
GHz Giga Hertz 
HCLP Hierarchical CLP 
I/O Input/Output 
ILP Integer Linear Programming 
ISCAS International Symposium on Circuits and Applied Systems 
ITBS Iterative Time-Bounded Search 
LP Logic Programming 
LS Local Search 
MAC Maintaining Arc Consistency 
Mb Mega bytes 
MHz Mega Hertz 
MSF Multiple Stuck Fault 
MTP Minimum Test Pattern 
PC Path Consistency 
PI Primary Input 
PO Primary Output 
RAM Random Access Memory 
RISC Reduced Instruction-Set Computer 
s-a-0 Stuck at 0 
s-a-1 Stuck at 1 
SAT Propositional Satisfiability 
SSF Single Stuck Fault 
TG Test Generation 
TMS Truth Maintenance System 
VLSI Very Large Scale Integration 
XOR Exclusive OR 



 

viii 

 



 

ix 

TABLE OF CONTENTS 

C H A P T E R  1  INTRODUCTION ____________________________________________ 1 

1.1 Scope________________________________________________________________________ 3 

1.2 Truth Maintenance Systems_____________________________________________________ 3 

1.3 Constraint Reasoning __________________________________________________________ 4 
1.3.1 Consistency Techniques______________________________________________________________ 5 
1.3.2 Maintaining Consistency _____________________________________________________________ 7 
1.3.3 Advanced Techniques _______________________________________________________________ 7 

1.4 Contributions and Limitations___________________________________________________ 9 
1.4.1 Limitations _______________________________________________________________________ 10 

1.5 Overview ___________________________________________________________________ 11 

C H A P T E R  2  CIRCUIT MODELLING ______________________________________ 13 

2.1 Introduction_________________________________________________________________ 13 

2.2 Logic Simulation _____________________________________________________________ 14 

2.3 Fault Modelling ______________________________________________________________ 17 

2.4 Benchmarks _________________________________________________________________ 18 

2.5 Our Modelling Approach ______________________________________________________ 21 

2.6 Summary ___________________________________________________________________ 26 

C H A P T E R  3  TEST PATTERNS____________________________________________ 27 

3.1 What are Test Patterns ? ______________________________________________________ 27 

3.2 Test Generation ______________________________________________________________ 28 

3.3 TG Modelling Approaches and Algorithms _______________________________________ 29 
3.3.1 Algebraic Models / Algorithms _______________________________________________________ 30 
3.3.2 Topological Methods _______________________________________________________________ 30 
3.3.3 Multi-valued Logics________________________________________________________________ 31 
3.3.4 TG Specialised Algorithms __________________________________________________________ 34 

3.4 Constraint Reasoning _________________________________________________________ 37 
3.4.1 CLP(B)__________________________________________________________________________ 37 
3.4.2 CLP(FD) ________________________________________________________________________ 40 

3.5 Heuristics ___________________________________________________________________ 45 
3.5.1 Discussion and Potential Improvements ________________________________________________ 47 

3.6 Iterative Time-Bounded Search_________________________________________________ 48 
3.6.1 Conclusion _______________________________________________________________________ 51 

3.7 Summary ___________________________________________________________________ 51 



 

x 

C H A P T E R  4  DIFFERENTIAL DIAGNOSIS _________________________________ 53 

4.1 Introduction _________________________________________________________________ 53 

4.2 Diagnosis Approaches _________________________________________________________ 54 

4.3 Differential Diagnosis and Test Patterns __________________________________________ 56 

4.4 The 8-valued Logic ___________________________________________________________ 57 
4.4.1 Boolean operations ________________________________________________________________ 59 
4.4.2 Modelling Alternative Diagnostic Theories in Digital Circuits_______________________________ 60 

4.5 A 4-valued logic for Differentiation ______________________________________________ 62 

4.6 A Constraint Solver for the 8-Valued Logic _______________________________________ 63 
4.6.1 Domain Representation _____________________________________________________________ 64 
4.6.2 Not-Gates _______________________________________________________________________ 65 
4.6.3 Xor-Gates _______________________________________________________________________ 66 
4.6.4 Normal And-Gates ________________________________________________________________ 67 
4.6.5 S-Buffers ________________________________________________________________________ 69 
4.6.6 Heuristics to Find Differential Patterns _________________________________________________ 71 

4.7 Benchmarks _________________________________________________________________ 72 
4.7.1 Generating a Benchmark ____________________________________________________________ 72 
4.7.2 Set of Benchmarks Used ____________________________________________________________ 73 

4.8 Differentiating Multiple Diagnoses ______________________________________________ 73 

4.9 Experimental Results__________________________________________________________ 76 
4.9.1 Choosing the Heuristic _____________________________________________________________ 76 
4.9.2 Discussion _______________________________________________________________________ 77 
4.9.3 Complete Results__________________________________________________________________ 78 
4.9.4 Comparison of Results and Approaches ________________________________________________ 80 

4.10 Conclusions_________________________________________________________________ 83 

C H A P T E R  5  PROBLEMS WITH MULTIPLE DIAGNOSES ____________________ 85 

5.1 Satisfaction Problems _________________________________________________________ 86 
5.1.1 Fault Simulation __________________________________________________________________ 86 
5.1.2 Test Generation ___________________________________________________________________ 86 
5.1.3 Fault Covering____________________________________________________________________ 87 
5.1.4 Covered Diagnoses ________________________________________________________________ 87 
5.1.5 Diagnosis________________________________________________________________________ 87 
5.1.6 Fault Location ____________________________________________________________________ 87 

5.2 Optimisation Problems ________________________________________________________ 88 
5.2.1 Minimal Set of Test Patterns _________________________________________________________ 88 
5.2.2 Maximal Test Patterns______________________________________________________________ 88 
5.2.3 Minimal Diagnosis ________________________________________________________________ 89 
5.2.4 Maximal Fault Resolution ___________________________________________________________ 89 

5.3 Logic over Booleans and Sets ___________________________________________________ 89 
5.3.1 Signal Representation ______________________________________________________________ 90 



 

xi 

5.3.2 Normal Gates _____________________________________________________________________ 90 
5.3.3 S-Buffers ________________________________________________________________________ 91 

5.4 Modelling and Solving ________________________________________________________ 92 
5.4.1 Diagnosis ________________________________________________________________________ 92 
5.4.2 Differentiation ____________________________________________________________________ 93 
5.4.3 Optimisation Problems______________________________________________________________ 95 

5.5 Reduction to Set Algebra ______________________________________________________ 96 
5.5.1 Motivation _______________________________________________________________________ 96 
5.5.2 Transformation____________________________________________________________________ 97 
5.5.3 Modelling________________________________________________________________________ 98 

5.6 Summary __________________________________________________________________ 100 

C H A P T E R  6  A NEW SET CONSTRAINT SOLVER: CARDINAL________________ 101 

6.1 Set Constraint Solving and Cardinality Inferences ________________________________ 101 

6.2 Intervals and Lattices ________________________________________________________ 103 

6.3 Operational Semantics _______________________________________________________ 105 
6.3.1 Set Variable _____________________________________________________________________ 106 
6.3.2 Membership Constraints ___________________________________________________________ 107 
6.3.3 Set Complement__________________________________________________________________ 107 
6.3.4 Set Equality _____________________________________________________________________ 108 
6.3.5 Set Inequality ____________________________________________________________________ 108 
6.3.6 Disjointness _____________________________________________________________________ 109 
6.3.7 Set Inclusion ____________________________________________________________________ 109 
6.3.8 Set Intersection___________________________________________________________________ 110 
6.3.9 Set Union _______________________________________________________________________ 114 
6.3.10 Set Difference __________________________________________________________________ 116 

6.4 Implementation _____________________________________________________________ 119 
6.4.1 Set Labelling ____________________________________________________________________ 119 

6.5 Results ____________________________________________________________________ 120 

6.6 Other Applications __________________________________________________________ 121 
6.6.1 Steiner Triples ___________________________________________________________________ 121 
6.6.2 Golfers _________________________________________________________________________ 122 
6.6.3 Warehouse ______________________________________________________________________ 123 
6.6.4 Differential Diagnosis _____________________________________________________________ 124 

6.7 Cardinal Extensions _________________________________________________________ 126 
6.7.1 Sets Union ______________________________________________________________________ 127 
6.7.2 Generalisation to Sets Functions _____________________________________________________ 127 
6.7.3 Set Covering ____________________________________________________________________ 127 
6.7.4 Results _________________________________________________________________________ 128 
6.7.5 Future Research __________________________________________________________________ 130 

6.8 Conclusions ________________________________________________________________ 131 

C H A P T E R  7  TEST PATTERN OPTIMISATION _____________________________ 133 



 

xii 

7.1 Description _________________________________________________________________ 133 

7.2 SAT Approach ______________________________________________________________ 134 

7.3 5-valued Logic ______________________________________________________________ 135 

7.4 Completeness _______________________________________________________________ 137 

7.5 Naming Unspecified Values for an Extended Logic ________________________________ 138 
7.5.1 Fault Detection Conditions _________________________________________________________ 141 

7.6 Local Search________________________________________________________________ 143 
7.6.1 A Multiple Extended Logic for Local Search ___________________________________________ 143 
7.6.2 Operational Semantics_____________________________________________________________ 145 
7.6.3 Improving Local Search ___________________________________________________________ 148 
7.6.4 Multiple unspecification ___________________________________________________________ 149 

7.7 Solution Spaces _____________________________________________________________ 151 

7.8 Combining Logics ___________________________________________________________ 153 

7.9 Results_____________________________________________________________________ 156 

7.10 Conclusions________________________________________________________________ 163 

C H A P T E R  8  GENERALISATION, DISCUSSION AND CONCLUSION __________ 165 

8.1 Agents _____________________________________________________________________ 165 

8.2 Conclusion and Research Directions ____________________________________________ 168 

REFERENCES____________________________________________________________ 171 

Appendix A:  ISCAS Circuits _________________________________________________ 183 

Appendix B:  Logics ________________________________________________________ 213 

 



 

xiii 

LIST OF FIGURES 

Number Page 
Figure 2.1.  Fanout node _____________________________________________________________________ 14 
Figure 2.2.  Basic gates ______________________________________________________________________ 15 
Figure 2.3.  Boolean logic truth tables___________________________________________________________ 15 
Figure 2.4.  And-gate truth table _______________________________________________________________ 15 
Figure 2.5.  Binary decision diagrams for the and-gate _____________________________________________ 16 
Figure 2.6.  Example circuit to model as code_____________________________________________________ 16 
Figure 2.7.  Boolean logic extended with unspecified values__________________________________________ 17 
Figure 2.8.  Stuck fault caused by an open________________________________________________________ 18 
Figure 2.9.  c17 ISCAS’85 example circuit _______________________________________________________ 19 
Figure 2.10.  Graph representation of c17________________________________________________________ 20 
Figure 2.11.  C17 circuit with added buffers ______________________________________________________ 22 
Figure 2.12.  circuit/4 predicate for c17 _________________________________________________________ 22 
Figure 2.13.  Gate predicate for Boolean simulation________________________________________________ 23 
Figure 2.14.  Gate in a multi-valued logic ________________________________________________________ 23 
Figure 2.15.  Possible faulty gate_______________________________________________________________ 23 
Figure 2.16.  Gate as a constraint ______________________________________________________________ 24 
Figure 2.17.  C17 circuit with a stuck gate _______________________________________________________ 24 
Figure 2.18.  Introduction of an S-buffer B s-a-0___________________________________________________ 26 
Figure 3.1.  Example CUT ____________________________________________________________________ 27 
Figure 3.2.  Expected circuit behaviour (a); and circuit response with G1 s-a-0 (b) _______________________ 28 
Figure 3.3.  Test for SSF G1 s-a-1 ______________________________________________________________ 29 
Figure 3.4.  Justifying values for line k __________________________________________________________ 31 
Figure 3.5.  4-valued logic____________________________________________________________________ 31 
Figure 3.6.  5-valued logic____________________________________________________________________ 31 
Figure 3.7.  Some backward and forward implications using 5-valued logic _____________________________ 32 
Figure 3.8.  Target fault: G1 s-a-1 ______________________________________________________________ 32 
Figure 3.9.  Multiple-path sensitisation __________________________________________________________ 33 
Figure 3.10.  Impossible single-path sensitisation __________________________________________________ 33 
Figure 3.11.  Objective: f = 1__________________________________________________________________ 35 
Figure 3.12.  Head lines______________________________________________________________________ 35 
Figure 3.13.  Global implications: the value of Z determines the value of B ______________________________ 37 
Figure 3.14.  How to assign a to have a d-signal at z ? ______________________________________________ 39 
Figure 3.15.  To have a d-signal at z, D must be masked at the or-gate by a=1 ___________________________ 39 
Figure 3.16.  Drawback of creating choice points__________________________________________________ 40 
Figure 3.17.  Global implication: D must pass through z ____________________________________________ 44 
Figure 3.18.  Impossible error propagation_______________________________________________________ 45 
Figure 3.19.  Inverter constraint propagations ____________________________________________________ 45 
Figure 4.1.  Full adder circuit and its specification_________________________________________________ 55 
Figure 4.2.  Differential test for x/0 and y/0; a) normal circuit N; b) F1 with x/0; c) F2 with y/0 ______________ 59 
Figure 4.3.  Circuit with 8-valued logic for x/0 or y/0 _______________________________________________ 59 
Figure 4.4.  Logic operations over a 4-valued logic for diagnosis _____________________________________ 62 
Figure 4.5.  Algorithm to partition a set into classes of indistinguishable diagnoses _______________________ 74 
Figure 4.6.  Algorithm to obtain a set of indistinguishable diagnoses___________________________________ 75 



 

xiv 

Figure 5.1.  And-gate________________________________________________________________________ 90 
Figure 5.2.  S-buffer_________________________________________________________________________ 91 
Figure 5.3.  Improved algorithm to obtain a set of indistinguishable diagnoses___________________________ 94 
Figure 5.4.  Improved algorithm to partition a set into classes of indistinguishable diagnoses _______________ 95 
Figure 5.5.  And-gate and S-buffer over sets ______________________________________________________ 97 
Figure 5.6.  Other gates over sets ______________________________________________________________ 98 
Figure 5.7.  Modelling the maximisation problem with sets __________________________________________ 99 
Figure 6.1.  Powerset lattice for U ={a,b,c,d}, with set inclusion as partial order________________________ 103 
Figure 6.2.  Set interval [{b},{a,b,d}]: a) Sub-lattice; b) Venn diagram________________________________ 104 
Figure 6.3.  Powerset lattices with cardinalities: a) circuit PI;  b) singleton ____________________________ 105 
Figure 6.4.  Two sets, X, Y, define 8 different zones _______________________________________________ 110 
Figure 6.5.  Minimum intersection cardinality ___________________________________________________ 111 
Figure 7.1.  Counter-example to a SAT model assumption __________________________________________ 135 
Figure 7.2.  Test x0 detects b s-a-1 ____________________________________________________________ 137 
Figure 7.3.  Different sensitised paths for different assignments of PI: a) a=0; and b) a=1_________________ 137 
Figure 7.4.  5-valued logic cannot detect test x0 __________________________________________________ 138 
Figure 7.5.  9-valued logic cannot detect test x0 __________________________________________________ 138 
Figure 7.6.  Extended logic considering the inversion parity of an unspecified value _____________________ 139 
Figure 7.7.  Normal and faulty circuits with extended logic _________________________________________ 139 
Figure 7.8.  Anding unspecified values of different sources _________________________________________ 140 
Figure 7.9.  Normal and faulty extended circuits _________________________________________________ 140 
Figure 7.10.  Limitation of the extended logic: faulty circuit output should have value 1___________________ 141 
Figure 7.11.  Limitation of the extended logic: final output should have value 1 _________________________ 141 
Figure 7.12.  Possible Boolean reasoning for unspecified values _____________________________________ 141 
Figure 7.13.  Output is sensitised regardless of b _________________________________________________ 142 
Figure 7.14.  Different values of b sensitise different POs __________________________________________ 142 
Figure 7.15.  Dependencies on a) 0, b) 1 and c) 2 specified values____________________________________ 144 
Figure 7.16.  Sets of dependencies_____________________________________________________________ 144 
Figure 7.17.  And-operation procedure for local search____________________________________________ 146 
Figure 7.18.  Local search logic: PI a may be made unspecified _____________________________________ 148 
Figure 7.19.  PI b can be made unspecified since either y or z will be sensitised _________________________ 149 
Figure 7.20.  PIs b and e cannot be made unspecified in test t=00000_________________________________ 149 
Figure 7.21.  Verification of improved test t’=x0xx0_______________________________________________ 150 
Figure 7.22.  Relative solution spaces __________________________________________________________ 151 
Figure 7.23.  Test t=0x belongs to Sol(SAT)\Sol(5V) ______________________________________________ 152 
Figure 7.24.  Test t=1x belongs to Sol(9V)\Sol(SAT) ______________________________________________ 152 
Figure 7.25.  Test t=x0 belongs to Sol(X)\Sol(9V)_________________________________________________ 152 
Figure 7.26.  Valid test t=xx0 does not belong to Sol(X)____________________________________________ 153 
Figure 7.27.  Maxx system___________________________________________________________________ 155 
Figure 7.28.  Maxx flowchart ________________________________________________________________ 156 
Figure 7.29.  Maxx optimal test not recognised by MTP____________________________________________ 160 
Figure 8.1.  (a) Equivalence function; (b) altered (implication) function by an SSF_______________________ 167 
 



 

xv 

LIST OF TABLES 

Number Page 
Table 2.1.  And-gate s-a-0 truth table____________________________________________________________ 18 
Table 2.2.  Lines’ statistics of ISCAS benchmarks __________________________________________________ 20 
Table 2.3.  Gates' statistics of ISCAS benchmarks __________________________________________________ 21 
Table 2.4.  ISCAS circuits: Fault sets____________________________________________________________ 21 
Table 2.5.  Translation of c17 fault set into stuck gates ______________________________________________ 25 
Table 2.6.  C17 graph information______________________________________________________________ 25 
Table 3.1.  Tests for possible stuck gates _________________________________________________________ 28 
Table 3.2.  Partially specified composite values____________________________________________________ 34 
Table 3.3.  NOT-operation in 9-valued logic ______________________________________________________ 34 
Table 3.4.  Results of Simonis’ ATG system _______________________________________________________ 41 
Table 3.5.  S-buffers logic table ________________________________________________________________ 42 
Table 3.6.  Implicit 16-valued logic conjunction ___________________________________________________ 43 
Table 3.7.  Some constraint propagation examples in 4-valued logic ___________________________________ 43 
Table 3.8.  ATG results with cardinality constraint _________________________________________________ 46 
Table 3.9.  ATG results with ITBS over sensitised POs ______________________________________________ 50 
Table 3.10.  ATG results with ITBS over specified sensitised POs______________________________________ 51 
Table 4.1.  Truth-value of a signal with a normal model and two different diagnoses_______________________ 59 
Table 4.2.  XOR truth table in 8-valued logic______________________________________________________ 60 
Table 4.3.  Physical output of an xor-gate with inputs m-1 and d1-0 ____________________________________ 60 
Table 4.4.  Truth table for the 8 different types of S-buffer____________________________________________ 61 
Table 4.5.  Output of an S-buffer (stuck-at-0 in F1 and stuck-at-1 in F2) for input m-0 ______________________ 61 
Table 4.6.  Condensation of 8-valued logic into a 4-valued logic for differentiation________________________ 62 
Table 4.7.  XOR for encoded domain {–4...-1, 1..4}_________________________________________________ 64 
Table 4.8.  Output of xor-gate implies relation between arguments_____________________________________ 65 
Table 4.9.  Adopted 8-valued domain encoding ____________________________________________________ 65 
Table 4.10.  8-valued logic table for NOT ________________________________________________________ 66 
Table 4.11.  8-valued logic encoded table for NOT _________________________________________________ 66 
Table 4.12.  XOR possible input pairs for each output_______________________________________________ 66 
Table 4.13.  XOR possible encoded input pairs for each output _______________________________________ 66 
Table 4.14.  Relation between output of an xor-gate and its arguments _________________________________ 67 
Table 4.15.  AND (8-valued) logic table__________________________________________________________ 67 
Table 4.16.  Constraints when input X of A= X∧ Y is known __________________________________________ 68 
Table 4.17.  ‘And’ encoded logic table and constraints ______________________________________________ 68 
Table 4.18.  Constraints to post when output of and-gate becomes instantiated ___________________________ 69 
Table 4.19.  Truth table and constraints for the 8 different types of S-buffer______________________________ 70 
Table 4.20.  Random inputs generated for circuit c432, and corresponding outputs________________________ 72 
Table 4.21.  Benchmarks attempts for c432 _______________________________________________________ 73 
Table 4.22.  Differentiation results with the different heuristics________________________________________ 77 
Table 4.23.  Complete results for differentiation benchmarks _________________________________________ 79 
Table 4.24.  DIATEST results__________________________________________________________________ 81 
Table 4.25.  Comparison of DTG results _________________________________________________________ 82 
Table 5.1.  S-buffer output ____________________________________________________________________ 91 
Table 5.2.  Total times for 32 incorrect outputs ____________________________________________________ 93 



 

xvi 

Table 5.3.  Application of transf function to the inputs and output of an and-gate _________________________ 98 
Table 5.4.  Application of transf function to the input and output of an S-buffer___________________________ 98 
Table 6.1.  Set intersection: cause-effect rules on set bounds ________________________________________ 113 
Table 6.2.  Set union: cause-effect rules on set bounds _____________________________________________ 116 
Table 6.3.  Set difference: cause-effect rules on set bounds__________________________________________ 118 
Table 6.4.  Experimental Results ______________________________________________________________ 120 
Table 6.5.  Steiner triples results ______________________________________________________________ 122 
Table 6.6.  Delivery costs of warehouse problem _________________________________________________ 123 
Table 6.7.  Differentiation results over different set libraries ________________________________________ 125 
Table 6.8.  Differentiation results with different solvers ____________________________________________ 126 
Table 6.9.  Optimum bounds _________________________________________________________________ 129 
Table 6.10.  Obtained ranges with or without union function ________________________________________ 129 
Table 7.1.  Double Boolean variables __________________________________________________________ 134 
Table 7.2.  Comparison with 9-valued logic _____________________________________________________ 135 
Table 7.3.  S-buffers logic table _______________________________________________________________ 136 
Table 7.4.  Comparison with SAT encoding______________________________________________________ 136 
Table 7.5.  Conjunction of named unspecified values ______________________________________________ 140 
Table 7.6.  Not-operation for local search_______________________________________________________ 146 
Table 7.7.  Z = X and Y  in local search ________________________________________________________ 147 
Table 7.8.  ISCAS circuits: PIs, Gates and Faults _________________________________________________ 156 
Table 7.9.  Maxx results from scratch (empty base test set)__________________________________________ 157 
Table 7.10.  Atalanta results _________________________________________________________________ 158 
Table 7.11.  Maxx results with Atalanta as base __________________________________________________ 158 
Table 7.12.  MTP100 results over Atalanta _______________________________________________________ 159 
Table 7.13.  MTP and Maxx improvements on Atalanta ____________________________________________ 160 
Table 7.14.  Maxx results with MTP as base _____________________________________________________ 161 
Table 7.15.  MTP1000 results over Atalanta ______________________________________________________ 161 
Table 7.16.  MTP and Maxx improvements on MTP100 _____________________________________________ 162 
Table 7.17.  Breakdown of Maxx improvements __________________________________________________ 162 
Table 8.1.  Altered agent function _____________________________________________________________ 166 
 



 

 1

C h a p t e r  1  
 
 
 

INTRODUCTION 

Due to manufacturing errors, long-usage, hazardous environment, or some other cause, physical 
systems are subject to faults in their components, which may affect the overall system behaviour. In 
a system modelled by a set of propositional rules, but with just a subset of components externally 
visible (thus behaving like a ‘black-box’), such faults may only be recognised by examining some 
output function of the system. By knowing the input given to the system, its initial (fault-free) model 
provides the expected output. If the real output differs from that predicted output, then the system 
is faulty. However, some faults may only become apparent in the system output under certain 
conditions, i.e. when appropriate inputs are given. This fact poses a number of problems regarding 
both the testing and diagnosis of systems. For example (to name just a few): 

• How to test a system? What is the smallest amount of effort required for that? 
• How to test a fault? What are the minimum resources required ? 
• What are the possible faults ? 
• How to differentiate between possible faults and locate the correct one ? 

 
Agents in general are the systems of interest to this dissertation. In particular, logical-based agents 
are indeed modelled by a set of propositional rules in a ‘black-box’ with some controllable inputs 
and some visible outputs, all Boolean. An output bit may unveil a fault if, when given some input to 
the agent, its value is dependent on the presence (or absence) of the fault. Such fault is not restricted 
to be a physical fault since it can also be applied to virtual agents (e.g. on the internet). Virtual agents 
may also have a known (or expected) model and behave as faulty due to some (possibly intentional) 
change of belief or some relaxed rule, for instance. This is particularly relevant in the emerging field 
of electronic transactions in a society of agents, where rules for bids in an auction depend on 
knowledge acquired on competitors and their actions. It is thus very important to predict the 
behaviour of the agent with whom some contract is being negotiated, after some unexpected output 
is detected. Hence, it is crucial to test the agent, formulate hypotheses for its unexpected behaviour, 
refine them in order to obtain a minimal set of hypotheses (possibly by performing additional tests), 
and model them. Having modelled the competitors, an optimal ‘bid’ (the one that is expected to 
generate the best ‘price’) can be found. 

 
A number of problems concerning agents have been deserving especial attention by the scientific 
community. In particular, digital circuits in the Electronics Computer Aided Design (ECAD) area 
have traditionally established several problems, for which widely used benchmarks are available. The 
use of digital circuits has known a great expansion for many years and they are now present virtually 
everywhere. Reflecting the economic importance of this area, such problems have been widely 
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studied and they are still the subject of active research, with a variety of approaches. The evolution 
of the area, with new technologies and continuous new requirements and needs, makes it a suitable 
application field for Constraint Logic Programming (CLP) [Jaffar and Lassez 1987, Jaffar and 
Maher 1994], which combines the declarativity of logic programming with the power and efficiency 
of constraint reasoning (see section 1.3). Such suitability was already exemplified and discussed in 
this area [Simonis 1992] and we reckon that the expressive power and flexibility of the constraint 
programming approach makes it very attractive to tackle additional problems over circuits in 
particular, and agents in general. 

The traditional Boolean domain and corresponding logic is sufficient to model a normal digital 
circuit, by representing each gate as a Boolean operation. However, since physical circuits may be 
faulty, such model needs to be extended somehow in order to model circuits that may exhibit a 
different behaviour than that predicted by a model of the normal circuit. While this may be simple 
when all gates are accessible, it is not so when the circuit is, in practice, a ‘black-box’ in which only a 
set of inputs and a set of outputs are visible. Since it is not known a priori whether a gate is normal 
or faulty, such fact may be modelled as a disjunction to represent the alternative choices. Such 
simple modelling has however the drawback of possibly leading to excessive backtracking in 
problem solving. 

The use of extra symbolic values in conjunction with the usual Boolean {0,1} was proposed in a 
D-calculus [Roth 1966] to reflect the dependency of values in physical lines on some faulty gate. 
When the gate is stuck at some Boolean value v (i.e. its output is always v, regardless of the inputs), 
the physical value of its output depends in general on whether it is really faulty or not. Moreover, 
gates that take that value as input can also be affected, and hence propagate the fault effect. Two 
extra values are then used in the model of the circuit to denote that the normal (expected) value 0 or 
1 in some line is inverted if the fault is present. Hence, multi-valued logics are introduced to model 
circuits in which signal values may depend on faults affecting the circuit. In this case, a 4-valued 
logic is defined to model dependencies on a single fault. Gate operations involve four values and 
their semantics have to be defined by extended ‘truth’ tables that, implicitly, consider two (normal 
and faulty) circuits. 

The use of multi-valued logics is not new in computer science, with successful application in 
several domains such as temporal logics [Prior 1957, Galton 1987, van Benthem 1995] or in 
qualitative reasoning [Forbus 1984, Davis 1984, Kuipers 1989]. Modelling dependencies with such 
logics relates to truth maintenance systems (TMSs) [Doyle 1979], as discussed in section 1.2, and has 
possible applications for generic agents (and for circuits in particular) for tasks such as diagnosis or 
general modelling to predict behaviour. 

The introduction of multi-valued logics induces problem variables (signal lines) with finite 
domains, thus suggesting the use of CLP(FD) for efficient solving. Instead, separate circuit models 
with Boolean variables can be considered and subsequently solved by propositional satisfiability 
(SAT) approaches [Marques-Silva 1995]. 

 
In this dissertation we address a number of diagnostic related problems (in the sense that faults are 
taken into account) and propose and develop models with different logics that we formalise and 
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generalise as much as possible. In addition, we try to solve each problem with CLP solvers that we 
implement and discuss, comparing with other approaches. The adequacy of the proposed 
approaches is illustrated with examples and results, pointing to other applications (where 
appropriate) and possible research directions. 

 
1.1  Scope 

This dissertation covers a number of satisfaction and optimisation problems, such as modelling of 
circuits and faults, simulation of normal and faulty behaviour, test generation, minimal and 
differential diagnosis, generation and minimisation of test sets, unveiling and maximising faults 
detected by a test, and maximisation of unspecified inputs of a test. Techniques developed apply to 
these and other related problems over circuits in particular and agents in general. 

While such problems concern general ‘black-box’ agents modelled as propositional theories, 
examples throughout this dissertation consider only the particular but representative case of 
combinational digital circuits, for which a well established set of benchmarks [ISCAS 1985] exist, 
thus allowing comprehensive comparisons of results with different approaches for those problems. 
Applicability of developed techniques to general agents is trivially proven in the last chapter. 

Some examples and notation concerning circuits are taken from [Abramovici et al. 1990], where 
a thourough study of digital systems testing can be found and where it is also shown that the 
consideration of combinational circuits alone is not too restrictive, since problems over sequential 
circuits are usually best handled with techniques developed for combinational circuits (often by 
transforming those circuits into combinational). 

The types of faults considered are the usual stuck-at faults, where a gate is stuck at some 
Boolean value v thus always outputting v regardless of its input. Again, [Abramovici et al. 1990] 
shows that such faults are not too restrictive since other types of faults can often be considered 
through these simpler stuck-at faults, and such (apparent) restriction allows for more efficient 
techniques to be developed. Furthermore, when talking about virtual agents modelled as a set of 
propositional rules, these faults are the only ones that need to be considered. 
 

 
1.2  Truth Maintenance Systems 

Truth maintenance systems (TMSs) [Doyle 1979] reason about logical statements in order to 
maintain global consistency. Inferences are justified by a set of supporting statements that are 
recorded as dependencies. Such systems support nonmonotonic reasoning since assumptions 
derived from default reasoning may be revised due to contradictory new information (inferred 
statements). For that, TMSs refer to a statement as a node that may be at any point in either of two 
states: IN or OUT. If a node is believed to be true then it is IN, otherwise it is OUT either because 
there is no justification for it to be true or because justifications for it are currently not valid. 

Each node n then has a list of justifications attached, which basically are support lists 
mentioning nodes that must be IN and nodes that must be OUT for n to be believed to be true 
(IN). 

When a contradiction arises, a dependency-directed backtracking procedure is invoked on the 
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contradiction node created, looking at its justification nodes and recursively at their justifications 
until a set of inconsistent assumptions is found, which is then recorded as a nogood node to avoid 
further computations based on it. 

 
To model circuits problems, a digital gate is assumed to be either normal or with a specific fault. 
Inspection of the output may then reveal a contradiction that leads to a set of inconsistent 
assumptions, which are however found only indirectly since dependency on assumptions is not 
explicitly expressed (in fact, the system has to search recursively through justifications to find such 
dependencies). 

 
In conventional justification-based TMSs, a particular datum is believed in an implicit context given by 
the set of all IN nodes. Context switching is performed for truth maintenance by dependency-
directed backtracking to move inside the search space. To avoid most backtracking and easily switch 
between contexts, Johan de Kleer proposed [1986] an assumption-based TMS (ATMS), where data are 
labelled with the sets of assumptions (representing contexts) under which they hold. Such sets are 
kept as general as possible in order to more easily derive data (for example, if context C includes 
context B, then all derivations of B remain valid under C). Similarly, contradictions are recorded in 
the most general form to rule out as much of the search space as possible. Thus, multiple solutions 
can be explored simultaneously without the need for the global database to be consistent. For this, 
ATMSs spend most computation time in determining most general forms. 

While conventional TMSs are oriented towards finding one solution, the ATMS is oriented to 
finding all solutions. Hence, ATMSs are best suited only for problems with many solutions and 
where all of them are required. 
 
The multi-valued logics that we develop in this dissertation allow more efficient tools to be 
developed by encoding direct dependency on the assumptions that care for each problem. Hence, 
overhead of searching dependencies with TMS is avoided. And since, in general, solving ‘circuit’ 
problems requires finding a solution rather than all of them, overhead of considering all contexts as 
in ATMSs is also avoided. Furthermore, for such cases where all solutions are required, such as in 
diagnosis, it is often possible to be more efficient using a multi-valued logic as reported in [Alferes et 
al. 2001], where a model using a logic over Boolean and set values generates all possible diagnoses 
(for an incorrect circuit behaviour) in a single step with no backtracking at all! 

 
1.3  Constraint Reasoning 

A problem where relations between variables (to which values must be assigned) are restricted by a 
number of constraints that must be satisfied, is referred to as a Constraint Satisfaction Problem 
(CSP) [Montanari 1974, Mackworth 1977]. The goal is to assign values to all the variables without 
violating any constraint, or to prove this to be impossible. The space formed by all possible 
combinations of assignments is referred to as the search space. Such combinatorial search problems 
have been widely studied in Artificial Intelligence (AI) and Operations Research. 

CLP(FD) integrates constraints in logic programming, where variables may be restricted to 
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explicitly range over finite subsets of the universe of values, thus defining finite domain variables 
[Van Hentenryck and Dincbas 1986]. Search for solutions involve assigning variables with values 
from their domain and, when a contradiction is found due to some violated constraint, perform 
some form of backtracking [Golomb and Baumert 1965] (usually chronological) to undo choices 
made and try other yet unexplored branch of the search tree. 

Since the search space of combinatorial problems is usually intractable [Garey and Johnson 
1979], a naïve generate-and-test approach, in which each combination of possible assignments is 
generated and then tested for a solution, until one is found, is unsuitable. Hence, constraint reasoning 
techniques are usually applied in AI to (often, drastically) reduce search space by discarding 
impossible solutions [Mackworth 1977, Nadel 1989, Dincbas et al. 1990, Dechter 1992, Mackworth 
1992, Kumar 1992]. In this section, we briefly describe the basics of such local consistency 
techniques that look ahead at logical predicates defined as constraints to discard impossible values 
from the domain of individual variables. 

 
1.3.1  Consistency Techniques 

Constraint solvers apply constraint propagation or consistency techniques [Van Hentenryck 1989] in order 
to remove redundant (i.e. impossible) values from the domains of variables involved in stored 
constraints. If the domain of some variable becomes empty after the application of such techniques, 
then the CSP is insoluble. Otherwise, the CSP is said to be consistent (with regard to some 
properties) and there may be a solution, which has to be found to definitely prove one exists. In 
general, solvers using such techniques are incomplete, which means that reaching a consistent state for 
the CSP is not a sufficient condition for its satisfiability. Hence, a search phase must still occur to 
find a possible assignment of values to all the variables. Consistency techniques are interleaved 
during this search phase to constantly reduce search space, aiming at saving computation time. 
Notice that there is a trade-off between the level of consistency applied and the amount of pruning 
(of the search tree) obtained. Usually, greater levels of consistency produce decreasingly larger 
improvements on pruning and require increasingly larger amounts of CPU time, thus becoming 
counter-productive at some stage. 

In this section we briefly describe the most common consistency techniques, each guaranteeing 
a different property. Definitions are taken from [Tsang 1993], where a thorough study on these 
concepts can be found. 

Before introducing such concepts we first recall that a CSP is composed of a set of variables 
(each with some domain) related by a set of constraints that restrict the values they can 
simultaneously take. A binary CSP is one such problem where constraints are just unary or binary 
(i.e. each constraint involves just one or two variables). It can be represented as a graph where 
nodes are variables and edges are constraints relating two nodes. A CSP not limited to such 
constraints is referred to as a general CSP and defines a hypergraph where hyperedges are 
constraints relating (connecting) an arbitrary number of variables (nodes). Notice, however, that any 
CSP has a dual binary CSP (as described in [Tsang 1993]). 

To solve a CSP, variables have to be assigned values from their domains (i.e. labelled). An 
assignment of value v to variable x is denoted by a label in the form <x,v>. A compound label is a 
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set of labels representing a simultaneous assignment of values to different variables. 
With these notions we may now define some consistency techniques. 
 

A CSP is node-consistent (NC) if and only if for all variables, all values in its domain satisfy 
the constraints on that variable (i.e. unary constraints). 
 

Node consistency is usually applied in CLP(FD) since the finite enumeration of possible values 
allows an efficient removal of values that do not satisfy a constraint. 

 
A CSP is arc-consistent if and only if for every variable x, for every label <x,a> that satisfies 
the constraints on x, there exists a value b for every variable y such that the compound label 
(<x,a> <y,b>) satisfies all the constraints on x and y. 
 

For n-ary constraints, generalised arc consistency can also be defined and applied by checking compatible 
labels among all variables related by each constraint. However, this is generally too expensive. 

To keep a CSP arc-consistent there are a number of algorithms that go through the variables to 
remove incompatible values (with some other variable) from their domains. These algorithms vary 
on the number of steps and tests required to achieve AC, i.e. on their time and space complexity. 
We may refer, for binary constraints, the naïve AC-1 algorithm, which considers all constraints and 
for each value removed from a domain, it will go through all constraints again to check if some 
other value can be removed. AC-1 was then improved to AC-2 and AC-3, which would add the 
notion of supporting values to avoid checking all constraints again, but rather only those constraints 
that could be affected by the removal of some value from the domain of a variable. These 
algorithms were later further improved by the (considered optimal) AC-4, which extends the notion 
of support to conclude that although removing a value from the domain of x may affect y, the 
particular removal of v does not. Nevertheless, other algorithms were still developed [Bessière and 
Cordier 1994, Bessière et al. 1995] which can behave better in some situations. 

 
Beyond AC one may still define Path Consistency (PC): 
 

A CSP is path-consistent if and only if for all variables x and y, whenever a compound label 
(<x,a> <y,b>) satisfies the constraints on both x and y, there exists a label <z,c> for every 
variable z such that (<x,a> <y,b> <z,c>) satisfies all the constraints on x, y and z. 
 

Path consistency (or any variant or simplification) is rarely used due to its computational complexity. 
In practice, such kind of consistency may only be considered for binary CSPs or when constraints 
are few and domains are very small. 

 
Since full AC is, in general, already too costly computationally, some consistency techniques try to 
approximate it by relaxing some properties. This implies that values incompatible with other 
variables may remain in some domain, but often it is worth that ‘risk’ since the relaxed technique is 
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much simpler than full AC, and the pruning achieved is similar. Below we describe some of these 
techniques. 

 
If there is a total ordering of variables, consistency techniques such as AC (and PC) can be 
directional. Directional Arc-Consistency (DAC) [Dechter and Pearl 1988] is thus defined when 
the constraint graph is in fact a tree: 

A CSP is directional arc-consistent under an ordering of the variables if and only if for every label 
<x,a> that satisfies the constraints on x, there exists a compatible label <y,b> for every 
variable y that is after x according to the ordering. 

 
A weaker but often more efficient consistency technique than AC is that of Bounded Arc-
Consistency (BAC) [Van Hentenryck 1989] in which only the two bounds of each variable 
(domain) are verified and possibly updated (tightened) to remove impossible values between two 
variables by restricting their domains. This is particularly used in CLP(Intervals), often for modelling 
domains over real numbers or sets, for example. In such cases, domains are expressed by a range in 
the form lower-bound..upper-bound. 
 
1.3.2  Maintaining Consistency 

Forward Checking (FC) is a search strategy that assumes node consistency and approximates arc-
consistency by removing from domains of variables, those values that are incompatible with each 
assignment. I.e. whenever there is a commitment to a label <x,a>, FC removes all values from the 
domains of variables (other than x) that are incompatible with value a for x. If some domain 
becomes empty, unsatisfiability for the current set of assignments is detected and backtracking is 
forced. Constraint propagation is thus performed on instantiation of some variable. Arc 
consistency is forced between two variables only when one of them is labelled, thus being 
effectively reduced to node consistency. 

 
The algorithm of Maintaining Arc Consistency, MAC [Sabin and Freuder 1994], is a combination 
of FC and AC in that the constraint network is made arc consistent initially and whenever there is a 
commitment to a label <x,a>, the effects of removing values (other than a) from the domain of x 
are propagated through the constraint network as necessary to restore full arc consistency. The 
particular usefulness of MAC in random binary CSPs is shown in [Sabin and Freuder 1994, Bessière 
and Régin 1996]. 

 
1.3.3  Advanced Techniques 

In this section we mention different advanced techniques that CLP solvers may also apply. Such 
techniques will be referred along this dissertation to solve different problems. 

The techniques described above use a local consistency criterion to remove impossible values 
from domains of variables by examining directly a constraint that relates them. However, often a set 
of basic constraints relating a set of variables can be seen as a global constraint [Beldiceanu 1990] 
over them, which allows specialised information to be used for further pruning of the search tree. 
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For instance, let us assume that four variables X1, X2, X3, X4, with domain {1,2,3}, are constrained 
to be pairwise different (i.e. X1 ≠ X2 ∧  X1 ≠ X3 ∧  X1 ≠ X4 ∧  X2 ≠ X3 ∧  X2 ≠ X4 ∧  X3 ≠ X4), to 
express that all four variables are different. Clearly, there is no solution that satisfies those 
constraints since there are only 3 possible values for 4 different variables. Nevertheless, it can be 
verified that the CSP is path-consistent, since for any assignment to two variables, there is still one 
possible value left for a third variable. For such cases, a global constraint such as all_different({X1, X2, 
X3, X4}) may be used to decide for unsatisfiability due to shortage of resources (number of different 
values to assign). An efficient algorithm for such constraint is described in [Régin 1994]. 

A global constraint may be either user-defined or provided as built-in of a CLP solver (a 
number of such built-in global constraints exist, e.g. [Beldiceanu and Contejean 1994]). 

Similarly, a meta-constraint such as the cardinality operator [Van Hentenryck and Deville 1991] may 
be used for a more global reasoning. The cardinality constraint is given a set of goals, of which at 
least n and at most m must be satisfied. It may thus represent a disjunctive constraint, which allows 
delaying choices (the disjuncts) by reasoning globally on the disjunction to, when some goals 
become known to be impossible or trivially satisfied (during search or upon new constraints 
posted), infer that the remaining goals must be either true or false. 

A yet more powerful technique to handle disjunctions consists of constructive disjunction [le 
Provost and Wallace 1993] which may restrict domains of variables by reasoning globally on the 
disjunction (enforcing AC). 

 
In general, interleaved with the maintenance of some form of consistency, a labelling phase for 
enumeration of the CSP variables must still occur to prove whether a solution exists and find it. 
There are different ways to go through the search space, with possible dramatic differences in 
efficiency. Hence, in addition to constraint propagation techniques, it is also important to pay 
attention on guiding search. 

Instantiating variables with values from their domains sequentially in a depth-first search, with 
chronological backtracking of Prolog, is often unsatisfactory. Heuristics (functions to rank 
candidates) may thus be used to choose what variable to instantiate next and what value should be 
tried first. The difference in ordering may be critical since there may be labels much more likely to 
belong to a solution than others, and because some variables may be harder to instantiate. This is 
the case considered by the popular first-fail (FF) heuristic [Haralick and Elliott 1980], which selects 
variables with smaller domains first. 

To avoid being “stuck” at an incorrect early choice of a depth-first search, randomisation 
techniques may also be applied to “jump” to a different point in the search space. This allows other 
branches to be explored before some defined threshold is reached, which contributes to a “fairer” 
distribution of search and, consequently, to increase probability of finding a solution faster. Existing 
such techniques include iterative broadening [Ginsberg and Harvey 1990], iterative deepening [Meseguer 
1997], and limited discrepancy search [Harvey and Ginsberg 1995, Walsh 1997]. A new search technique 
based on randomisation is presented in Chapter 3 and is subsequently applied to solve more 
complex problems addressed in following chapters. 
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For an optimisation goal, one is not interested just in finding a solution but rather in finding the 
best one. For that, once some solution is found, only better solutions (according to some measure 
function) are sought. Hence, partial solutions already known to have no possibilities of improving 
the current optimal solution can be discarded, and other branches of the remaining search tree can 
be explored. Such pruning and branching technique according to a current bound is referred to as 
branch-and-bound [Papadimitriou and Steiglitz 1982, Balas and Toth 1985]. 

Often, a solution found can be improved more efficiently by performing some form of local 
search, in which small changes to the current solution are explored to find a local optimum. 

In Chapter 7 we combine branch-and-bound and local search techniques to solve an 
optimisation problem using models with different multi-valued logics. 

 
 
1.4  Contributions and Limitations 

The contributions of this dissertation are not restricted to a single domain bur rather aim at 
different aspects of computer science in general, and AI in particular. The areas potentially benefited 
involve Constraint Reasoning, formal Multi-valued Logics, ECAD problem modelling and solving (namely 
simulation, test generation, optimisation, basic and differential diagnosis) and Agents (to which 
paradigm all developed techniques are generalised). 

In this dissertation we extend the standard Boolean logic by formalising a number of logics that 
encode simultaneously different theories (of a circuit/agent model), which represents an alternative 
to the classical approach of modelling each theory with Boolean variables and then relating the 
encoded theories with constraints over those variables. The logics developed typically have 2n 
values, where n is the number of encoded theories, but other logics are also presented to explicitly 
consider unspecified values. The development of such logics culminates with the set algebra, thus 
generalising the encoding of an arbitrary number of theories in a single logic. All logics aim at 
modelling fault dependencies, as did the basic D-calculus of the ECAD area [Abramovici et al. 
1990], already used in constraint programming [Simonis 1989]. We generalise not only the number 
of encoded theories, as explained, but also the number of faults a theory can have, thus, being no 
more restricted to single faults. 

For each logic, we show how to model and solve different satisfaction and optimisation 
problems and we implement specialised constraint solvers, showing their applicability. All these 
implementations contributed to a workbench for a practical study of different consistency 
techniques. In addition, when implementing search strategies, a new technique, iterative time-
bounded search (Chapter 3), was formalised and developed with significant results. 

One such implemented constraint solver, Cardinal (Chapter 6), is a general set constraint solver 
which improves on existing solvers by adding cardinality inferences, which prove to be extremely useful 
by obtaining execution times orders of magnitude smaller on a number of problems. To such set 
solvers, we also show how attaching to set variables set functions other than cardinality, may turn 
general problems more declarative and efficient, by reasoning on such functions. We use an 
extended Cardinal for practical results over some benchmark problems. 
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In addition to the constructive approach of constraint programming we use a repairing approach in 
a tool, Maxx (Chapter 7), that we developed to solve the optimisation problem of maximising the 
number of unspecified bits in an input test vector. Since models with the developed logics and other 
approaches are not complete (in the sense that optimal tests can be unrecognised), we developed yet 
another logic to which we refer as extended logic. This logic takes into account the sources of 
unspecified values, in order to approach completeness in a practical way. Again, sets were used to 
denote dependencies on specified values in a local search method to improve solutions. 
Altogether, Maxx incorporates a number of multi-valued logics with branch-and-bound and local 
search. By obtaining better results than an efficient tool based on SAT and ILP, we show and 
discuss the usefulness of integrating branch-and-bound with local search. 

 
In summary, the main contributions include: 

� Development and formalisation of a number of multi-valued logics to model different 
problems, together with specialised CLP tools to solve them; 

� Development and formalisation of a new efficient search technique: ITBS; 
� Proposal of new benchmarks, namely for differential diagnosis; 
� Generalisation of several logics into a single logic over sets, to encode an arbitrary number 

of theories; 
� Formalisation of models for the different satisfaction and optimisation diagnostic-related 

problems; 
� Generalisation of all problems to theories with multiple faults; 
� Generalisation of all circuit problems to agents; 
� Development and formalisation of a new efficient general set constraint solver, Cardinal, 

with especial inferences on sets cardinality; 
� Presentation of extensions to Cardinal, generalising inferences over sets functions, with 

discussion and application over general combinatorial problems; 
� Formalisation of an extended logic, more complete when handling unspecified values, by 

keeping track of their sources; 
� Development of Maxx, a constraint tool incorporating different multi-valued logics 

developed, to optimise test vectors and beat an existing efficient tool based on SAT and 
ILP; 

� Integration of local search with branch-and-bound using another logic based on sets, with 
exemplification of the usefulness of such an approach on optimisation problems. 

 
All in all, a number of research topics are open and we believe that the results and generalisations 
we obtain in several areas promise a wide research with many possible directions. 

 
1.4.1  Limitations 

While we show that the techniques developed in this dissertation generalise to agents, we restrict 
our examples to problems over digital combinational circuits with well-known benchmarks. The 
ECAD industry is very competitive and has many specialised and optimised tools devoted to 
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solving each industry problem. It is already a very mature area; hence it is not our purpose to solve 
their specific problems or improve their solutions (although we present some competitive results, as 
recognised in the ECAD community, e.g. [Azevedo and Barahona 2000a, 2002]). Rather, we want 
to show the effectiveness of our approach, to these and other problems, by showing its potential 
and generalise it so that the already specialised techniques developed can be used in other domains. 
Also, we present new ideas and techniques that the industry may like to introduce in their systems in 
order to possibly improve them. 

Therefore, we did not concentrate on heuristics, which are crucial for solving circuit problems. 
Also, during search, we relied on chronological backtracking of Prolog (usually the graphical Tcl/Tk 
version [Ousterhout 1994] of ECLiPSe over Windows). Some intelligent backtracking scheme such 
as dependency-directed backtracking [Stallman and Sussman 1977] would probably be much more 
efficient when trying to label a number of circuit input bits. Moreover, the underlying Prolog tool is 
not the best suited in terms of efficiency. 

Problems and models presented throughout this dissertation assume that circuits are 
combinational. Nevertheless, solving problems over sequential circuits often involves some 
transformation into equivalent combinational circuits [Abramovici et al. 1990], which allows using 
the developed techniques for such circuits. 

A limitation regarding fault modelling is that we only consider stuck-at faults. Although other 
types of permanent physical faults can be modelled with just stuck-at faults [Abramovici et al. 1990], 
circuits with intermittent and transient faults require extra techniques not dealt with in this 
dissertation. Nevertheless, the usual stuck-at faults are enough to represent any kind of fault in 
theoretical agents modelled by a set of propositional rules. 

 
1.5  Overview 

Since the practical examples of this dissertation are concentrated on circuit problems, we start by 
discussing circuit modelling in Chapter 2. A first problem is presented in Chapter 3, where we 
describe, model and solve the basic problem of generating tests (input vectors) for a circuit 
(particularly, for a specific fault) and discuss and compare our approach with competing alternatives. 
For this problem, we develop a CLP solver over a 4-valued logic (encoding fault dependencies) that 
uses a new search technique, namely, iterative time-bounded search. Such logic is then extended to 
an 8-valued logic that we formalise in Chapter 4 for the problem of differential diagnosis of two sets 
of faults. 

In Chapter 5, we present different satisfaction and optimisation problems concerning multiple 
diagnoses (each a set of faults) showing how to model them with a logic over values formed by a 
pair of a set and a Boolean value (the particular problem of diagnosis is efficiently solved with such 
logic, as the experimental results document). We also show a transformation of such value pairs into 
single set values, that produce elegant models over a set algebra. To solve problems described by 
these and other models, we developed a general set constraint solver, Cardinal, formally described in 
Chapter 6, that is able to perform a number of especial inferences over sets cardinality. We present 
experimental results for general set problems and for the particular problem of differential 
diagnosis, where the superiority of Cardinal over existing solvers is especially evident. Cardinal 
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extensions are also presented and discussed in this chapter by considering other set functions to 
solve other general problems, such as set covering. 

Inspired in the reasoning over sets and over dependencies, in Chapter 7 we tackle another test 
optimisation problem by developing an extended logic and using local search (with sets of 
dependencies on specified values) together with a constructive approach to improve on an existing 
efficient tool to solve this problem. We incorporated a number of multi-valued logics to develop the 
new tool, Maxx, for which we present the improved results. 

Finally, in Chapter 8 we show that all techniques generalise to consider agents (modelled by a 
set of propositional rules) instead of circuits. In addition to this important and desired result, we 
discuss the overall work covered in this dissertation together with possible future research, and 
present some final conclusions. 

 
We organised this dissertation in a way that the multi-valued logics are presented in successive 
chapters in increasing order of the number of their values, as a consequence of encoding 
successively more theories. Often a described logic is a generalisation of a previous one; hence 
chapters should be read sequentially, although we try to keep each chapter with a reasonable 
amount of autonomy by having clear distinct objectives and referring related work described in 
more detail elsewhere in the dissertation (or outside it). 

We add two appendices, basically with raw data, for ease of consultation and to obtain more 
detail on the most used sources of knowledge of this dissertation. Appendix A describes in more 
detail the circuit benchmarks used throughout the dissertation (an information made available on 
the internet via world wide web). Appendix B describes the multi-valued logics that were developed, 
with their purpose, meaning of values, and “truth” tables for the usual operations. 
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C h a p t e r  2  
 
 
 

CIRCUIT MODELLING 

 
To support all the stages of the life cycle of a digital system, it is convenient to have a model of it. 
Design, production and testing of a digital circuit largely depend on modelling, for it is the model 
that allows one to simulate the logical circuit with or without faults, to verify its correctness and 
generate tests for it. Hence, the way a circuit is internally modelled in a computer influences the 
application of algorithms for it. 

This chapter addresses circuit- and fault-modelling approaches starting with a brief introduction 
in section 2.1, where we present general terminology and features of combinational circuits. In 
section 2.2 we discuss modelling of normal digital circuits for simulation of behaviour, and in 
section 2.3 possible circuit faults that may affect it are taken into account. Then, in section 2.4 we 
present a set of widely used circuit benchmarks and their characteristics, and in section 2.5 we 
describe our general modelling approach for such circuits and for the faults that may affect their 
behaviour. 
 
2.1  Introduction 

A combinational circuit C may be represented as a directed acyclic graph <VC, EC> where nodes 
VC are circuit gates together with primary inputs/outputs, and edges EC connecting two nodes 
represent signal lines (also referred to as nets). This kind of representation allows the application of 
concepts and algorithms of graph theory [Harary 1969] and will be more thoroughly discussed in 
the next sections. Circuit gates are typically and-, or-, xor-, nand-, nor-gates and buffers. Primary 
inputs (PI) and primary outputs (PO) are the externally visible lines of the circuit. We can then 
define the (logic) level of an element node as the maximum path distance from PIs, and the level of 
a circuit as the maximum element level in it. Primary inputs level is 0. 

 
When a circuit has n (n > 1) different edges sharing one source node, it means that a net propagates 
a signal from one source to n destinations. Such a signal is said to have fanout and may be 
represented by a fanout node like the one in Figure 2.1, where the stem is an edge from the source 
node and the n fanout branches are the edges going to the corresponding destinations (or loads). A 
fanout-free circuit has no signals with fanout (or, equivalently, every signal has a fanout count of 1), 
being thus represented as a tree (a particular case of graph) for each PO. 
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f
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Figure 2.1.  Fanout node 

When different paths from the same signal reconverge at the same component (i.e. there are two 
different paths between two graph nodes) we have reconvergent fanout, which complicates the 
tasks of test generation and diagnosis, as we will see later. 

Conversely, the fanin nodes of a node x are the source nodes of edges sharing x as destination. 
In addition, for a circuit node x in VC, we define its transitive fanout as the set of all nodes y 

such that there is a path connecting x to y. Similarly, the transitive fanin of x is the set of all nodes 
y such that there is a path connecting y to x. 
 
For a path with no xor-gates, we can also define its inversion parity as the number of its inverting 
gates (not-, nand- and nor-gates), modulo 2. This will be useful for some algorithms. 

If the circuit contains xor-gates and one wants to make use of such algorithms then these gates 
should be modelled as a sub-circuit of other basic gates (where different paths may occur). The 
reason is that an xor-gate with inputs a and b may be seen as a conditional inverter (where if, say, a 
takes value 1 then b is inverted, otherwise the gate outputs b, as a simple buffer). 

 
 

2.2  Logic Simulation 

The behaviour of a system is defined by the I/O mapping performed by its black box model where 
the information carried by its inputs is processed to produce some output. Such value 
transformation, separated from the time domain where it occurs, is referred to as logic function, 
being its representation a functional model of the system. 

A combinational circuit with n binary inputs outputting function Z(x1,x2, ..., xn) can be 
functionally modelled at the logic level by a truth table with 2n entries. The compact representation 
may then be essential to save memory, but not necessarily since in the full 2n array A only the output 
values have to be stored. The storage of input combinations may be suppressed by implicitly 
considering array entries in increasing order of binary words formed by the concatenation of the 
input values. For instance, A(0)=Z(0,0, ...,0), A(1)=Z(0,0, ...,1) and A(2n-1)=Z(1,1, ...,1). For a 
circuit with m outputs, an entry in the array is an m-bit vector defining the output values. In practice, 
functional models are only used for small circuits because, on the one hand, they are impractical for 
large circuits and, on the other hand, they do not represent the internal components whose states 
may be the subject of interest (e.g. whether they are faulty). 

A structural model describes a circuit as a collection of interconnected components or 
primitive elements of various types. Such model can be represented graphically as a schematic 
diagram where component types are typically AND-, OR- and other gates with special shapes to 
symbolise them (Figure 2.2, inputs on the left, output on the right). 



 

 15

 
AND OR

NAND NOR

Buffer

NOT

XOR

 

Figure 2.2.  Basic gates 

Gates are components which are small enough to be usefully represented by functional models, 
corresponding to some Boolean logic operation, usually in the form of truth tables with one input 
(NOT-gate) or two inputs (AND-gate and OR-gate) as exemplified in Figure 2.3. Thus, in practice, 
structural and functional modelling are generally intermixed. 

 
NOT   AND 0 1  OR 0 1 

0 1  0 0 0  0 0 1 
1 0  1 0 1  1 1 1 

Figure 2.3.  Boolean logic truth tables 

The logic function of, say, a binary and-gate can then be represented by its truth table as in Figure 
2.4 (a) or, more compactly, in Figure 2.4 (b), where x stands for an unspecified or “don’t care” 
value. 
 

A B Z=A.B  A B Z=A.B 
0 0 0  0 x 0 
0 1 0  x 0 0 
1 0 0  1 1 1 
1 1 1     
    (b) 

(a)     

Figure 2.4.  And-gate truth table 

The function of a circuit can also be modelled by a graph called a binary decision diagram [Lee 
1959, Akers 1978]. The value of the output is determined by sequentially examining input values on 
traversal of the graph. Figure 2.5 (a) shows the complete binary tree for the and-gate. Starting at the 
top node, we take the left or the right branch according to the value (0 or 1, respectively) of the 
corresponding input. The value at the exit branch is the value of the output Z for those inputs. 
These diagrams can be simplified to yield smaller graphs as in Figure 2.5 (b) for the same gate, the 
result in this case being still a simple binary tree. Now, a variable at an exit branch means that the 
function has the value of that input variable (e.g. for Z=A.B, if A=1 then Z=B). 
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Figure 2.5.  Binary decision diagrams for the and-gate 

So far we have only seen models as data structures that may be interpreted by model-independent 
programs. Nevertheless, it is also possible to model the function of a circuit directly by a program in 
code-based modelling, which is the approach used for the primitive elements in a structural 
model. It is generally easier to develop models based on data structures, but code-based models may 
be more efficient since there is no need to interpret a data structure. 

For example, the circuit of Figure 2.6 can be modelled in the C programming language, 
considering only binary values, as follows: 

E = A & B & C 
F = ~ D 
Z = E | F 

Such type of model may be also referred to as compiled-code model, since it is compiled into machine 
code. 

A E Z

FD

B
C

 

Figure 2.6.  Example circuit to model as code 

An application may also automatically generate a functional model from a structural model of a 
circuit. For the same example of Figure 2.6, one can get the following resulting model in assembly 
code: 

LDA  A /* load accumulator with value of A */ 
AND  B /* compute A.B */ 
AND  C /* compute A.B.C */ 
STA  E /* store partial result */ 
LDA  D /* load accumulator with value of D */ 
INV /* compute D  */ 
OR  E /* compute A.B.C + D  */ 
STA  Z /* store result */ 
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Such a model applies the standard Boolean functions and requires specified Boolean values. In 
practice, however, for many applications, some values may be unknown or unimportant (i.e. “don’t 
know” / ”don’t care” values). These unspecified values are part of the problem and must be 
considered as logic values themselves, thus extending the Boolean logic to a 3-valued logic (Figure 
2.7) that the model has to take into account. For instance, if the input of a not-gate is unspecified 
(unknown) so is its output. Similarly, if an and-gate’s input takes value 0, so does the output, and we 
“don’t care” about the other input, which may remain unspecified. 
 

NOT   AND 0 1 x  OR 0 1 x 
0 1  0 0 0 0  0 0 1 x 
1 0  1 0 1 x  1 1 1 1 
x x  x 0 x x  x x 1 x 

Figure 2.7.  Boolean logic extended with unspecified 
values 

Non-Boolean logics make code-based models more problematic due to its increased complexity and 
the lack of built-in operations over such logics in digital computers. 

In addition, the circuit may be faulty and have an altered logic function. Consequently, for tasks 
other than circuit design, the model must also consider the presence of faults, which is the topic of 
the next section. 
 
2.3  Fault Modelling 

Different physical faults in a circuit may be modelled by logical faults that represent their effect. 
Hence, we can handle fault analysis logically, and independently from technology, by the use of a 
logical fault model. Also, tests derived for logical faults (test generation will be discussed in the 
next chapter) may be used for physical faults whose effect on circuit behaviour is not completely 
understood or is too complex to be analysed [Hayes 1977]. 

For off-line testing, we will only deal with permanent faults since modelling intermittent and 
transient faults requires statistical data on their probability of occurrence, which are usually not 
available. Given such a permanent fault and a model of the circuit, it is possible to determine its 
logic function in the presence of the fault. Thus we also define faults as structural faults or 
functional faults according to the circuit model used. Structural faults only modify the value of 
interconnections among components assumed to be fault-free, whereas functional faults change the 
truth table of a component. The typical faults affecting interconnections are their breaking, known 
as opens, and unwanted connections of points, known as shorts. 

A short between a signal line and ground or power can make the signal remain at a fixed voltage 
level. Such fault is logically modelled as the signal being stuck at the corresponding fixed logic 
value v (v ∈  {0,1}), and it is denoted by s-a-v, i.e. the line has always the same logic value v, regardless 
of the inputs that would normally affect it. 

An open may also appear as a stuck fault since it usually makes the input that has become 
disconnected to assume a constant logic value (Figure 2.8). This is also the result of a physical fault 
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internal to the component driving the line. In edge-pin testing, the two cases may be treated as the 
entire signal line being stuck. Hence, the single logical fault of a line s-a-v (v ∈  {0,1}) represents 
many different physical faults. The restriction of considering only faults associated with the I/O 
pins of components is referred to as pin-fault model. 
 

stuck
line

open

 

Figure 2.8.  Stuck fault caused by an open 

In this way, faults may be incorporated in a logic model by extra truth tables for faulty gates, as in 
the simple Table 2.1 for an and-gate s-a-0. 

 
AND 
s-a-0 

 
0 

 
1 

 
x 

0 0 0 0 
1 0 0 0 
x 0 0 0 

Table 2.1.  And-gate s-a-0 truth table 

The standard fault model is then the classical single-stuck fault (SSF) model, the first and most 
widely studied and used. The SSF model adopts the single-fault assumption that there is at most 
one logical fault in the system. This is due to the frequent testing strategy in which the system is tested 
often enough to keep a negligible probability of more than one fault developing between two 
consecutive testing experiments. However, frequent testing may be insufficient to avoid the 
occurrence of multiple faults, since physical faults sometimes correspond to multiple logical faults. 
Also, in newly manufactured systems prior to their first testing, multiple faults are likely to exist. An 
undetected single fault in a testing experiment may also lead to a multiple fault if a second single 
fault occurs between two testing experiments. Nevertheless, tests designed for single faults can 
detect many multiple faults as well as many non-classical faults. 

The SSF model can thus be applied to any structural model, independently of technology, and 
represents many different physical faults [Timoc et al. 1983]. Another advantage is that the total 
number of SSFs in a circuit is small compared to other fault models, and not all of the faults have to 
be explicitly analysed in edge-pin testing. Moreover, SSFs can be used to model other types of faults 
at the cost of increasing the size of the circuit model. 

 
2.4  Benchmarks 

Benchmark circuits provide a common workbench for the scientific community to test and 
compare different applications for a variety of ECAD problems. Typically, a benchmark structural 
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model is expressed in some connectivity language specifying the I/O lines and signals of the system and 
its components. This is the case with the ISCAS’85 benchmark suite [ISCAS 1985, Brglez and 
Fujiwara 1985], the well known and most used set of benchmark circuits in the area. It 
comprehends a total of 11 combinational circuits (c17, c432, c499, c880, c1355, c1908, c2670, c3540, 
c5315, c6288 and c7552), where the number in a circuit name indicates the number of signal lines 
(nets) in the circuit. The simplest of them, c17, is described below as an example, and corresponds 
to the schematic diagram of Figure 2.9: 
 

INPUT(1gat) 
INPUT(2gat) 
INPUT(3gat) 
INPUT(6gat) 
INPUT(7gat) 

OUTPUT(22gat) 
OUTPUT(23gat) 

10gat = nand(1gat,  3gat) 
11gat = nand(3gat,  6gat) 
16gat = nand(2gat,  11gat) 
19gat = nand(11gat, 7gat) 
22gat = nand(10gat, 16gat) 
23gat = nand(16gat, 19gat) 

 
Primary inputs and primary outputs are explicitly stated. The definition of gates follows the form  
output = type(input_list)  which specifies the gate type (whose functional model is assumed to be 
known) and its I/O terminals (a single output and functionally equivalent inputs). Signal names in 
these terminals implicitly describe interconnections. For instance, primary input 3gat is connected to 
nand-gates 10gat and 11gat. 
 

1gat

2gat

3gat
6gat

7gat

10gat

11gat

16gat

19gat

22gat

23gat

 

Figure 2.9.  c17 ISCAS’85 example circuit 

Applying the previous definitions, we check that the level of c17 (graph in Figure 2.10) is thus 3, 
corresponding to the longest path (e.g. 3gat Æ 11gat Æ 16gat Æ 22gat). 
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Figure 2.10.  Graph representation of c17 

It is easy to verify that c17 presents reconvergent fanout, with (for instance) two paths from 11gat 
(11gat Æ 16gat Æ 23gat and 11gat Æ 19gat Æ 23gat) reconverging at node 23gat. 

Remembering the definitions of transitive fanin and fanout we see that, for example, the 
transitive fanout of 11gat is {16gat, 19gat, 22gat, 23gat} and the transitive fanin of 22gat is {1gat, 2gat, 
3gat, 6gat, 10gat, 11gat, 16gat}. 
 
Table 2.2 shows some statistics concerning each benchmark, including the number of PIs, POs, 
gates, circuit level, and average and maximum fanin and fanout, where a gate fanin is the number of 
its inputs. 

 
 

circuit 
 

PI 
 

PO 
 

gates 
 

level 
avg 

fanin 
max 
fanin 

fanout 
stems

fanout 
lines 

avg 
fanout 

max 
fanout

c17 5 2 6 3 2.00 2 3 6 1.27 2 
c432 36 7 160 17 2.10 9 89 236 1.75 9 
c499 41 32 202 11 2.02 5 59 256 1.81 12 
c880 60 26 383 24 1.90 4 125 437 1.70 8 
c1355 41 32 546 24 1.95 5 259 768 1.87 12 
c1908 33 25 880 40 1.70 8 385 995 1.67 16 
c2670 233 140 1193 32 1.74 5 454 1244 1.55 11 
c3540 50 22 1669 47 1.76 8 579 1821 1.72 16 
c5315 178 123 2307 49 1.90 9 806 2830 1.81 15 
c6288 32 32 2416 124 1.99 2 1456 3840 1.97 16 
c7552 207 108 3512 43 1.75 5 1300 3833 1.68 15 

Table 2.2.  Lines’ statistics of ISCAS benchmarks 

This set of circuits is fairly heterogeneous which, as is also visible by the gates' distributions shown 
in Table 2.3, makes them suitable for comparing different approaches for all kinds of problems. It is 
noteworthy that c1355 is just an expansion of c499, in replacing each xor-gate by 4 nand-gates, with a 
few buffers added. 
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Circuit buffer not and nand or nor xor Total 
c17    6    6 

c432  40 4 79  19 18 160 
c499  40 56  2  104 202 
c880 26 63 117 87 29 61  383 
c1355 32 40 56 416 2   546 
c1908 162 277 63 377  1  880 
c2670 196 321 333 254 77 12  1193 
c3540 223 490 498 298 92 68  1669 
c5315 313 581 718 454 214 27  2307 
c6288  32 256   2128  2416 
c7552 534 876 776 1028 244 54  3512 

Table 2.3.  Gates' statistics of ISCAS benchmarks 

For test generation problems, the ISCAS benchmarks include a set of single stuck-at faults (SSF) for 
each circuit (Table 2.4). Benchmark faults are only a subset of all the possible faults in a circuit 
(which are twice the number of nets, since any net may be stuck-at-0 or stuck-at-1), in fact, they 
constitute a collapsed fault set [Brglez and Fujiwara 1985]. The complete set of possible SSFs is 
collapsed to a smaller set since faults that are functionally equivalent to some other may be 
discarded. Two faults f and g are said to be functionally equivalent if the circuit presents always 
the same behaviour under the presence of fault f or g. For instance, an and-gate s-a-0 is functionally 
equivalent to any input i s-a-0 (as long as i has no fanout). In addition, the fault set may be further 
collapsed by considering the fault dominance relation [Abramovici et al. 1990]. Fault f dominates g 
iff any test that detects* g also detects f (on the same primary outputs), i.e. the set of tests that detect 
f contains g’s. As an example, for z = x and y, the single test that detects g = x s-a-1 is t = 01 that also 
detects f = z s-a-1. Fault f thus dominates g and can be discarded. 
 

 c17 c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552
Faults 22 524 758 942 1574 1878 2746 3425 5350 7744 7550 

Table 2.4.  ISCAS circuits: Fault sets 

2.5  Our Modelling Approach 

We have adopted a structural gate-level code-based modelling for the ISCAS benchmarks. It is a 
gate-level model since the lowest-level primitive components are gates (including the xor-gate) that 
cannot be structurally decomposed. The logic value of each signal line is given by a different 
variable. Hence, to allow for different values in different fanout branches from the same stem (due 
to circuit faults), each branch is replaced by a buffer outputting a different variable. The same 
happens with PIs as Figure 2.11 illustrates with the c17 circuit. It is a code-based model because we 
have used a programming language (PROLOG [Lloyd 1988, Sterling and Shapiro 1994]), as well as 
its constraint logic programming extensions to more efficiently tackle different circuit problems. 
                                                 
* Fault detection and test generation will be discussed in more detail in the next chapter 
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Figure 2.11.  C17 circuit with added buffers 

This circuit is then basically modelled by predicate circuit / 4 (4 arguments) below (Figure 2.12) as a 
sequence of 17 gates outputting 17 variables (X1 to X17). These variables are uniquely identified by 
an internal name given by a number i (i ∈  {1..17}). Each gate is of the type shown in the 1st 
argument of predicate gate / 6, has a list of inputs (2nd argument) and a single output (3rd). Such gate 
appears in the order of its output number i (4th argument) in a way that for any other gate (output 
number) j, if i < j then i does not depend on j, i.e. being l(i) the level of the gate, if there is a possible 
path connecting i and j then l(i) ≤ l(j). Hence, either there is no path between i and j or the gate with 
the lowest level appears first in the circuit model predicate. We thus guarantee that, when reaching 
some gate, its transitive fanin has already been handled. 

%-------------------------------------------------- 
%circuit(?InputList, ?OutputList, +InfoIn,-InfoOut) 
%-- 
circuit([I1,I2,I3,I4,I5], [X15,X17], A0,A17):- 

gate(inpt, [I1],      X1,  1,  A0, A1), 
gate(inpt, [I2],      X2,  2,  A1, A2), 
gate(inpt, [I3],      X3,  3,  A2, A3), 
gate(inpt, [I4],      X4,  4,  A3, A4), 
gate(inpt, [I5],      X5,  5,  A4, A5), 
gate(buff, [X3],      X6,  6,  A5, A6), 
gate(nand, [X1,X6],   X7,  7,  A6, A7), 
gate(buff, [X3],      X8,  8,  A7, A8), 
gate(nand, [X8,X4],   X9,  9,  A8, A9), 
gate(buff, [X9],      X10, 10, A9, A10), 
gate(nand, [X2,X10],  X11, 11, A10,A11), 
gate(buff, [X9],      X12, 12, A11,A12), 
gate(nand, [X12,X5],  X13, 13, A12,A13), 
gate(buff, [X11],     X14, 14, A13,A14), 
gate(nand, [X7,X14],  X15, 15, A14,A15), 
gate(buff, [X11],     X16, 16, A15,A16), 
gate(nand, [X16,X13], X17, 17, A16,A17). 

Figure 2.12.  circuit/4 predicate for c17 
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The circuit predicate receives the lists of PIs and POs, and, through the last two arguments, 
processes some application-dependent information that is passed along the gates (predicates), such 
as a fault or a list of possible faults. It is up to a specific implementation of the gate / 6 predicate to 
handle this information according to a goal. Different gate / 6 implementations are shown in Figure 
2.13,  Figure 2.14, Figure 2.15 and Figure 2.16 to illustrate some of the possible applications. 

The code in Figure 2.13 may be used for simulation of the circuit’s logic function. Here, the 
predicate consists of a simple Boolean logic table lookup. The 2 simple alternative clauses represent 
opposing alternatives, and, if inputs are still variables, choice-points are created relying on the 
PROLOG backtracking mechanism to eventually reach a possible solution on some possibly given 
circuit outputs. 

 
%-------------------------------------------------- 
%gate(+Type, ?InputList, +Output, +Name, +InfoIn,-InfoOut) 
% Boolean simulation 
%-- 
gate(not, [0], 1, _, X,X). 
gate(not, [1], 0, _, X,X). 

Figure 2.13.  Gate predicate for Boolean simulation 

Figure 2.14 represents the extension to a different specific logic where, if predicate 
multi_valued_logic_not / 2 posts any constraint on the gate signals In and Out then the gate predicate 
may also be used as some specialised constraint over that logic. 
 

%-------------------------------------------------- 
%gate(+Type, ?InputList, +Output, +Name, +InfoIn,-InfoOut) 
% Multi-valued logic simulation 
%-- 
gate(not, [In], Out, _, X,X):- multi_valued_logic_not(In, Out). 

Figure 2.14.  Gate in a multi-valued logic 

For diagnostic goals, the code of Figure 2.15 may be used for simulation of a faulty circuit. The gate 
predicate checks whether the gate is to be treated as faulty (SSFs are given and processed in a sorted 
list using the last 2 arguments). 
 

%-------------------------------------------------- 
%gate(+Type, ?InputList, +Output, +Name, +FaultsIn,-FaultsOut) 
% Faulty circuit simulation 
%-- 
gate(not, [_], 0, Name, [Name:s-a-0|Fs],Fs):- !. 
gate(not, [_], 1, Name, [Name:s-a-1|Fs],Fs):- !. 
gate(not, [0], 1, _,    Fs,Fs). 
gate(not, [1], 0, _,    Fs,Fs). 

Figure 2.15.  Possible faulty gate 

Test generation for some fault(s) may be performed using constraints as in Figure 2.16. Here, the 
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gate predicate is used as a specialised constraint over a specific logic (by means of an arithmetic 
constraint). 
 

%-------------------------------------------------- 
%gate(+Type, ?InputList, ?Output, +Name, +InfoIn,-InfoOut) 
% Constraint 
%-- 
gate(not, [In], Out, _, X,X):- Out #= 1-In. 

Figure 2.16.  Gate as a constraint 

As an example, using an implementation such as that of Figure 2.15 to model stuck gates, and 
applying it to c17 with nand-gate 7 s-a-0 (Figure 2.17), we can evaluate the goal circuit([0,0,0,0,0], Out, 
[7:s-a-0], []) to obtain Out=[1,0]. Notice that evaluating the circuit with no faults, circuit([0,0,0,0,0], 
Out, [], []) would yield Out=[0,0]. 

 

s-a-0
I1  0

I2  0

I3  0

I4  0

I5  0

X1=0

X2=0

X3=0

X4=0

X5=0

X6=0

X7=0

X8=0 X9=1 X10=1

X11=1

X12=1 X13=1

X14=1

X15=1

X16=1 X17=0

 

Figure 2.17.  C17 circuit with a stuck gate 

The model is thus flexible enough to be used by many different types of applications, and is not 
restricted to Boolean logic. The introduction of extra buffers does not jeopardise efficiency since 
they will only have special treatment if potentially faulty, otherwise a simple variable unification is 
performed between input and output. 

If necessary, the benchmark’s faults are available as a list of i/b pairs, where i is the internal 
number of the gate and b is the Boolean stuck value. For example, c17 fault set which is originally 
given as the 22 faulty signals of the left column of Table 2.5 is translated into the set of 22 SSFs in 
the form of stuck gates on the right column. 
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Faulty signals Stuck gates 
1gat/1,  2gat/1,  3gat /0 /1, 
6gat/1,  7gat/1,  10gat/1, 
3gat->10gat /1,  11gat /0 /1, 
3gat->11gat /1,  16gat /0 /1, 
11gat->16gat /1,  19gat/1, 
11gat->19gat /1,  22gat /0 /1, 
16gat->22gat /1,  23gat /0 /1, 
16gat->23gat /1 

1/1,  2/1,  3/0,  3/1, 
4/1,  5/1,  7/1, 
6/1,  9/0,  9/1, 
8/1,  11/0,  11/1, 
10/1,  13/1, 
12/1,  15/0,  15/1, 
14/1,  17/0,  17/1, 
16/1 

Table 2.5.  Translation of c17 fault set into stuck gates 

In addition, to more efficiently solve the different possible applications, the graph data structure of 
the circuit is also available in our model conveying the information of Table 2.6 which includes the 
gates’ external names for more user-friendly interfaces. 
 

Number Name Type Inputs Fanouts 
1 1gat   7 
2 2gat   11 
3 3gat   6, 8 
4 6gat   9 
5 7gat   13 
6 3gat_10gat buffer 3 7 
7 10gat nand 1, 6 15 
8 3gat_11gat buffer 3 9 
9 11gat nand 4, 8 10, 12 
10 11gat_16gat buffer 9 11 
11 16gat nand 2, 10 14, 16 
12 11gat_19gat buffer 9 13 
13 19gat nand 5, 12 17 
14 16gat_22gat buffer 11 15 
15 22gat nand 7, 14  
16 16gat_23gat buffer 11 17 
17 23gat nand 13, 16  

Table 2.6.  C17 graph information 

There is a functional model for each gate type modelled by a logic table which depends on the logic 
used. Of course, faulty gates do not obey to such “normal” tables and, in principle, extra logic tables 
should be considered for each type of faulty gate (given by the gate type and the stuck value). One 
could think that it would be enough to set the gate’s output to the stuck value, independently of the 
gate type, thus avoiding new truth tables. This is certainly true to the extent that we are sure that the 
gate is really stuck and that we are working with simple Boolean logic. In general, however, the 
faults to handle are only potential faults that we want to confirm or infirm, so the output function is 
not certain yet. In many cases, the logic is extended to extra values that carry additional information 
on the possible physical Boolean variables. Then, when the inputs and output of a potential faulty 
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gate are not known, the logic function is seen as a relation that may “pass” information forward or 
backward. Logic tables for these gates are thus essential. 

To simplify, we only consider stuck buffers. A general stuck gate may be seen just as a normal 
gate followed by a fictitious stuck buffer. Then, for each target fault (a stuck gate) we add such a 
buffer, which we refer to as an S-buffer (Figure 2.18) [Azevedo and Barahona 1998]. In this way, all 
gates are normal and are thus modelled by the logic table (possibly expressed by a constraint) 
corresponding to its type (and, or, ...). Only S-buffers may be stuck, hence they are modelled by a 
different relation. 
 

G s-a-0 G B s-a-0

0 0  

Figure 2.18.  Introduction of an S-buffer B s-a-0 

When evaluating a gate / 6 predicate, the logic table corresponding to its type is treated normally 
and, with the information passed through all the gates by the two final gate arguments, it is checked 
whether it is a potential faulty gate, in which case the logic table of the S-buffer is processed. 

The use of S-buffers, their logic tables and the extended logics will be discussed and made 
clearer in the next chapters. 

 
2.6  Summary 

This chapter presented combinational digital circuits as the global subject of the problems and 
examples that will be covered throughout this thesis, and our general modelling approach for them 
considering the possible faults that may affect their behaviour. 

The next chapter presents a basic problem (testing) involving some possible fault(s) in the 
circuit, and discusses and compares approaches and algorithms for circuit or fault testing. 
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C h a p t e r  3  
 
 
 

TEST PATTERNS 

 
Since a circuit may present an unintended behaviour (i.e. output an incorrect function), it is 
important to know whether it is normal or faulty, so that its output can be trusted. A correct output 
(as predicted by its fault-free model) for a given input is, however, generally insufficient to conclude 
that the circuit is normal, since typically faults only affect a fraction of the circuit function. Thus, 
only some input-output configurations highlight the presence of specific fault(s). Since it is 
impractical to test a circuit for all possible inputs, dedicated or limited tests are usually performed to 
test stuck lines (which may however skip detection of some possible faults). 

Choosing such tests is the subject of this chapter, where we start introducing the notion of test 
patterns in the next section, and discuss its generation in section 3.2. In section 3.3 we present some 
modelling approaches and algorithms, including the introduction of multi-valued logics to model 
fault dependencies in a circuit. Constraint reasoning, and its inclusion in a solver we developed for 
test generation, is discussed in section 3.4. Heuristics to guide problem solving are discussed in 
section 3.5 before our alternative, iterative time-bounded search, is presented together with results 
and conclusions in section 3.6. 

 
3.1  What are Test Patterns ? 

To check whether a system behaves as expected (i.e. whether its response function is the same of its 
model or its design specifications), we need to test it with certain stimuli and verify its response. For 
a digital circuit, these stimuli are its input bits with possible logic values 0 or 1, thus forming an 
input vector referred to as a test pattern. The number of test patterns of a circuit is exponential on the 
number of primary inputs since each combination of input values is a potential test pattern. 
Therefore, only a restricted number of test patterns (also called a test set) is usually considered for the 
circuit under test (CUT), since it is expensive and even impractical to consider all patterns. In 
addition, most of the times a small test set is enough to test all possible detectable single stuck faults 
(SSFs). For example, for the circuit of Figure 3.1, the test set T = {000, 001, 111} is a complete 
detection test set for all stuck gates since any of the 8 possible SSFs (4 gates times 2 Boolean values) 
can be detected by applying at least one test pattern t ∈  T. 
 

G2

G3

G4

G1

a
b

c  

Figure 3.1.  Example CUT 
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For instance, test t=001* detects SSF f = G1 s-a-0, as shown in Figure 3.2, since the circuit response 
function changes under f. 

 
G2

G3

G4

G1

0
0

1

0

1 1

1

1
             

G2

G3

G4

G1 / 0

0
0

1

0

0 0

0

0
 

 (a) (b) 

Figure 3.2.  Expected circuit behaviour (a); and circuit 
response with G1 s-a-0 (b) 

Table 3.1 below shows possible tests t from set T, for each stuck gate. 
 

SSF t 
G1/0 001 
G1/1 111 
G2/0 111 
G2/1 000 
G3/0 001 
G3/1 000, 111 
G4/0 001, 111 
G4/1 000 

Table 3.1.  Tests for possible stuck gates 

A variety of techniques exist to generate all elements (i.e. test patterns) of a test set for a given 
circuit. The techniques depend on the goals to be achieved as discussed in the following sections. 

 
 

3.2  Test Generation 

When the goal is to detect specific faults in the circuit, a test with appropriate inputs must be found 
so that the effects of the faults are apparent on the circuit output. This Test Generation (TG) is said to 
be fault-oriented. TG is an NP-complete problem [Ibarra and Sahni 1975], thus a number of 
algorithms have been developed to tackle it, due to its importance in industry. For the process of 
finding a test set for the SSFs in a circuit, generally there is an Automatic Test Generation (ATG) 
system that uses such an algorithm and a model of the circuit. The generated test set is also useful to 
detect many physical and design errors [Abadir et al. 1988]. 

For economic and quality reasons, the test set should, as much as possible, be: a) cheap (i.e. 
generated in a small amount of time); b) short; and c) have a high fault coverage, where the fault 
coverage for detectable faults (some faults may have no possible detection) is computed by 

                                                 
* Bit values are always in alphabetical order of their names (a, b, c in this case) 
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number of detected faults 
total number of faults - number of undetectable faults 

(i.e. it should detect as much faults as possible — ideally it should be a complete detection test set.) 
In practice, it is not possible to achieve all these optimisation goals, hence user-specified limits 

are imposed on them. Of course, some goals may be more important than others since the fault 
coverage directly affects the quality of the product, which may be the key factor. Also, the 
generation time is not as costly as a long test set since longer test sets imply longer testing times, 
which may be repeated often, as opposed to the former, which is a one-time expense. 

Typically, an ATG system in a first phase generates tests in a pseudo-random way providing a 
low-cost initial set that may normally detect from 50 to 80 percent of the faults. This first phase of 
ATG is said to be fault-independent since tests are not generated for specific faults. In a 
subsequent second phase, a fault-oriented test generation algorithm is applied for the undetected 
faults [Breuer 1971, Agrawal and Agrawal 1972]. In this chapter we only focus on this more difficult 
fault-oriented test generation. 

Test vectors produced by a fault-oriented TG algorithm are, in general, partially specified, i.e. 
some input bits may have an unspecified or “don’t care” value denoted by an x. For example, an 
ATG system may generate tests 0x1 and x11. Unspecified values are important during TG when 
modelled circuit signals have not yet been assigned a value, and also as final generated PI values 
since they may allow a subsequent compaction of a test set. For instance, the example tests 0x1 and 
x11 could be combined and replaced by the single test 011. 
 
3.3  TG Modelling Approaches and Algorithms 

Using the notation and definitions in [Abramovici et al. 1990], let Z denote the logic function of a 
combinational circuit N. We will denote by t a specific input vector, and by Z(t) the response of N 
to t. For a multiple output circuit Z(t) is also a vector. The presence of a fault f transforms N into a 
new circuit Nf. Here we assume that Nf is a combinational circuit with function Zf(x). The circuit is 
tested by applying a sequence T of test vectors t1, t2, ..., tm, and by comparing the obtained output 
response with the (expected) output response of N, Z(t1), Z(t2), ..., Z(tm). 
 
Definition 3.1: A test (vector) t detects a fault f iff Zf(t) ≠ Z(t). 

 

G3
G1

G2

G4

i1
i2

i3

1

1

0

0/1

0

Z
0/1

0/1

 

Figure 3.3.  Test for SSF G1 s-a-1 

In the example of Figure 3.3, test t = 011 detects fault f = G1 s-a-1. Signals that have different values 
without and with f present in the circuit, are shown in the form of a composite logic value v/vf, where v is 
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the signal value in the fault-free circuit N and vf is the value in the faulty circuit Nf defined by the 
target fault f. The fault is detected since the output values in the two cases are different. 

A fault f is said to be detectable if there exists a test t that detects f; otherwise it is undetectable. It 
is possible, in principle, to generate a test for a fault (or prove that it is undetectable) by trying 
successively different input vectors and simulating the good and faulty circuits until their responses 
differ in at least one output bit. If all possible input vectors are unsuccessful, the fault is 
undetectable. This generate-and-test approach is of course impractical for circuits with many input bits, 
since its time complexity is exponential on the number of such bits. 

 
3.3.1  Algebraic Models / Algorithms 

In the circuit of Figure 3.3, the general output function is given by the single output 3221 .. iiiiZ += . 
A test t that detects a fault f makes Z(t)=0 and Zf(t)=1 or vice versa, i.e. Z(t) ⊕  Zf(t) = 1. For fault f = 

G1 s-a-1, 321. iiiZf +=  and Z ⊕  Zf = 1 reduces to 3.21. iii =1, which enforces i1=0, i2=1, i3=1, 
corresponding to the single test t = 011. Such method of representing the circuit by Boolean 
equations is called an algebraic method [Breuer and Friedman 1976]. Propositional Satisfiability 
(SAT) solvers [Larrabee 1992, Silva and Sakallah 1997] can be used for algebraic methods but these 
are considered impractical for large circuits [Abramovici et al. 1990]. 
 
3.3.2  Topological Methods 

The usual TG methods can be characterised as topological as they are based on a structural model of a 
circuit. 

Figure 3.3 illustrates two basic concepts used in this approach for fault detection: 

•  a test t that detects a fault f activates f, i.e., generates an error (a fault effect) by creating 
different v and vf values at the site of the fault (a 0-value in the normal circuit and a 1-value in 
the faulty circuit or vice-versa, as in the output of faulty G1 of Figure 3.3). 

•  t propagates the error to a primary output w, that is, all the lines along at least one path 
between the fault site and w have different v and vf values. 

In Figure 3.3 the fault propagation for fault f = G1 s-a-1 occurs along the path (G1, G3, G4). A line 
whose value for test t changes in the presence of the fault f is said to be sensitised to the fault f by 
the test t. A path composed of sensitised lines is called a sensitised path. 

TG algorithms, referred to as path-sensitisation algorithms, operate based on these concepts. To 
find a test t that detects a fault G s-a-v, the fault must be activated by assigning appropriate input 
values to G so that v  would normally be output. Then the resulting error must be propagated to a 
primary output (PO). Of course, these value settings on specified lines in the circuit must be justified, 
i.e. they must result from an assignment of primary input (PI) values. Finding such an assignment is 
a line-justification problem, which is solved by an implicit enumeration of all possible solutions. It 
consists of a recursive procedure in which the value of a gate output is justified by values of the gate 
inputs, until PIs are reached. For some values, some gate inputs may be left unspecified since it is 
enough that one of them takes the controlling value (absorbing element) of the gate. For instance, a 
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0-value at an and-gate’s output is justified by a single 0-input, as shown in the example of Figure 3.4. 
 

1
1
1

1
k

x
0
x

0
k

 

Figure 3.4.  Justifying values for line k 

3.3.3  Multi-valued Logics 

To control error propagation, the composite logic values v/vf must be considered. There are four 
such pairs of values, namely {0/0, 0/1, 1/0, 1/1}. Logic operations between composite logic values 
can be evaluated by composing the results for the fault-free and faulty circuits. Hence, a 4-valued 
logic may be defined where values 1/0 and 0/1 represent errors and are denoted respectively by 

symbols D and D  [Roth 1966] (see Figure 3.5). Values 0/0 and 1/1 are constants simply denoted 

by 0 and 1. As an example in the or-operation, D + D  = 1/0 + 0/1 = (1+0) / (0+1) = 1/1 = 1. 
 

v/vf s s   AND 0 1 D D  OR 0 1 D D  
0/0 0 1  0 0 0 0 0  0 0 1 D D  
1/1 1 0  1 0 1 D D  1 1 1 1 1 
1/0 D D   D 0 D D 0  D D 1 D 1 
0/1 D  D  D  0 D  0 D  D  D  1 1 D  

Figure 3.5.  4-valued logic 

In practice, logic operations with these values are defined by tables with an added fifth value (x) that 

denotes an unspecified composite value, that is, any value in the set {0,1,D, D }. Figure 3.6 shows 
tables of basic operations over this 5-valued logic. Each such logic operation corresponds to the 
two operations in the normal and faulty circuits since the 5 values are just an encoding of the two 
composite values. 

 
NOT   AND 0 1 D D  x  OR 0 1 D D  x 

0 1  0 0 0 0 0 0  0 0 1 D D  x 
1 0  1 0 1 D D  x  1 1 1 1 1 1 
D D   D 0 D D 0 x  D D 1 D 1 x 
D  D  D  0 D  0 D  x  D  D  1 1 D  x 
x x  x 0 x x x x  x x 1 x x x 

Figure 3.6.  5-valued logic 

Each assignment of a value to a line k may then imply other values, as exemplified in Figure 3.7. This 
may lead to an inconsistency during the search for a solution where decisions are made to justify a line 
or to propagate an error. If such a conflict occurs, there is a failure and backtracking is used to try a 
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different choice. When all choices fail, there is no possible solution and the fault is said to be 
undetectable. A combinational circuit in which all stuck faults are detectable is said to be irredundant; 
otherwise, it is redundant. 

Before

k=1x

x

k=01

x

xk=0

x
xk=1

D

After

11

1

01

0

00

x
D1

D  

Figure 3.7.  Some backward and forward implications 
using 5-valued logic 

Path-sensitisation algorithms take a circuit with all lines initially unspecified and try to activate a 
given fault, propagate it to a PO and justify the decided line assignments. All value implications are 
propagated along the way according to the 5-valued logic, and if a conflict arises the last (incorrect) 
decision must be reversed by a backtracking mechanism. 

In fanout-free circuits (see section 2.1) there is only one way to propagate an error to a PO, 
since any circuit signal line (including the fault activation site) has only one possible path to the 
circuit output. Also, line justification problems can be solved independently since the corresponding 
sets of PIs to assign are mutually disjoint. 

For the general and usual case of circuits with fanout, the fault must still be activated leaving a 
line-justification problem, but there may be several options to propagate a fault. Once a propagation 
path is chosen, all that remains are line-justification problems. These problems, however, may no 
longer be independent with (reconvergent) fanout, and are a source for the possible conflicts. Also 
note that some faults may only be detectable with multiple-path sensitisation, where at least 2 
reconvergent paths must be sensitised to propagate a fault to a PO, as is the case of fault G1 s-a-1 in 
Figure 3.8. 

a
b

c

d

e

G1 s-a-1

G2

G3

G4

G5

Z

 

Figure 3.8.  Target fault: G1 s-a-1 
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Test vector abcde=11000 is the only one that detects G1 s-a-1 by sensitising all three paths through 

G2, G3 and G4 to yield a D  at output Z (see Figure 3.9). 
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e
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Figure 3.9.  Multiple-path sensitisation 

Such faults are considered rare in practical circuits [Cha et al. 1978]. So, to reduce computation time, 
some TG algorithms are often restricted to single-path sensitisation, as we will see in the next sections. 
This improves the speed of ATG systems, at the cost of possibly lowering fault coverage, by 
avoiding faults that are harder to detect. In the circuit of Figure 3.8, for the same fault G1 s-a-1, after 
activating it by setting a and b to 1, if one first tries to propagate it through, say, G2 (as in Figure 
3.10) by setting c to 0, then the 2 other inputs of G5 must be set to 1 to keep the (single) path 
sensitised. However, these 1-values (at the outputs of nor-gates G3 and G4) have no possible 

justification (i.e. they are inconsistent with the previous assignments) since an input is already D  and 

neither value 0 nor 1 at d or e yields value 1 at the nor-gate since nor( D , 0) = D and nor( D , 1) = 0. 
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Figure 3.10.  Impossible single-path sensitisation 

To better deal with cases such as multiple-path sensitisation, a 9-valued logic [Muth 1976] may be 
defined by adding four partially specified composite values to the 5-valued logic. The x value of the 5-
valued logic is totally unspecified, that is, neither v nor vf is known. For a partially specified 
composite value v/vf, either v is binary and vf is unknown (u) or vice versa. For example, 1/u 
represents both 1/0 and 1/1. This means that 1/u can be either D or 1. Table 3.2 shows the 
partially specified composite values and the sets of completely specified composite values they 

represent. The totally unspecified value x is u/u and represents the set {0,1,D, D }. 
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v/vf values 
0/u {0, D }
1/u {D,1} 
u/0 {0,D} 
u/1 { D ,1}

Table 3.2.  Partially specified composite values 

Table 3.3 below shows the ‘not’ table in this logic. 
 

NOT 0/0 0/1 0/u 1/0 1/1 1/u u/0 u/1 u/u 
 1/1 1/0 1/u 0/1 0/0 0/u u/1 u/0 u/u 

Table 3.3.  NOT-operation in 9-valued logic 

This and other operations may be performed by separately taking values in the normal (v) and faulty 
circuits (vf) and applying the same operation over the 3-valued logic. In fact, the 9-valued logic is just 
a double 3-valued logic (32 = 9). As an example in this logic, D+x = 1/0 + u/u = (1+u) / (0+u) = 
1/u which may be 1 or D, while in the 5-valued logic D+x is simply x. Thus, the 9-valued logic 
provides more information, and a system using it may avoid backtracking in some cases, as we will 
see in the next section. 

 
 

3.3.4  TG Specialised Algorithms 

The D-algorithm [Roth 1966, Roth et al. 1967] is a classical TG algorithm over the 5-valued logic, 
where error propagation decisions (together with its implications) are given priority over 
justification problems, i.e. first the activated fault is propagated by successively choosing the gates of 
the sensitised path and appropriately setting its inputs, and only afterwards are these values justified. 

Returning to the example of Figure 3.8, after activating fault G1 s-a-1 by assigning 1 to both 
inputs a and b, the D-algorithm tries to propagate the error solely through G2 (with c=0) by 
assigning 1 to the other inputs of G5, which will lead to a contradiction, as we have already seen. 
Then it will try to propagate it through both G2 and G3, and only after this fails will it try and 
succeed to sensitise the three paths from G1 (through G2, G3 and G4) till Z. 

 
The 9-V algorithm [Cha et al. 1978] is an extension of the D-algorithm in that it uses the 9-valued 
logic. Since this logic provides more information than the 5-valued one, it may avoid backtracking 
in the case of multiple path sensitisation. In the example of Figure 3.8, the 9-V algorithm, after 
deciding propagating value D through G2, will only have to partially specify the other inputs of G5 to 
1/u, which forces d=0 and e=0 without backtracking, whereas the D-algorithm had to undo 2 
wrong choices. 
 
PODEM (Path-Oriented Decision Making) [Goel 1981] is an algorithm where a line-justification 
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problem resulting from some decision (a value assignment made by PODEM to direct a path) is 
solved by a direct search process consisting only of PI assignments. An objective value vk in a line k is 
backtraced to a PI i counting the inverters along the way (xor-gates must be translated into more 
basic gates) to yield the parity pi-k of inverters of the path so that the appropriate value vi = vk ⊕  pi-k 
(likely to contribute to the objective) is assigned to PI i. This mapping of an objective to a PI 
assignment is repeated until the objective is achieved. 

In the example of Figure 3.11, if the objective is to assign value vf =1 to line f, PODEM may 
first backtrace it to PI a, which given value va = vf ⊕  pa-f = 1 ⊕  (2 mod 2) = 1 ⊕  0 = 1 (objective value 
xor the parity of path inverters) does not yet imply the objective f=1. PODEM then backtraces 
again, this time to PI b, which given value vb = vf ⊕  pb-f = 1 ⊕  (3 mod 2) = 1 ⊕  1 = 0 already achieves 
the objective f=1, since simulating the circuit with ab=10, d becomes 0, and, consequently, f=1. 
Thus, there are only forward implications (from inputs to outputs) which eliminates conflicts and 
may ease backtracking implementations since it can be done by implicit simulation rather than by an 
explicit save/restore process. PODEM is generally faster than the D-algorithm (experimental results 
also in [Goel 1981]). 
 

a
b c

d
e f

 

Figure 3.11.  Objective: f = 1 

The FAN (Fanout-Oriented TG) algorithm [Fujiwara and Shimono 1983] extends the backtracing 
concept of PODEM (which stops at PIs) with the possibility of stopping at internal lines that are 
called head lines, according to the following definitions. 

•  A bound line is a reachable line from (i.e. directly or indirectly fed by) at least one stem (see section 
2.1). This means that any line with a possible path coming from a fanout point is a bound line. 

•  A line that is not bound is said to be free. 
•  A head line is a free line that directly feeds a bound line. 

In the example circuit of Figure 3.12, lines A to H are free; J, K and L are bound lines; so, G and H 
are the head lines. 

head lines
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F
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Figure 3.12.  Head lines 

Since the subcircuit feeding a head line l is fanout-free, a value of l can be justified without 
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contradicting any other value previously assigned in the circuit. Thus backtracing can stop at l, and 
the problem of justifying the value of l can be postponed for the last stage of the TG algorithm. 
When the assignment of a value to a head line leads to a failure, PIs assignments of PODEM would 
only produce useless backtracking. 

In addition, FAN also uses a multiple-backtrace procedure that attempts to simultaneously satisfy a 
set of objectives rather than one at a time. The objectives are the line-justification problems that 
come from the fault-activation and error-propagation problems. If, for instance, to activate a fault it 
is necessary that a set of gate inputs take a 0-value, PODEM would individually backtrace each 
objective, and a PI assignment allowing to satisfy one could preclude achieving other, forcing 
backtracking. FAN, in turn, may take all of the objectives together stopping backtracing at a 
highest-level stem and trying the most requested value there. 

FAN has both forward and backward implications. It is more efficient than PODEM due 
primarily to the reduction in backtracking. 
 
Other two algorithms exist that extend the concept of head lines by identifying higher-level lines 
whose values can be justified without conflicts. These lines are used to stop the backtracing process, 
but better results are not demonstrated. 

In TOPS (Topological Search) [Kirkland and Mercer 1987], a total reconvergence line is the output l 
of a subcircuit C such that all paths between any line in C and any PO go through l. Note that the 
basic gates implementing the xor function may constitute such a subcircuit and its output is a total 
reconvergence line. Another algorithm, FAST (Fault-oriented Algorithm for Sensitized-path 
Testing) [Abramovici et al. 1986a], based on an analysis that is both topological and functional, uses 
a line l as a backtrace-stop line for value v, if the assignment l=v can be justified without conflicts. 
 
While the worst-case (observed mainly for undetectable faults [Cha et al. 1978]) complexity of all 
these specialised TG algorithms remains exponential due to the possible number of incorrect 
decisions, on the average-case they are able to run on acceptable time, as is typical in many NP 
problems. 
 
3.3.4.1  Extra Techniques 

Improvements to TG algorithms such as global implications of SOCRATES [Schulz et al. 1988, 
Schulz and Auth 1989] may achieve a better efficiency. In the circuits of Figure 3.13, the value of Z 
always implies a value for B. In (a), when Z is assigned 1, no local implications can be made, but all 
possible justifications for Z=1 necessarily have B=1. SOCRATES “learns” this global implication in 

a preprocessing phase by simulating B=0 and verifying that it implies Z=0. Then 0=Z  implies 

0=B , that is, Z=1 implies B=1, independently of other values in the circuit, being thus called static 
learning. 
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Figure 3.13.  Global implications: the value of Z 
determines the value of B 

Dynamic learning is also performed by SOCRATES to determine global implications enabled by 
previously assigned values. For example, in Figure 3.13 (b), when A is already 1, assigning 0 to Z 
implies B=0 because if B were 1, F would also be 1 in that case. 

Efficient TG for large circuits is, in fact, an important practical problem, and the consensual 
opinion of the scientific community is that it requires hardware support or Artificial Intelligence 
(AI) techniques, the two current main research directions in this area. 
 
As we will see in the next section, constraint reasoning can be efficiently applied to the TG 
problem, naturally incorporating many of the discussed techniques while other improvements may 
easily be introduced. 

 
 
3.4  Constraint Reasoning 

Logic Programming (LP) is a very natural approach for TG due to its embedded backtracking 
mechanism, and Constraint Logic Programming (CLP) adds expressive power and efficient execution to 
the declarative nature of LP. Circuit gates may be represented in CLP as constraints that model their 
functional behaviour, and decisions for the search procedure expressed by simple logic disjunctions. 
On providing the target fault, the CLP system solves the constraints, implicitly propagating the 
implications and, if there is a solution, generates the test pattern. 
 
3.4.1  CLP(B) 

In a CLP(B) system (where B stands for Boolean domains), one can easily model a digital circuit by 
modelling in turn each logical gate by means of a Boolean constraint on the gate’s inputs and 
output. A CLP(B) system may be complete by using Boolean unification, in which case it is referred 
to as symbolic, or it may be incomplete be handling variables as finite domain ({0,1}) variables as in a 
CLP(FD) system. In this section we discuss these two types of Boolean solvers. 

 
3.4.1.1  CLP(B) - Symbolic 

A circuit represented as a set of Boolean constraints can be solved using a symbolic Boolean 
approach [Büttner and Simonis 1987], thus corresponding to an algebraic model. For instance, in 
Figure 3.13 (a) circuit output Z is given by Z = (A+C).B. Hence, when Z=1, we have (A+C).B = 1 
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⇔ A+C =1 ∧  B=1 (with Boolean unification, this may be represented as {A/ (C ⊕  1)+A’, B/1}). 

We may thus infer the global implication Z=1 ⇒ B=1. Nevertheless, such symbolic reasoning 
implicitly computes all solutions, thus turning a problem such as TG (where the usual goal is to find 
a solution) into the NP-hard complexity category. 

 
3.4.1.2  CLP(B) – Finite Domain 

Boolean constraints can be solved more efficiently by a number of incomplete Boolean solvers, 
obtained as a specialisation of a finite domains solver [Codognet and Diaz 1997]. 

In [Simonis 1989], the author suggests a technique to generate test patterns for SSFs, 
implemented in the CLP system CHIP [Dincbas et al. 1988]. It implicitly adopts the 5-valued logic 
of Figure 3.6 using Boolean domain variables for 0- and 1-values, and symbolic values d and dnot for 

d-signals D and D . An uninstantiated Boolean domain variable may represent the unspecified 
value x. The algorithm can be classified as topological, in that it activates the fault, propagates it to the 
output and justifies the choices made. 

To find a test pattern for the given fault, it is necessary to traverse the circuit in increasing level 
order (from inputs to outputs) posting the Boolean gates constraints with the Boolean variables 
corresponding to their connections. When the gate under test is reached, the fault is activated by 
appropriately setting the gate Boolean inputs (all of them or just one by means of a disjunction) so 
that the gate outputs a d-signal. When a d-signal reaches the input of a gate, its propagation is always 
forced by CHIP demons [Davis 1984, Simonis and Dincbas 1987], which avoid its masking by 
imposing some constraints on the other inputs. Demons are constraints that behave in a data-driven 
way, by means of a set of rules that describe the action to perform when the arguments satisfy some 
condition (e.g. a ground argument with some value). For example, when an input of an or-gate is 
symbolic value d, then the other inputs are set to 0 and value d is output. D-signals are thus always 
explicitly set, leaving only Boolean variables in the circuit. 

If a d-signal reaches an output bit, the sensitised path must be justified. The resulting Boolean 
Constraint Satisfaction Problem (CSP) must be satisfied by some labelling of the remaining variables to 
find a proper test pattern. In spite of using a 5-valued logic (4 explicit values plus the unspecified 
Boolean domain variable), the CSP that is generated for a chosen sensitised path (with the symbolic 
d-signals) is purely Boolean. There may thus be many possible different Boolean CSPs for some TG 
problem, according to the choices made regarding the sensitised path. The system must find a 
solution to one such CSP to solve the problem. 

By always enforcing fault propagation, Simonis approach may overlook some solutions. In 
Figure 3.14, for example, the value to assign to a must be chosen. In this example, the d-signal must 
pass solely through the not-gate and be masked at the or-gate by a=1 (Figure 3.15 (b)). By enforcing 
a=0 (to propagate the d-signal), Simonis does not allow it to reach z (Figure 3.15 (a)), since the two 
opposing d-signals will meet at the and-gate thus annihilating themselves. 
 



 

 39

z
D

a

D

 

Figure 3.14.  How to assign a to have a d-signal at z ? 
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Figure 3.15.  To have a d-signal at z, D must be masked 
at the or-gate by a=1 

Replacing the demons by disjunctions to allow more solutions should solve this problem, i.e. 
instead of forcing propagation (as in the or-gate by a=0), the alternative hypothesis a=1 should also 
be allowed, although locally masking the d-signal. In fact, globally, it is the only way that enables the 
d-signal to reach a PO. 
 
In [Azevedo and Barahona 1998] we present a diagnostic tool able to generate these test patterns 
with a constraint solver over Boolean variables but extending the scope to Multiple Stuck Faults 
(MSFs). Gates either propagate or mask d-signals, but preference (in the sense of priority in search) 
is given to propagation. To avoid carrying on a computation when no more d-signals are present, it 
is sufficient to maintain one counter for the current number of d-signals present in the circuit at any 
step of the computation. After fault-activation, the program may backtrack as soon as the counter is 
null. 

If this heuristic procedure works well in many situations, in others the number of choice points 
created is too large. Moreover, backtracking on a choice point is caused by the failure of solving a 
possibly large Boolean CSP. This makes critical the heuristics made at each choice point. 
Additionally, there can be obvious optimisations that the system will not find, as shown in the 
circuit of Figure 3.16. 
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Figure 3.16.  Drawback of creating choice points 

In this very simplified example, D can never propagate to the output Z, yet 25 decisions (on ai 
values) are made to reach this conclusion. If sub-circuit C contained more choice points, execution 
time would increase exponentially. This is a typical situation with some circuits (e.g. c432 of [ISCAS 
1985]), which, even if relatively small, create a number of difficulties hard to handle. Note that the 
above mentioned TG algorithms also face this problem. Applying the single-path sensitisation 
restriction here may largely compensate in terms of time by reducing backtracking, but, as 
mentioned, at the possible cost of not finding the solution even if one exists. 
 
 
3.4.2  CLP(FD) 

In [Simonis 1992], the author presents another TG version for CHIP, where fault propagation is 
not always enforced, and where two extra symbolic values: e and enot are introduced. Such e-signals 
have the same meaning of d-signals but can be masked. When a d-signal (d / dnot) is at a fanout 
point, it may “choose” one and only one line to follow, while the other lines take the e-signal (e / 
enot). The goal is still to have a d-signal at the output, therefore it cannot be masked and, at the end, 
there will be a single-path with d-signals, although there can be many with e-signals reconverging to 
it, thus allowing multiple-path sensitisation. 

In addition, this version extends the domain of the constraints from Boolean to finite domains 
of 6 values {0, 1, d, dnot, e, enot} in a CLP(FD) approach which allows the delaying of some choices of 
values in the circuit. (In practice, the variables to label in the CSP have only 4 possible values, since 
a path with d-signals is chosen as before.) 

 
With such solver, Simonis developed an ATG system (section 3.2), and applied it to the ISCAS 
circuits described in section 2.4. Table 3.4 reproduces the results obtained on a SUN 3/260 taken 
from [Simonis 1992], where ‘Red.’, ‘Ab.’ and ‘#’ represent respectively, the number of redundant 
faults, aborted faults and the total number of tests obtained (i.e. the cardinality of the circuit test 
set). The total time needed is shown in seconds, as well as the average time per test generation 
(T/TG) attempted. 
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 Red. Ab. # Time T/TG
c432 1 3 68 180 2.5
c499 8 0 62 147 2.1
c880 0 0 74 225 3.0
c1355 8 2 92 525 5.1
c1908 5 5 124 920 6.9
c2670 97 41 105 3285 13.5
c3540 127 25 175 4208 12.9
c5315 59 22 141 3821 17.2
c6288 34 0 37 2358 33.2
c7552 88 122 281 9924 20.2

Table 3.4.  Results of Simonis’ ATG system 

As with other ATG systems, emphasis is given to finding a small test set while assuring high fault 
coverage. Test sets may be much smaller than the whole set of faults since a test may detect many 
faults, as previously explained. The general idea of the ATG system is to generate a test pattern for 
one of the still undetected faults and, if successful, perform fault simulation in the circuit with the 
obtained test to check what other faults are also detected (such simulation is discussed in Chapter 
5). If it is impossible to generate a test, then the fault is redundant. If execution terminates by 
reaching a user-specified limit, without finding a test, then the fault is aborted. In both cases, the 
system moves on to the following undetected fault, until all faults have been considered. 

 
 

3.4.2.1  Our Solver 

In [Azevedo and Barahona 2000c], in addition to our use of an extended logic for related diagnostic 
problems (see next chapters), we show that TG for SSFs or MSFs can be solved by constraints over 
the 4-valued logic with the semantics specified in the tables of Figure 3.5, thus avoiding the choice 
points at fanouts with a d-signal. 

 
These logic tables are the ones of 5-valued logic with removed x entries. Finite domain (FD) 
variables have just 4 possible ground values. Uninstantiated variables are unspecified (x) values. 

In a CLP model of a digital circuit, the domain variables represent the values of the inputs and 
outputs of gates. Variable-sharing models a connection among gates (i.e. if gate g1 directly feeds gate 
g2, then the output variable of g1 is an input variable of g2), which implies that a fanout is 
topologically a point with a single value. To model all possible stuck lines, fanout lines are thus 
replaced by buffers in the model, so only stuck gates have to be considered (PIs are also treated as 
buffers) by means of the corresponding S-buffers (see section 2.5). 
 
A circuit is then basically modelled by the set of constraints corresponding to its gates. Each original 
circuit line contributes with one constraint, and an additional constraint models a target fault. 
Although the final model is independent of the order of posted constraints, it is convenient to keep 
the order of constraints from PIs to POs due to domain declarations and propagations (for 
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example, all variables appearing before an S-buffer are already constrained to the Boolean domain 
{0,1} instead of the full 4-valued domain). This model is free of choice points regarding sensitised 
paths since no decisions are made along the way, i.e. there is no commitment to a particular value in 
a signal line or to some sensitised path (such decisions are delayed by using constraints over the 4 
logic values). Hence, there is only one CSP for a TG problem. Either this CSP is solved and we find 
a test pattern, or it fails and the fault is redundant. 

 
This approach makes it quite straightforward to generalise TG on SSFs to multiple faults. In TG for 
multiple faults, we only have to take into account that S-buffers may already have a d-signal (from 
another fault) at its input. All 4 logic values (0, 1, D, D ) are thus possible inputs for S-buffers. 

Let S-buffer/0 (/1) denote an S-buffer s-a-0 (s-a-1), i.e. a buffer that in the faulty circuit model 
always outputs 0 (1). S-buffers behaviour in the 4-valued logic can also by determined by separately 
examining the results for the normal and faulty circuits, and combining them as in Table 3.5. 
 

 Input S-buffer/0 
output 

S-buffer/1 
output 

0 = 0/0 0/0 = 0 0/1 = D  
1 = 1/1 1/0 = D 1/1 = 1 
D = 1/0 1/0 = D 1/1 = 1 
D  = 0/1 0/0 = 0 0/1 = D  

Table 3.5.  S-buffers logic table 

Note that in case of multiple faults it is not necessary to activate them all. One fault activation may 
be enough, as long as it is propagated to a PO. Consequently, a fault is not immediately activated. 
Rather, activation or any other decision (commitment subject to failure and backtracking) are 
delayed until all constraints have been posted and propagated. 

With such small domains, arc consistency (section 1.2) may be applied effectively. Thus, an S-
buffer/0 (/1) with a Boolean domain variable input, outputs a variable with domain {0,D} ({1, 
D }). This is similar to the partially specified composite values of the 9-V algorithm. Domain 
variables are still unspecified but may carry more information than the partially specified values of 9-
V, since all combinations of the 4 values are possible in a variable domain. The different possible 

domains for a variable correspond to P({0, 1, D, D }) (the powerset of the full domain), excluding 
the empty set ({} corresponds to a failure) and singletons (which are the 4 ground values). There are 

4
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 +






 +






  = 1+4+6 = 11 such combinations, which added to the 4 ground values yields what can 

be seen as an implicit 15-valued logic (or the full 24 = 16 valued logic with {} as the absorbing 
element of all logic operations). Table 3.6 shows the logic table of an and operation, where d and n 
stand, for space reasons, for D and D , and where each table entry corresponds to the domain of the 
possible input values ‘anded’). Thus, a full domain ({0, 1, D, D }) variable is the totally unspecified 
logic value, while other (10) reduced domain variables can be seen as partially unspecified values. 
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And {} 0 1 d n 01 0d 0n 1d 1n dn 01d 01n 0dn 1dn 01dn
{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} 
0 {} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 {} 0 1 d n 01 0d 0n 1d 1n dn 01d 01n 0dn 1dn 01dn
d {} 0 d d 0 0d 0d 0 d 0d 0d 0d 0d 0d 0d 0d 
n {} 0 n 0 n 0n 0 0n 0n n 0n 0n 0n 0n 0n 0n 
01 {} 0 01 0d 0n 01 0d 0n 01d 01n 0dn 01d 01n 0dn 01dn 01dn
0d {} 0 0d 0d 0 0d 0d 0 0d 0d 0d 0d 0d 0d 0d 0d 
0n {} 0 0n 0 0n 0n 0 0n 0n 0n 0n 0n 0n 0n 0n 0n 
1d {} 0 1d d 0n 01d 0d 0n 1d 01dn 0dn 01d 01dn 0dn 01dn 01dn
1n {} 0 1n 0d n 01n 0d 0n 01dn 1n 0dn 01dn 01n 0dn 01dn 01dn
dn {} 0 dn 0d 0n 0dn 0d 0n 0dn 0dm dn 0dn 0dn 0dn 0dn 0dn 
01d {} 0 01d 0d 0n 01d 0d 0n 01d 01dn 0dn 01d 01dn 0dn 01dn 01dn
01n {} 0 01n 0d 0n 01n 0d 0n 01dn 01n 0dn 01dn 01n 0dn 01dn 01dn
0dn {} 0 0dn 0d 0n 0dn 0d 0n 0dn 0dn 0dn 0dn 0dn 0dn 0dn 0dn 
1dn {} 0 1dn 0d 0n 01dn 0d 0n 01dn 01dn 0dn 01dn 01dn 0dn 1dn 01dn
01dn {} 0 01dn 0d 0n 01dn 0d 0n 01dn 01dn 0dn 01dn 01dn 0dn 01dn 01dn

Table 3.6.  Implicit 16-valued logic conjunction 

Table 3.7 shows some examples of constraint propagation with our CLP(FD) solver with the 
relevant variable domains for the 4-valued logic. A constraint on a logic operation updates the 
domains of its arguments (variables) making them arc-consistent (hyper-arc-consistent, actually, 
since a constraint may involve 3 variables). The constraint may be subsequently removed from the 
store if the performed propagation implies its satisfiability, i.e. it is subsumed by the new constraint 
store, or, in other words, any solution to the remaining CSP is a solution to the constraint, so it may 
be removed with no loss of information. Removable constraints are marked with a star (*) in the 
table. 
 

 Initial 
Domains 

   Final 
Domains 

 

X Y Z Constraint X Y Z 
{0,1} {0,D}  Z=X∨ Y   {0,1,D} 

{0,1,D} {1, D }  Z=X∧ Y   {0,1,D, D } 
{0,D} D   Z=X∧ Y  *   0 

{0,1,D}   Z= X    {0,1, D } 
{1,D}   Z=s_buff/0(X) *   D 
{1,D} {1,D}  Z=X⊕ Y   {0, D } 

  {0,D} Z=X∨ Y {0,D} {0,D}  
{1,D, D } {0,1, D } {0,D} Z=X∨ Y  * D 0 D 

Table 3.7.  Some constraint propagation examples in 4-
valued logic 

The basic propagation rule to maintain arc-consistency is that when a variable is updated, other 
variables sharing a constraint are updated accordingly, i.e. impossible values are removed from their 
domains. This can be synthesised with the rule below, where c(X,Y,Z) is a constraint over variables 
X, Y, Z, and DX, DY, DZ represent their domains (operator ‘::’ is used for domain assignment): 
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If all combinations of values from the domains of the variables of a constraint are possible (i.e. 
satisfy the constraint), then the constraint is removed from the store. 

 
Our solver ensures full arc-consistency on the constraint network in a preprocessing stage (setting 
up circuit constraints), and maintains partial arc-consistency during search. While binary constraints 
such as not-gates and S-buffers are always kept fully arc-consistent, other constraints such as xor-gate 
(involving 3 variables) and and-gate (which may have an arbitrary number of inputs) are kept arc-
consistent only if all their variables are Boolean; otherwise propagation is delayed until one 
constraint variable becomes instantiated (as in forward checking [Haralick and Elliott 1980]). 

When triggering a constraint due to the instantiation of a variable, we again enforce arc-
consistency on it (in a similar but weaker fashion to MAC – Maintaining Arc Consistency [Sabin 
and Freuder 1994]) and, if the remaining variables are only two or all Boolean, then the constraint is 
made fully arc-consistent; otherwise propagation is delayed until another variable becomes 
instantiated. 

 
3.4.2.2  Advantages of Constraint Propagation 

After successful propagation of all circuit constraints, search for a solution may start if constraints 
remain on the store. To ensure that a solution may still be possible, there must be at least one 
output bit with some d-signal in its domain. Otherwise, we may already conclude that there is no 
solution, which proves that the target fault is undetectable. 

Let us analyse again the circuit of Figure 3.16. Here, we immediately conclude that the output 
can have no d-signal, since its value is 1. This conclusion requires no backtracking at all since no 
decisions had to be made while setting the circuit gate constraints. In contrast, all the other 
algorithms discussed above, which explicitly try to set sensitised paths, could only reach such a 
conclusion after exhaustively covering the search space that resulted from the created choice points. 

In the circuit of Figure 3.17, where a d-signal is needed at the output, no matter through which 
path(s) the error propagates, a global implication can be made, namely that z takes value D and k 
value 1 [Akers 1976, Fujiwara and Shimono 1983]. While other algorithms would have to explicitly 
consider such cases to improve efficiency, the propagation of constraints makes these situations 
quite naturally dealt with. 
 

a
b

c

z
kD

 

Figure 3.17.  Global implication: D must pass through z 
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Other situations such as that shown in Figure 3.18 lead to trivial failure of the constraint system. 
Other algorithms need to use a look-ahead technique by verifying that an error can only propagate 
to a PO if there exists at least one path whose lines from the error to the PO all have value x [Goel 
1981]. 
 

D

D

0 0

1 1
 

Figure 3.18.  Impossible error propagation 

If the d-signal is indeed possible at the output, it must come from a source S-buffer. The cardinality 
operator [Van Hentenryck and Deville 1991] is generally used in CP to impose such disjunction of 
constraints (i.e. that one of them outputs a d-signal). If only one S-buffer exists (the case of an SSF), 
or only one is able to activate the fault, then the constraint solver automatically activates it and 
performs the appropriate constraint propagations (implications). 

The number (parity) of inverters between the S-buffer(s) and the output does not have to be 
explicitly checked (as done in PODEM) since inverter constraint propagations are sufficient to 
disallow impossible d-signals. In Figure 3.19 we show some examples where variable domains are 
represented in brackets. Due to the inverters we know that z can only assume values 0 or D (never 

D ). If, for instance, it is ‘anded’ with D  the result will simply be 0. 
 

{ , }1 D

1

{0,D}{0,D}D

{0,1}
z

 

Figure 3.19.  Inverter constraint propagations 

 
3.5  Heuristics 

A search process is guided by decisions that aim at solving the problem faster or finding a “better” 
solution according to some cost function. In basic TG any solution is a good one, but one may 
prefer more unspecified input bits or some input bits set to 0 or 1, for purposes such as test set 
compaction. Heuristics are criteria to select the most “promising” choices in decision-making. To 
solve a CSP, there are basically two kinds of decisions: 

1. Which variable should be instantiated first, that is, which sub-problem to try first ? 
2. Which value should be assigned first to the chosen variable ? 

Normally, harder sub-problems are tried first to avoid wasting time in solving easy sub-problems 
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only to find out later (possibly after much backtracking) that an impossible difficult problem still 
requires to be solved. For problems where variables play similar roles, the first-fail heuristic 
[Haralick and Elliott 1980] consists of selecting the variable with the smaller domain, and is usually 
very effective. The constrainedness of a variable may also be considered: more constrained (i.e. with 
more constraints over it) variables are selected first. The rationale for this preference is that such 
variables are harder to instantiate and doing it first will propagate much information to other 
variables along the constraint network, thus greatly reducing search space. 

A variable may also be selected first because it plays a crucial role in the problem (e.g. by being 
strongly connected to its goal). This is the case in TG where the goal is to find a PO where values 
differ for the normal and the faulty circuits, that is, to find a PO with a d-value as a result of an 
activated and propagated fault. Consequently, POs that may satisfy the final goal are strong 
candidates for starting the enumeration of variables (lines). Constraint propagation eases the task of 
selecting a PO since only a fraction of them contain d-signals in the domain. So, we may start by 
selecting any sensitisable PO and then justify it by labelling only its relevant circuit inputs (in the 
transitive fanin). 

Solving such a disjunctive constraint (find at least 1 sensitised PO) is often improved by using 
the cardinality constraint, since its least commitment nature delays choices and avoids many wrong 
decisions. Unfortunately, this approach also delays the knowledge about relevant inputs, since any 
of the possible POs may be sensitised. Hence, all inputs with possible paths to those POs involved 
in the cardinality constraint are potentially relevant. In general, more inputs (i.e. variables) have to be 
labelled, which decreases efficiency. 

To illustrate these comments, we show in Table 3.8 the results obtained by labelling first those 
input variables leading to the S-buffer and then those remaining which lead to the candidate POs. 
Each TG attempt was given a maximum time limit of 2 minutes, after which it would abort. Since 
efficiency of TG algorithms are generally assessed from results of an embedding ATG system, we 
implemented one in ECLiPSe Prolog 5.1 (Tcl/Tk version) under Windows 2000 on a Pentium 4, 
1.7 GHz, 512 Mb RAM. 

 
 Red. Ab. # Time T/TG

c432 1 95 76 11500 66.9
c499 0 16 86 1993 19.5
c880 0 51 95 6447 44.2
c1355 0 49 157 6308 30.6
c1908 8 41 181 5743 25.0
c2670 11 480 125 57672 93.6
c3540 15 1002 150 117113 100.4
c5315 23 820 162 97675 97.2
c6288 18 320 403 47127 63.6
c7552 8 839 328 103993 88.5

Table 3.8.  ATG results with cardinality constraint 

As one can see from the large number of aborted faults, heuristics for selecting POs are crucial to 
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handle this problem. The least commitment philosophy of constraint solving did not allow us to 
restrict the number of variables to label, which led to quite poor execution times. Choosing a 
specific PO to sensitise can drastically reduce the variables to label. 

 
When choosing a value for a variable, preference is given to values that are more likely to succeed, 
or that may produce a better (preferred) final solution, or a combination of these. For the PO, any 
d-signal will satisfy the goal, so they are preferred. Since, at this point there is no reason to choose a 
specific D or D  (either will do), we may simply remove the Boolean values from the variable 
domain. If only one of these d-signals is possible, the variable is instantiated with it; otherwise the 
choice is delayed until another stage or until a value is implied by subsequent choices. 

If a specific PO z is selected to be sensitised, then z is the highest-level line of at least one 
sensitised path propagated from a fault. Hence, one of the inputs of the gate whose output is z is 
also sensitised. Again, only a fraction of these are possible and the process of choosing one and 
forbidding Boolean values may be repeated. This recursive process eventually reaches a target fault 
(an S-buffer) that is then activated if it was not already activated (in the case of a SSF, the single fault 
can be immediately activated when setting up circuit constraints, since it is the only S-buffer from 

which it can be propagated). Choosing a path and reaching an S-buffer determines specific D or D  

values that may have been left to decide along this path, i.e. variables that had D and D  in the 
domain become instantiated, since a specific d-signal is generated when the fault is activated and for 
each gate in the chosen path, it either is negated (in not-, nand- and nor-gates) or remains the same 
value (in {buffer, and, or}). Hence, the sensitised PO is also instantiated. (This may not be true if there 
were xor-gates involved in the chosen path, in which case even a specific d-signal input may be 
insufficient to instantiate the sensitised output since a Boolean domain variable on the other xor 
input could “pass” or invert the d-signal according to that final Boolean value, 0 or 1, respectively.) 
Anyway, a sensitised path was chosen and must be subsequently justified. 

These line-justification problems from the S-buffer input to the PO z are solved in a FAN-like 
way by labelling the relevant PIs stopping at head-lines where possible. The reason for this 
“upwards” labelling starting at an S-buffer is that while moving from line l1 to the higher-level line l2, 
the relevant PIs increase in number, i.e. the relevant PIs of l1 are a subset of those of l2. Hence, at 
each stage, labelling PIs or internal lines for a line-justification problem is also relevant to the next 
ones. 

If no solution is found in this process, then there is no global solution and the fault is 
redundant. Otherwise, the PIs not involved in the enumeration may be left unspecified since their 
values will not interfere in the solution. Justification of internal head-lines may also lead to some 
unspecified PIs since the justification of the corresponding fanout-free sub-circuit is done 
“downwards” by implicit enumeration as in Figure 3.4. The final solution is the desired test pattern. 

 
3.5.1  Discussion and Potential Improvements 

The unspecified inputs of a generated test pattern may, nevertheless, be made specified so as to 
possibly detect more faults. The subsequent simulation may then discard several more faults (a 
process referred to as fault dropping) that will not need specific TG (since they are already detected), 
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thus possibly reducing the final test set, total execution time and number of aborted faults. This is 
where specialised heuristics can really make a difference in the final ATG output. Since we are 
mainly interested in simple TG for some diagnosis, we stick to labelling the remaining input 
variables (i.e. the yet unspecified inputs) in a random way. 
 
In this CLP implementation, path sensitisation also requires some choices to be made but one does 
not need to stick to some chosen path and afterwards solve the justifications problems. On the 
contrary, this approach delays commitments as much as possible, and constraint propagation is 
performed among small choices made to reduce search space so as to try to find a path. Only after 
no more propagation is possible, some choice is made. Hence, there is a better integration between 
commitment and justification. 
 
Additionally, other heuristics in TG can be used applying other cost functions such as the 
observability and controllability of lines and values [Abramovici et al. 1990], as Simonis does. These cost 
functions help choosing lines to justify first or what values to try first, by providing relative measures 
of their “difficulty”. In general, cost functions are computed by a pre-processing step and can be 
distance-based, recursive and fanout-based. But no matter the method, cost functions should show 
PIs as the easiest signals to control and POs the easiest to observe. The measures should require 
significantly less computational effort than the TG process; otherwise it is not worth it. Anyway, 
two different circuits may have contrasting results with two different heuristics. This is a natural 
consequence of heuristics since they are based on approximate estimations that make them circuit-
dependent. To compensate for this effect, it is possible to switch among cost functions during TG 
[Chandra and Patel 1989]. Although these specialised heuristics could really make a difference, we 
considered them out of the scope of this thesis and decided not to use them. 
 
Also, performing some form of intelligent backtracking (e.g. dependency-directed backtracking 
[Stallman and Sussman 1977], backjumping [Gaschnig 1979], k-order learning [Dechter 1990] or 
dynamic backtracking [Ginsberg 1993]) could solve line-justification problems more efficiently. We 
relied on the traditional chronological backtracking of Prolog for labelling a set of PIs (or head-
lines), which can be computationally heavy for a large set of variables if the reason for a detected 
conflict lies in some early labelling choice among those bits. Intelligent backtracking could possibly 
detect that reason and save a lot of time by directly undoing that incorrect choice. 

 
 
3.6  Iterative Time-Bounded Search 

The goal of having a d-signal in one of the output bits of a digital circuit is a typical disjunctive 
constraint (it is either in the first output bit, or in the second, or the third, …). As observed earlier, 
the classical technique to efficiently handle such constraints consists of delaying the choice of the 
alternatives until a final labelling eventually makes a commitment to one of the disjuncts. Such 
technique, using the cardinality operator, is usually much more efficient than traditional depth-first 
search, since making an early mistake can be very costly to undo. 
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However, the least commitment strategy has a price: the problem is kept less constrained than that 
resulting from making an early commitment. In particular, less propagation is usually possible, or 
only weaker heuristics may be used in the less constrained problem. 

The problem with early commitment is thus the difficulty in undoing the wrong choices. But 
often, there is a large difference in complexity of solving the different problems that result from 
making each of the possible choices. Some of these, might also be much more easy to solve than 
the whole problem. If this is the case, it pays off to spend some time trying to solve each of the sub-
problems in a round-robin discipline. To make the strategy complete, the time allowed for each of 
the tries must be increased in subsequent round-robin turns. This is the basic idea behind the 
Iterative Time-Bounded Search (ITBS) that we propose for this kind of problems and have 
applied for the specific case of TG. 

 
The method may be described as follows. If the initial problem is composed of a disjunction with k 
disjuncts, ITBS assigns a time limit T to solve each of the sub-problems, thus making a limited 
commitment to each disjunct. If all sub-problems are aborted due to exceeding time limit T, this 
limit is doubled (more generally multiplied by some factor f). The time is thus increased in each of 
the rounds, until a solution is found. 

ITBS thus shares the underlying idea of iterative broadening and iterative deepening and other 
techniques (e.g. [Ginsberg and Harvey 1990, Harvey and Ginsberg 1995, Meseguer 1997, Walsh 
1997]) to overcome the problems of depth-first search, by searching side-branches before fully 
exploring a previously selected branch of the search space. 
 
If a solution is found in round r (r ≥ 1), the ITBS worst execution time is A = k*(T+T*f+…+T*f r-

1), occurring if the problem is solved with the last choice. Compared with the best execution time 
achieved when committing to the right choice but with no time limit, i.e. B=T*f r-1, ITBS is penalised 
by a factor of 

A / B = [k*T*(f r-1)/(f-1)] / (T*f r-1) ≈ k*f / (f-1) ≈ k 

Hence the penalty for committing to the wrong PO is linear on the number of relevant POs. The 
ITBS strategy pays off whenever there is some heuristic that solves one sub-problem much faster 
than solving the whole problem with least commitment. This is, of course, problem dependent. 

 
We applied ITBS to the TG problem considering two different strategies for path sensitisation: 

1- Each disjunct (try) consists of sensitising (constraining) a PO by giving it the domain 

{D, D }; the choice of path then proceeds by similarly constraining gate signals downwards 
to an S-buffer. 

2- Each disjunct consists of sensitising (instantiating) a PO with a specific d-value; the choice 
of path then proceeds by instantiating d-values to gate signals downwards to an S-buffer. 

In both cases, we gave each try an initial time limit T of 2 seconds to solve the whole problem. This 
limit was subsequently doubled (f=2) on two more rounds (maximum time limit of 2*2*2=8 
seconds). As explained, for each chosen PO (or PO value), a sensitised path is found and relevant 
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inputs (from S-buffer to PO) are labelled in the given order simply trying first value 0 and then 
value 1. When a solution is found, the TG problem is solved. 

For the first strategy (constrain path to be sensitised), if some try over PO z is proven to be 
impossible, then it is marked as such and subsequent tries over remaining POs may add the 
constraint that PO z is Boolean (not sensitised). For strategy number 2 (specified sensitised path), if 

z = D ( D ) is impossible, then subsequent tries add the constraint z ≠ D ( D ). 
If all tries prove impossible, then the fault is redundant. If for all POs no solution was found 

after 3 round-robin turns each (or, more exactly 2+4+8 = 14 seconds), then the fault is aborted. 
Results for the ATG system under strategy number 1 are depicted in Table 3.9 (obtained on the 

same platform as the experiences without ITBS of Table 3.8). 
 

 Red. Ab. # Time T/TG
c432 1 3 89 53 0.6
c499 8 0 94 84 0.8
c880 0 0 87 13 0.1
c1355 8 0 149 108 0.7
c1908 6 2 171 249 1.4
c2670 105 39 177 1958 6.1
c3540 129 6 266 1041 2.6
c5315 59 0 179 1149 4.8
c6288 34 60 24 10960 92.9
c7552 131 12 335 7230 15.1

Table 3.9.  ATG results with ITBS over sensitised POs 

This table shows that ITBS clearly outperforms the cardinality constraint approach in this case. 
These results are already competitive with those of Simonis, which although obtained in a slower 
computer, took advantage of its RISC architecture and a more efficient Prolog compiler, together 
with specialised ATG heuristics. The number of aborted faults explains the results obtained with 
circuit c6288 where, without specialised heuristics, 8 seconds were not enough for any of the 
candidate POs (which in this circuit were generally several). 

ITBS parameters can be adapted to each circuit since larger circuits usually require more 
computation time in TG. The “tougher” c6288 circuit could benefit from increasing the maximum 
limit of 8 seconds, and a lot of time would be saved if the rounds of 2 and even 4 seconds were 
simply abolished since it is rare to find solutions inside those times. This is particularly relevant 
when there is a large number k of disjuncts, which is also usually the case with this circuit due do its 
higher average fanout (see Table 2.2). 

 
Since a more constrained subproblem may be easier to solve due to higher propagation and reduced 
search space, we can use strategy number 2 (specify PO) to extend further the disjunction of having 

a sensitised PO into the disjunction where a PO may assume either value D or D . This value 
specification may double the number of disjuncts, each corresponding to a more constrained 
subproblem. Since we specify the PO value, we may also completely specify a sensitised path all the 
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way down to the S-buffer, and then try to justify it as before. We tested ITBS over this extended 
disjunction to obtain the results of Table 3.10. 

 
 Red. Ab. # Time T/TG 

c432 1 3 102 128 1.2 
c499 8 0 110 26 0.2 
c880 0 0 95 17 0.2 
c1355 8 0 180 141 0.8 
c1908 6 2 173 179 1.0 
c2670 105 11 229 1079 3.1 
c3540 129 6 296 6327 14.7 
c5315 59 0 191 4097 16.4 
c6288 34 79 27 28662 204.7 
c7552 131 11 338 9099 19.0 

Table 3.10.  ATG results with ITBS over specified 
sensitised POs 

Results are largely similar in both cases. Extending the disjunction is sometimes better, because an 
easier subproblem is found (which was the rationale of ITBS in the first place). However, it can also 
be worse, because the number of subproblems that are explored increases, and so does total 
computation time. 

There is a trade-off between the number of disjuncts, which further constrain subproblems (in 
the limit it would just be generate-and-test), and least commitment where no choices whatsoever are made 
and all decisions delayed. 

 
3.6.1  Conclusion 

This section has shown that ITBS is in general effective for this kind of problems. With ITBS we 
were able to use a better variable ordering heuristic and compensate for the fact that no value 
ordering heuristic was used. This was possible due to the nature of ITBS. If a wrong choice is made, 
ITBS is not stuck at it, but rather abandons it after a limited amount of time. 

ITBS will thus be used in the following chapters for related problems. 
 

3.7  Summary 

This chapter presented a basic problem of digital circuits and showed the adequateness of multi-
valued logics and constraint programming to model and solve it, together with a generalisation to 
MSFs. In addition, a general search strategy, iterative time-bounded search, was proposed to solve 
disjunctive goals and its effectiveness was demonstrated for test generation in combinational circuits 
by obtaining significantly better results on a set of benchmark circuits. 

The next chapter addresses a more complex problem: circuit diagnosis. In particular, the 
problem of correctly diagnosing a faulty circuit by differentiating two possible sets of faults is 
modelled and solved using constraints over an 8-valued logic that extends the 4-valued logic by 
encoding one extra type of dependency (on the other set of faults). 
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C h a p t e r  4  
 
 
 

DIFFERENTIAL DIAGNOSIS 

 
In this chapter we address the issue of locating faults at the logic level in a ‘black box’ circuit. In 
general, diagnosis of a system presenting an unintended behaviour consists of identifying the faulty 
components, and their faulty states. More specifically, the problem of differential diagnosis of 
faulty gates in a VLSI circuit, where the only observable findings are its input/output bits, consists 
of finding tests that allow the differentiation of two alternative diagnoses. Being able to locate the 
precise cause of an incorrect response at the production stage may improve the manufacturing 
process thus reducing future costs. Also, when a system in regular use eventually becomes faulty, it 
may be important to determine what is the exact diagnosis. For example, if a circuit is not accessible 
and cannot be replaced (e.g. in space), it might be important to assess which functions are affected 
by the faulty gate(s). Faulty circuits, although with a more limited capacity, may often be still useful 
if its limitations are understood. 

To model these problems we developed an eight-valued logic that describes the dependency of 
the findings on the competing diagnoses. We realised later that the basis of such logic was already 
described in [Abramovici et al. 1990] albeit incompletely, so we formally define and discuss the 
rationale for a complete eight-valued logic. Additionally, we implemented a constraint solver to 
handle this eight-valued logic efficiently, namely to obtain differentiating tests that allow the 
elimination of one of the alternative diagnoses. We discuss the limitations of the techniques 
currently available to handle disjunctive constraints, and use the previously described iterative time-
bounded search (ITBS) method to overcome them. 

The chapter is organised as follows. After a brief introduction in section 4.1 and a discussion of 
approaches in section 4.2, section 4.3 describes differential diagnosis and test patterns in more 
detail. Section 4.4 then presents the 8-valued logic showing its use in modelling the generation of 
differential test patterns in combinational circuits before an alternative logic is commented in 
section 4.5. Section 4.6 describes a constraint solver to handle directly the 8-valued logic. Section 4.7 
describes specialised benchmarks and section 4.8 differentiation algorithms. Section 4.9 then 
presents experimental results before conclusions are summarised in the last section. 

 
 

4.1  Introduction 

When the output of some system does not correspond to its expected behaviour for a given input, 
one is faced with the problem of diagnosis, which corresponds to locating (i.e. identifying) the 
fault(s) responsible for the incorrect output. In a faulty digital circuit, many single or multiple faulty 
gates may explain the observed findings. We will refer to each such possible set of faults as a 
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diagnostic set. Diagnosis is a task that may be performed in a variety of forms but in abstract it 
involves two sub-tasks: firstly, one has to obtain a number of hypotheses that explain the observed 
findings; secondly, one has to differentiate the alternative diagnoses. Given its purpose of 
differentiating hypotheses, this sub-task is usually referred to as differential diagnosis. 

This chapter will focus on differentiating the available candidates, i.e. in the sub-task of 
differential diagnosis. Notice that the techniques (discussed in the previous chapter) that generate 
test patterns for verifying whether one specific gate is faulty do not necessarily identify patterns that 
discriminate between alternative diagnostic sets. Such patterns were generated assuming that either 
the gate to be tested is faulty or not, and all other gates are normal. In this context, for a certain test 
pattern, inspection of the output of the circuit unveils the state of the gate under test. Unfortunately, 
these assumptions are not sufficient for differential diagnosis, as one is interested in differentiating 
between alternative hypotheses. It is very common that, given two alternative faulty gates, each of 
them has a large number of test patterns, but only a few of them, if any, do differentiate the faults. 
In general, a test pattern detects a number of possible diagnostic sets (sets of faulty gates). Hence, 
two diagnostic sets may have a large number of test patterns in common and yet be 
indistinguishable (i.e. for the same inputs they both entail the same output, albeit not the correct 
one). For example, in a small available [ISCAS 1985] circuit (voter_flat) with 12 input bits and 4 
output bits, we found that two alternative faults had each 121 test patterns, but they were in fact 
indistinguishable, i.e. no input pattern could unveil (by only measuring its input and output) which 
of the faults might be actually present in the circuit. Although, in this small example all these 
patterns could be generated in a few seconds, larger circuits with thousands of gates and tens to 
hundreds of inputs and outputs could simply not be tested. 

Test patterns that allow to discard hypothetical faults contribute to improve the diagnostic 
resolution, i.e. the degree of accuracy to which faults can be located. The maximal fault resolution of a 
system is defined by the partition of all the possible faults into distinct sets of functionally equivalent 
faults. No external testing experiment can distinguish among functionally equivalent faults, and 
determining whether two arbitrary faults are functionally equivalent is an NP-complete problem 
[Goundan 1978]. 

In the general Test Generation (TG) problem, the goal is to find a test pattern that logically 
entails a different output from a circuit where specific faults are present. The problem that is the 
topic of this chapter, Differential Test Generation (DTG), aims at generating patterns for a circuit 
that would entail different outputs for different sets of faulty gates. 

A differential test pattern is then an input vector of the circuit that induces different Boolean 
values in some output bit for the two different diagnostic sets of arbitrary size. Such pattern allows 
the elimination of a diagnostic candidate requiring no expensive generate-and-test procedure. 

 
 

4.2  Diagnosis Approaches 

Given its declarative nature, expressive power and efficient execution, Constraint Logic 
Programming may be used in various diagnostic (sub-)tasks, namely in the context of digital circuits. 
To obtain a candidate hypothesis, it is sufficient to represent each digital component, usually a gate, 
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as a disjunction of constraints, each representing a possible behaviour of the component. By 
providing the observed input and output, the CLP system solves the constraints, and inspection of 
the solutions unveils which of the components are faulty. 

Handling disjunctions usually leads to lengthy computations due to its combinatorial nature. 
Moreover, one is usually interested in hypotheses that are minimal, given some definition of 
minimality. In the context of digital circuits one is usually interested in hypotheses that contain a 
minimum number of faulty gates. Minimal solutions, which may be enforced in a CLP program as 
an optimisation problem, are a natural feature of Hierarchical Constraint Logic Programming 
(HCLP). In this extension, a constraint is either mandatory or not, and the solutions reported for a 
problem are minimal, i.e. they discard minimal sets of non-mandatory constraints (see [Borning et al. 
1989] for details). 

In an implementation of an HCLP system for Boolean constraints [Menezes and Barahona 
1996] minimal diagnostic sets can be efficiently obtained for the benchmark ISCAS digital circuits. 
Given some input, if the value of some output bit(s) is different from normal, then several 
diagnoses explain the abnormal findings. Generation of candidate diagnoses can be declaratively 
modelled in an HCLP(B) system. In such a system, Boolean circuit gates can be expressed as 
defeasible (non-mandatory) constraints that can be relaxed if necessary. To obtain the faulty gates in 
the HCLP system, when the behaviour of the circuit is different from what is expected, one has 
simply to provide the inputs and outputs of the circuit, as well as its model (a set of defeasible 
constraints) and obtain the (minimal) sets of constraints that are relaxed [Menezes and Barahona 
1996]. Assuming that the only two faulty modes for a gate are the usual stuck-at-0 and stuck-at-1 
(i.e. the output of a gate is, respectively 0 or 1, regardless of its input), then each relaxed constraint 
may be interpreted as faulty in the state opposed to the normal output. This can be illustrated with 
the full adder circuit of Figure 4.1: 
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adder([A,B,Ci], [S,C]) :- 
 xorGate(g1, [A,B],  S1) @1, 
 andGate(g2, [A,B],  C1) @1, 
 xorGate(g3, [S1,Ci], S) @1, 
 andGate(g4, [S1,Ci],C2) @1, 
  orGate(g5, [C1,C2], C) @1. 

Figure 4.1.  Full adder circuit and its specification 

The @L operator simply specifies that a constraint is of level L (mandatory if L=0); in this case, the 
gates are all defeasible with the same likelihood (@1). Additionally, each gate has an extra argument 
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that uniquely identifies the constraint. In this circuit we may have the following query/answers: 
 
 Query ?- adder([0,0,0], [1,0]). 
 
 Answer 1:  relaxed g1([0,0], 1) 
 Answer 2:  relaxed g3([0,0], 1) 
 
The answer thus shows (by backtracking) that there are two minimal hypotheses (single faults), 
which occur by malfunctioning of gates 1 or 3. By inspecting the output of the relaxed gates one 
may immediately conclude that the single faults are either gate g1 stuck-at-1 or gate g3 stuck-at-1 
(abbreviated to g1/1 and g3/1, respectively). Thus, the problem of differential diagnosis, i.e. 
differentiating the alternative hypotheses, becomes relevant. 

 
 

4.3  Differential Diagnosis and Test Patterns 

In some cases, some differentiation of candidate diagnostic sets is obtained during the process of 
generating them, by directing the search of candidates so as to generate the most interesting 
candidates first [Damásio et al. 1995]. This preference may be expressed in terms of some likelihood 
measurement of the candidates (e.g. their probability [Peng and Reggia 1991]). For the precise 
differentiation of diagnoses, these techniques are not adequate. We are not interested in choosing 
more likely or preferred diagnosis, but rather to know, for certain, whether candidates can be 
eliminated (for example, in order to still use the non-affected functions of a VLSI circuit). 

In other cases, the differentiation requires the execution of extra tests in order to obtain more 
information that allows the elimination of hypotheses (see [Console and Frederic 1994] and 
[Dressler 1997] for a brief survey on a number of different techniques that may be used). This is the 
approach followed here, where the differential test patterns form the extra tests required. 

These test patterns may be used to eliminate candidate hypotheses (if the observed output is not 
the same as predicted by the (faulty) model, then the fault may be discarded). In the context of 
single fault diagnosis, in the example above, input [0,0,0] is a test pattern for both faults g1/1 and 
g3/1, but it does not provide information to differentiate the two. This can be done, in this case, 
with pattern [0,0,1], which for a normal circuit outputs [1,0], for a circuit with fault g1/1 outputs 
[0,1], and for a circuit with fault g3/1 outputs [1,0]. Hence, execution of this extra test allows 
discarding one of the hypotheses. 
 
Finding a test pattern that does not yield the same output for two faults (i.e. a differential test) may 
be hard to find, namely if a generate-and-test approach is used, since, in the worst case, all the test 
patterns of both faults have to be generated and tested.  

This is particularly inefficient when the faults are indistinguishable, as is the case with faults 
g2/1, g4/1 and g5/1. In this case they all have only a few common test patterns ([0,0,0], [0,1,0], 
[1,0,0] and [0,0,1]) and so it is not hard to generate and check it. In other cases with larger circuits, 
the situation is much worse and the naïve generate-and-test approach becomes naturally infeasible. 
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To differentiate two sets of faults in a digital circuit, i.e. to check which is actually present, it is 
necessary to confirm whether, for other input vectors, the real circuit behaves as having either of 
the faults. (The models of the two possible faulty circuits are easily obtained by replacing the normal 
gates in the original model with the faulty ones.) In the worst case, one may have to consider all 
input vector configurations. In general, a generate-and-test approach is not feasible for large circuits 
because the input vectors that might have to be tested are exponential on the number of PIs. Some 
of these vectors mask the effects of the faults, which are not propagated to the output. Hence, we 
only need to consider those input vectors that propagate a fault. 

 
Current techniques deal with differential diagnosis by trying to generate input vectors that cause 
different outputs in two circuits (among the normal and the alternative abnormal circuits). In 
[Hartanto et al. 1997] one tries to detect one fault assuming the circuit has the other; in [Gruning et 
al. 1991] one tries to detect one fault without detecting the other; finally, in [Pomeranz and Reddy 
1998] one tries to detect both and after undetect one of them. Nevertheless, the complexity of the 
diagnosis increases significantly with the extra circuitry involved. Modelling such problems into a 
SAT solver poses similar problems regarding the multiplication of circuits [Manquinho and Silva 
2000], and the associated combinatorics. 

The technique we developed and present in this chapter, can be regarded as an extension of 
those explored in the previous chapter (incidentally, it solves the problem of the voter_flat circuit, 
referred in section 4.1, in a few milliseconds). We extended the notion of dependencies further to 
differentiate two alternative models, and introduced an 8-valued logic whose values not only denote 
dependency on faulty gates, but also discriminate the dependencies between two sets of faulty gates 
[Azevedo and Barahona 1998], i.e. multiple faults. A differential test pattern is then an input vector 
that logically entails one such dependency-discriminating value in a PO. 

Despite being inspired in that 8-valued logic, a previous system we developed [Azevedo and 
Barahona 1998] was implemented with a "traditional" 0/1 Boolean solver, i.e. the 6 extra values 
were assigned to digital signals by means of logic disjunctions, only remaining constraints on the 
Boolean domain. 

 
 

4.4  The 8-valued Logic 

The purpose of our 8-valued logic is to allow tracing the dependency of a truth-value on the 
alternative diagnostic sets, or simply diagnoses, that are to be differentiated. It is important to notice 
the context in which this differentiation takes place. 

To start with, model N of a circuit is assumed to have no faults. When an output O is observed 
which is not consistent with the input I and circuit model N, such output can be explained by 
alternative diagnoses that justify the anomalous finding. Let us consider two such diagnoses, φ1 and 

φ2, each consisting of some faulty gates. Given input I, the two models obtained by replacing the 

normal gates of N by the faulty gates φ1 or φ2, will be referred to as F1 and F2, respectively, and both 
logically entail output O. Since both models logically entail an output different from that entailed by 
the normal model N, I is an input test pattern for both φ1 and φ2. However, I does not enable the 
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differentiation between φ1 and φ2, since both corresponding models yield the same output from 
input I. We are thus concerned with finding a differential test pattern D that yields two different 
outputs, O1 and O2, for the two faulty models F1 and F2. 

Outputs O1 and O2 are different if at least one of the output bits is different, hence such bit 
depends on either φ1 or φ2, but not on both. The logic presented in this section captures this notion 
of dependency by means of its 8 values. Each value is denoted either by Boolean X or by a pair <p-
X>: p ranges over the set {m, d1 and d2} and denotes the dependency on the alternative diagnoses; X 
ranges over the usual 0/1 truth-values and is the "physical" truth-value that would be observed if 
the circuit were normal (model N). The meaning of the 8 values is thus the following:  

X  the truth value is independent from faults φ1 and φ2. These faults have no influence on the 
physical truth-value, which is always X. 

d1-X the truth value depends on faults φ1 but not on φ2. In model F1, where φ1 occurs, the 
physical truth-value is the complement of X; otherwise (in both models N and F2), it is X. 

d2-X similar to the previous, with φ1 and φ2 swapping roles. 

m-X the truth value depends on both diagnoses φ1 and φ2. In both models F1 and F2, the physical 
truth-value is the complement of X, obtained in model N. 
 

With such definitions a differential test pattern is an input vector of the circuit that entails an output 
bit with a d-value (i.e. a value dS-X, where S ∈  {1,2} and X ∈  {0,1}), whose physical value depends 
on one and only one of the two sets of faults. As such, similarly to simple TG, an error coming 
from φ1 (φ2) must be propagated to a PO thus forming a sensitised path for φ1 (φ2). We call such a 

path, a differential path for φ1 with respect to φ2. Clearly, if all the gates in a sensitised path for φ1 

are not sensitised for φ2, then the path is differential. 

At first thoughts, one could be led to think that all the gates of a sensitised path for φ1 should 

not be sensitised for φ2 in order to guarantee their differentiation. The intuition is that if some gate 

in a sensitised path for φ1 were also sensitised for φ2, then it would propagate to the subsequent 

gates in the path, not only fault(s) φ1 but also fault(s) φ2, making such path useless to differentiate 
the two diagnoses. 

However, imposing that all the gates in the path are independent from φ2 is an unnecessarily 

strong condition, as can be seen in the circuit of Figure 4.2 where φ1 ={x/0} and φ2 ={y/0} are the 
candidate diagnoses. Under test t=11, nand-gate n is dependent on both x/0 and y/0, as its output 
becomes 1 when either x or y are stuck-at-0. Nevertheless, output z is the opposite of x’s S-buffer*, 
regardless of whether x is stuck-at-0 (in which case y is normal: Figure 4.2 (b)) or is normal (and y is 
normal or stuck-at-0: Figure 4.2 (a) and (c)). Despite in the sensitised path for diagnosis {x/0} 
under t one of its gates, n, is not independent from the alternative diagnosis {y/0}, one may still 
consider such path as a differential path for {x/0} with respect to {y/0} under test t: in fact, one 
may conclude that if the output bit is physically 0 then x is necessarily normal, whereas if the bit is 1 

                                                 
* S-buffers were discussed in the previous chapter: TEST PATTERNS 
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then y is necessarily normal. 
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Figure 4.2.  Differential test for x/0 and y/0; a) normal 
circuit N; b) F1 with x/0; c) F2 with y/0 

Let us analyse the problem of encoding, in general, the truth-value Z of some signal line in this 8-
valued logic. Table 4.1 shows the 8 possible cases. 

 
N 0 0 0 0 1 1 1 1 
F1 0 0 1 1 0 0 1 1 
F2 0 1 0 1 0 1 0 1 
Z 0 d2-0 d1-0 m-0 m-1 d1-1 d2-1 1 

Table 4.1.  Truth-value of a signal with a normal model 
and two different diagnoses 

In the first column of the table, the physical truth-value is the same (0) in all cases, i.e. when either 
one or none of the diagnoses φ1 and φ2 are considered. In the second column, the physical truth-

value is 0 in the initial model N and in F1, but 1 in F2. It thus depends on faults φ2 (but not on φ1) 
and is encoded as d2-0. In the fourth column, the physical truth-value is 0 in the normal model N 
but 1 in both F1 and F2. It is thus dependent on both diagnostic sets φ1 and φ2 and is encoded as m-
0. 

 
The example of Figure 4.2 may therefore be compactly represented as in Figure 4.3. 

 
/0?

/0?
y

x

z

d1-1 m-0

1

1

d2-1 d1-0
 

Figure 4.3.  Circuit with 8-valued logic for x/0 or y/0 

4.4.1  Boolean operations 

A similar analysis can be performed to define the semantics of the usual Boolean operations. For 
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example, the semantics of exclusive disjunction (xor) for the 8-valued logic is shown in Table 4.2. 
 

xor m-0 d2-0 d1-0 0 1 d1-1 d2-1 m-1 
m-0 0 d1-0 d2-0 m-0 m-1 d2-1 d1-1 1 
d2-0 d1-0 0 m-0 d2-0 d2-1 m-1 1 d1-1 
d1-0 d2-0 m-0 0 d1-0 d1-1 1 m-1 d2-1 

0 m-0 d2-0 d1-0 0 1 d1-1 d2-1 m-1 
1 m-1 d2-1 d1-1 1 0 d1-0 d2-0 m-0 

d1-1 d2-1 m-1 1 d1-1 d1-0 0 m-0 d2-0 
d2-1 d1-1 1 m-1 d2-1 d2-0 m-0 0 d1-0 
m-1 1 d1-1 d2-1 m-1 m-0 d2-0 d1-0 0 

Table 4.2.  XOR truth table in 8-valued logic 

As expected, xor-ing independent values (0/1) produces independent values according to the usual 
xor truth tables (centre of Table 4.2). Xor-ing a d1 signal (truth value) and a d2 signal results in an m 
signal reflecting the dependency on both φ1 and φ2. Due to the nature of the exclusive disjunction, 
when both inputs depend on the same diagnostic set, the output of the gate does not depend on it, 
and is thus an independent signal (cf. the diagonals of Table 4.2). Perhaps more interestingly, xor-ing 
an m signal (dependent on both diagnostic sets φ1 and φ2) with a signal that only depends on one set 
makes the output solely dependent on the other set. 

This latter case is explained in Table 4.3 below. Columns N, F1 and F2 represent the cases to 
consider. The first two lines represent the physical truth-values which are xor-ed: input signal m-1, 
takes the physical truth value 1 in model N, but 0 in both F1 and F2 (m-signals depend on both 
faulty components); input signal d1-0, takes the physical truth-value 0 in models N and F2, but 1 in 
F1 (it depends only on φ1 as a d1 signal). The physical truth-value of the output is obtained by xor-ing 
the physical truth-values of the inputs. Since the physical output is 1 in both models N and F1, but 0 
in F2 it is encoded as d2-1. 

 
 N F1 F2

m-1 1 0 0 
d1-0 0 1 0 

m-1 ⊕  d1-0 1 1 0 

Table 4.3.  Physical output of an xor-gate with inputs m-1 
and d1-0 

Similar reasoning was used to define the semantics for the extended 8-valued logic of all the 
operations implemented by the usual digital gates. 
 

 
4.4.2  Modelling Alternative Diagnostic Theories in Digital Circuits 

We now show how to model a faulty digital circuit for which there are two alternative diagnoses 
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available. As in the previous chapters, faulty gates will be modelled by means of S-buffers. 
According to the previous notation, model N corresponds to the circuit where all the S-buffers are 
functioning correctly. In models Fi, (i in {1,2}), some gates are stuck and the output of the 
corresponding S-buffers have a fixed physical truth-value. S-buffers have specific truth tables since 
they can be faulty. An S-buffer can be so because it belongs to set of faults φ1 or φ2 or to both. The 
fault can be stuck-at-0 or stuck-at-1 in any one of the sets. It is possible for an S-buffer to appear in 
both sets being stuck-at-0 in one and stuck-at-1 in the other (of course, this will only happen with 
diagnostic sets consisting of 2 or more faults). There are thus 8 possibilities of dependency of an S-
buffer to consider. Table 4.4 below shows the resulting model for all S-buffers. 

 
Input 

Dependency m-0 d2-0 d1-0 0 1 d1-1 d2-1 m-1 

F1/0, F2/0 0 0 0 0 m-1 m-1 m-1 m-1 
F2/0 d1-0 0 d1-0 0 d2-1 m-1 d2-1 m-1 
F1/0 d2-0 d2-0 0 0 d1-1 d1-1 m-1 m-1 
F1/0, F2/1 d2-0 d2-0 d2-0 d2-0 d1-1 d1-1 d1-1 d1-1 
F1/1, F2/0 d1-0 d1-0 d1-0 d1-0 d2-1 d2-1 d2-1 d2-1 
F1/1 m-0 m-0 d1-0 d1-0 1 1 d2-1 d2-1 
F2/1 m-0 d2-0 m-0 d2-0 1 d1-1 1 d1-1 
F1/1, F2/1 m-0 m-0 m-0 m-0 1 1 1 1 

Table 4.4.  Truth table for the 8 different types of S-buffer 

The table entries are explained with the example shown in italic and shaded. The fourth line 
corresponds to an S-buffer that is stuck-at-0 in F1 and stuck-at-1 in F2, and the first entry in that line 
corresponds to its output, given an input signal m-0. Being an m signal, the input of the gate denotes 
that it depends on both faults φ1 and φ2 (more precisely, since the circuits under consideration are 

purely combinational, the signal depends on other faulty gates in diagnostic sets φ1 and φ2). This 
case is illustrated in Table 4.5. 

 
  

m-0
S-buffer (F1/0,F2/1)

output 
N 0 0 
F1 1 0 
F2 1 1 

Table 4.5.  Output of an S-buffer (stuck-at-0 in F1 and 
stuck-at-1 in F2) for input m-0 

The first column corresponds to the physical truth-value of the buffer input, which is 0 in model N 
and 1 in both F1 and F2. In case of model N (no faults) the buffer behaves correctly and outputs the 
same value of the input. In F1 the buffer is stuck-at-0 and thus outputs 0. Finally, in F2 the buffer is 
stuck-at-1 and thus outputs 1. Inspection of the output shows that it is 0 in both models N and F1, 
but 1 in F2; it is thus encoded as d2-0. 
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4.5  A 4-valued logic for Differentiation 

The 8-valued-logic allows the modelling of two faulty circuits, in conjunction with the normal one, 
by expressing signal dependencies on them. This extends and doubles the 4-valued logic to handle 
one single diagnostic set, making it possible to differentiate two such sets in addition to simple TG. 
Note that TG for a diagnostic set φ is simply modelled with the 8-valued logic by the differentiation 

of φ with the empty diagnostic set {}. Then, only 4 values {0,1,d1-0,d1-1} are possible, and the goal 

of having a d-signal at the output ensures that the test pattern detects φ. 
Similarly, if one only wants to differentiate two alternative diagnoses, a simpler logic encoding 

just the two corresponding faulty circuits could be used. In this situation, the normal circuit can be 
dropped since all that is necessary is to keep track of signal differences between the two faulty 
circuits. With one less circuit, pairs of values from the 8-valued logic will have the same meaning 
since there is no need to consider the 0- and 1- values of the normal circuit. Thus, this logic can be 
collapsed into a 4-valued logic for differentiation purposes, as shown in Table 4.6 where each of the 
4 values {00, 11, 01, 10} represents 2 values of the 8-valued logic (column 8V). 

 
F1 F2 8V 
0 0 0, m-1 
1 1 1, m-0 
0 1 d1-1, d2-0 
1 0 d1-0, d2-1 

Table 4.6.  Condensation of 8-valued logic into a 4-
valued logic for differentiation 

For instance, value 00 represents 8-valued logic values 0 and m-1, since these are those encoding 
digital signals with a 0-value in both faulty circuits (with faults φ1 and φ2). 8-valued logic value 0 
represents constant 0 in the 3 circuits (including the normal one), and m-1 is used for signals that are 
normally 1 but take value 0 in the two faulty circuits (the signals are dependent on both diagnoses). 
Hence, 0 and m-1 signals take value 0 in both F1 and F2. Similar cases occur for other logic values 
with the extraction of just the values for F1 and F2. 

Logic operations over this logic can be trivially performed by separately considering the 2 
circuits, to yield tables such as in Figure 4.4. 

 
NOT   AND 00 11 01 10  OR 00 11 01 10 

00 11  00 00 00 00 00  00 00 11 01 10 
11 00  11 00 11 01 10  11 11 11 11 11 
01 10  01 00 01 01 00  01 01 11 01 11 
10 01  10 00 10 00 10  10 10 11 11 10 

Figure 4.4.  Logic operations over a 4-valued logic for 
diagnosis 
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Therefore, two circuits (either normal and faulty circuits, or two faulty circuits) can be modelled by a 
4-valued logic, thus enabling TG and DTG to be handled with the same complexity. 

Although it can lead to some performance loss on differentiation applications, we focus mainly 
on the implementation of the 8-valued logic since it is more general (the 4-valued logic may be 
collapsed from it and is equivalent to the one presented for TG in Chapter 3) and will be useful to 
better understand other logics presented in the next chapters. 

 
4.6  A Constraint Solver for the 8-Valued Logic 

In the 8-valued logic, 6 extra values corresponding to the d and m signals are added to the usual 
Boolean 0/1 values. In a previous approach [Azevedo and Barahona 1998], despite using an 8-
valued logic, we addressed the problem of differential diagnosis of digital circuits with a 0/1 
Boolean solver (the extra 6 values were propagated to the output, by analogy with the demons 
approach taken in [Simonis 1989] but with choice points to cope with the different possibilities) 
implemented in SICStus Prolog [SICStus 1995]. 

In order to avoid choice points in the selection of differential paths (a typical generate and test 
approach suffering from well known efficiency problems discussed in section 3.4.1.2), one should 
use constraints over the 8 values, in a constraint programming philosophy. We thus incorporated 
the 6 special signals with the Boolean values into a single 8-valued domain. To implement such a 
finite domain constraint solver, it was necessary to adapt the truth tables of the usual Boolean 
operators and the S-buffers for the particular encoding of the 8-valued logic, and also to specify a 
constraint propagation strategy. 

Arc consistency (see section 1.2) is computationally too demanding in general, especially if more 
than just binary constraints are handled, as already shown in the 4-valued logic for TG discussed in 
Chapter 3. With larger domains, the inadequacy of such kind of consistency tends to increase. 
Nevertheless, a reasonable amount of propagation should be ensured, if only without much effort, 
and maintaining node consistency is often not sufficient for adequate propagation. Additionally, a 
simple and easy to maintain implementation was sought, for general purpose problems involving 3 
circuits, taking full advantage of the underlying SICStus CLP(FD) solver which has the ability to 
accept user-defined constraints. The way we achieved these objectives is described in the next 
section. 

In our new solver, the basic gates modelled as user-defined constraints are ‘not’, ‘and’ and ‘xor’ in 
addition to the trivial ‘buffer’. Other types of gates such as ‘or’, ‘nor’ and ‘nand’ are modelled in terms 
of the basic ones, and can have an arbitrary number of inputs, since our ‘and’ constraint definition 
handles this case. 

All user-defined constraints that implement this 8-valued logic are activated by guards, normally 
fired at instantiation of one of its variables. In addition to these higher-level constraints, cardinality 
constraints were used, as well as constructive disjunction [le Provost and Wallace 1993] for some 
relations between 2 variables. By so doing, the constraint solver imposes a form of consistency 
stronger than node consistency, but somewhat weaker than arc consistency (too costly to maintain). 
Whenever two variables alone remain in a constraint, arc-consistency is usually maintained; 
otherwise, in general, propagation is triggered by instantiation of a variable. 
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We now examine in more detail the solver implementation. 
 

4.6.1  Domain Representation 

Since we were using SICStus that provides a CLP(FD) solver library [Carlsson et al. 1997] over 
integers, we had first to encode the 8-valued domain D8 = {0,1,d1-0,d1-1,d2-0,d2-1,m-0,m-1} into an 
integer domain, in order to allow (built-in) arithmetic constraints between all the values. 

A simple encoding of D8 using integers 0 to 7, keeping the 0-1 Boolean values followed by the 
other signals, would make it hard to express even simple constraints as ‘not’ and would force us to 
handle unnecessary disjunctions which would make computation harder. E.g. if the 8 values {0,1,d1-
0,d1-1,d2-0,d2-1,m-0,m-1} were encoded respectively as {0,1,2,3,4,5,6,7} then their negation (‘not’ 
operation) values would be {1,0,3,2,5,4,7,6}, and the relation Y = not(X) may be expressed by the 
(long) disjunction: 

)67(......)23()32()01()10( =∧=∨∨=∧=∨=∧=∨=∧=∨=∧= YXYXYXYXYX  

Since ‘negated’ values are ‘neighbours’, we could represent the relation in a simpler form, stating 
that the ‘distance’ between X and Y is 1. However, wrong neighbours (e.g. 1 and 2, 3 and 4, 5 and 
6) must be avoided. A possibility of avoiding such cases could be by means of explicit “primitive” 
constraints as in 

1173)11( ≠+∧≠+∧≠+∧=−∨=− YXYXYXXYYX  

This is clearly a very heavy constraint to process efficiently, and better alternatives were explored. 
Ideally, any logic operation should be transformed in a simple arithmetic constraint. In the 

particular case of binary constraints in the form of an equation involving just sum or subtraction 
operations, SICStus ensures arc-consistency with little computational effort. Nevertheless, for such 
equations, other CLP solvers can still efficiently apply only bounded arc-consistency (section 1.3.1), 
in which the constraint is triggered only by changes in the bounds of domain variables (and also 
only bounds become updated). In any case, the code is kept simple and a sufficiently efficient 
processing underneath is assured. 

We could thus think of a domain such as {-4,-3,-2,-1,1,2,3,4} for, respectively, the 8 values {m-
0,d2-0,d1-0,0,1,d1-1,d2-1, m-1}, which would allow the simple constraint Y = -X to model a not-gate 
with input X and output Y. 

Let us now examine the respective xor table (depicted in Table 4.7). 

 
xor 

m-0 
-4 

d2-0 
-3 

d1-0 
-2 

0 
-1 

1 
1 

d1-1 
2 

d2-1 
3 

m-1 
4 

-4 -1 -2 -3 -4 4 3 2 1 
-3 -2 -1 -4 -3 3 4 1 2 
-2 -3 -4 -1 -2 2 1 4 3 
-1 -4 -3 -2 -1 1 2 3 4 
1 4 3 2 1 -1 -2 -3 -4 
2 3 4 1 2 -2 -1 -4 -3 
3 2 1 4 3 -3 -4 -1 -2 
4 1 2 3 4 -4 -3 -2 -1 

Table 4.7.  XOR for encoded domain {–4...-1, 1..4} 
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With such ‘symmetric’ encoding, we also obtain simple relations for the xor operation (see Table 4.8 
considering each possible xor output value). Each relation between two variables corresponds to the 
constraint we have to impose when another variable becomes instantiated. Remember that our goal 
is to find simple constraints for pairs of variables, which can possibly be easily implemented with 
arc-consistency (or approximated) with the underlying CLP tool. 

 

X⊕ Y -4 -3 -2 -1 1 2 3 4 
X,Y |X+Y|=5 |X-Y|=2 |X-Y|=1 X=Y X=-Y |X+Y|=1 |X+Y|=2 |X-Y|=5 

Table 4.8.  Output of xor-gate implies relation between 
arguments 

Unfortunately, the relations of Table 4.8 hold only in an implication sense   it is not always an 
equivalence relation. In other words, for a given xor output, the corresponding relation between 
arguments is only a necessary condition for that output to hold   it is not always a sufficient 
condition. 

For example, with output d1-0 (encoded as –2), it is indeed necessary that the ‘distance’ (absolute 
difference) between arguments X and Y is 1 (possible pairs: {-4,-3}, {-2,-1}, {1,2}, {3,4}). 
However, with this encoding, there are other possible pairs that still verify this condition but where 
the exclusive disjunction does not yield the same output value. E.g., with arguments (X,Y)=(-3,-2) 
verifying the same distance (1), the output is different: Z= X⊕ Y = -4 (i.e. m-0). Hence, either 
additional constraints would have to be imposed to disallow such pairs or the original xor constraint 
should remain in store after propagation. 

To automatically discard such undesirable extra pairs of values we tried to add ‘holes’ in the 
encoded domain. Then, values that respect some distance relation to argument X would either 
entail the given xor output value or fall into a domain hole, which corresponds to an impossible 
assignment. Hence, to approximate at least bounded arc-consistency with a small effort, as we will 
next see, the domain of codes CD8 = {-6,-5,-3,-2,2,3,5,6} was adopted with the interpretation 
shown in Table 4.9. 
 

value m-0 d2-0 d1-0 0 1 d1-1 d2-1 m-1 
code -6 -5 -3 -2 2 3 5 6 

Table 4.9.  Adopted 8-valued domain encoding 

The order of values is preserved (with respect to the previous encoding) but the values are further 
separated. In the following sections we discuss the different gate constraints with this domain. 
 
4.6.2  Not-Gates 

With this domain, the negation of a variable X (in a ‘not’ gate, as in Table 4.10) is the symmetrical 
arithmetic value (see Table 4.11). Hence the output of a gate receiving as input some signal X {-6, -
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5, -3, -2, 2, 3, 5, 6} is simply replaced by –X. The constraint propagation mechanism used maintains 
arc-consistency and is standard in SICStus for finite domains (domains maintained as indexical 
constraints, as first adopted in constraint logic programming in the language CLP(FD) [Diaz and 
Codognet 1993]).  
 

X m-0 d2-0 d1-0 0 1 d1-1 d2-1 m-1 
not(X) m-1 d2-1 d1-1 1 0 d1-0 d2-0 m-0 

Table 4.10.  8-valued logic table for NOT 

X -6 -5 -3 -2 2 3 5 6 
not(X) 6 5 3 2 -2 -3 -5 -6 

Table 4.11.  8-valued logic encoded table for NOT 

 
4.6.3  Xor-Gates 

The ‘xor’ logic operation of Table 4.2 may be summarised as in Table 4.12 where, for each of the 8 
possible outputs, we have a list of 8 possible input pairs, noticing that ‘xor’ is commutative. 

 

X⊕ Y m-0 d2-0 d1-0 0 1 d1-1 d2-1 m-1 
X,Y {0, m-0} 

{1, m-1} 
{d1-0,d2-0} 
{d1-1,d2-1} 

{0, d2-0} 
{1, d2-1} 

{d1-0,m-0} 
{d1-1,m-1} 

{0, d1-0} 
{1, d1-1} 

{d2-0,m-0}
{d2-1,m-1}

{S, S} : 
S ∈  D8 

{0, 1} 
{d1-0,d1-1} 
{d2-0,d2-1} 
{m-0,m-1}

{0, d1-1} 
{1, d1-0} 

{d2-0,m-1}
{d2-1,m-0}

{0, d2-1} 
{1, d2-0} 

{d1-0,m-1} 
{d1-1,m-0} 

{0, m-1} 
{1, m-0} 

{d1-0,d2-1}
{d1-1,d2-0}

Table 4.12.  XOR possible input pairs for each output 

Converting into our encoded domain we obtain Table 4.13 below. 
 

X⊕ Y -6 -5 -3 -2 2 3 5 6 
X,Y {-2, -6} 

{2, 6} 
{-3, -5} 
{3, 5} 

{-2, -5} 
{2, 5} 

{-3, -6} 
{3, 6} 

{-2, -3} 
{2, 3} 

{-5, -6} 
{5, 6} 

{S, S} : 
S ∈  CD8

{-2, 2} 
{-3, 3} 
{-5, 5} 
{-6, 6} 

{-2, 3} 
{2, -3} 
{-5, 6} 
{5, -6} 

{-2, 5} 
{2, -5} 
{-3, 6} 
{3, -6} 

{-2, 6} 
{2, -6} 
{-3, 5} 
{3, -5} 

Table 4.13.  XOR possible encoded input pairs for each 
output 

An ‘xor’ is now also easily expressed by Table 4.14 where each output specifies an arithmetic 
constraint over the inputs. 
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X⊕ Y -6 -5 -3 -2 2 3 5 6 
X,Y |X+Y|=8 |X-Y|=3 |X-Y|=1 X=Y X=-Y |X+Y|=1 |X+Y|=3 |X-Y|=8 

Table 4.14.  Relation between output of an xor-gate and 
its arguments 

Notice that X ⊕  Y = Z  ⇔   X ⊕  Z = Y  ⇔   Z ⊕  Y = X. Hence, as in the case of a not-gate, 
propagation handles inputs and outputs alike. The absolute value expressions, such as |X+Y|=8, 
are modelled as (constructive) disjunctions (X+Y=8 ∨  X+Y= -8). 

Now, let us assume that initially X, Y and Z had all CD8 as domain. Suppose that, at some 
point, Y is instantiated to value 3 (i.e. d1-1). We then replace the xor constraint by (X+Z=1 ∨  X+Z= 
-1). X and Z must still keep CD8 as their domain since all values are yet possible (due to the nature 
of xor), but as soon as, for instance, value 6 (i.e. m-1) is removed from the domain of X, we can 
remove value 1-6 = -5 (i.e. d2-0) from the domain of Z. Hence, due to the constraint 
implementation, arc-consistency is ensured by a simple constructive disjunction. Notice that such 
simple disjunction would not be enough with the simpler encoding (e.g. {–4..-1,1..4}) previously 
discussed. The removal of value 4 (i.e. m-1) from the domain of X, after Y is instantiated to value 2 
(i.e. d1-1) would not impose the removal of value 1-4 = -3 (i.e. d2-0) from the domain of Z since this 
value (-3) would still have support in value 2 (i.e. Boolean 1) of X, allowed by the disjunctive 
constraint |X+Z|=1, since one also has -1-2 = -3 (i.e. |4+(-3)|=1 and |2+(-3)|=1). 
 

 
4.6.4  Normal And-Gates 

Table 4.15 presents the semantics of the and-operation (A = X∧ Y) in the 8-valued logic. 
 

A = X∧ Y m-0 d2-0 d1-0 0 1 d1-1 d2-1 m-1 
m-0 m-0 d2-0 d1-0 0 m-0 d2-0 d1-0 0 
d2-0 d2-0 d2-0 0 0 d2-0 d2-0 0 0 
d1-0 d1-0 0 d1-0 0 d1-0 0 d1-0 0 

0 0 0 0 0 0 0 0 0 
1 m-0 d2-0 d1-0 0 1 d1-1 d2-1 m-1 

d1-1 d2-0 d2-0 0 0 d1-1 d1-1 m-1 m-1 
d2-1 d1-0 0 d1-0 0 d2-1 m-1 d2-1 m-1 
m-1 0 0 0 0 m-1 m-1 m-1 m-1 

Table 4.15.  AND (8-valued) logic table 

The propagation mechanism that we implemented delays propagation until one of the arguments is 
ground. Table 4.16 shows, for each ground value of X, what can be inferred on input Y and output 
A. The possible pairs (A,Y) that are the solutions of each set of inferences (a line in the table) are 
exactly those that can be taken from examining Table 4.15, and thus the original ‘and’ constraint can 
be removed from the store and replaced by the new ones. 
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X Constraints on {A, Y} for A = X∧ Y 
m-0 A ∈  {m-0,d2-0,d1-0,0},  A=Y ∨  (Y,A) ∈  {(1,m-0), (d1-1,d2-0), (d2-1,d1-0), (m-1,0)} 
d2-0 A ∈ {d2-0,0},  (Y ∈  {m-0, d2-0,1,d1-1}, A=d2-0) ∨  (Y ∈  {d1-0,0,d2-1,m-1}, A=0) 
d1-0 A ∈  {d1-0,0},  (Y ∈  {m-0, d1-0,1,d2-1}, A=d1-0) ∨  (Y ∈  {d2-0,0,d1-1,m-1}, A=0) 
0 A= 0 
1 A=Y 
d1-1 A ∈  {d2-0,0,d1-1,m-1},  (Y ∈  {m-0, d2-0}, A=d2-0) ∨  (Y ∈  {d1-0,0}, A=0) ∨  

(Y ∈  {1,d1-1}, A=d1-1) ∨  (Y ∈  {d2-1,m-1},A=m-1) 
d2-1 A ∈  {d1-0,0,d2-1,m-1},  (Y ∈  {m-0, d1-0}, A=d1-0) ∨  (Y ∈  {d2-0,0}, A=0) ∨  

(Y ∈  {1,d2-1}, A=d2-1) ∨  (Y ∈  {d1-1,m-1},A=m-1) 
m-1 A ∈  {0,m-1},  (Y ∈  {m-0, d2-0,d1-0,0}, A=0) ∨  (Y ∈  {1,d1-1,d2-1,m-1}, A=m-1) 

Table 4.16.  Constraints when input X of A= X∧ Y is 
known 

Table 4.17 includes both previous tables using our codes and showing the arithmetic constraints 
that we post on each case. For example, if X takes value 5 (code for d2-1), the domain of A is 
reduced to {-3,-2,5,6} and, additionally, the constraint A=Y ∨  A-Y=3 is posted to replace the 
original 'and' constraint. (Similarly to the xor constraint, it can be verified that this disjunction 
captures exactly all possible pairs {A,Y}. As can be seen in Table 4.16, when X= d2-1, for each 
possible value of A, there are only two possible values of Y. Thanks to our encoding, the difference 
A-Y between A and Y can only be 0 or 3.) 

 
A = 
X∧ Y 

-6 -5 -3 -2 2 3 5 6 Constraints on {A,Y} 

-6 -6 -5 -3 -2 -6 -5 -3 -2 A<0, A=Y ∨  Y-A=8 
-5 -5 -5 -2 -2 -5 -5 -2 -2 A ∈  {-5,-2}, Y-A ∈  {-1,0,7,8} 
-3 -3 -2 -3 -2 -3 -2 -3 -2 A ∈  {-3,-2}, Y-A ∈  {-3,0,5,8} 
-2 -2 -2 -2 -2 -2 -2 -2 -2 A= -2 
2 -6 -5 -3 -2 2 3 5 6 A=Y 
3 -5 -5 -2 -2 3 3 6 6 A ∈  {-5,-2,3,6}, A=Y ∨  A-Y=1 
5 -3 -2 -3 -2 5 6 5 6 A ∈  {-3,-2,5,6}, A=Y ∨  A-Y=3 
6 -2 -2 -2 -2 6 6 6 6 A ∈  {-2,6}, (Y<0,A= -2) ∨  (Y>0,A=6) 

Table 4.17.  ‘And’ encoded logic table and constraints 

The whole propagation mechanism (including constructive disjunction to handle the above 
disjunctions) was implemented with the user-defined primitives available on SICStus. 
 
Of course, similar behaviour is specified for the case where Y is ground (X replacing Y in the table). 
The case where the output is ground has to be treated separately. Table 4.18 shows the constraints 
that are posted and replace the original one, when the value of output A becomes instantiated (the 
case A = -2 is treated differently, being handled as a mere propagation rule, i.e. the original 'and' 
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constraint is kept in the constraint store). 
 

‘And’ output 
signal 

output code A Constraints on inputs X and Y 

m-0 -6 X,Y in {-6,2}, X+Y ≠ 4 
d2-0 -5 X,Y in {-6,-5,2,3}, X+Y ≤ -2, X+Y ≠ -12, X+Y ≠ -4 
d1-0 -3 X,Y in {-6,-3,2,5}, X+Y ≤ 2, X+Y ≥ -9, X+Y ≠ -4 

0 -2 X+Y ≤ 4, X+Y ≥ -8, and(X,Y)= -2 
1 2 X=Y=2 

d1-1 3 X,Y in {2,3}, X+Y ≠ 4 
d2-1 5 X,Y in {2,5}, X+Y ≠ 4 
m-1 6 X+Y ≥ 8, X+Y ≠ 10 

Table 4.18.  Constraints to post when output of and-gate 
becomes instantiated 

And-gates with k inputs (k>2) could of course be handled as k-1, 2-input and-gates. E.g. A = X ∧  Y 

∧  Z handled as A = and(X, and(Y, Z)). However this would not allow efficient propagation in some 
cases, namely when A becomes ground (it would directly affect only X and the output of the other 
and-gate which could remain uninstantiated, thus unable to constrain inputs Y and Z). Hence, each 
gate with more than 2 inputs is implemented as a global constraint [Beldiceanu 1990]. In such case, 
all inputs (X,Y,Z) can be directly constrained, but only the ‘in’ component of the constraints in 
Table 4.18 is posted, i.e. domain of the input variables is only narrowed, without adding any more 
constraints to the store. Furthermore, there are cases where it is possible to constrain inputs to have 
at least one particular value. For instance, if output is m-1 and and-ing the already ground inputs 
yields d1-1 (d2-1), then one of the other inputs must be d2-1 (d1-1). Simple analysis to the truth table 
confirms it. Such disjunction can be imposed by means of a cardinality constraint [Van Hentenryck 
and Deville 1991] and is implemented in SICStus using its count/4 constraint. 
 
 
4.6.5  S-Buffers 

The truth tables defining S-buffers, shown in Table 4.4, are rewritten in Table 4.19, with the CD8 
encoding, relating the S-buffer output B to its input I (heading row). It also shows the constraints 
used to define these buffers (according to each case of dependency). 

Arithmetic constraints are derived in a similar way to normal gates. Since the dependency type 
of an S-buffer is known at ‘compile-time’ (the two diagnoses, φ1 and φ2, are given to our DTG 
system), only two variables may remain (input and output), which allows us to fully replace S-
buffers constraints by simple arithmetic constraints (disjunctions are handled by user-defined 
constraints) as soon as the former are posted, similarly to not-gates. 
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Dependency 

m-0 
-6 

d2-0 
-5 

d1-0 
-3 

0 
-2 

1 
2 

d1-1 
3 

d2-1 
5 

m-1 
6 

 
Constraints 

F1/0, F2/0 -2 -2 -2 -2 6 6 6 6 B ∈  {-2,6}, 
(I<0, B = -2) ∨  (I>0, B = 6) 

F2/0 -3 -2 -3 -2 5 6 5 6 B ∈  {-3,-2,5,6}, 
B-I ∈  {0,3} 

F1/0 -5 -5 -2 -2 3 3 6 6 B ∈  {-5,-2,3,6}, 
B ≥ I, B ≤ I+1 

F1/0, F2/1 -5 -5 -5 -5 3 3 3 3 B ∈  {-5,3}, 
(I<0, B = -5) ∨  (I>0, B = 3) 

F1/1, F2/0 -3 -3 -3 -3 5 5 5 5 B ∈  {-3,5}, 
(I<0, B = -3) ∨  (I>0, B = 5) 

F1/1 -6 -6 -3 -3 2 2 5 5 B ∈  {-6,-3,2,5}, 
I ≥ B, I ≤ B+1 

F2/1 -6 -5 -6 -5 2 3 2 3 B ∈  {-6,-5,2,3}, 
I-B ∈  {0,3} 

F1/1, F2/1 -6 -6 -6 -6 2 2 2 2 B ∈  {-6,2}, 
(I<0, B = -6) ∨  (I>0, B = 2) 

Table 4.19.  Truth table and constraints for the 8 
different types of S-buffer 

This concludes the description of gate constraints. All these user-defined constraints are activated 
by guards, usually fired at instantiation of one of its variables. In addition to these higher-level 
constraints, cardinality constraints as well as constructive disjunction and conjunction were used as 
described in the previous tables. 

All such constraint propagation is far more "complete" than node-consistency (where 
propagation is only triggered when all but one of the variables in a constraint are ground). It is also 
more complete than bounded arc-consistency, which is usually maintained by the underlying CLP 
tool on general arithmetic constraints. Nevertheless, it will not enforce full arc-consistency, as the 
trade-off between the pruning that it could achieve and the cost of implementing it is not worth it. 

For example, when one of the variables in a binary ‘xor’ constraint takes value 0 (the guard 
checks this condition) the constraint is simply rewritten as an equality of the other two variables. As 
another example, if one variable takes value m-1, there are eight possible pairs of values for the other 
two variables, and the ‘xor’ constraint is thus rewritten into the constructive disjunction of these 
cases. In a final example, if the output of an and-gate takes value 0, the ‘and’ constraint is fired and 
may be replaced by the cardinality constraint imposing that at least one of the inputs be 0 (in fact, 
there are some combinations of di and m signals that also yield value 0 when ‘anded’; the ‘and’ 
constraint checks this possibility). 
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4.6.6  Heuristics to Find Differential Patterns 

As explained, a differential test pattern must logically entail a di signal in the digital circuit output 
with all gate constraints posted. An output bit must therefore have a value in the set {-5,-3,3,5} 
(otherwise the two sets of faults were indistinguishable) so that this bit depends exclusively either on 
set φ1 (values -3 and 3) or on set φ2 (-5 and 5). As in the simple TG problem (Chapter 3), this is the 
typical disjunctive constraint suitable for the iterative time-bounded search (ITBS) technique 
(described in section 3.6) that we propose for this kind of problems and applied for finding 
differential test patterns. 

We tried three different scenarios to confirm the best heuristic. In the first, we used the least 
commitment approach, implemented with a cardinality operator on the output bits that included a d 
value in their domains after setting up the circuit. To speed up this execution, we labelled first the 
input bits that lead to the possible S-buffers (i.e. in their transitive fanin), and then the inputs that 
lead to the possible output bits. This is the Cardinality (#) heuristic. 

The second scenario adopted the ITBS strategy with a heuristic that is similar to the previous 
one, but which is applied only after committing to one of the output bits. This is the ITBS-Bit 
strategy. The (potential) advantage now is that by committing to some output bit, more propagation 
is possible in principle and fewer input bits are relevant, which thus decreases the search space. 

The third scenario, ITBS-Path, also used the ITBS technique but with a different heuristic 
(Path) that is obtained after selecting a definite d-signal to an output bit. Since this d-signal depends 
either on faulty components F1 (values d1-0 and d1-1) or on faulty components F2 (d2-0 and d2-1), it is 
then mandatory that the corresponding S-buffers produce the d signal thus activating a fault. This is 
imposed with a cardinality constraint, implemented with the built-in constraint element/3. To reach 
the output bit, there must be a differential test path, i.e. a path from an S-buffer to that bit [Azevedo 
and Barahona 1998]. With this knowledge, we first try to find that path by labelling the variables 
starting in the d-signal “backwards” to an S-buffer in a way that they remained always dependent on 
F1 or F2. Since the FD solver is not complete, we then try to justify the chosen path by labelling the 
input bits that are relevant to it, i.e. that allow the d signal to reach the output bit. We did it starting 
at the S-buffer (the path start gate) transitive fanin PIs, which are then labelled first. We then 
followed along the chosen differential test path. For each gate in the path, we would similarly find 
the input bits of the circuit that are relevant for this gate, and label them in the second place. This 
process finishes when reaching the final path bit (a circuit output). 

ITBS-Path is very similar to the discussed TG heuristic of completely specifying a sensitised 
path. Note that ITBS-Bit does not stick to any path at all, but only to its final bit. 

 
For any heuristic, it is sufficient to label the Boolean circuit input bits and have all variables 
instantiated to assure a solution. Some bits, however, have nothing to do with the differential path 
(i.e. are outside of its transitive fanin) and could lead to irrelevant backtracking. Hence, we adopted 
the strategy of labelling first the circuit inputs relevant to this path. 

All this labelling may be done with the following heuristics: the most constrained variables are 
chosen first; the values are chosen with arbitrary domain enumeration. Finally, to have a completely 
specified test pattern, we label the remaining inputs. 
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4.7  Benchmarks 

Before discussing results, we first describe the set of experiments that adopted the ISCAS circuits 
(section 2.4) to obtain such results with our system. Unfortunately, there are, to our knowledge, no 
standard benchmarks for the problem of differentiating faulty diagnoses. Therefore we had to 
create, for each circuit, specific benchmarks consisting of a set of competing diagnoses to 
differentiate between [Azevedo and Barahona 1999]. We describe this process first. 

 
4.7.1  Generating a Benchmark 

In general it is easy to differentiate "unrelated" faulty gates. The problem becomes more difficult, if 
the competing diagnostic sets are known to have produced the same faulty output for some input. 
Hence, we have assumed that the most difficult situations arise when the two sets of faults to 
differentiate result from diagnosis of a malfunctioning circuit. 

These diagnostic sets typically contain the same number n of faults, since one is usually 
interested in minimal (with respect to cardinality) diagnosis (usually n=1, corresponding to SSF). To 
produce more "realistic" benchmarks for sets of n faults on each circuit c, we proceeded in the 
following way: 
 
1- generate a random input In as a list of 0-1 values (considered equiprobable) for the PIs of c; 
2- with the model of c with no faults, generate its "normal" output Out as a list of 0-1 values for the 

POs of c; 
3- randomly invert (equiprobably) n bits of Out to yield "faulty" output FOut; 
4- with some diagnostic tool (see section 4.2), generate the set Sn of all minimal diagnoses that 

explain FOut given input In 
 
Our diagnostic tool (using HCLP(B) system of [Menezes and Barahona 1996]) examined directly the 
ISCAS circuit model, and assumed that each gate (including PIs) could be either stuck-at-0 or stuck-
at-1. No special fault set for the circuit was considered, since emphasis was on differentiation. 
 
Example.  As an example, Table 4.20 shows 2 inputs randomly generated for circuit c432 and the 
corresponding normal outputs: 
 

Input Normal Output 
Ia= 110010011100110101101111110001111111  1111101 
Ib= 110010001111011100101110010011110111 1101010 

Table 4.20.  Random inputs generated for circuit c432, 
and corresponding outputs 

With these inputs, benchmarks were created as described above. We show the first tries in Table 
4.21. 
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Input Faulty 

Output 
Fault Type / 
Inverted POs 

Diagnoses Benchmark 

Ia 1111100 single / 7 S1 = {{432gat/0}} No benchmark 
Ia 1110101 single / 4 S1 = {{380gat/0}, {415gat/1}, 

{416gat/1}, {421gat/0}} 
b432_a_1 

Ia 1011001 double / 
2 and 5 

S2 = {{187gat/0,430gat/0}, 
{270gat/1,430gat/0}, 
{329gat/0,430gat/0}, 
{37gat/1,105gat/0}, 
{43gat/0,105gat/0}, 
{47gat/1,430gat/0}} 

b432_a_2 

Ib 1101000 single / 6 S1 = {{419gat/0}, {428gat/1}, 
{431gat/0}} 

b432_b_1a 

Ib 1111010 single / 3 S1 = {{370gat/1}, {92gat/0}} b432_b_1b 

Table 4.21.  Benchmarks attempts for c432 

The first experiment with input Ia with the 7th bit of its normal output inverted, generated no 
benchmark since there was only one possible diagnosis for that faulty behaviour, namely gate 
‘432gat’ stuck-at-0. The second attempt with input Ia resulted in a set of 4 diagnostic sets (each with 
one faulty gate). The third, resulted in a set of 6 diagnostic sets (each with 2 faulty gates). Similar 
experiments were done with input Ib. 
 

 
4.7.2  Set of Benchmarks Used 

Each of our benchmarks thus consists of a set of all minimal diagnoses (the result of the diagnostic 
process) that explain some faulty behaviour of a circuit. We concentrated only on single and double 
fault diagnoses. For each of the ISCAS circuits (from c432 to c7552) we generated two different 
inputs, and for each input, we generated two single fault outputs and one double fault output, thus 
producing a total of 6 benchmarks per circuit (4 sets S1 plus 2 sets S2). For the larger ISCAS circuits, 
starting with c1908, only single fault benchmarks were produced. In total, we generated 51 
benchmarks, 43 regarding diagnostic sets with single faults and 8 with double faults. 

The rationale behind this was to get a representative but not too big set of benchmarks, 
especially for single faults, since they all are basically a particular application of the same general 
principle. 

All benchmarks have names of the form b<Circuit>_<InputId>_<FaultsNumber> possibly 
followed by an identifier to remove ambiguities. 

 
 

4.8  Differentiating Multiple Diagnoses 

In this section, we present two simple algorithms that systematically generate differential test 
patterns from a set of candidate diagnoses. The first, more exhaustive, algorithm (for benchmark 
purposes) partitions the initial set of candidate diagnoses into classes of indistinguishable diagnoses 
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without the need for testing a physical circuit. A second algorithm eliminates incorrect diagnoses by 
applying generated differential tests in the physical circuit in order to obtain a minimal subset of 
indistinguishable hypotheses that explain the circuit’s faulty behaviour. We briefly describe the 
algorithms and, in the next section, present the experimental results obtained in the set partitioning 
together with proposals for algorithm improvements. 

Clearly, the indistinguishable relation (let us denote it by d1 =d d2) between two diagnoses, d1 and 
d2, is reflexive (d =d d), symmetric (d1 =d d2 ⇔ d2 =d d1) and transitive (d1 =d d2 ∧  d2 =d d3 ⇒ d1 =d d3). 
As such, it defines classes of indistinguishable diagnoses. This justifies that the algorithms presented 
in this section (indeed any algorithm based on the same assumptions that only the input and output 
bits are observable) will terminate with sets of candidate diagnoses that cannot be further reduced.  
 
For benchmark purposes, to make the testing of the differentiation problem exhaustive we decided 
to compute the set of all the equivalence classes of indistinguishable diagnoses, in order to achieve 
the maximal fault resolution. This is done with the Classes algorithm shown below (pseudo-code in 
Figure 4.5), which simply stores each of the diagnostic sets in the corresponding class by trying to 
generate differential tests to conclude whether two diagnoses are indistinguishable. 
 

Procedure Classes (In: Si, Out: Cs); 
 Cs Å ∅    % no classes yet. 
 while Si ≠ ∅  do 
  Si Å Si \ {D1} % obtain a diagnosis D1. 
  Cs’ Å Cs  % classes to check in loop. 
  Found Å ∅  % no equivalence class found so far. 
  while Cs’ ≠ ∅  and Found = ∅ do 
   Cs’ Å Cs’ \ {C} % obtain a class C. 
   select D2 from C % pick any of its diagnoses. 
   if not Diff_Pattern(D1,D2,I) then Found Å {C} 
     % equivalence class found. 
  end while 
  if Found = {C} % an equivalence class C for D1 was found. 
   then Cs Å Cs \ C ∪ { C ∪ {D1}} % update class C in Cs. 
   else Cs Å Cs ∪ {{D1}} % add new class. 
 end while 
end Procedure 

Figure 4.5.  Algorithm to partition a set into classes of 
indistinguishable diagnoses 

Procedure Classes gets as input a set Si, of candidate hypotheses (diagnostic sets) and, trivially, picks 
one at a time to check if it belongs to any of the current computed classes. Checking if a diagnosis 
D1 belongs to some class C is performed by picking any diagnosis D2 of C and verifying if D1 and 
D2 are indistinguishable (by failing to find a differentiating test I with predicate Diff_Pattern(D1,D2,I)). 
If no equivalent class is found, then a new one with current diagnosis D1 is added to the current set 
of classes. The final set of classes (each a set of diagnoses) is returned as parameter Cs. 

In principle, diagnoses of benchmarks such as those described in the previous section are 
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harder to differentiate as they are tightly related (in particular, recall that a single input In is used to 
generate Si, hence In is a test pattern for all the elements of Si). 

The critical part of the algorithm is the computation of differential patterns, which can be 
performed from #Si – 1 times (in the best case, i.e. a single class) to #Si  * (#Si – 1) / 2 times (in 
the worst case, i.e. no equivalent diagnoses, which corresponds to #Si classes). 

For the example of the full-adder of Figure 4.1, with input 000 and output 10 the possible 
minimal diagnostic sets were {g1/1} and {g3/1}. Given input Si ={{g1/1}, {g3/1}}, the Classes 
algorithm just has to generate a differential test pattern I for this pair of faults (with 
Diff_Pattern({g1/1},{g3/1},I)) to conclude they are differentiable and obtain two classes, i.e. Cs = 
{{{g1/1}},{{g3/1}}}. In the same circuit, with input 000 and output 01, the possible faults are 
g2/1, g4/1 and g5/1, which are indistinguishable. Given Si = {{g2/1}, {g4/1}, {g5/1}}, we thus 
obtain Cs = {{{g2/1}, {g4/1}, {g5/1}}} by twice attempting and failing to generate a differential 
test pattern. 

Clearly, in the worst case, DTG is exponential on the number of input bits. However, our 
experience shows that in practice, with our tool, even for circuits with hundreds of input bits, 
differential patterns may be found effectively, as we will see in the next section. 

 
In ‘real life’, with the real circuit to test, there is no need to obtain all equivalence classes since only 
one matters: the single class that explains the circuit behaviour given any input. The algorithm for 
discriminating the possible diagnoses from an initial set of hypotheses is shown in Figure 4.6. The 
algorithm makes pairwise comparisons of all the candidate diagnoses, and outputs those that were 
not eliminated (they all belong to the same class). For each pair of candidates, it tries to find a 
differential test pattern for them. If it fails, then the diagnoses are in the same class of 
indistinguishable diagnoses; otherwise, it applies this pattern in order to eliminate one of the 
candidates. 

 
Procedure Differentiate (In: Si, Out: So); 
 Si Å Si \ {D} % remove a candidate D from the set. 
 C Å {D}   % initialise the candidate class with it. 
 while Si ≠ ∅  do 
  select D1 from C % pick a candidate diagnosis D1. 
  Si Å Si \ {D2} % obtain an alternative candidate D2. 
  if Diff_Pattern(D1, D2, I) then  % differentiable by I. 
   if Real_Output(I) ≠ Simulated_Output(D1,I) then %not F1 
    C Å {D2} % make {D2} the new current class. 
   end if 
  else C Å C ∪  { D2} % add D2 to the current set of 
  end if   % indistinguishable candidates. 
 end while 
 So Å C 
end Procedure 

Figure 4.6.  Algorithm to obtain a set of indistinguishable 
diagnoses 
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Procedure Differentiate gets as input a set Si, of candidate hypotheses (diagnostic sets), and 
systematically makes pairwise comparisons of these possible diagnoses. At any time, a set C 
maintains the set of (indistinguishable) candidates that are the current solution. If a differential test 
pattern I, between a member D1 of C and an alternative diagnosis D2, is found (with predicate 
Diff_Pattern(D1,D2,I)) it is applied to the circuit. Then, if the output in the real circuit Real_Output(I) is 
different from the output Simulated_Output(D1,I) that would be obtained with the diagnosis D1 of the 
current solution set, then candidate D1, as well as all the other candidates in set C are discarded and 
{D2} becomes the current set of candidates. Otherwise candidate D2 is simply discarded. If, on the 
contrary, a differential test between D1 and D2 was not found, then they are indistinguishable and D2 
is added to current set C. Eventually, all initial candidates are tested and set C, returned as the 
answer, contains all the indistinguishable diagnoses that explain the faulty behaviour of the circuit 
for any input. 

It is easy to prove that the algorithm is correct. Its complexity is linear on the number of initial 
hypotheses, since all of them are tested once in the internal loop. (This is in contrast with the Classes 
algorithm, where for each initial hypothesis, all current computed classes are potentially considered 
with a differentiation, thus achieving quadratic complexity.) 
 
Returning to the example of the full-adder of Figure 4.1, with Si ={{g1/1},{g3/1}}, the Differentiate 
algorithm just has to generate a differential test pattern I for this pair of faults (with 
Diff_Pattern({g1/1},{g3/1},I)) to conclude which one is normal and which one is actually faulty (by 
comparing the real and simulated outputs given input I). 

When the possible faults are g2/1, g4/1 and g5/1, which are indistinguishable, input Si = 
{{g2/1}, {g4/1}, {g5/1}} is given to the Differentiate algorithm to obtain So = {{g2/1}, {g4/1}, 
{g5/1}} by 2 failed DTG attempts. 

 
 

4.9  Experimental Results 

We now report the performance of our system on the set of differentiation benchmarks described 
in section 4.7. 
 
4.9.1  Choosing the Heuristic 

In section 4.6.6 we described three heuristics, namely the Cardinality (#) heuristic (using a cardinality 
constraint over the POs), ITBS-Bit (ITBS committing to a PO) and ITBS-Path (ITBS committing to 
a d-signal and choosing a path). To check which heuristic was the best, we tested these different 
strategies in the problem of finding differential test patterns to verify whether the ITBS technique 
was indeed appropriate for it. 

 
For each differentiaton problem, the number of variables is the number of circuit signals, whereas 
the number of constraints is dependent on the type of the circuit gates, since gates (constraints) 
such as ‘or’ and ‘nand’ are modelled as combinations of basic constraints ‘and’ and ‘not’. While 
nand({I1,I2}) is modelled with 2 constraints as not(and({I1,I2})), a gate representing or({I1,I2,I3}) is 
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modelled with 5 constraints as not(and({not(I1), not(I2), not(I3)}). A nor-gate is, in addition, modelled as 
the negation of an or-gate. Hence, the number of constraints in DTG problems for circuits having, 
for example, a large number of nor-gates, such as c6288, largely exceeds the number of original 
circuit gates. More precisely, for such nor-gates, the number of constraints is Nnor * (Avfanin+3), where 
Nnor is the number of nor-gates in the circuit and Avfanin its average fanin, since each input bit 
contributes with one constraint, whereas the output contributes with 2 (not-gates), and the gate itself 
with 1 (the basic ‘and’). Notice that ‘xor’ is also implemented as a basic gate. 

Table 4.22 below shows some of the experimental results obtained with our solver, a system 
implemented in SICStus over Linux on a PentiumIII/500 (reported times are all in seconds). We 
chose a small yet representative set of differentiation problems for single and double faults over a 
small circuit (c432) and a large circuit (c6288), which are usually the hardest circuits in their size class. 

 
ITBS

# Bit Path
circuit Φ1 Φ2 No Time Ni bit Lim TT Ni d Lim TT Ni
432 47/1,430/0 270/1,430/0 3 n/a 36 3 5 10.2 36 2 5 5.2 36
432 223/0,338/1 223/0,319/0 4 396.4 36 2 5 5.3 36 2 5 5.2 36
432 223/0,430/1 223/0,338/1 4 0.2 36 2 5 5.3 36 2 5 5.3 36
432 223/0,386/1 223/0,319/0 4 373.0 36 2 5 5.2 36 2 5 5.2 36
432 37/1,105/0 270/1,430/0 7 n/a 36 1 5 0.3 19 1 5 0.3 18
432 329/0,430/0 270/1,430/0 5 0.2 36 1 5 0.2 27 1 5 0.2 27
6288 3486gat/0 2434gat/1 23 4.2 32 1 5 4.1 20 3 5 14.0 20
6288 5348gat/1 5163gat/1 7 4.8 32 1 5 4.8 32 2 10 74.8 32
6288 5461gat/0 4808gat/1 7 4.8 32 1 5 4.8 32 5 5 24.9 32
6288 6285gat/0 5727gat/1 2 5.3 32 1 5 5.8 32 1 5 5.7 32
6288 1173gat/0 1128gat/0 17 4.8 32 1 5 4.6 32 1 5 4.8 32
6288 1546gat/1 1343gat/1 23 n/a 32 n/a n/a n/a n/a 1 5 4.0 20  

Table 4.22.  Differentiation results with the different 
heuristics 

The two sets of faults φ1 and φ2 that we want to differentiate consist of one or more faults in the 
form gate/stuck-at-value; No is the number of output bits that remain with d-values in their domains 
after all the gate constraints have been posted and propagated; Ni is the number of input bits that 
must be labelled to guarantee the solution; TT is the total time needed to obtain the solution with 
ITBS, Lim being the time limit when a solution was found (the initial time limit of ITBS was 5 
seconds); bit indicates on which of the possible output bits the solution was found; and d indicates 
the number of the successful d-value choice. Non-available values represent aborted executions. 

 
4.9.2  Discussion 

The cardinality operator to deal with disjunctive constraints is often quite effective. However, in a 
significant number of cases the results are quite disappointing. In the smaller circuit, c432, the first 
test shown could not be solved in any acceptable time limit (tens of hours). In fact, by not 
committing to any of the 3 output bits where a d-signal occurs, no significant pruning of the search 
space (236) was achieved. This is not the case with the ITBS method where such commitment is 
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enough to propagate enough information to prune the search space. Of course, the most effective 
choice was not always considered first. But here the time-bounded nature of the ITBS method 
avoids a strong commitment to the wrong choice. For example, ITBS with the Bit heuristic easily 
finds a solution in the 3rd choice, being interrupted after 5 seconds of fruitless search in the previous 
2 choices. Similarly, ITBS with the Path heuristic finds a solution with the second choice of a d-
signal. 

It is not simple to analyse how the pruning takes place. In general, it is due to constraint 
propagation, as the number of bits to label is the same in all heuristics. There are some exceptions 
though. In one of the experiments with the c432 circuit, committing to some output bit immediately 
reduces the number of bits to label from 36 to 19 (ITBS-Bit) or 18 (ITBS-Path) with the 
corresponding efficiency improvement. 

Of course, no heuristic is always guaranteed to succeed. Even when there is a commitment to 
some output bit (and hence a stronger heuristic (Bit) compared to the case with no commitment 
(#)), this stronger heuristic is not guaranteed to find a solution (e.g. last line in Table 4.22). 
However, using the other more specialised heuristic (Path) one was always able to find a solution 
(sometimes only at the cost of being diverted from the wrong choices by the time limits of ITBS). 

This confirms the importance of the ITBS technique as an alternative to the cardinality 
operator. The former allows the use of more powerful heuristics in the labelling phase of problem 
solving. The risks associated to the wrong choices are softened by the time-bounded commitment 
to them. 

 
4.9.3  Complete Results 

To test the performance of our system with ITBS-Path, we tried to obtain, for each differentiation 
benchmark, a partition of the set of diagnostic sets, into classes of indistinguishable diagnostic sets 
with the Classes algorithm (Figure 4.5). The results for each benchmark are shown in Table 4.23, 
where N is the initial number of possible diagnoses; NC is the resulting number of distinct classes; 
ND is the number of differentiation tests needed to reach the final partition; TT is the total time (in 
seconds) spent for that; Ta is the average differentiation time and Te is the expected time to find the 
final minimal diagnostic class for a real circuit, which is given by Te = (N-1) * Ta, since N-1 pairwise 
comparisons (differentiations) have to be performed as in the Differentiate algorithm (Figure 4.6). 
 
ITBS-Path was given an initial time limit of 5 seconds, which was subsequently doubled in 
subsequent ITBS rounds. Variables were labelled as described by simply choosing the relevant PIs 
with no value ordering heuristics (value 0 was tried first, then value 1). This simple strategy was 
sufficient to solve all 51 benchmarks over the 10 ISCAS circuits, i.e. to differentiate all the 4558 
pairs that were needed to compute the 410 diagnostic partitions. 

 
During our tests, we noticed that after running some benchmarks, the execution time increased 
substantially, eventually forcing us to restart SICStus. It seems that some dummy constraints remain 
after a differentiation attempt, and we suspect that garbage collecting might not be functioning 
correctly. Therefore, execution times may be somewhat inflated, especially for benchmarks where 
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there are too many candidate diagnoses, in which case the process could not be interrupted. 
 

 N NC ND TT Ta Te 
b432_a_1 4 1 3 0.35 0.12 0.35 
b432_a_2 6 5 11 7.71 0.70 3.50 
b432_b_1a 3 2 2 0.37 0.19 0.37 
b432_b_1b 2 2 1 0.22 0.22 0.22 
b432_b_2 4 4 6 16.40 2.73 8.20 
b432_c_1 2 2 1 0.21 0.21 0.21 
b499_a_1a 3 3 3 7.37 2.46 4.91 
b499_a_1b 6 6 15 11.23 0.75 3.74 
b499_a_2 9 9 36 82.86 2.30 18.41 
b499_b_1a 3 3 3 0.58 0.19 0.39 
b499_b_1b 3 3 3 6.15 2.05 4.10 
b499_b_2 48 46 1037 1727.82 1.67 78.31 
b880_a_1a 4 2 3 0.94 0.31 0.94 
b880_a_1b 6 3 6 2.51 0.42 2.09 
b880_a_2 33 5 56 22.38 0.40 12.79 
b880_b_1a 3 2 2 0.80 0.40 0.80 
b880_b_1b 2 1 1 0.29 0.29 0.29 
b880_b_2 96 12 380 163.38 0.43 40.85 
b1355_a_1a 6 4 10 7.32 0.73 3.66 
b1355_a_1b 5 3 7 435.42 62.20 248.81 
b1355_a_2 36 12 102 7300.80 71.58 2505.18 
b1355_b_1a 27 16 137 8066.32 58.88 1530.83 
b1355_b_1b 6 4 10 7.33 0.73 3.67 
b1355_b_2 61 24 333 10802.24 32.44 1946.35 
b1908_a_1a 33 20 249 237.69 0.95 30.55 
b1908_a_1b 35 23 292 804.51 2.76 93.68 
b1908_b_1a 6 5 15 12.41 0.83 4.14 
b1908_b_1b 6 5 14 11.80 0.84 4.21 
b2670_a_1 2 2 1 1.29 1.29 1.29 
b2670_b_1 2 1 1 0.73 0.73 0.73 
b2670_c_1 5 4 8 8.60 1.08 4.30 
b2670_d_1 2 2 1 1.27 1.27 1.27 
b2670_e_1a 2 2 1 1.26 1.26 1.26 
b2670_e_1b 2 1 1 0.73 0.73 0.73 
b3540_a_1a 15 7 30 503.82 16.79 235.12 
b3540_a_1b 10 5 19 30.50 1.61 14.45 
b3540_b_1a 36 20 277 611.32 2.21 77.24 
b3540_b_1b 10 5 19 31.56 1.66 14.95 
b5315_a_1a 6 2 5 9.01 1.80 9.01 
b5315_a_1b 3 2 2 4.37 2.19 4.37 
b5315_b_1a 3 3 3 8.50 2.83 5.67 
b5315_b_1b 6 2 5 8.94 1.79 8.94 
b6288_a_1a 5 5 10 3720.46 372.05 1488.18 
b6288_a_1b 77 42 896 5652.84 6.31 479.48 
b6288_b_1a 32 19 202 1082.50 5.36 166.13 
b6288_b_1b 22 16 126 825778.35 6553.80 137629.73 
b7552_a_1a 13 9 43 208.98 4.86 58.32 
b7552_a_1b 13 9 43 196.71 4.57 54.90 
b7552_b_1 13 12 73 583.80 8.00 95.97 
b7552_c_1a 16 6 25 94.81 3.79 56.89 
b7552_c_1b 14 7 29 129.96 4.48 58.26 

Table 4.23.  Complete results for differentiation 
benchmarks 
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Although most of the times the differentiation effort was completed in little time, some circuits had 
harder problems to solve. In c1355 among the small circuits, and in c6288 among the large ones, 
more difficulties were experienced and the average differentiation time was much higher. The 
particular benchmark b6288_b_1b proved to be especially hard to solve. Often, if some 
differentiation in a benchmark takes much longer time to solve due to its high complexity, the 
average differentiation time consequently increases significantly. 

Of course, some variation in the results was expected, as the worst case is exponential in the 
number of PIs. Regardless of that, it may well be the case that obtaining a differential test pattern is 
easier than obtaining a simple test pattern. The reason is that a differential test pattern is more 
constrained than a simple test pattern and this may aid the phase of enumeration of the variables. 
Hence, although some differential test pattern for a pair of diagnoses may be obtained in a small 
amount of time, a simple test pattern for each of the diagnoses can be harder to obtain. 

 
From the results obtained, there seems to be no significant overhead for double fault diagnoses in 
relation to single faults. In fact, for the circuits with double fault benchmarks, one can easily find 
situations where single faults differentiation takes a higher average time. Hence, the adopted 
approach also proves to be suitable for multiple fault differentiation. 

 
Although the quality of results is also dependent on the type of circuit (where specialised heuristics 
could make a difference), we note that the average differentiation time does not explode 
combinatorially with the number of gates in the circuit. We thus conclude that, tipically, the 
complexity of the problem instances is not exponentially correlated with its size, for a moderately 
large number of gates (tens of thousands). Of course, some instances may be in the phase transition 
[Cheeseman et al. 1991] zone (far from trivially satisfied and far from trivially impossible), 
consequently being hard problems, which may happen with any (large enough) number of gates. 
 
4.9.4  Comparison of Results and Approaches 

The results obtained in the previous sections are hard to compare since existing approaches are very 
specific and specialised. In general, differentiation or diagnosis information is computed during 
simple TG in an ATG system, or derived from the resulting test set. 

In [Gruning et al. 1991] the authors use previously generated test patterns (for SSFs in the 
ISCAS circuits) with the corresponding set of detected faults, to easily conclude that some pairs of 
faults belong to different equivalence classes (e.g. if we know that a generated test I detects a set of 
faults including f1 but without f2, then I is a differential test for f1 with respect to f2). After inspecting 
the whole test set, only a fraction of fault pairs remain undistinguished (often, mostly effectively 
equivalent, i.e. undistinguishable). For such remaining pairs, a diagnostic tool, DIATEST, tries to 
differentiate them by also generating different output values with the aid of a 9-valued logic for the 
two separate faulty circuits (i.e. each with a 3-valued {0,1,x} logic). Additionally, if a differential test 
pattern is found then it is added to the test set and more fault pairs may now be distinguished. 
Hence, fault dropping is then performed to discard those pairs already distinguished. 

This is in contrast to our approach that clearly separates TG from DTG, for handling more 
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generalised problems. Furthermore, our model is not restricted to SSFs, but rather accepts, with 
equivalent complexity, MSFs. 

In spite of these differences we show in Table 4.24 the DIATEST results presented in [Gruning 
et al. 1991], where columns have the following meaning: 

#F number of faults to be detected 
#TP number of test patterns (in test set of ATG) 
#udfp number of undistinguished fault pairs (by the test set) 
#dp number of additional diagnostic test patterns 
#dfp number of distinguished fault pairs 
#equ number of equivalent pairs of faults identified by DTG process 
T CPU seconds for a Siemens WS30-605 workstation for DIATEST in C under UNIX 
 

 #F #TP #udfp #dp #dfp #equ T 
c432 524 59 37 13 24 13 81 
c499 758 62 49 17 37 12 8 
c880 942 70 55 0 0 55 1 
c1355 1574 99 795 7 55 740 59 
c1908 1879 118 317 16 22 295 40 
c2670 2595 164 590 30 122 468 200 
c3540 3428 189 577 32 46 531 397 
c5315 5350 153 519 34 72 447 118 
c6288 7744 40 1165 32 152 1013 259 
c7552 7548 231 1261 43 143 1118 721 

Table 4.24.  DIATEST results 

DIATEST thus runs on a more efficient environment. Moreover, pre-processing and specialised 
heuristics were used to faster find differentiating patterns. Nevertheless, the results are still 
comparable with ours, since we verify that most of the pairs to differentiate are really 
indistinguishable, in which situations we generally obtain very fast results. Equivalent faults turned 
out to be easier to prove since constraint propagation generally was sufficient to conclude that no d-
signal was possible at the output. Results of Table 4.23 (previous section) also show evidence for 
this, since when there is a single class (NC=1, all faults equivalent) the average time is always the 
lowest for the benchmarks of that circuit. There is also a trend to obtain better results when NC is 
lower. 

For a more rigorous comparison of results, we should know the exact number of DTG tries 
that DIATEST had to perform for each circuit and calculate the average DTG time (to compare 
with Ta of Table 4.23). However, since neither this number nor the number of equivalence classes 
are given, it has to be estimated by the provided data. 

For each circuit, at least #dp differentiations were executed, since each such additional pattern 
had to be generated. This number (#dp) corresponds to the successful differentiations. As to the 
number of failed ones (proving equivalence of faults), only the number #equ of equivalent pairs of 
faults identified is given, which does not necessarily correspond to the number of DTG tries. In 
fact, if n faults are equivalent, then there are n.(n-1)/2 pairs of equivalent faults, but only n-1 DTG 
tries are required. Thus the shown number (#equ) may be much larger than the required number of 
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DTG tries to prove it. Only in the very unlikely worst case, where each of the #equ equivalent pairs 
forms a distinct class, exactly #equ DTG tries are required to prove the equivalences. Hence, to 
estimate the total number of differentiation tries (ND) of DIATEST we calculate its range with a 
maximum given by #equ and a minimum held for n equivalent faults (n-1 DTG tries) given by the 
positive solution to #equ = n.(n-1)/2, equivalent to n2 - n - 2.#equ = 0, yielding n = 

(1+ equ.#81+ )/2, for a minimum ND = n-1. Minimum and maximum average differentiation 

time (Ta) are then given by dividing total time (TT) by, respectively, the maximum and minimum 
ND. 

Table 4.25 present the calculated ranges for DIATEST, together with overall results for each 
circuit with our approach, aggregating all single and double faults’ benchmarks by summing the 
numbers of differentiations (ND) and total time (TT). Also for comparison we calculated the 
respective number of undistinguished pairs of faults (#udfp) given by the summation of N*(N-1)/2, 
for each benchmark of N diagnoses. 

 
CLP - 8V DIATEST  

#udfp ND TT Ta #udfp ND TT Ta 
c432 32 24 25.3 1.1 37 18...26 81 3.1...4.5 
c499 1188 1097 1836.0 1.7 49 22...29 8 0.3...0.4 
c880 5113 448 190.3 0.4 55 10...55 1 0.0...0.1 
c1355 2851 599 26619.4 44.4 795 45...747 59 0.1...1.3 
c1908 1153 570 1066.4 1.9 317 40...311 40 0.4...1.0 
c2670 15 13 13.9 1.1 590 61...498 200 0.7...3.3 
c3540 825 345 1177.2 3.4 577 65...563 397 0.3...6.1 
c5315 36 15 30.8 2.1 519 64...481 118 0.3...1.9 
c6288 3663 1234 836234.2 677.7 1165 77...1045 259 0.3…3.4 
c7552 445 213 1214.3 7.1 1261 90...1161 721 0.6…8.0 

Table 4.25.  Comparison of DTG results 

Actually, real average times of DIATEST are probably closer to the maximum of its range, since 
most pairs are in fact equivalent. For instance, for c880 all 55 undistinguished pairs turned out to be 
equivalent; thus there is a single equivalence class of n faults, where n.(n-1)/2 = 55, which means 
n=11 and only 10 DTG tries are necessary. Therefore, Ta = TT/ND = 1/10 =0.1 seconds 
(precisely the maximum), which we can directly compare with our benchmarks where NC=1 (single 
class, all diagnoses equivalent). In c880, only b880_b_1b consists of just equivalent faults, with an 
average (and total) differentiation time of 0.29 seconds, which unfortunately is not very 
representative since a single differentiation try is needed for the 2 faults of the benchmark. 

Nevertheless, comparing for all circuits, our results show to be competitive with those of 
DIATEST, with the exception of c1355 and c6288 where particularly hard instances pushed the 
average time way beyond DIATEST’s ranges. In spite of such disparities, overall results are thus 
quite encouraging in general especially when we consider that the experimental version of our 
approach still has a lot of room for improvements, namely by incorporating DIATEST features 
such as extensive pre-processing, specialised heuristics and a much more efficient platform, and also 



 

 83

by reducing the 8-valued logic to 4-valued for DTG (as discussed in section 4.5). Moreover, our 
approach also differentiates MSFs, and not just SSFs as DIATEST. 
 
To conclude this section, we refer another approach using DIATEST that was presented in 
[Hartanto et al. 1996]. The authors also use the test set generated by the ATG system, including 
redundancy information, to differentiate SSFs or prove equivalence. In addition, with such 
information, DIATEST code was adapted to perform some local circuit transformations by a 
structural analysis. Equivalence of a number of faults is then easily proved. However, such fault 
pairs are restricted by a notion of distance that must be short to keep the problem tractable. Hence, 
the approach is particularly efficient for ‘close’ fault pairs, precisely where constraint propagation 
easily reaches a result. 

 
 

4.10  Conclusions 

In this chapter we presented an 8-valued logic and showed how it could be used to differentiate 
between alternative diagnoses in the cases where the circuit is not fully observable. The modelling 
relies on the extension of the Boolean 0/1 domain to other values that encode the dependency of 
these values on the alternative diagnoses. The methodology is illustrated in the problem of 
generation of differential test patterns in combinational circuits. Contrary to other techniques that 
aim at ranking candidate hypotheses based on some probabilistic indicator, or that aim at finding 
candidates that satisfy certain criteria based on the available information, e.g. minimal number of 
faulty components, our technique proves whether hypotheses are differentiable, and indicates what 
information is necessary to differentiate the candidates. 

This problem presents a rather large search space, and to solve it efficiently we developed a 
specialised constraint solver for this 8-valued logic that showed to be quite effective to handle these 
differentiation problems. 

The disjunctive nature of some constraints in the problem pushed to the limit the usual 
techniques to handle these constraint-solving problems, namely the cardinality operator. We 
therefore used the new technique, iterative time-bounded search (section 3.6), that aims at avoiding 
the dramatic consequences of bad initial choices in the depth-first search used in the labelling phase 
of constraint solving. 

We applied this system in a large set of benchmarks that we created based on the standard 
ISCAS digital circuits, and the results obtained are quite satisfactory. In particular, they improve 
significantly the results obtained with a previous system that, despite being inspired by the same 8-
valued logic, was implemented with a "traditional" 0/1 Boolean solver with choice points to select a 
sensitised path (only about 60% of the benchmarks could then be solved and quality of results was 
much dependent on luck and on the type of circuit   in fact, for circuits c499, c3540 and c7552, no 
benchmark was solved at all). 

 
Comparisons of our results with those obtained in the ECAD area [Hartanto et al. 1997, Gruning et 
al. 1991] are hard to make since we considered DTG as an independent problem (i.e. we do not take 
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into account previous results from an ATG system). Our results are therefore more exhaustive and 
push to the limit the DTG problem. Still, with due distances we verified that results are competitive. 
Our modelling technique, by using only one circuit rather than duplications of the circuit, is 
competitive with current approaches in this area, even if requiring some tuning of the existing 
constraint solver. Of course, better results would be obtained if using a 4-valued logic (as discussed 
in section 4.5) with more basic gate constraints (not just ‘and’, ‘not’ and ‘xor’) and specialised 
heuristics over a more efficient platform than Prolog. But as previously stated in this thesis, our goal 
is not to solve the industry problem but (in addition to theoretical results) to propose new 
generalised efficient tools and models that the industry may use to, together with their tools and 
know-how, improve their results. 
 
An interesting result of the work presented in this chapter lies in the possibility of extending our 
modelling to other TG problems, such as optimisation problems that will be described in the next 
chapters (e.g. generation of test patterns that detect a maximum number of faults). 
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C h a p t e r  5  
 
 
 

PROBLEMS WITH MULTIPLE DIAGNOSES 

 
In this chapter we address the issue of modelling general digital circuit problems with an arbitrary 
number of diagnoses. As in previous chapters, a diagnosis F is a set of faults, where each fault is a 
gate g stuck-at-0 (g/0) or stuck-at-1 (g/1). 
 
Among these problems, in the ATG context, lies the generation of minimal sets of test patterns, and 
the related problem of finding maximal test patterns, i.e. those that maximise the number of faults 
they unveil. The satisfaction problem of differential diagnosis aims at generating patterns for a 
circuit that would entail different outputs for different sets of faulty gates, and has a possible 
application on the related optimisation problem of reaching the maximal fault resolution, by 
partitioning sets of diagnoses into equivalence classes of faults. These different problems have 
usually been handled either by specific tools or by modelling them in some appropriate form to be 
subsequently dealt with by a general problem solver (e.g. a propositional Boolean SAT-based tool 
[Silva et al. 1999]). This approach, however, requires the consideration of substantial duplication of 
the circuits to model diagnostic and optimisation problems [Hartanto et al. 1997, Gruning et al. 1991, 
Pomeranz and Reddy 1998, Manquinho and Silva 2000], which is inadequate, in practice, for a large 
set of diagnoses. 

As an alternative to Boolean satisfiability, in the context of Constraint Logic Programming, the 
use of extra values in the digital signals (other than the usual 0/1) was firstly proposed [Simonis 
1989] to solve the basic test generation problem and has been explored at some length in the 
previous chapters. In particular, we proposed an 8-valued logic to solve the differentiation problem, 
by introducing values that not only denote dependency on one faulty gate, but also discriminate the 
dependencies between the two sets of faulty gates. In this chapter we show how to associate 
dependency on a set of diagnoses to each expected digital signal by means of sets, which further 
generalises the 8-valued logic. Such extension enables the handling of satisfaction and optimisation 
problems with multiple diagnoses with multiple faults. The generalised technique trades off the 
extra circuitry required by the SAT related models with the extra values to denote the physical 0/1 
Boolean values. Such richer domains require the specification of specialised logics, as well as 
constraint solvers to handle them efficiently. 

This chapter focuses on modelling a number of problems involving multiple diagnoses, 
adopting a set-based representation. In the first two sections we describe such problems, 
considering first the satisfaction problems and then the corresponding optimisation problems. In 
section 5.3 we present a general logic over Booleans and sets (to express dependency on diagnoses), 
in order to model the different problems. Such logic is then used in section 5.4 to model and solve 
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them. Modelling with such logic is afterwards reduced to reasoning on a set algebra in section 5.5, 
by means of a transformation of signal values (composite logic values over Booleans and sets) into 
sets alone. Conclusions are summarised in section 5.6. 

 
5.1  Satisfaction Problems 

In this section we define six satisfaction problems for some circuit under consideration. In our 
scope, there are three parameters involved: input and output vectors and possible diagnoses. 
Problems generally consist of finding one (or a set of) such parameter given the others. The first 
problem, fault simulation, is the only one that aims at finding an output vector, which is the simplest 
situation since gates (including S-buffers   see section 2.5) behave as logic functions, which means 
that inputs determine the output, whereas the inverse is not true (an output value may be explained 
by more than one input combination). 

 
5.1.1  Fault Simulation 

The fault simulation problem consists of obtaining the circuit output vector, when subject to a set 
of faults. 

 
• Fault Simulation. Find output vector o for input pattern i, of circuit with faults F. 

)(),,(_ iZooFisimulationfault F=⇔  

 
5.1.2  Test Generation 

Let ni be the number of PIs, I the set of all possible input vectors (#I=2ni), and, using the notation 
of Chapter 3, Z(i) and ZF(i) the output vectors under input i (where i ∈  I) for, respectively, the 
normal circuit and the faulty circuit exhibiting set of faults F. With such notation, a number of 
diagnosis related problems can be formulated, with the TG problem as the basic one: 

 
• Test Generation (basic). Find an input test pattern i for a set of faults F, i.e. an input vector for 

which some output bit of the circuit is different when the circuit has faults F or has no faults 
(being thus dependent on whether the diagnosis F is correct or not). 

)()(),( iZiZiFtest F ≠⇔  

Thus test(F,t) means that t (t ∈  I) is an input test pattern for diagnosis F. This extends definition 3.1 
to Multiple Stuck Faults (MSFs) since a diagnosis is a set of SSFs. 
 
With the 4-valued logic, a test pattern is an input vector of the circuit that yields a PO with one 
extra (non Boolean) value (d-0 or d-1). 

Often, one is not interested in the basic problem but rather in some related and more complex 
problems. For problems with more than one set of faults, let D denote a set of diagnostic sets of 
interest (D can be a set of most common diagnoses but, in the limit, D may represent all possible 
sets of faults in the circuit). 



 

 87

Below we describe four more types of diagnostic-related satisfaction problems concerning a 
given set of diagnoses D: a TG generalisation and a converse problem, the diagnosis problem itself, 
and the differentiation problem concerning two diagnoses (i.e. #D=2). Afterwards, in section 5.2, 
we describe two related optimisation problems where D is of arbitrary cardinality. 

 
5.1.3  Fault Covering 

A related, more general, TG problem is the problem of finding a set of test patterns for a set of 
diagnoses: 
 
• Fault Covering. Generate a set S of input test patterns that cover all diagnoses in D. 

),(:,),( iFtestSiDFSDcover ∈∃∈∀⇔  
 

This means that each diagnosis F (F ∈  D) is detected by at least one test pattern i (i ∈  S). Set S is 
thus said to cover diagnoses D. 

Fault covering can be naïvely solved by separately considering each diagnosis of D to find a test 
for it, and afterwards collect all generated tests. The number of tests is then the number of 
diagnoses. However, an obvious improvement consists in checking for each generated test, whether 
it detects other remaining diagnoses so that these can be discarded (fault dropping). 
 
5.1.4  Covered Diagnoses 

A converse problem consists of finding the set of diagnoses detected by a given input vector: 
 
• Covered Diagnoses. Find diagnoses Di, a subset of D, detected by input test pattern i. 

)},(:{),,( iFtestDFFDDDicovered ii ∧∈=⇔  
 

Test i thus covers diagnoses Di, i.e. cover(Di,{i}). 
 
5.1.5  Diagnosis 

Diagnosis as a satisfaction problem involving many possible faults, consists of obtaining sets of 
faults (referred to as diagnoses or diagnostic sets) that explain the circuit output for some given 
input vector. 

 
• Diagnosis. Find the set of all diagnoses S (S ⊆  D) that explain circuit output vector o for input 

pattern i, i.e. the diagnostic sets of D that entail circuit output o under input vector i. 

oiZoiZSDoidiagnosis FSDFFSF ≠∀∧=∀⇔ ∈∈ )(,)(,),,,( \  

Thus diagnosis(i,o,D,S) means that S are the diagnoses of D that explain circuit output o under input i. 
 

5.1.6  Fault Location 

When there are competing diagnoses that explain the faulty behaviour of a circuit, one is faced with 
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the fault location problem that ultimately aims at finding the correct diagnosis. Such goal, however, 
is limited by the maximal fault resolution of the system (as explained in Chapter 4). While one can 
find differentiating patterns for the remaining diagnoses, one is able to improve the fault resolution. 
We can define this differential diagnosis (see previous chapter) or, simply, differentiation problem 
between two diagnoses as: 
 
• Differentiation. Find an input test pattern i that differentiates two diagnostic sets F and G (D = 

{F,G}), i.e. an input vector i for which some circuit PO assumes different values when the circuit 
has faults F or G 

)()()},,({ iZiZiGFdiff GF ≠⇔  
 
This latter problem can be formulated as having some output bit dependent on a subset of D of 
cardinality 1. With the 8-valued logic, one aims at finding an input vector to the circuit that entails a 
PO containing one of the extra values that discriminate between the two diagnostic sets (d-signal d1-
0, d1-1, d2-0 or d2-1). 

 
 

5.2  Optimisation Problems 

The four optimisation problems that we next describe deal with diagnostic sets D with varying 
cardinality. 

 
5.2.1  Minimal Set of Test Patterns 

A fault-covering related problem is the problem of minimal sets of test patterns, i.e. to generate sets 
of test patterns with minimum cardinality that cover all the possible faults in a digital circuit. Or, in 
general, for sets of faults: 
 
• Minimal Set of Test Patterns. Generate a minimal set S of input test patterns that cover all 

diagnoses in D (in the problem definition below, P(I) is the power-set of I). 

)#'#)',((),('),(),( SSSDcoverISSDcoverSDmin_cover ≥⇒∈∀∧⇔ P  

This minimisation problem is a typical set-covering problem: the test patterns (i) are the resources, 
and the diagnoses (F) are the services to cover with the minimum of resources. Each diagnosis can 
be tested by a number of test patterns, and each test pattern can test a number of diagnoses. The 
relation between these services and resources is test(F,i). This relation is not fully known a priori, 
though. The ultimate goal of a typical ATG system is precisely to find a set S of tests such that 
min_cover(DSSF,S) holds, where DSSF is the set of all possible SSFs in the circuit. 

 
5.2.2  Maximal Test Patterns 

A problem related to covered diagnoses is the problem of maximal test patterns, i.e. to find a test 
pattern that maximises the number of faults it unveils. Generalising for sets of faults, we define this 
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optimisation problem as follows: 
 

• Maximal Test Patterns. Find an input i that is a test pattern for a maximum number of 
diagnoses in D. 

)##),,((,),,(),( ijji DDDDjcoveredIjDDicoverediDmax ≤⇒∈∀∧⇔  
 

The goal is to maximise the number of output dependencies on the entire set of circuit output bits, 
which means the number of diagnoses covered by the input test pattern i. 
 
5.2.3  Minimal Diagnosis 

Diagnosis is usually employed as an optimisation problem in that only minimal diagnoses are 
wanted. We define the problem using the set cardinality function to compare diagnoses: 

 
• Minimal Diagnosis. Find the set of all minimal (smallest) diagnoses S (S ⊆  D) that explain 

circuit output vector o for input pattern i, i.e. the minimal diagnostic sets of D that entail circuit 
output o under input vector i. 

}##,:'{)',,,(),,,( ' FGSFSSDoidiagnosisSDoidiag SGmin <¬∃∈=∧⇔ ∈  

A function other than set cardinality can of course be used to express a different preference of 
diagnoses. 
 
5.2.4  Maximal Fault Resolution 

For fault-location, we define the problem of achieving the maximal fault resolution for a set of 
diagnoses, as partitioning it into equivalence classes of diagnoses: 

 
• Classes. Find the partition set P of sets (classes) of equivalent (indistinguishable) diagnoses in D. 

))},{,()},,({,(,),( , CGFiGFdiffDFPDclasses PCIiDGF
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Two diagnoses of D either are equivalent and belong to the same class in P, or are differentiable and 
belong to different classes. 

Some ATG systems also heuristically try to approximate this goal for all SSFs. An optimal test 
set in that sense would thus be the set of each test i used to differentiate two classes of P in 
classes(DSSF,P). 

 
 

5.3  Logic over Booleans and Sets 

We now present an alternative to model the previous problems, representing digital signals with sets 
and Booleans. Signal values for the normal circuit and for the faulty circuits, corresponding to each 
possible diagnosis, can be compactly represented, in each circuit line, with a data structure 
consisting of a set of diagnoses and a Boolean value. This is equivalent to the deductive fault 
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simulation technique [Armstrong 1972, Godoy and Vogelsberg 1971], which uses such a data 
structure to simulate the signal value in the good circuit and deduce the values in the possible faulty 
circuits. 

This deductive modelling generalises the 8-valued logic of the previous chapter by considering 
more than two alternative diagnostic models. 

 
5.3.1  Signal Representation 

A digital circuit is composed of gates performing the usual Boolean operations (e.g. and, not, xor and 
simple buffers) and, physically, any signal in the circuit can only have a value 0 or 1. At each point, it 
either has the expected value (i.e. the same value of a normal circuit), or the opposite (its negation) 
due to the circuit fault(s) affecting it. Since the faulty behaviour can be explained by several of the 
possible faults, we represent a signal not only by its normal value but also by the set of diagnoses it 
depends on. More specifically, a signal is denoted by a pair L-N, where N is a Boolean value 
(representing the Boolean value of the circuit if it had no faults) and L is a set of diagnostic sets, that 
might change the signal into the opposite value. For instance, X={{f/0,g/0}, {h/1}}-0 means that 
signal X is normally 0 but if both gates f and g are stuck-at-0, or if gate h is stuck-at-1, then its actual 
value is 1. Thus ∅ -N represents a signal with constant value N, independent of any fault under 
consideration. 

As in previous chapters, in our circuit model, we assume that there are normal gates and S-
buffers (for those gates included in at least one of the possible diagnoses). We next show how the 
different types of gates are modelled to process signals in the form L-N. 

 
5.3.2  Normal Gates 

Normal gates (those with no faults included in D) fully respect the Boolean operation they 
represent. We discuss the behaviour of not- and and-gates as illustrative of these gates. The other 
types of gates can be modelled as combinations of these. 

Given the above explanation of the encoding of digital signals, for a normal not-gate whose 

input is signal L-N, the output is simply L- N , since the set of faults on which it depends is the 
same as the input signal. An abnormal input (due to a diagnosis in L) is a necessary and sufficient 
condition for an inverted output. 

For the and-gate, three distinct situations may arise as illustrated below: 
 

L1-0
L2-1

L1 \ L2 - 0

L1-1
L2-1

L1 ∪  L2 - 1

L1-0
L2-0

L1 ∩ L2 - 0

 

Figure 5.1.  And-gate 
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In the absence of faults the output is the conjunction of the normal inputs. The set of faults on 
which the output is different from this normal value, is however less straightforward to determine: 

1. In the first case of Figure 5.1, with two 1s as normal inputs, it is enough that a fault (more 
exactly, a diagnosis) in either set L1 or L2 occurs (toggling one input to 0) for the output to 
change (from 1 to 0), thus justifying the disjunction of the sets in the output signal. 

2. In the second case (two 0s), it is necessary that faults occur in both L1 and L2 to invert the 
output signal, thus imposing an intersection of the input sets. 

3. In the last case, to obtain an output different from the normal 0 value, it is necessary to invert 
the normal 0 input (i.e. to have faults in set L1) but not the normal 1 input (i.e. no faults in set 
L2), which justifies the set difference in the output. 

 
5.3.3  S-Buffers 

S-buffers are placed at the output of gates suspected to be faulty (in the universe of the possible 
diagnoses D). So, an S-buffer for gate g has associated a set of the possible diagnoses (diagnostic 
sets) where g appears as stuck. We call this set LS. Since g can appear either as stuck-at-0 or stuck-at-
1, we split this set in two (LS0 and LS1), one for each type of diagnoses, as below: 

LS0 = {diag ∈  D:  g/0 ∈  diag} 
LS1 = {diag ∈  D:  g/1 ∈  diag} 
LS = LS0 ∪  LS1        (of course,  LS0 ∩ LS1 = ∅ ) 

Only S-buffers can be stuck, and gate g is considered as normal. The modelling of S-buffers is 
shown in Table 5.1 for all the possible inputs to the S-buffer: 
 

In Out 
∅ -0 LS1-0 
∅ -1 LS0-1 
Li-0 LS1 ∪  (Li \ LS0) - 0 
Li-1 LS0 ∪  (Li \ LS1) - 1 

Table 5.1.  S-buffer output 

When the input is constant 0 (thus independent of any diagnosis), the S-buffer output would 
normally be also 0. However, it depends on LS1, because in the presence of a diagnosis where the 
gate is stuck-at-1, the output is 1 regardless of the input. More generally, if the normal input is 0 but 
dependent on Li, the output is still dependent on LS1 for the same reason, but also on the input 
dependencies Li that do not include fault g/0. This is because if the input is wrong (i.e. 1, due to Li), 
the output is also 1 except when it is stuck-at-0. The same reasoning can be applied to the case 
where the normal input signal is 1, and the whole Table 5.1 can be generalised as shown in Figure 
5.2. 

LS

Li-N LSÑ ∪  (Li \ LSN) - N  

Figure 5.2.  S-buffer 
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5.4  Modelling and Solving 

In this section we discuss how to model and solve the different satisfaction and optimisation 
problems presented in sections 5.1 and 5.2, using the logic of the previous section. 

 
Fault simulation for an arbitrary number of diagnoses can be performed efficiently and 
simultaneously, since considering D as the diagnoses to simulate, inspection of circuit output with 
this logic trivially deduces the values for each diagnostic set F in D. In fact, for each PO b with logic 
value Lb-Nb, the simulated value is Nb if F is not a member of Lb (it is Nb for any diagnosis in D\ 
Lb), and its opposite otherwise (as for any diagnosis in Lb). 

 
To model the basic TG problem for faults F, we would simply have to assure, for D={F}, that some 
signal {F}-N is present in a circuit output bit. 

 
The union ∪ b Lb where b ranges over all circuit output bits b with signals Lb-Nb., gives the covered 
diagnoses of a test, since PO b is dependent on Lb. 

 
5.4.1  Diagnosis 

In general, the universe of possible diagnoses D has to be defined. In minimal diagnosis, if only 
SSFs are considered, then any gate (or, more generally, signal line) may be considered as potentially 
faulty. D is thus the set of all such possible SSFs and each circuit gate is modelled with an additional 
S-buffer. 

It is obviously possible to consider MSFs, since our model is general enough for that. However, 
considering all possible MSFs may become impracticable for very large circuits, since its number 
increases exponentially with the number of faults and the size of the circuit. A subset of MSFs is 
more likely to form the universe D in such cases. Moreover, it is natural to address first SSFs alone, 
and only if there is no solution, consider MSFs with an increasing number of faults. 

To solve the diagnosis problem, the real circuit output has to be compared with the modelled 
one for all possible diagnoses D (with the above encoding by sets and Boolean values). For each 
PO, we compare the two values: the real zPO with the modelled LPO-NPO. If zPO is the same as NPO, 
then diagnoses LPO are discarded since they do not explain zPO. Otherwise, diagnoses LPO are an 
explanation for the difference. To obtain the possible diagnoses that explain the whole circuit 
output, all such diagnoses LPO that explain a mismatch (a fault effect) in some PO must be 
intersected (diagnoses that would not entail all output values are discarded). 

All possible diagnoses are thus obtained in just one step as opposed to traditional logic 
programming methods that rely on backtracking to obtain each possible solution (a single diagnosis) 
as in pure Prolog or in the HCLP approach described in the previous chapter, or more advanced 
techniques such as tabling [XSB 2000] or stable models [Gelfond and Lifshitz 1988]. 

In [Alferes et al. 2001] we present diagnosis results for the ISCAS c6288 circuit (section 2.4) 
using four different approaches, namely backtracking, tabling, stable models and our deductive 
model using the set-Boolean encoding. The backtracking model defines each gate as a disjunction of 
a normal gate or a faulty one (with inverted output). The tabling approach is based on tabled 
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abduction of XSB-Prolog, where faults are represented as abducible hypotheses (tabling avoids re-
computation of goals on backtracking by memorising intermediate results). In stable models (or 
answer-set) programming, clauses are viewed as constraints on the diagnoses, each diagnosis being 
represented by a model of the program defined in terms of those constraints. 

Diagnosis tests consisted in finding the whole set of SSFs that explained each of 32 incorrect 
output vectors obtained by flipping each PO normal value entailed by a fixed input vector. The total 
time (in seconds) for finding a total of 1420 faults (average of 44.4 per flipped PO) is shown in 
Table 5.2 with the different approaches (over different platforms). 

 
 Time Platform 

Backtrack 133.4 SICStus 3.8.5 over Windows on a Pentium III (750 MHz, 128Mb) 
Tabling 188.0 XSB-Prolog 2.2 over Linux on a Pentium III (733 MHz, 256Mb) 
SModels 2640.2 SModels 2.26 over Windows on a Pentium III (750 MHz, 128Mb) 
Deductive 0.8 SICStus 3.8.5 over Windows on a Pentium III (750 MHz, 128Mb) 

Table 5.2.  Total times for 32 incorrect outputs 

Our approach is thus orders of magnitude faster than other logic programming techniques. 
Specialised systems such as DRUM-II [Fröhlich and Nejdl 1997] present no better results, taking 
160 seconds (in 1997) to diagnose all SSFs for a specific output vector. In [Fröhlich 1998], the 
author even reports that several special-purpose diagnostic tools could not reliably detect faults in 
c6288 circuit. 

Also notice that our deductive approach is the only one that can, in practice, handle all c6288 
double faults (!), as we also report in [Alferes et al. 2001], where a compact representation for double 
faults is presented. Our approach can handle diagnoses with an arbitrary number of faults, although 
the consideration of all diagnoses with 3 or more faults is impractical due to its combinatorial 
explosion. In general, only reasonable-size subsets of the powerset of all faults may be considered in 
practice, although diagnoses of a large number of faults may be modelled. 

 
 

5.4.2  Differentiation 

To model the problem of differentiating faults from sets F and G, (the universe being thus 
D={F,G} with cardinality 2), either {F}-N or {G}-N must be present in some circuit output bit. In 
both cases, a signal L-N must be present in the output where #L=1, as it must be dependent on 
one diagnosis but not on the other. 

Modelling the differentiation of two diagnoses F and G is thus straightforward. Nevertheless, 
with the set-Boolean encoding, one is not restricted to two diagnoses and may express an arbitrary 
number of diagnostic dependencies. When there are several possible diagnoses for a malfunctioning 
circuit, the set of all possible diagnoses may be considered when generating a differential test, in 
order to possibly eliminate more than one incorrect diagnosis with that test. 

The differentiation problem may be generalised to finding an input test pattern i that 
differentiates some diagnostic sets from a set of diagnoses D, i.e. an input vector i for which some 
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circuit PO does not assume the same value under all diagnoses D: 

)()(,),( , iZiZiDdiff GFDGF ≠∃⇔ ∈  
which can be formulated as having some output bit dependent on a strict nonempty subset L of D 

(guaranteeing that diagnoses from L are distinguished from those in L  = D\L). 
Assuming that the procedure Differential_Pattern(D, I, Out) succeeds when such a pattern I is 

found for diagnoses D, yielding an output vector (with set-Boolean encoding) Out, we may now 
apply the algorithm of Figure 5.3 to find the correct class of diagnoses that explain the faulty circuit 
behaviour. 

 
Function Fault_Location (In: Si); 
 if Differential_Pattern(Si, I, Out) then  %several possible 
  Z Å Real_Output(I) 
  Poss_Diags Å ∅  
  Imposs_Diags Å ∅  
  for each PO do 
   OutPO = LPO-NPO %(only) diagnoses LPO change NPO. 
   if ZPO = NPO then Imposs_Diags Å Imposs_Diags ∪  LPO 
     else Poss_Diags Å Poss_Diags ∩ LPO 
  end for 
  Poss_Diags Å Poss_Diags \ Imposs_Diags 
  return Fault_Location(Poss_Diags) %diagnose among possible 
 else return Si %indistinguishable: diagnosis found 
end Function 

Figure 5.3.  Improved algorithm to obtain a set of 
indistinguishable diagnoses 

The Fault_Location function receives as input a set of (a priori) possible diagnoses and returns the 
only equivalence class of diagnoses that explain the faulty circuit behaviour. If the initial diagnoses 
cannot be differentiated, then they belong to an equivalence class. Otherwise, the differentiating test 
found is applied to restrict the set of possible diagnoses, by comparing the real output for that test 
with the predicted one for all the current possible diagnoses   any diagnosis that does not entail 
the real output vector is discarded, the remaining ones are recursively given to the Fault_Location 
function until the final class is obtained. 

Note that the potential gain of using this algorithm instead of Differentiate, presented in Figure 
4.6, is high, since in the best case, with all diagnoses indistinguishable, we obtain the result in just 
one step (when failing to find a differential test). In the algorithm of the previous chapter, for n 
possible diagnoses, in spite of using smaller set domains, one had to try n-1 pairwise differentiations 
to reach the same result. A similar potential improvement also occurs when a differentiating test is 
found, since more than one diagnosis can be discarded with that test (up to n-1 diagnoses, actually). 
In the worst case, the Fault_Location algorithm of Figure 5.3 requires as many steps as the Differentiate 
algorithm of Figure 4.6. 

 



 

 95

5.4.3  Optimisation Problems 

The first optimisation problem (minimal set of test patterns) is the typical set-covering problem 
driven by relation test(F,i), between services (F) and resources (i), which is not, a priori, fully known. 
It may be considered as a meta-problem where we want to minimise a set of input vectors, each a 
set of PI assignments (since PIs do not depend on any diagnoses, they take two possible values 
either as ∅ -0 or ∅ -1 in the set-Boolean encoding). For such an input vector i, the relation test(F,i) 
holds if a PO assumes a logic value {F}-N (with N ∈  {0,1}). While the modelling of this 
minimisation problem is simple, its efficient solving is far from trivial and remains an open problem. 

 
The goal of the maximal test patterns problem is to maximise the number of output dependencies, 
i.e. the number of diagnoses covered by the input test pattern. The goal is then simply maximise 
#(∪ b Lb) where b ranges over all circuit output bits b with signals Lb-Nb. 
 
For maximal fault resolution, when the real circuit is not available, algorithm Classes of Figure 4.5 
can also be improved by the algorithm of Figure 5.4, which given as input a set of potential 
diagnoses, returns the partition set of all their equivalence classes. 

 
Function Classes (In: Si); 
 if Differential_Pattern(Si, I, Out) then   %differentiable. 
  Cs Å {Si}    %initially, all diagnoses in the same class. 
  for each PO do % circuit POs 
   OutPO = LPO-NPO % LPO differentiable from Si\LPO 
   Cs’ Å Cs % classes to check in loop. 
   Found Å ∅  % no class found so far. 
   while Cs’ ≠ ∅  and Found = ∅ do 
    Cs’ Å Cs’ \ {Ds} % obtain a class Ds. 
    if Ds ∩ LPO ≠ ∅  then Found Å {Ds} % class found. 
   end while 
   if Found = {Ds} % a class Ds with some of LPO was found. 
    then Cs Å Cs \ {Ds} ∪  {Ds ∩ LPO} ∪  {Ds \ LPO} 
    % update Cs by splitting its element Ds in 2 
  end for 
  Classes Å ∅  % no definitive classes yet. 
  for each Set in Cs do Classes Å Classes ∪  Classes(Set) 
  return Classes 
 else return {Si}    % indistinguishable. 
end Function 

Figure 5.4.  Improved algorithm to partition a set into 
classes of indistinguishable diagnoses 

The recursive function Classes represents an improvement over that of Figure 4.5 since when dealing 
with multiple diagnoses, a differential test may differentiate more than two diagnoses. Potentially, all 
n possible diagnoses can be differentiated with just a test since, for example, each diagnosis may 
affect a different PO. Hence, the set of all equivalence classes may be returned with just one step, in 
the best case. The same happens if all diagnoses are equivalent, being its class returned with just one 
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(failed) differentiation try. 
 
 

5.5  Reduction to Set Algebra 

Throughout this chapter we have shown how a specific signal encoding that handles an arbitrary 
number of circuits (one normal and the others faulty) may be used to model a number of diagnostic 
related problems. Clearly, the practical interest of this work depends on the ability to develop 
adequate constraint solvers to deal with the domains that have been used (Booleans and sets). In 
previous chapters we have already shown some constraint solvers over existing Constraint Logic 
Programming languages (SICStus [SICStus 1995] and ECLiPSe [ECRC 1994]) to solve different 
problems with specific multi-valued logics. Nevertheless, no particular logic was general enough to 
model the set of problems presented in this chapter, so we presented a general logic obtained by 
combining two domains (Booleans and sets). However, such combination may prevent its efficient 
solving, so we show in this section how these problems can be modelled and solved with pure set 
reasoning. In Chapter 6 we present a general set constraint solver able to efficiently handle such 
problems. 

 
In this section we discuss a CLP approach over sets as a unifying modelling framework for all the 
above presented diagnostic related problems, whereby a signal can be simply represented by a set 
thus eliminating the need of a Boolean value. 

 
 

5.5.1  Motivation 

Modelling circuit problems with sets and Booleans involves handling disjunctions on gates since, 
with the signal representation described in section 5.3.1, the two domains are not independent. In 
fact, the output set depends not only on the input sets but also on the Boolean inputs. The relation 
is not easily expressed as an equation and the output set expression itself is a function of the 
Boolean inputs in the form of a disjunction. More specifically, the set of diagnoses of the output can 
either be the union, intersection or difference of the input sets, depending on the normal input 
Boolean values. Hence, the relation is expressed by a disjunction, which may lead to inefficient 
computations if the Boolean values are not known a priori. Moreover, a logic gate defines a relation 
between inputs and outputs, and several problems require, for an efficient solving, inference 
capabilities in both ways, i.e. from output to inputs as well as from inputs to output. 

We have seen that constraints are a natural and efficient way to express logic relations for 
combinatorial problems. However, with two different inter-related domains (sets and Booleans), 
solving becomes harder since two solvers have to interact and co-operate to handle disjunctions 
over the two domains, thus incurring a significant overhead. 

Finding an equivalent representation involving just one domain could thus significantly ease 
both problem modelling and solving. 
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5.5.2  Transformation 

With the previous representation, all digital signals are represented by a pair: a set of diagnoses on 
which it depends plus a Boolean value that the signal takes if there were no faults at all. Both the set 
and the Boolean value can be variables, enforcing constraints on two domains to be expressed for 
each gate, and the modelling presented above implies an extensive use of disjunctive constraints, 
with the corresponding exponential complexity. For instance, to express the above and-gates, one 
needs to know the Boolean values of the signals to select the appropriate set constraint. 

It is thus very convenient to join the two domains into a single one. Intuitively, to incorporate 
the two domains, the new one should be richer than any of them. But there is also the possibility of 
using a simpler one if the loss of information is not important for the problem, or if it can be 
compensated by the introduction of extra constraints. This latter alternative is the one we follow 
here. 

More specifically, we propose the use of a transformation transf [Azevedo and Barahona 2000a, 

2000d], where signals L-0 are simply represented as L, and L-1 as L  (the complement of L, w.r.t 
the set universe domain which is the set of diagnoses D): 





−=

−=
=

1,

0,
)(

LSL

LSL
Stransf  

According to [Abramovici et al. 1990], such a transformation had already been privately proposed by 
Levendel [1980] for SSFs in order to represent the list of faults that cause the physical signal value 
of S to take value 1, but no further use was made of it. 

Although transf is not a bijective function (both L-0 and L -1 are transformed into L), it is quite 
useful to model certain digital circuits problems. This transformation is similar to the reduction of 
the 8-valued logic into a 4-valued logic for differentiation (described in section 4.5), in that the 
normal value is lost. Set L now represents the list of diagnoses that make the signal assume value 1, 
which is precisely what that 4-valued logic (for faults φ1 and φ2) encodes: the 4 values correspond to 

the power-set of the 2 diagnoses, i.e. {{}, {φ1}, {φ2}, {φ1, φ2}}. 
To exemplify the usefulness of the transformation, circuit inputs which can only have value 0 or 

1, if represented by set variables, can have values ∅  or D. As to logical gates, the and-gate and the S-
buffer are simply stated as follows: 
 

L1

L2
L1 ∩ L2

 
LS

Li LS1 ∪  (Li \ LS0)  

Figure 5.5.  And-gate and S-buffer over sets 

The correctness of this new simplified representation can be checked by simple analysis of each 
case, shown in Table 5.3 and Table 5.4. 
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I1 transf(I1) I2 transf(I2) I1∧ I2 tranf(I1∧ I2) 

L1-1 1L  L2-1 2L  L1∪ L2-1 21 LL ∪ = 1L ∩ 2L  
L1-0 L1 L2-0 L2 L1∩L2-0 L1∩L2 
L1-0 L1 L2-1 2L  L1\L2-0 L1\L2 = L1∩ 2L  

Table 5.3.  Application of transf function to the inputs 
and output of an and-gate 

In transf(In) S-buffer output transf(output) 
Li-0 Li LS1 ∪  (Li \ LS0) - 0 LS1 ∪  (Li \ LS0) 
Li-1 Li  LS0 ∪  (Li \ LS1) - 1 )\( 10 SiS LLL ∪ = 10 SiS LLL ∩∩ = )( 10 SiS LLL ∪∩ =

)()( 100 SSiS LLLL ∩∪∩ = 10)( SSi LLL ∪∩ =
)\( 01 SiS LLL ∪  

Table 5.4.  Application of transf function to the input and 
output of an S-buffer 

In Table 5.3, the transformed output set is always the intersection of the transformed input sets, i.e. 
transf(I1) ∧  transf(I2) = transf(I1 ∧  I2). Similarly, in Table 5.4, if we represent the output of an S-buffer 
with associated dependencies Ls, subject to input i as s_buffer(LS,i), then s_buffer(LS,transf(Input)) = 
transf(s_buffer(LS, Input)). 

For completion, it may be also noticed that the other gate operations can be expressed with the 
expected set operations: 

 

( ) ( )L L L L1 2 1 2∩ ∪ ∩L L
L1 L1

L2L2

L L1 2∪
 

Figure 5.6.  Other gates over sets 

 
5.5.3  Modelling 

To solve the differentiation problem between two diagnoses with this representation based 
exclusively on sets, it is still sufficient to ensure that a set L with cardinality 1 is present in a circuit 
PO. If D={F,G} is the set of diagnoses F and G to differentiate, then when a PO takes value L 
(with #L=1) in the purely set-based representation, it is equivalent to taking value L-N (with #L=1) 
in the mixed representation (pairs Set-Boolean). 

The proof is straightforward. If set L (#L=1) is present in a PO, then it represents either L-0 

(#L=1) or L -1 (# L =1, since #D=2), both sets with cardinality 1. Conversely, if a pair L-N 

(#L=1) is present in a PO, it is either L-0 (represented as set L) or L-1 (represented as L ). In either 
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case, the represented set has cardinality 1. 
 
Therefore, the loss of information incurred by the transformation used has no effect in this 
problem, since it is not necessary to add any new constraints to solve it. 

 
A similar situation occurs when trying to differentiate more than two diagnoses simultaneously 
(potentially more efficient). In such case, the differentiation condition for diagnoses D of arbitrary 
cardinality can be generalised to having a PO with set value L, such that L is neither the empty set 
nor the universe D (i.e. L≠∅  ∧  L≠D), since then it is assured that the generated test pattern 
differentiates (at least) diagnoses L from D\L. 

 
For the optimisation problem of maximal test patterns in a circuit c, the goal is to maximise the 
number of output dependencies, (i.e. the number of diagnoses covered by the input test pattern) 
which is not so straightforward to express. Since a digital signal coded as set L does not necessarily 
mean a dependency on diagnoses L (it can represent L-0, as well as L -1), maximising the union of 
all the output bits is not adequate. In fact, it is necessary to know exactly whether an output signal 
depends on its set or on its complement. This can be done by duplicating the circuit to recover the 
lost information (the normal output values) as illustrated in Figure 5.7: 
 

C
S-buffers

C
normal

max #

 

Figure 5.7.  Modelling the maximisation problem with 
sets 

Circuit c with S-buffers is kept as before, but now the circuit with no S-buffers (i.e. with all gates 
normal) is added, sharing the PIs and with the corresponding POs xor-ed. Values inside the normal 
circuit are necessarily independent of any faults, and can only be represented as ∅  (for ∅ -0) and D 
(for ∅ -1). The xor-gates in the output bits receive a set L from the faulty circuit (i.e. with S-buffers) 
and either ∅  or D (the universe) from the normal one. Therefore, L is kept as L if the normal value 
was 0, and recovered to L  if the normal value were 1, just like our transf function. Hence, the correct 
dependency set of the signal is recovered and a maximisation on the union (or-gate) of these real 
diagnostic dependencies can be performed to obtain a desired solution to the problem. 

The reduction of the problem size by eliminating the Boolean part of the domain is now 
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compensated by the duplication of constraints. Still, what could naively be seen as a useless 
manipulation, allows an active use of constraints by a set constraint solver avoiding the choice-
points that would otherwise be necessary. 

Moreover, the exponential component of search, labelling, is only performed at the circuit with 
S-buffers (the other circuit simply checks this labelling). This is in contrast with Boolean SAT 
approaches, which consider one extra circuit for each diagnosis, which is unacceptable, in practice, 
for a large set of diagnoses [Silva et al. 1999]. 

 
 

The optimisation problem of minimal set of test patterns is the set-covering problem where test 
patterns are the resources, and diagnoses are the services we want to cover with the minimum of 
resources. Unfortunately, we do not know a priori whether some input vector i covers a diagnosis F, 
(i.e. test(F,i)); otherwise we could simply apply the integer linear programming (ILP) approach to set-
covering (a well studied problem with easily available specific efficient tools to solve it). 

This minimisation problem is thus a meta-problem: it involves sets of solutions to set problems 
(TG is a set problem having as solution an input vector, i.e. a set of specified PIs, and we want to 
minimise the set of such solutions for all diagnoses D). A set variable S could be used ranging from 

∅  to P(I), where set S of inputs is constrained to cover diagnoses D. The goal is then to minimise 
the cardinality of S. 

To find a test pattern for a single diagnosis F using sets, we need to model a faulty and a normal 
circuit xor-ing the outputs and checking whether at least one set value {F} is obtained. This is 
equivalent to the SAT approach for obtaining test patterns. 

The ideal is, however, to consider all diagnoses D at the same time, with set constraints, and 
include or remove elements from S during the computation, updating the diagnoses covered until D 
is reached, and then start finding smaller sets for S in a branch-and-bound manner. This is still an 
open problem and the maximisation problem may perhaps be used to solve this minimisation one, 
by obtaining intermediate solutions. 

 
 

5.6  Summary 

In this chapter we showed how to model diagnostic related problems in digital circuits with a 
constraint logic programming approach. We reckon our approach has great potential in this area, 
since competing alternatives, based on SAT, require substantial duplication of the circuits under 
consideration. In contrast, our technique uses set variables to denote dependency of faults and is 
able to model the problems without adding extra circuitry (more precisely, without imposing the 
labelling of more variables, the exponential part of search). 

To conclude this chapter, we note that although avoiding the duplication of circuitry required 
by a Boolean approach, the domains of the variables in this new modelling become more complex. 
In fact, the new domains are now sets of diagnoses. A constraint solver over sets is thus required to 
efficiently deal with the above described set problem models directly. This is the topic of the next 
chapter where we describe a new such set solver, Cardinal. 
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C h a p t e r  6  
 
 
 

A NEW SET CONSTRAINT SOLVER: CARDINAL 

 
In the previous chapter we showed how different diagnostic related problems could be modelled 
using sets to denote dependency and justified the convenience of taking a CLP approach over sets 
to efficiently solve such problems. To deal with set variables and set constraints, we realised that 
existing set constraint solvers were not adequate to handle these problems, as they were not actively 
using important information about the cardinality of the sets, a key feature in these problems. 

In this chapter we present a new general set constraint solver for combinatorial problem 
solving, Cardinal, that exploits inferences over sets cardinality, and we illustrate its efficiency with 
experimental results. Cardinal is formally presented as a set of rewriting rules on a constraint store. 
We then show the importance of propagating constraints on sets cardinality, by comparing Cardinal 
mainly with a simpler version that propagates these constraints similarly to Conjunto, a widely 
available set constraint solver. This simpler version, using a more limited amount of constraint 
propagation on cardinalities will be referred in the following simply as “Conjunto”. For some 
applications, we also present results over real Conjunto. The reason why we did not always compare 
our results with the real version was that we wanted a fairer comparison to assess the advantages of 
our especial inferences, and also because some ‘bugs’ in the real Conjunto version at the time of some 
experiments prevented us from obtaining the correct results. (Implementation details seem to be 
relatively unimportant, since “Conjunto” behaved as the real Conjunto on a set of experiments where 
Conjunto succeeded to execute.) Results show that Cardinal obtains a speed up of about two orders of 
magnitude over “Conjunto”, on a set of diagnostic problems. 

This chapter is organised as follows: section 6.1 introduces and discusses approaches on set 
constraint solving in general and cardinality inferences in particular. Section 6.2 then reviews some 
basic concepts of set theory that will be useful to describe the operational semantics of Cardinal and 
its constraints in section 6.3. Implementation is briefly discussed in section 6.4 and some results on 
differential diagnosis presented in section 6.5 and compared with “Conjunto”. Then, in section 6.6, 
we present other applications of Cardinal with more results and comparisons to other approaches. 
Finally, in section 6.7 we present Cardinal extensions on set functions, exemplifying with the union 
function on the set-covering problem, and discuss their potentialities and possible lines of research. 

 
6.1  Set Constraint Solving and Cardinality Inferences 

A set is naturally used to collect distinct elements sharing some property. Combinatorial search 
problems over these data structures can thus be naturally modelled by high level languages with set 
abstraction facilities, and efficiently solved if constraint reasoning prunes search space when the sets 
are not fully known a priori (i.e. they are variables ranging over a set domain). 



 

 102

Set constraints have deserved in the last years special attention by the Constraint Programming 
community and have been addressed in recent literature for set-based program analysis [Heintze 
and Jaffar 1994] and for general set-based combinatorial search problems [Caseau et al. 1999, 
Azevedo and Barahona 2000d]. Many interesting theoretical and practical results were obtained 
[Charatonik and Podelski 1996, Devienne et al. 1997, Gervet 1997] making it a very rich and 
promising research topic [Aiken 1994, Pacholski and Podelski 1997]. 

Many complex relations between sets can be expressed with constraints such as set inclusion, 
disjointness and equality over set expressions that may include such operators as intersection, union 
or difference of sets. Also, as it is often the case, one is not interested simply on these relations but 
on some attribute or function of one or more sets (e.g. the cardinality of a set). For instance, the 
goal of many problems is to maximise or minimise the cardinality of a set. Even for satisfaction 
problems, some sets, although still variables, may be constrained to a fixed cardinality or a stricter 
cardinality domain than just the one inferred by the domain of a set variable (for instance, the 
cardinality of a set may have to be restricted to be an even number). 

 
Conjunto [Gervet 1997] was the first language to represent set variables by set intervals with a lower 
and an upper bound considering set inclusion as a partial ordering. Consistency techniques are then 
applied to set constraints by interval reasoning [Benhamou 1995]. In Conjunto (available as an 
ECLiPSe [ECRC 1994] library), a set domain variable S is specified by an interval [a,b] where a and b 
are known sets ordered by set inclusion, representing the greatest lower bound and the lowest upper 
bound of S, respectively. 

To deal with optimisation problems, Conjunto includes the cardinality of a set as a graded 

function in the system, and generalises a graded function as f : P(H
u
)→N mapping a non 

quantifiable term of the power-set of the Herbrand universe to a unique integer value denoting a 
measure of the term, and satisfying )()( 2121 sfsfss ≤⇒⊆ for two sets s1, s2. 

The cardinality of a set S, given as a finite domain variable C (#S=C), is not a bijective function 
since two distinct sets may have the same cardinality. Still, due to the properties of a graded 
function, it can be constrained by the cardinalities of the set bounds. Conjunto allows graduated 
constraints over cardinalities but this cardinality information is largely disregarded until it is known 
to be equal to the cardinality of one of the set bounds, in which case an inference rule is triggered to 
instantiate the set. 

 
In the problems over digital circuits discussed in the previous chapter, PIs (which can only have 
value 0 or 1) if represented by set variables (Si), can have values ∅  or D and are thus given a set 

interval domain [∅ ,D], whose cardinality #Si has only the two possible integer values {0,#D}. This 
cardinality information, however, is mostly ignored in Conjunto, as explained. We thus propose that 
set constraint solvers must handle the sets cardinality more actively, given the important role this 
feature plays in diagnostic related problems. 

Hence, although Conjunto represented a great improvement over previous CLP languages with 
set data structures [Gervet 1997], it lacked some inferences on the cardinality level, which are crucial 
for a number of CSPs. 
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In fact, Conjunto makes a very limited use of the information about the cardinality of set 
variables. The reason for this lies in the fact that it, is in general, too costly to derive all the 
inferences one might do over the cardinality information in order to tackle the problems Conjunto 
had initially been designed for (i.e. large scale set packing and partitioning problems) [Gervet 1999]. 
Nonetheless, and given their nature, we anticipated that some use of this information could be quite 
useful and speed up the solving of these problems. 

Inferences using cardinalities can be very useful to deduce more rapidly the non-satisfiability of 
a set of constraints, thus improving efficiency of combinatorial search problem solving. As a simple 
example, if Z is known to be the set difference between Y and X, both contained in set {a,b,c,d}, 
and it is known that X has exactly 2 elements, it should be inferred that the cardinality of Z can 
never exceed 2 elements (i.e. from X,Y ⊆  {a,b,c,d}, #X=2, Z=Y\X it should be inferred that #Z ≤ 
2). A failure could thus be immediately detected upon the posting of a constraint such as #Z=3. 

Inference capabilities such as these are particularly important when solving set problems where 
cardinality plays a special role, as is the case of the circuit problems seen above. We therefore 
developed a new constraint solver over sets that fully uses constraint propagation on sets cardinality. 

Before discussing the solver, we will overview some theoretical concepts required for its 
explanation. 

 
6.2  Intervals and Lattices 

Set intervals define a lattice [Birkhoff 1967, Graetzer 1971, Gierz et al. 1980] of sets. Figure 6.1 

illustrates the powerset lattice for the example set domain U ={a,b,c,d}, where a line connecting set 

S1 to underneath set S2 means S2 ⊆  S1. The set inclusion relation ⊆  between two sets defines a 

partial order on powerset P (U), the set of all subsets of U. Hence P (U) is a partially ordered set 

where binary relation ⊆  has the following properties: 

• SSS ⊆∀ :  Reflexivity 
• )())()((:, TSSTTSTS =⇒⊆∧⊆∀  Antisymmetry 
• )())()((:,, USUTTSUTS ⊆⇒⊆∧⊆∀  Transitivity 
 

{}

{a} {b} {c} {d}

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

 

Figure 6.1.  Powerset lattice for U ={a,b,c,d}, with set 
inclusion as partial order 
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There are thus other implicit inclusion relations in the lattice of Figure 6.1 that were not explicitly 

drawn, due to the transitivity rule. The top set, U, includes all sets of P (U); while the bottom set, 

{}, is included in all sets of P (U). Consequently, sets U and {} constitute an upper bound and a 

lower bound of P (U), respectively. In addition, they are the least upper bound (lub) or join, and 

the greatest lower bound (glb) or meet of P (U), since there is no other upper bound contained in 

(‘less’ than) U  nor other lower bound containing (‘greater’ than) the empty set {}. 
Let us now consider the sub-lattice of Figure 6.2 (a). Sets {} and {a,b,c,d} are still a lower and an 

upper bound, but this time the glb is {b} and the lub is {a,b,d}. 
 

{b}

{a,b,d}

{a,b} {b,d}

                     

Glb

Lub

b

a d

 

 (a) (b) 

Figure 6.2.  Set interval [{b},{a,b,d}]: a) Sub-lattice; b) 
Venn diagram 

The two bounds (glb and lub) define a set interval (e.g. [{b},{a,b,d}]) and may form the domain of a 
set variable S, meaning that set S is one of those defined by its interval (lattice); all other sets outside 
this domain are excluded from the solution. Thus, b is definitely an element of S, while a and d are 
the only other possible elements (Venn diagram in Figure 6.2 (b)). 

Set interval reasoning allows us to apply consistency techniques such as Bounded Arc 
Consistency (see section 1.2), due to the monotonic property of set inclusion. 

Any set variable must then have a domain consisting of a set interval. In addition, this interval 
should be kept as small as possible, in order to discard all sets that are known not to belong to the 
solution, while not loosing any of the still possible values (sets). The smallest such domain is the one 
with equal glb and lub, i.e. a domain of the form [B,B], corresponding to a constant set B. For a set 
variable that can assume any set value from a collection of known sets, such as {{a,b},{a,c},{d}}, 
the corresponding interval is the convex closure of such collection (which in this case is the set 
interval [{},{a,b,c,d}]). In general, for n possible arbitrary sets S1…Sn, the corresponding set variable 
X has an interval domain [glb, lub] where 

glb = I
n

i

iS
1=

   and   lub = U
n

i

iS
1=

 

 
In the next section we describe Cardinal’s propagation of constraints over set variables having such 
interval domains, together with inferences over sets’ cardinality. 
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6.3  Operational Semantics 

The set universe notion is necessary not only for the set complement operation, but also for the 

especial cardinality inferences we propose. Hence we will use U  to denote the set universe domain 
(for the circuit problems proposed in Chapter 5, the universe is the set of diagnoses D), and u to 

denote the cardinality of U  (u = # U ).  
A set variable X is represented by [aX,bX]Cx:Dx (or simply as [aX,bX]Cx) where aX is its greatest 

lower bound (i.e. the elements known to belong to X), bX its lowest upper bound (i.e. the elements 
not excluded from X), and CX its cardinality (a finite domain variable) with domain DX. In the 
remainder, aX, bX, CX and DX will be used to refer to these attributes of set variable X if no 
confusion arises. 

Given the transformation presented in section 5.5.2 to encode circuit signals by sets, 

independent values such as the circuit inputs are represented by [∅ ,U]Cx:{0,u}. The only two possible 

values are then ∅   (CX=0) andU (CX=u), shown in gray in Figure 6.3 (a). We may view powerset 
lattices as a number of horizontal layers of different cardinality; the set cardinality variable constrains 
possible layers where the solution value is. Figure 6.3 (b) shows the lattice for set variable X with 
domain [{},{a,b,c,d}]1 corresponding to a singleton. Such domain is enough to express the 
disjunction X={a} ∨  X={b} ∨  X={c} ∨  X={d} and, therefore, one does not need to explicitly post 
this disjunctive constraint. 

 

{}

{F1} {F2} {Fn}

{F1,F2,...Fn-1} {F1,...Fn-2,Fn} {F2,F3,...Fn}

D={F1,F2,...Fn}

...
...

... ......

...
...
...

           {}

{a} {b} {c} {d}

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

 

 (a) (b) 

Figure 6.3.  Powerset lattices with cardinalities: a) circuit 
PI;  b) singleton 

Cardinal implements a number of set constraints such as inclusion, equality, inequality, membership 
and disjointness, together with set operations (union, intersection, difference and complement), as 
built-in. (Nonetheless, the equality and inclusion constraints together with the operations of sets 
complement and binary intersection are sufficient to model circuit problems.) We will next describe 
all these Cardinal constraints. Inferences will be formally described as rewriting rules as in the 
following schematic figure: 
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(trigger condition)
 

changesCS
conditionspre

_
−  

where CS refers to the Constraint Store. In addition, a number on the right identifies each inference 
rule. 

The constraint store maintains constraints over sets and over finite domains (the cardinality of 
the sets), but we only describe the rewriting rules of the set constraints (we assume that a finite 
domain constraint solver maintains bounded arc-consistency, or interval consistency, on these 
constraints). 

 
 

6.3.1  Set Variable 

When a variable is declared as a set variable, it is simply included in the constraint store, ensuring 
the bounds of the variable and that its cardinality C is a finite domain variable with domain D: 

 [ ] [ ] }::,,{)},({ : DCbaXbaXtell CDC ∈∈ a
 (1) 

A number of inferences are subsequently maintained. During computation, set intervals can only get 
shorter, i.e. either because the lower bound becomes larger or the upper bound smaller, or both. 

The cardinality must always remain inside the limits given by the set bounds (the triggers of 
these inferences are shown in parenthesis next to the rewriting rules, and may correspond to one or 
more variables becoming ground, changing bounds, or being bound in the Prolog sense): 

 (X: changed bounds) 
},{{}

#,#
mCnC

bman
xx

xx

≤≥
==

a
 (2)

 

As in Conjunto, a set variable becomes one of its bounds if their cardinality is the same (this rule is 
triggered only when CX becomes a fixed value): 

 (CX: ground) 
}{{}

#
x

xx

aX
aC
=

=
a

       
}{{}

#
x

xx

bX
bC
=

=
a

 (3)
 

When there are two domains declared for the same set variable, their intersection must be 
computed and the cardinalities made equal: 

 [ ] [ ] [ ] },,{},,,{
,

211222111

2121

CCbaXbaXbaX
bbbaaa

CCC =∈∈∈
∩=∪=

a
 (4)

 

Eventually a failure may be detected, either because the lower bound of a set is not included in its 
upper bound, or the domain of the cardinality becomes empty: 

 (X: changed bounds) 
fail

banot xx

a{}
)( ⊆        

fail
Dx

a{}
∅=  (5)
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6.3.2  Membership Constraints 

Membership constraint is trivially handled by inserting, as soon as it is ground, the given element in 
the set’s glb: 

 
}{)}({ XelemXelemtell ∈∈ a

 (6) 

 (elem: ground) [ ]},{}{
}{

x

x

baXXelem
elemaa

∈∈
∪=
a

 (7) 

Its negation is similarly handled by removing the element from the lub: 

 
}{)}({ XelemXelemtell ∉∉ a

 (8) 

 (elem: ground) [ ]},{}{
}{\

baXXelem
elembb

x

x

∈∉
=

a
 (9) 

 
 

6.3.3  Set Complement 

For the set complement constraint it is assumed the existence of a non-empty universe of 
cardinality u. Hence, a set cannot be the same as its complement: 

 
failYXYXtell a}),({ ==

 (10)
 

Cardinality u is used in a finite domain constraint, CY = u - CX, over the sets cardinalities. In general, 
the finite domains constraint solver maintains bounded arc consistency on this constraint. 
Nevertheless, we ensure full arc consistency when the constraint is successfully posted: 

 
},{)}({ YXCuCYXtell xy =−== a

 (11) 

Afterwards, whenever there is an update of the bounds of one of the sets, the bounds of its 
complement must also be updated accordingly, which eventually leads to the successful instantiation 
of the sets or to a failure: 

 (X: changed bounds) [ ]},,{}{
,

baYYXYX
abba xx

∈==
==

a
 (12)

 

 (Y: changed bounds) [ ]},,{}{
,

baXYXYX
abba yy

∈==
==

a
 (13)

 

The constraint disappears (is trivially proved or disproved) when sets are ground and their 
complementary nature can be easily checked: 
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 (X or Y: ground) 
{}}{

),(),(
aYX

aaYgroundXground yx

=
=   

failYX
aaYgroundXground yx

a}{
),(),(

=
≠  (14)

 

 
 

6.3.4  Set Equality 

When two sets are told to be equal, so does their cardinality: 

 
},{)}({ yx CCYXYXtell === a

 (15)
 

When one bound of the set is updated, so does the corresponding bound of any set equal to it (the 
situation is similar to that of having two domains for the same set, as in rule 4): 

 (X or Y: ch. bounds) [ ] [ ] [ ] [ ] },,,,{},,,,{
,

baYbaXYXbaYbaXYX
bbbaaa

yyxx

yxyx

∈∈=∈∈=
∩=∪=

a
 (16)

 

Again, when sets are ground, the equality is easily confirmed (or infirmed): 

 (X or Y: ground) 
{}}{

),(),(
aYX

aaYgroundXground yx

=
=  

failYX
aaYgroundXground yx

a}{
),(),(

=
≠  (17)

 

Of course, if only one of the sets becomes ground, the previous rule enforces the other set either to 
become with the same bounds (and ground, in which case this rule eliminates the equality 
constraint) or with an empty domain, causing a failure. 

 
 

6.3.5  Set Inequality 

When two sets are told to be different, we cannot relate their cardinalities since these can be equal, 
even with different sets: 

 
}{)}({ YXYXtell ≠≠ a

 (18)
 

Of course, the two sets cannot be the same: 

 (X or Y: bound) 
failYXYX a},{ =≠

 (19)
 

The inequality constraint does not allow much propagation, hence we wait until a set (X) is ground. 
Then, if its cardinality cannot be the same as the other (#Y), the constraint is satisfied: 

 (X: ground) 
{}}{ aYX

CC yx

≠
≠  (20) 

If X is equal to a bound of Y, then we just have to assure the cardinality is different: 

 (X: ground) 
}{}{ xy

y

CCYX
aX

>≠
=
a

 
}{}{ xy

y

CCYX
bX

<≠
=
a

 (21)
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If X is different but has the same cardinality as a bound of Y, then the constraint is satisfied: 

 (X: ground) 
{}}{

,#
aYX

aXaC yyx

≠
≠=  

{}}{
,#
aYX

bXbC yyx

≠
≠=  (22)

 

Symmetric inferences occur on instantiation of Y. 
 
 

6.3.6  Disjointness 

When two sets are told to be disjoint (X $ Y, meaning X ∩ Y = ∅ ), the sum of their cardinalities 
cannot exceed that of the union of their upper bounds (the implicit universe): 

 
},${)}$({

)(#
uCCYXYXtell

bbu
yx

yx

≤+
∪=

a
 (23)

 

Elements definitely in one set cannot belong to the other: 

 (X: changed glb) [ ]},,${}${
\

baYYXYX
abb

y

xy

∈
=

a
 (24) 

 (Y: changed glb) [ ]},,${}${
\

baXYXYX
abb

x

yx

∈
=

a
 (25) 

If the two sets are the same, they must have no elements (empty set): 

 (X or Y: bound) 
}{},${ ∅== XYXYX a

 (26)
 

With the previous rules assured, it is enough that one set becomes ground to remove the constraint, 
since all its elements will have been removed from the other set: 

 (X or Y: bound) 
{}}${

)()(
aYX

YgroundXground ∨  (27)
 

 
 

6.3.7  Set Inclusion 

If Y contains X, then CY is greater (or equal) than CX: 

 
},{)}({ yx CCYXYXtell ≤⊆⊆ a

 (28)
 

When the lower bound (glb) of X increases, the lower bound of Y may also increase; and when the 
upper bound (lub) of Y decreases, so might happen to X: 

 (X: changed glb)  [ ]},,{}{ y

yx

baYYXYX
aaa

∈⊆⊆
∪=

a
 (29)
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 (Y: changed lub) [ ]},,{}{ baXYXYX
bbb

x

yx

∈⊆⊆
∩=

a
 (30)

 

If bX is contained in aY, or X is the same as Y, the constraint X⊆ Y is trivially satisfied, and can be 
eliminated from the store: 

 (X or Y: bound) 
{}}{

),()(
aYX

abYgroundXground yx

⊆
⊆∨    

}{},{ YXYXYX ==⊆ a
 (31)

 

 
 

6.3.8  Set Intersection 

While for the set complement the universe must be given, for the intersection Z of sets X and Y, 

the universe can be considered as the union of the upper bounds (U = bX ∪  bY), with cardinality u 
(as already used for set disjointness in rule number 23). 

Whenever there are two set variables involved in a constraint, their interval domains, if depicted 
in a Venn diagram (Figure 6.4), define eight disjoint distinguishing sets of interest, each possibly 
empty. For instance, zone 6 of Figure 6.4 corresponds to the elements that are definitely part of 
both sets X and Y; in zone 4 are the elements that definitely belong to X but can never belong to Y; 
in zone 2 we have the elements that can belong to X or Y but are not yet definite elements of either. 
Constraint propagation over these constraints must take into account all set zones in addition to the 
two cardinality domains. 

bY
bX

aYaX

1 2
3

4 5 6
7

8

2

 

Figure 6.4.  Two sets, X, Y, define 8 different zones 

The following rule states that the intersection of two sets must be contained in both sets, and posts 
a special constraint on the cardinality of the set intersection: 

 
)}(),(),(,{)}({ YXCtellYZtellXZtellYXZYXZtell z ⊗=⊆⊆∩=∩= a

 (32)
 

The special cardinality constraint over sets (CZ=X⊗ Y) ensures that each possible value for CZ has a 
supporting cardinality pair in domains DX and DY when the intersection is posted. Before 
formalising this operation, we first analyse what can the domain of cardinality CZ be. If we take 
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possible cardinality values cx of DX and cy of DY, and the sum of cx and cy exceeds u, there must be 
common elements to X and Y, and their intersection has at least cx+cy-u elements. This ‘worst’ case 
is illustrated in Figure 6.5, where we ‘push’ all elements of X to the left and elements of Y to the 
right. 

 

1 u.........

1 cx.....

1 cy.....

cx+cy-u

 

Figure 6.5.  Minimum intersection cardinality 

To reason about the upper bound, CZ can never exceed cx nor cy since Z is the sets intersection. The 
elements in aX not in bY (i.e. aX\bY, corresponding to zone 4 of Figure 6.4) can safely be subtracted 
from cx since they are definitely not part of the intersection, but are counted in cx (so an upper 
bound can be cx-#aX\bY). A similar reasoning may be done for Y, yielding another upper bound. A 
final upper bound can thus be considered the minimum of the two (i.e. min(cx-#(aX\bY),cy-
#(aY\bX))). 

Thus, for each pair cx and cy, an integer range for CZ is calculated, and the ranges for all such 
pairs are eventually merged. This can in fact be regarded as maintaining arc-consistency on the 
cardinality of X, Y and Z, when Z = X ∩ Y. In fact, this arc-consistency is only enforced when the 
constraint is first told: 

(33) 

))}}\(#),\(#min(,,:{{)}({ xyyxyxzz bajbainujiDjDinCYXCtell −−≤≤−+∈∈∃∈⊗= a
 

The usefulness of this rule for the problems we address, can be illustrated with the differential 
diagnosis problem. Given two sets X and Y which can both be ∅  or D={f,g}, let us consider their 
intersection (this is a typical case when two input bits are connected through an and-gate). While 
their set domain is the convex closure of the two bounds, their cardinality can only be 0 or 2. To 
find the cardinality domain of their intersection we examine cardinality pairs <cx, cy> = <0,0>, 
<0,2>, <2,0> and <2,2>. The three first pairs yield only value 0 as a possible intersection 
cardinality, since one set has no elements and acts as an upper bound. Pair <2,2> yields single value 
2, since u is also 2 (cx+cy-u=2+2-2=2 as lower bound). Thus the final cardinality domain for the sets 
intersection is also {0,2}. If only interval reasoning were performed on cardinality, the result would 
be the full range {0,1,2}. 

Rather than checking pairs of integers, it is equivalent and more efficient to check pairs of sub-
ranges and their bounds when the constraint is posted. Nevertheless, since this arc consistency is 
very costly to maintain, it is only checked when the constraint is posted. Subsequently, only 
bounded arc consistency is maintained on the cardinality of the sets by the underlying finite 
domains constraint solver: 
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 (X: changed glb or Y: changed lub)     
},{}{

)\(#
nCCYXZYXZ

ban
xz

yx

−≤∩=∩=
=

a  
(34) 

 (X: changed lub or Y: changed glb)     
 

},{}{
)\(#

nCCYXZYXZ
ban

yz

xy

−≤∩=∩=
=

a

 
(35)

 

 (X or Y: changed lub) 
},{}{

)(###
nCCCYXZYXZ

bbbbn
yxz

yxyx

−+≥∩=∩=
∪−+=

a
 (36)

 

A number of other inferences are performed regarding intersection. The lower bound of the set 
intersection is kept as the intersection of the lower bounds of the arguments (zone 6 of Figure 6.4): 

 (X or Y: changed glb) [ ]},,{}{ z

yx

baZYXZYXZ
aaa

∈∩=∩=
∩=

a
 (37)

 

If both arguments are the same set, their intersection is that set (idempotence): 

 (X or Y: bound) 
)}(,{},{ XZtellYXYXYXZ ===∩= a

 (38) 

If intersection Z is known to be the same set as one of its arguments, then the intersection 
constraint may be eliminated (as Z ⊆  X and Z ⊆  Y): 

 (X or Y: bound) 
}{},{ ZXZXYXZ ==∩= a

  
}{},{ ZYZYYXZ ==∩= a

 (39)
 

Conversely, if an argument contains the other, the intersection is the included set: 

 (X or Y: bound) 
)}({}{

),(
XZtellYXZ

abYground yx

=∩=
⊆

a
   

)}({}{
),(

YZtellYXZ
abXground xy

=∩=
⊆

a
 (40)

 

Although inclusion could be inferred more generally, for efficiency reasons this rule is only checked 
when either one of the arguments is ground. These four simplification/simpagation rules 
[Frühwirth 1995] exploit the fact that the universe is the neutral element of the intersection. Here, 
the universe is the set argument containing the other. 

 
All common elements to X and Y must be in Z. That is, X and Y must have no common elements 
outside Z. Hence, definite elements of argument X (Y) that are impossible in intersection Z must be 
removed from the other argument Y (X). This is a costly operation, so it is performed only on 
instantiation of variables: 

 (X or Z: ground) [ ]},,{}{
)\(\

baYYXZYXZ
babb

y

zxy

∈∩=∩=
=
a

 (41)
 

 (Y or Z: ground) [ ]},,{}{
)\(\

baXYXZYXZ
babb

x

zyx

∈∩=∩=
=
a

 (42)
 

 
 

In addition to the especial inferences exploiting the idempotence property and neutral element of 
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set intersection (rules 38 to 40), which are triggered when some set is bound, let us now try to 
schematise inferences on variable bounds. 

Globally, as to set bounds are concerned, we can make the inferences of Table 6.1, where some 
change in the set bound in the first column may have as effect an update of another set variable 
bound. Entries of the table thus express the update of the bound corresponding to its column due 
to some change of the bound corresponding to its line. Since lower bounds can only become larger, 
their updates are given in the form of a set of mandatory elements (i.e. another lower bound)   the 
final lower bound will thus be the union of the original one with this new one. Conversely, upper 
bounds become shorter and entry values correspond to another upper bound, which forces the 
intersection of the two upper bounds to obtain the final lub. Alternatively, upper bound updates 
may be given in the form –(Set) meaning that the elements of Set must be removed from the final 
lub. 

Each line also includes the inference rules that cover the updates due to its corresponding 
bound change. Similarly, each column includes the rules that cover the updates of its corresponding 
bound. To find the rule that covers a particular update given by some table entry, one just has to 
intersect the rules of its line with the rules of its column. 

 
Effect 

Change ax bx ay by az bz 
 

ax     -(ax\bz) ax∩ay   41, 37 
bx         bx Z⊆ X 
ay   -(ay\bz)   ax∩ay   42, 37 
by         by Z⊆ Y 
az az   az     Z⊆ X, Z⊆ Y
bz   -(ay\bz)   -(ax\bz)   42, 41 
 Z⊆ X 42 Z⊆ Y 41 37 Z⊆ X, Z⊆ Y Rules 

Table 6.1.  Set intersection: cause-effect rules on set 
bounds 

For example, from a change in ax (i.e. inclusion of elements in X) one may infer that elements 
(ax\bz) must be removed from by (i.e. cannot be part of Y). The same happens when there is a 
change in bz (i.e. removal of elements from Z). These relations are covered by rule number 41, 
which however is only triggered when X or Z is ground, for efficiency reasons. 

As we can see from the table, each bound change affects some other bound, and each bound 
may be affected due to a change in another set variable bound. Among the rules that cover these 
updates are also the inclusion constraints (described in section 6.3.7) that are posted when the set 
intersection constraint is posted (rule number 32). 

Rules 41 and 42 wait for some instantiation, while rule 37 and the inclusion constraint are 
immediately triggered with the set bound change. 

Of course, bound changes also affect cardinalities, and cardinalities affect bounds in addition to 
being mutually dependent. These relations are handled by the constraints: 
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Cz ≤ Cx - #(ax\by) 

Cz ≤ Cy - #(ay\bx) 

Cz ≥ Cx + Cx - #bx+ #by - #(bx ∪  by) 

corresponding to rules 33 to 36 (also, cardinalities are nonnegative and limited by set bounds). After 
reaching arc consistency upon the posting of some set intersection, the constraint solver applies 
Bounded Arc Consistency (see section 1.3.1) on these cardinality constraints, which ensures that the 
bounds of cardinality domains are updated. In addition, such constraints are also updated due to 
changes in set bounds, which may further tighten the domains (e.g. when ax increases or by 
decreases, #(ax\by) may increase and the upper bound of Cz given by Cx - #(ax\by) decreases, which 
further constrains Cz, and possibly Cx whose lower bound is then Cz + #(ax\by)). 

 
 

6.3.9  Set Union 

For the union Z of sets X and Y, we can find many similarities with the intersection: the universe 

can also be considered as the union of the upper bounds (U = bX ∪  bY), and u its cardinality. 
The union of two sets, X and Y, must contain both sets, and its cardinality is not simply the 

sum of CX and CY, since X and Y may have common elements. We know then that it can never 
exceed CX + CY. In addition, the union constraint posts another special constraint on the resulting 
cardinality: 

)}(,),(),(,{)}({ YXCtellCCCZYtellZXtellYXZYXZtell zyxz ⊕=+≤⊆⊆∪=∪= a
   (43)

 

Before formalising the cardinality constraint (CZ=X⊕ Y), let us again first analyse what the domain 
of cardinality CZ may be. Given possible cardinalities cx of DX and cy of DY, CZ can never exceed 
cx+cy nor u, and the upper bound is thus min(cx+cy,u). To find a lower bound, since Z is the sets 
union, it contains X and has at least the cx elements. To these we can safely add the elements in aY 
not in bX (i.e. aY\bX, corresponding to zone 8 of Figure 6.4), since they are definitely part of the 
union and are not counted in cx. Similar reasoning is done for Y, yielding another lower bound, so 
the maximum of the two is the final lower bound given the <cx,cy> pair (i.e. 
max(cx+#(ay\bx),cy+#(ax\by))). Thus, for each such pair, an integer range for CZ is calculated when 
the constraint is first told: 

(44) 

)}},min())\(#),\(#max(,,:{{)}({ ujinbajbaiDjDinCYXCtell yxxyyxzz +≤≤++∈∈∃∈⊕= a
 

As an example, let us take two sets X and Y that can only be ∅  or {f,g,h,i} (cardinality 0 or 4). To 
find the cardinality domain of their union we examine cardinality pairs <0,0>, <0,4>,<4,0> and 
<4,4>. The three last pairs, yield only value 4 as a possible union cardinality, since at least one set 
has 4 elements, which is also the maximum possible value (u). Obviously, pair <0,0> yields single 
value 0. Thus the final cardinality domain for the sets union is also {0,4}. This is a typical case for 
the above circuit models with two inputs passing through an or-gate. As with set intersection, if only 
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interval reasoning were performed on the cardinality, the result would be the full range 0...4 and no 
propagation would be achieved for the rest of the circuit. 

Subsequently, bounded arc consistency is maintained on the cardinality of the sets: 

 (X: changed glb or Y: changed lub) 
},{}{

)\(#
nCCYXZYXZ

ban
yz

yx

+≥∪=∪=
=

a
 (45) 

 (X: changed lub or Y: changed glb) 
},{}{

)\(#
nCCYXZYXZ

ban
xz

xy

+≥∪=∪=
=

a
 (46)

 

 (X or Y: changed lub) 
},{}{

)(#
nCYXZYXZ

bbn
z

yx

≤∪=∪=
∪=

a
 (47)

 

As to set bounds, the upper bound of the set union is kept as the union of the upper bounds of the 
arguments: 

 (X or Y: changed lub) [ ]},,{}{ baZYXZYXZ
bbb

z

yx

∈∪=∪=
∪=

a
 (48)

 

If both arguments are the same set, their union is that set (idempotence): 

 (X or Y: bound) 
)}(,{},{ XZtellYXYXYXZ ===∪= a

 (49) 

If union Z is known to be the same set as one of its arguments, then the union constraint may be 
eliminated (as X ⊆  Z and Y ⊆  Z): 

 (X or Y: bound)
 

}{},{ ZXZXYXZ ==∪= a
   

}{},{ ZYZYYXZ ==∪= a
 (50)

 

Conversely, if an argument contains the other, the union is the container set: 

 (X or Y: bound) 
)}({}{

),(
XZtellYXZ

abYground xy

=∪=
⊆

a
   

)}({}{
),(

YZtellYXZ
abXground yx

=∪=
⊆

a
 (51)

 

These four rules exploit the fact that the universe (the set argument containing the other) is the 
absorbing element of the sets’ union. 

 
All elements of X and Y must be in Z. Thus, if Z has elements outside X (Y), then those elements 
must belong to Y (X). As a costly operation, it is performed only on instantiation of variables: 

 (X or Z: ground) [ ]},,{}{
)\(

y

xzy

baYYXZYXZ
baaa

∈∪=∪=
∪=

a
 (52)

 

 (Y or Z: ground) [ ]},,{}{
)\(

x

yzx

baXYXZYXZ
baaa

∈∪=∪=
∪=

a
 (53)

 

 
 

Inferences on set bounds and corresponding rules of set union constraint are depicted in Table 6.2, 
similarly to Table 6.1 for set intersection. 
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Effect 
Change ax bx ay by az bz 

 

ax       ax   X⊆ Z 
bx   az\bx     bx∪ by 52, 48 
ay       ay   Y⊆ Z 
by az\by       bx∪ by 53, 48 
az az\by   az\bx     53, 52 
bz   bz   bz   X⊆ Z, Y⊆ Z
 53 X⊆ Z 52 Y⊆ Z X⊆ Z, Y⊆ Z 48 Rules 

Table 6.2.  Set union: cause-effect rules on set bounds 

Inclusion constraints are posted by rule number 43 (when union constraint is told). 
Cardinality constraints are: 

Cz ≤ Cx + Cy 

Cz ≥ Cy + #(ax\by) 

Cz ≥ Cx + #(ay\bx) 

Cz ≤ #(bx ∪  by) 

corresponding to rules 43 to 47. 
 
 

6.3.10  Set Difference 

For the difference Z of sets X and Y (Z = X \ Y), the universe is, as always, the union of the upper 

bounds (U = bX ∪  bY), and u its cardinality. 
The result Z of removing Y from X, must be contained in X and disjoint from Y, and its 

cardinality is not simply the difference of CX and CY, since elements of Y may be absent from X. 
We know then that it is at least CX - CY. In addition, the difference constraint posts another special 
constraint on the resulting cardinality (CZ=X ÷ Y): 

 
)}(,),$(),(,\{)}\({ YXCtellCCCZYtellXZtellYXZYXZtell zyxz ÷=−≥⊆== a

 (54)
 

Let us then analyse what values can CZ assume if we take possible cardinality values cx of DX and cy 
of DY. It is at least cx - cy, as explained, since at most cy elements will be removed from X. Also, we 
can subtract from cx at most the number of common elements to both lubs, i.e. #(bx ∩ by). Hence, 

Z’s cardinality is at least cx-#(bx ∩ by). Joining the two we have the lower bound max(cx - cy, cx - #(bx 

∩ by)). 
As to the upper bound, since at least cy elements will not be a part of Z, we know that it 

contains at most u-cy elements. It can also never exceed cx. Furthermore, from cx we can safely 
subtract the definite common elements from X and Y, i.e. #(ax ∩ ay). The upper bound is thus 

min(cx - #(ax ∩ ay), u - cy) and we can formalise the posting of the cardinality constraint as follows: 
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(55) 
})}),(#min())(#,max(,,:{{}({ juaainbbijiDjDinCYXCtell yxyxyxzz −∩−≤≤∩−−∈∈∃∈÷= a  

We take again the two example sets X and Y that can only be ∅  or {f,g,h,i} (cardinality 0 or 4). To 
find the cardinality domain of their difference Z = X \ Y, we examine cardinality pairs <0,0>, 
<0,4>,<4,0> and <4,4>. When cy=4, the resulting cardinality must be 0 (upper bound given by u - 
cy) since u is also 4. If cx=0, the resulting cardinality must also be 0 (bounded by cx - #(ax ∩ ay)). The 
remaining pair, <4,0>, yields only value 4 as a possible difference cardinality, since no elements are 
removed from set X with 4 elements (#Z is lower bounded by cx - cy). The final cardinality domain 
for the sets difference is thus also {0,4}. 

For another example with different sets and cardinalities, let us take X ∈  [{},{e1, e2,…e20}] 10, 

and Y ∈  [{},{e20, e21,…e30}]. In this case we may conclude that the cardinality of Z = X \ Y has at 

least 9 elements due to the lower bound cx - #(bx ∩ by) = 10 - #{e20} = 10-1 = 9. The domain of the 
cardinality of Z is then constrained to {9,10} using just this rule. 

Let us now consider two sets X, Y with domain [{e1, e2,…e5},{e1, e2,…e20}] 6. Their difference has 
at most 1 element due to the bound cx - #(ax ∩ ay). This rule thus allows us to constrain the 
cardinality of difference Z to the simple domain {0,1} from start. 

 
Subsequently, as with the intersection and union operations, bounded arc consistency is applied on 
the cardinality of the sets: 

 (X or Y: changed glb) 
},\{}\{

)(#
nCCYXZYXZ

aan
xz

yx

−≤==
∩=

a
 (56) 

 (X or Y: changed lub) 
},\{}\{

)(#
yz

yx

CnCYXZYXZ
bbn

−≤==
∪=

a
 (57)

 

Regarding set bounds, definite elements of X that cannot be removed (not part of Y) must be 
included in Z: 

 (X: ch. glb or Y: ch. lub) [ ]},,\{}\{
)\(

z

yxz

baZYXZYXZ
baaa

∈==
∪=

a
 (58)

 

Conversely, definite elements of X that cannot be part of Z must be included in Y, so that they are 
removed: 

 (X: ch. glb or Z: ch. lub) [ ]},,\{}\{
)\(

y

zxy

baYYXZYXZ
baaa

∈==
∪=

a
 (59)

 

If both arguments are the same set, their difference is empty: 

 (X or Y: bound) 
)},{},\{ ∅==== ZYXYXYXZ a

 (60) 

If X=Z, then we can remove the difference constraint, since we have already constrained Y and Z 
to be disjoint: 
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 (X or Y: bound) 
}{},\{ ZXZXYXZ === a

 (61) 

If arguments are disjoint, then the difference is the first set: 

 (X or Y: bound)
 

}{}\{
)),()((

XZYXZ
YXYgroundXground

==
∅=∩∨

a
 (62)

 

If both arguments are ground, we can remove the constraint: 

 (X or Y: bound)
 

}{}\{
\),(),(

zZYXZ
YXzYgroundXground

==
=

a
 (63)

 

 
Elements of X must be present either in Y or in Z, since if such an element is not in Y then it is not 
removed and is forcefully in difference Z. Consequently; the universe of Y and Z limits X. As a 
costly operation, it is performed only once, on instantiation of Z: 

 (Z: ground) [ ]},,\{}\{
))((

baXYXZYXZ
bbbb

x

zyx

∈==
∪∩=

a
 (64)

 

 
Inferences on set bounds and corresponding rules of set difference constraint are depicted in Table 
6.3, similarly to the previous two sections. 

 
Effect 

Change ax bx ay by az bz 
 

ax   ax\bz   ax\by   59, 58 
bx         bx Z⊆ X 
ay         -(ay) Y $ Z 
by   by∪ bz   ax\by   64, 58 
az az     -(az)   Z⊆ X, Y $ Z 
bz   by∪ bz ax\bz     64, 59 
 Z⊆ X 64 59 Y $ Z 58 Z⊆ X, Y$Z Rules 

Table 6.3.  Set difference: cause-effect rules on set 
bounds 

Inclusion and disjointness constraints are posted by rule number 54 (when set difference constraint 
is told). 

Constraints involving cardinalities are: 
 
Cz ≥ Cx - Cy 

Cz ≤ Cx - #(ax∩ay) 

Cz ≤ #(bx ∪  by) - Cy 

corresponding to rules 54 to 57. 
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6.4  Implementation 

We used ECLiPSe with attributed variables to implement Cardinal, the set constraint solver with 
cardinality inferences based on the above rules. The attributes of a set variable are its domain and its 
cardinality together with lists of suspended goals, since we used the underlying predicate suspension 
handling mechanism. Note that ECLiPSe provides waking conditions such as a change in some 
domain, but the waking constraint does not know what exactly has changed (it only may know that 
it has changed somehow), which is a possible source of inefficiency. For instance, with constraint X 
⊆  Y, if element a is inserted in X, we know immediately that a must also be inserted in Y. 
Unfortunately, with ECLiPSe mechanisms we have to wake the constraint due to a change in X’s 
glb, and then the constraint must include the whole X’s glb in Y, since it does not know what are the 
new elements. This can be overcome with reactive changes as in [Zhou 2000]. Notwithstanding 
such limitations, good results were still achieved. 

The cardinality of a set is an integer variable to be handled by the ECLiPSe finite domain 
library. To represent the domain of set S as a set interval we need its bounds as and bs. Since as ⊆  bs, it 
is enough to store as as the definite elements of S, and the difference bs\as as the possible extra 
elements of S (both implemented as sorted lists). For efficiency reasons, the sizes of its two bounds 
are also stored. 

Set complement constraints take as arguments the universe and the input and output set 
variables. In general, constraints perform all the possible inferences when posted (interval-
consistency on the sets; arc-consistency on their cardinalities), while their subsequent maintenance 
only ensures arc-consistency on their bounds. The rationale for this is that it is worth spending 
more time trying to reduce domains, only if this effort is not done too often. 
 
6.4.1  Set Labelling 

Cardinal, as the majority of constraint solvers, is not complete, which means that even when 
constraint propagation is successful, CSP variables must still be instantiated in order to prove that a 
solution is possible (or not). Since set variables are represented by set intervals, we can split the 
search space in two (similarly to the usual way of handling intervals over reals) by a disjunction on 
the membership of a set’s possible extra elements. I.e. x ∈  bs\as either belongs or not to set S. 
Hence, at each such try (disjunction solving), the set domain is restricted either by adding x to as or 
by removing it from bs. This allows making a more active use of constraints during the search phase, 
avoiding instantiating the set directly to some element in the domain. Such direct instantiation of set 
variable S to a particular ground set s can be hard to succeed for large domains (usually the case, 
with set intervals), and if it fails, then only another constraint, S≠s, is derived, which hardly will 
restrict S (or any other variable) domain. This naïve labelling, generally, only succeeds after many 
failures. Conjunto implements set labelling as a recursive refine procedure over disjunctions of the 
form (x in S ; x notin S) for possible elements x of set S. This means that inclusion of x is always 
tried first. However, we realised that often a labelling strategy of first trying exclusion is more 
effective. Hence, in Cardinal, we implemented set labelling with an extra parameter (up or down) that 
indicates what choice to try first. When given value ‘up’, a set is labelled as in Conjunto, while for 
value ‘down’, choices are handled as (x notin S ; x in S), which is actually the default in Cardinal. 
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6.5  Results 

Gates are currently implemented based on two basic set operations alone; namely, complement (not-
gate) and binary intersection (and-gate). Exclusive set union (xor-gate) is not currently implemented 

as a basic operation, hence it is defined as “S1 ⊕  S2” ≡ )( 21 SS ∩ ∪ )( 21 SS ∩  = 

)()( 2121 SSSS ∩∩∩ . 
Our labelling strategy for circuit problems finds for the relevant output bits and S-buffers, the 

inputs they depend on. These are then labelled by assigning values (0 or u) to their cardinality. If 
successful, the rest of the circuit input is labelled. 

To assess the advantages of cardinality inferences, we took off inferences from Cardinal that are 
not implemented in Conjunto (i.e. rewrite rules regarding cardinality and other especial inferences, 
numbered 11 of set complement; 28 of set inclusion; 32 to 36 and 38 to 42 of set intersection). As 
mentioned in the introduction of this chapter, this simpler version is referred to as “Conjunto”. We 
then tried to solve the same problems for the standard ISCAS digital circuits benchmarks [ISCAS 
1985] using Cardinal and “Conjunto”. From a set of differentiation benchmarks created over these 
circuits [Azevedo and Barahona 1999], we randomly picked pairs of diagnoses to differentiate. The 
results are shown in Table 6.4 (times reported in seconds on a Pentium III, 500 Mhz). 

 
circuit Diag1 Diag2 Diff. “Conjunto” Cardinal Speed-up 

380gat/0 415gat/1 X 8.1 0.4 20.3 
431gat/0 428gat/1 √ 39.4 1.3 30.3 
431gat/0 419gat/0 √ 37.9 1.4 27.1 

c432 

428gat/1 419gat/0 X 24.0 1.0 24.0 
1541/1 1538/0 √ 24.2 3.2 7.6 
860/1 72/1 √ 156.3 1.3 120.2 

c1908 

72/1 71/0 X 194.9 1.0 194.9 
855/0 707/1 √ 4.1 6.1 0.7 
955/0 954/0 X 3482.8 2.4 1451.2 
855/0 707/1 √ 1.8 3.2 0.6 

c3540 

403/0 3544/1 √ 352.1 2.9 121.4 
5671gat/0 5537gat/1 √ > 86400 11.0 > 7854.5 
6288gat/1 6285gat/0 √ > 3600 8.9 > 404.5 

c6288 

813gat/0 6123gat/0 √ > 3600 8.9 > 404.5 

Table 6.4.  Experimental Results 

This table, with results for 4 ISCAS circuits, indicate the time that Cardinal and “Conjunto” needed 
to find a differentiating test pattern between Diag1 and Diag2 (marked as √) or to prove it is 
impossible (i.e. the faults are indistinguishable, shown as X). For example, the first line reports that 
the differentiation of gate 380gat stuck-at-0 from gate 415gat stuck-at-1, in circuit c432, took 8.1 
seconds in “Conjunto” and 0.4 seconds in Cardinal. 

Globally, it can be stated that Cardinal showed a speed-up of two orders of magnitude 
compared to “Conjunto” on this set of problems (and others we tried) although, as expected, the 
improvement was not uniform over all the tests. 

While for circuit c432 Cardinal showed a consistent speed-up around 25, for larger circuits the 
variation can be quite large. In circuits c1908 and c3540, the speed-up ranges from 0.6 to 1451.2, 
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Cardinal being more efficient in harder problems (specially those where there is no differentiating 
pattern between the two diagnoses). For the two instances in circuit c3540 where there was an easy 
solution for “Conjunto”, Cardinal was slower due to the extra inferences performed, and the times 
thus reflect this overhead. The extra computing effort may be largely compensated, as tests in c6288 
show, where Cardinal easily found a solution, whereas “Conjunto” had to be aborted in all three 
tests after one hour (one particular test was even kept running for one day of unsuccessful 
processing). Of course, the speed-up can be arbitrarily large as long as not enough propagation was 
achieved and we start labelling variables, since the execution time is exponential on the number of 
these variables. 

Due to all the especial inferences and list processing, we expected Cardinal to experience 
problems with larger circuits or in problems with many diagnoses. Also, since the general feeling is 
that, in practice, it is very costly to perform all the desired inferences over sets and their cardinalities, 
we tried to create another version with n-ary gates but with fewer inferences, which produced 
results that were midway between “Conjunto” and Cardinal. The fact is that Cardinal still managed to 
efficiently solve problems for the largest of the benchmark circuits (c7552), so no improvements 
were obtained by reducing inferences. 

 

6.6  Other Applications 

In this section we present other possible applications for Cardinal, together with experimental results 
and comparisons to other approaches. More complete results on the differentiation problem are 
also presented at the end of the section. Another general application, set covering, is discussed in 
section 6.7.3 when analysing Cardinal extensions. 

 
6.6.1  Steiner Triples 

The ternary Steiner problem of order n consists of finding a set of n.(n-1)/6 triples of distinct integer 
elements in {1,…,n} such that any two triples have at most one common element. It is a 
hypergraph problem coming from combinatorial mathematics [Lueneburg 1989] where n modulo 6 
has to be equal to 1 or 3 [Lindner and Rosa 1980], and which has recently been addressed in 
computer science [Beldiceanu 1990, Gervet 1997]. One possible solution for n=7 (Steiner 7) is {{1, 
2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}. The solution contains 7*(7-1)/6 = 
7 triples. 

A CLP(Sets) approach easily models this problem by representing each triple as a set variable 
with cardinality 3, and constraining the cardinality of each intersection of a pair of triples to be not 
greater than 1. In contrast, an integer domain CSP model would require the triple of variables, and 
far more constraints, in addition to not being so declarative. Furthermore, since set elements are not 
ordered, much symmetry that could occur in the integer approach is naturally eliminated with set 
variables. 

Thus, for Steiner n, we declare n.(n-1)/6 set variables with domain [{},{1,…,n}]3 and, for each 
pair S1, S2 of such variables we impose #(S1 ∩ S2) ≤ 1. Table 6.5 presents the results (seconds to 
find a solution) obtained with this model for Cardinal and our version of Conjunto in a Pentium 166. 
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For Steiner 7 and 9 the number of triples are, respectively, 7 and 12. 

Steiner Triples “Conjunto” Cardinal
7 7 0.72 0.43
9 12 356.35 213.49

Table 6.5.  Steiner triples results 

Note that the complexity grows exponentially with n and Beldiceanu [1990], using CHIP and global 
constraints, does not present results for n=9. 

An improvement for this particular problem, which we did not implement but may drastically 
reduce computation for large n’s [Gervet 1997], consists in constraining each element to belong to 
at most (n-1)/2 triples. This can be done during labelling by a simple ‘occurs-check’ when adding an 
element to a set. This check is justified since there can be no two equal elements in two triples, i.e. 
no equal pairs. With the {1,…,n} domain, there are at most n-1 distinct pairs containing element i 
and since a triple containing i forcefully contains 2 such pairs, we reach the maximum of (n-1)/2 
triples containing i. 

 
6.6.2  Golfers 

The golfers tournament (or social golfer) problem was proposed in 1998 by Warwick Harvey 
(described on the web in [Gent and Walsh 1999]) after a question posted to sci.op-research. It is a 
generalisation of the problem of constructing a round-robin tournament schedule, where the 
number of players in a "game" is more than two. 

A particular goal, for 32 players in 8 groups of 4 each week, is to set up the foursomes so that 
each person only golfs with the same person once, and that the number of weeks to play is 
maximised. The optimal solution for 32 golfers is not yet known, but since a golfer plays with 3 new 
people each week, the schedule cannot exceed 10 weeks. 

Cardinal can find a solution for 9 weeks by declaring 9 times 8 set variables. Let Si,j refer to  the 
set variable corresponding to week i (i ∈  {1..9}) and foursome j (j ∈ {1..8}). The constraints are 
thus: 

Si,j::[{},{1,…,32}]4 

}32,...,1{, ,U
j

jiSi =∀  

1)(#,, 2,21,12121 ≤∩≠∀≠∀ jiji SSjjii  

Each variable is a foursome of golfers and the union of the 8 foursomes of a week is the whole set 
of 32 golfers. The constraint that two players cannot meet twice is assured by picking each pair of 
foursomes of different weeks, and forcing the cardinality of their intersection to be less or equal 
than 1. 

On a Pentium II / 450Mhz Cardinal under Linux found a solution in 38 seconds while Conjunto 
required 44 seconds. Note that this experiment was conducted with the real Conjunto solver, not our 
version of it. 
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6.6.3  Warehouse 

The warehouse problem is an optimisation problem consisting in deciding which warehouses to 
build from a set of known locations, so that a given set of customers is served with the minimum 
cost. There is a cost per customer being delivered from a specific warehouse, whereas the cost of 
building a new warehouse is constant and unique: 50000. 

A particular instance of this problem, with 20 customers and 19 warehouses, is shown in Table 
6.6, with the optimum solution stressed (built warehouses in bold, deliveries shaded) 

 
 1 2 3 4 5 6 7 8 9 10 

Roissy 68948 15724 24300 4852 40950 66330 39698 45895 5519 53433
Orly 68948 8634 24300 4852 40950 66330 39698 23975 4387 53433
Lille 68948 17850 12600 4852 78390 66330 39698 45895 9481 53433
Nancy 68948 17850 24300 2817 31590 66330 39698 45895 9481 53433
Lyon 35101 23520 60300 4852 16380 34650 15998 23975 9481 21533
Rouen 68948 16433 24300 6104 40950 66330 39698 45895 4387 53433
Toulouse 24524 46200 60300 10486 40950 13860 14813 18495 5519 21533
Montpellier 24524 46200 60300 10486 31590 24750 8295 23975 9481 19938
Bordeaux 35101 23520 60300 10486 40950 26730 20738 9590 4387 27913
Nantes 68948 17850 60300 10486 78390 34650 39698 18495 2547 53433
Marseille 26639 46200 60300 10486 31590 26730 14813 23975 9481 11165
Nice 35101 46200 60300 10486 31590 34650 15998 45895 9481 19938
Dijon 68948 17850 31500 4852 29250 34650 20738 45895 5519 27913
Rennes 68948 17850 31500 10486 78390 66330 39698 23975 4104 53433
Tours 68948 17850 31500 6104 40950 34650 20738 18495 4387 53433
Orleans 68948 15724 24300 4852 31590 34650 20738 23975 4387 53433
Chalons 68948 16433 24300 4539 40950 66330 39698 45895 5519 53433
Clermont 26639 17850 60300 6104 29250 26730 15998 18495 5519 21533
Annecy 35101 23520 60300 4852 28080 34650 15998 45895 9481 21533

 
 11 12 13 14 15 16 17 18 19 20 
Roissy 47235 13125 138176 106993 55408 55786 16847 27780 4278 9672
Orly 47235 13125 159783 123723 47915 93864 16847 24308 3983 9005
Lille 47235 14175 181390 140454 62900 106556 19125 31253 4573 12340
Nancy 47235 18375 181390 140454 62900 106556 19125 31253 4573 12340
Lyon 19035 18375 239008 185069 82880 140403 25200 31253 4573 9672
Rouen 47235 7350 166985 129300 57905 98095 17607 28938 4573 9672
Toulouse 24675 35175 469480 363528 162800 275792 49500 77553 5753 12340
Montpellier 19035 35175 469480 363528 162800 275792 49500 77553 5753 12340
Bordeaux 47235 35175 239008 185069 82880 140403 25200 40513 5753 9672
Nantes 47235 14175 239008 140454 82880 140403 19125 40513 4573 9672
Marseille 17625 35175 469480 363528 162800 275792 49500 77553 9883 22345
Nice 9870 35175 469480 363528 162800 275792 49500 77553 9883 22345
Dijon 24675 18375 181390 140454 62900 106556 19125 31253 4573 9672
Rennes 47235 14175 181390 140454 62900 106556 19125 31253 4573 9672
Tours 47235 14175 181390 140454 62900 106556 19125 31253 4278 8671
Orleans 47235 14175 166985 129300 57905 98095 17607 28938 2655 8671
Chalons 47235 14175 166985 129300 57905 98095 19125 28938 4573 9672
Clermont 24675 18375 239008 185069 62900 140403 25200 31253 4573 9672
Annecy 19035 35175 239008 185069 82880 140403 25200 40513 5753 12340

Table 6.6.  Delivery costs of warehouse problem 

An ILP model of this problem uses nineteen 0-1 variables Wi to express whether warehouse i (i ∈  
{1..19}) is built or not. Twenty customers variables Cj take {1..19} as integer domain, meaning that 
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customer j (j ∈  {1..20}) is served by warehouse Cj with cost given by cost(j,Cj) as the respective value 
of the costs table. The cost we want to minimise is then 

Cost = 50000*∑i Wi + ∑j cost(j,Cj) 
 
A set model uses a single set variable Ws for the built warehouses, with an empty glb and a lub 
consisting of all warehouses {1..19}. Customer deliveries may also be modelled as the 20 integer 
variables Cj of ILP. The number of warehouses in the cost function is now simply #Ws instead of a 
sum of 19 variables. 

 
Implementation of these models in ECLiPSe use built-in constraints element/3 and sumlist/2 to, 
respectively, retrieve delivery costs and sum them. Since we want to minimise costs, we start 
labelling by trying to eliminate warehouses (assign 0 to Wi variables, or reduce lub of Ws). As soon as 
we decide not to build warehouse i, it must be removed from the domains of Cj. This is assured, for 
each customer j, by constraint occurrences(i,Cj,0) in ILP, or by Cj::lub(Ws) in the sets model. Delivery 
costs are labelled by picking the minimum value of the table column for each customer. 

The minimum cost is 730567 with warehouses built in Roissy and Montpellier. The solution 
given by the sets model is Ws={1,8} (or {Roissy, Montpellier}), which is more natural than the ILP 
solution for 19 variables (1000000100000000000). The program is also more declarative in 
CLP(Sets). We tested this problem for ILP, Cardinal, “Conjunto” and the real Conjunto on a Pentium 
III / 500Mhz, all of them reaching and proving the optimum in about 55 hundredths of a second. 
We first notice that set constraint programming achieved the same result as ILP. Comparing the 
different set solvers, for this problem where cardinality was not particularly important, Cardinal 
behaved as “Conjunto”, thus showing no overhead for cardinality inferences. “Conjunto” also 
behaved as the real Conjunto. (For equivalence, we implemented the labelling strategy, cf. section 
6.4.1, of refining down the warehouses in the Conjunto model, since it is not built-in.) 

 
 

6.6.4  Differential Diagnosis 

We have already shown in section 6.5 some results for the differentiation problem. In Table 6.7 we 
present more complete results for different set libraries over ECLiPSe with Linux on a Pentium II / 
450Mhz, obtained in the year 2000 during a stay in IC-Parc in cooperation with Joachim Schimpf, 
Carmen Gervet and Mark Wallace. The real Conjunto is tested together with Cardinal and fd_sets (a 
new optimised set library of ECLiPSe for integer sets, by the ECLiPSe team and Neng-Fa Zhou). 

Again we are trying to differentiate two diagnoses (Diag1 and Diag2) over the ISCAS circuits. 
Such a pair of diagnoses (each consisting of one or two stuck gates) can be differentiable (marked 
with √) or not (marked with X). Results are in seconds and ‘na’ values mean non-available results (i.e. 
aborted execution after hours of processing). As explained in the introduction of this chapter, 
Conjunto results are not very reliable since this solver was still ‘buggy’ at the time (shaded values 
represent tests where an incorrect solution was detected). Nevertheless, we think that these values 
provide us with an overall idea of the mean execution time of Conjunto over these problems. 
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circuit Diag1 Diag2 Diff. Conjunto fd_sets Cardinal 
380gat/0 415gat/1 X 12.0 7.3 0.4 
431gat/0 428gat/1 √ 7.0 4.4 0.4 
431gat/0 419gat/1 √ 7.0 4.4 0.4 
428gat/1 419gat/1 √ 9.7 6.1 0.5 
431gat/0 419gat/0 √ 6.9 4.4 0.4 

c432 

428gat/1 419gat/0 X 0.8 6.3 0.3 
od2/0 id2/0 √ 0.2 6.1 2.5 c499 

od2/0, od19/0 id2/0, od19/0 √ 0.3 6.1 2.5 
389gat/1 291gat/1 X 1.6 11.4 0.5 c880 

422gat/0, 850gat/0 422gat/0, 840gat/0 X 0.1 1.2 0.5 
1258gat/1 1339gat/0 √ 688.2 189.9 1.0 
162gat/0 1274gat/1 √ 968.0 0.7 1.1 

c1355 

1347gat/0 1315gat/0 √ 686.0 391.5 0.8 
1541/1 1538/0 √ 14.3 11.2 1.3 
860/1 72/1 √ 251.9 185.7 1.3 

c1908 

72/1 71/0 X 315.6 232.8 1.1 
96/1 221/0 √ 0.5 1.2 1.7 
217/0 216/1 X 37.3 22.3 1.4 
162/1 1467/0 √ 1.1 1.5 1.8 

c2670 

236/0 120/1 √ 0.5 1.2 1.7 
855/0 707/1 √ 0.5 1.4 2.2 
955/0 954/0 X 5579.1 3366.0 1.9 

c3540 

403/0 3544/1 √ na 335.3 2.3 
91/0 742/0 √ 6.6 5.9 3.5 
651/1 649/1 √ 7.7 6.6 3.5 

c5315 

649/1 1598/1 X 296.4 188.6 2.8 
5671gat/0 5537gat/1 √ na na 4.7 
6288gat/1 6285gat/0 √ na na 4.6 

c6288 

813gat/0 6123gat/0 √ na na 4.6 
5222/1 5221/1 X 16.9 150.9 5.6 c7552 
4772/1 330/1 √ 14.3 12.2 4.8 

Table 6.7.  Differentiation results over different set 
libraries 

As can be seen in the table, Cardinal is always able to find the solution in 0.4 to 5.6 seconds, taking 1 
minute to solve the whole set of 31 tests, while even fd_sets could not solve any differentiation for 
c6288, and for other circuits it can take 2 or 5 minutes or even an hour to solve a single test. 

To compare the performance of our set model with the one using an 8-valued logic presented 
in Chapter 4, we ran the same set of differentiation tests, this time on a Pentium 4, 1.7 GHz, 512 
Mb RAM, using ECLiPSe Prolog 5.1 (Tcl/Tk version) under Windows 2000. 

Both versions use the ITBS-Path heuristic described in section 4.9, with the difference that when 
using sets it is the cardinality that is labelled (with value 1) for each signal in the chosen path. 
Although generally faster, the 8-valued logic model required about 74 seconds to solve all tests, 
while Cardinal required only 23 seconds. This was due to a single test in circuit c6288, which took 
one minute solving, while Cardinal never needed more than two seconds for each test. 

For a more exhaustive comparison, we picked the smallest and largest ISCAS circuits, namely 
c432 and c7552, and executed the respective differentiation benchmarks (partitioning diagnoses into 
sets of equivalence classes) as described in section 4.7, to obtain the results of Table 6.8, where total 
time for each benchmark is shown in seconds for both solvers. 
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 N NC ND 8V Sets 
b432_a_1 4 1 3 0.09 0.33
b432_a_2 6 5 11 44.00 3.78
b432_b_1a 3 2 2 0.08 0.30
b432_b_1b 2 2 1 0.06 0.17
b432_b_2 4 4 6 0.30 3.02
b432_c_1 2 2 1 0.03 0.19
b7552_a_1a 13 9 43 55.38 101.02
b7552_a_1b 13 9 43 53.86 112.63
b7552_b_1 13 12 73 223.75 179.47
b7552_c_1a 16 6 25 22.87 49.24
b7552_c_1b 14 7 29 30.12 61.95

Table 6.8.  Differentiation results with different solvers 

Again, N denotes the number of initial diagnoses; NC is the number of computed classes and ND is 
the number of differentiation tests required to obtain the final partition. The trend for the 8-valued 
logic solver (denoted as 8V) to be faster than using sets is confirmed in general but, interestingly, 
harder instances take longer time to solve. In fact, for c7552, 8V solves four benchmarks about 
twice as fast but requires much more time for b7552_b_1, for which Cardinal is faster. Also, with 
c432, 8V required 44 seconds to solve b432_a_2, while Cardinal solved it in less than 4 seconds. 

Thus, it seems that the extra complexity of set solving, although heavier for easier problems, 
produces more consistent results by being less dependent on phase transitions [Cheeseman et al. 
1991]. 

 
 

6.7  Cardinal Extensions 

In the previous sections we presented a new set constraint solver, Cardinal, that makes a number of 
special inferences over the sets cardinality to outperform other similar solvers. In fact, set 
constraints are a very natural and concise way to express problems such as set covering, partitioning 
or bin-packing. Furthermore, actively considering set functions such as the cardinality, allows to 
efficiently solve these problems and to express many optimisation goals. In this section we extend 
the constraint solving of Cardinal to set variables with attached set functions with special inferences 
over them [Azevedo and Barahona 2000b] and we exemplify its use with some applications. Hence, 
this section focuses on combinatorial search problems modelled in Cardinal. In particular, after 
diagnostic problems were considered where cardinality played a special role, we address set covering 
problems where the sets union function is used to make additional inferences thus pruning the 
search space. We then compare experimental results with other approaches to attest the 
expressiveness and efficiency of Cardinal. Possible extensions of Cardinal are also discussed for other 
applications such as timetabling and other scheduling problems. 
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6.7.1  Sets Union 

Inference capabilities over set functions, such as the cardinality, are particularly important when 
solving set problems where they play a special role. Other possible graded functions are the 
minimum and maximum of sets of numbers. Constraints over such functions considering integer 
ranges for these minima or maxima could also be very useful since problems with such constraints 
are very common. Of course, these functions may be applied to sets of elements of arbitrary type, 
not just numbers, as long as a valid ordering function is associated (like Prolog’s lexicographic @< 
/ 2 for 2 arbitrary terms). Therefore, there is no reason to consider only functions mapping sets to 
integers. An interesting function is the sets union mapping sets of sets to sets. This function maps 
set {{a,b},{a,f},{b,c},{g}} into set {a,b,c,f,g} and satisfies (for two sets of sets 21, ss ) 

UU 2121 ssss ⊆⇒⊆ . 

 
6.7.2  Generalisation to Sets Functions 

In extended Cardinal, a set variable X may be represented by [inX+possX]-Functions(X) where inX is its 
greatest lower bound (i.e. the elements known to belong to X), possX the set of extra elements still 
possible in X (possX and inX are disjoint and their union constitutes the lowest upper bound of X, i.e. 
the elements not excluded from X), and Functions(X) is a set of functions of X. Each element of 
Functions(X) is a pair f:V where f is the function identifier, and V a domain variable representing its 
value f(X). The currently possible functions are the cardinality (#) and the union (∪ ) functions. 

For example, [{a,g}+{b,c,x,y}]-{#:C} where C is a finite domain variable with 
domain {3,5}, represents a set variable with 3 or 5 elements, being two of them a and g and the rest 
coming from only {b,c,x,y}. 

The cardinality function is an integer variable, whereas the union function can be a normal 
Cardinal set variable with associated functions itself. 

 
 

6.7.3  Set Covering 

Set covering is an optimisation or satisfaction problem well studied in Operations Research (OR) 
and that often occurs in real life, as was the case with the minimisation problem in circuits (section 
5.2.1). 

Let us consider a simple satisfaction example in the usual 0-1 Integer Linear Programming 
(ILP) approach: 
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where each of the 4 xi is a 0-1 variable. 
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Intuitively, the goal is to find 2 columns in the 5x4 matrix, where we can find at least one value 
1 on each line. The solution is then x1 = 1 and x4 = 1. 

Given a set-covering problem, a set-based model should be quite natural. What we want to find 
is indeed simply a set of two columns so that all lines are “covered”. One way to represent this is: 

Cols ⊆  {1,2,3,4},    #Cols=2, 

{1,4} ∩ Cols ≠ ∅  

{1,2} ∩ Cols ≠ ∅  

{3,4} ∩ Cols ≠ ∅  

{2,4} ∩ Cols ≠ ∅  

{1,3} ∩ Cols ≠ ∅  
 

Now the solution is Cols = {1,4}. 
But Cardinal has yet another modelling solution to this problem by means of the implemented 

union function of a set variable. Although the cardinality function is always present with a finite 
domain variable, the union function is optional since it only applies to sets of sets. 

For the previous example with the union function, we can simply declare a set variable S as: 

S :: [{} + {{1,2,5},{2,4},{3,5},{1,3,4}}] - {#:2, ∪ :{1,2,3,4,5}} 

for a set with 2 yet unknown elements (sets representing the matrix columns), whose union cover all 
5 integers from 1 to 5 (representing the lines). Now, labelling this single variable yields the solution 
S = {{1,2,5},{1,3,4}}. 

Our sets approach with attached functions may thus look like a global constraint. In fact, 
reasoning with functions of set variables can capture in a very natural manner many classes of 
problems, without jeopardising efficiency. For the union function this is achieved with inferences 
triggered by a change in the set variable bounds, such as if set of sets X is known to include one 
more set s1 (i.e. inX grows by s1), then its union must contain s1, and if set s2 is definitely excluded 
from X (removed from possX), then the elements of s2 that were the only support for being present 
in the union must be removed from the union variable. Similarly, if the union function value is really 
given by a variable, so should the changes of its bounds affect the set variable it is attached to. The 
cardinality of the elements of X is also taken into account to possibly lead to early failures. 

In any of the two Cardinal models, only one variable is needed, in contrast to ILP that requires 
one variable for each “column”. Furthermore, with the union function of Cardinal only one 
constraint is needed to state that the universe must be covered, while ILP and the other Cardinal 
model require one constraint for each “line”. 

 
 

6.7.4  Results 

To test the different covering approaches, we turned to a digitally available OR library [Beasley 
1990] with set covering benchmarks and we picked file scpcyc06, a 240x192 problem matrix 
corresponding to a CYC problem (number of edges required to hit every 4-cycle in a hyper-cube). 

The number n of columns that cover all 240 lines ranges from 0 to 192, being 0 trivially 
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impossible and 192 trivially satisfied. We want to find the optimum (minimum) in between these 
numbers. For our test we tried to find a solution starting with n=192 and successively decrementing 
n until it was impossible (although faster solutions may be obtained with a Branch-and-Bound 
minimise predicate). Similarly, starting with n=0 we incremented it until obtaining a solution. For a 
given n, we imposed a time limit of a couple of hours, so that we could be left with a lower and an 
upper bound for the optimum. 

In addition to the three proposed models (ILP plus 2 set-based ones), we included for a fair 
comparison a Conjunto version, since the first simple set-based model could also be directly applied 
on it. All versions were tested under ECLiPSe producing the bounds reported in Table 6.9. 

 
 ILP Conjunto Cardinal 

(simple) 
Cardinal 

(with union function) 
lower 9 8 8 50 
upper  76 80 78 78 

difference 67 72 70 28 

Table 6.9.  Optimum bounds 

First of all we notice that Conjunto and Cardinal with the same model, achieve the same lower bound, 
but different upper bounds (Conjunto reaches 80 while Cardinal is able to reach 78. By the way, fd_sets 
also only reaches 80.) 

ILP presents better results than set solvers, but when using the union function of Cardinal (the 
most expressive version), although the upper bound was still larger than ILP’s (78 versus 76), the 
lower bound was significantly better (50 versus 9) and was easily reached thanks to the inferences 
on the cardinalities of the set elements. 

Cardinal with the union function produced the smallest range. Furthermore, considering all 
versions, we conclude that the optimum is in the range 50 to 76, with the lower bound coming from 
Cardinal with union, and the upper bound from ILP. 
 
Later, we also compared the different set solvers for two other set covering problems from the 
same library: scpe1 (50x500 matrix) and scpclr10 (511x210). While Conjunto, fd_sets and Cardinal 
behaved similarly, all three reaching the same bounds, Cardinal with the union function improved 
significantly the solutions, as shown in Table 6.10 with the reached ranges. 

 
 Simple sets With union fn. 
scpe1 3..12 5..6 
scpclr10 3..35 9..35 

Table 6.10.  Obtained ranges with or without union 
function 

Ranges obtained using the union function are much smaller (especially in scpe1). Differences in 
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execution times are also noteworthy: for instance, in scpclr10, value n=8 was proven impossible (thus 
obtaining 9 as best lower bound) in just one hundredth of a second (Pentium II / 450) while simple 
Cardinal required more than one hour to prove it for n=2 (yet it was almost twice as fast as Conjunto). 
For the upper bound, the difference is not so large, a solution for n=35 being found in 16 seconds 
with the union function, and in 106 seconds without it. 

Comparisons of results were all performed under the domain of (Constraint) Logic 
Programming, an area of interest to this thesis where we wanted to improve techniques for problem 
solving and which has already shown efficiency advantages in tackling a number of problems. 
Unfortunately, set-covering is not one of them   in fact, it is a typical problem to be solved with a 
specialised ILP tool (our ILP model relied on the underlying CLP(FD) solver to search for a 
solution with Boolean variables). For an idea on the difference of approaches and plattforms, we 
tried to solve the three set-covering problems with the ILP model on CPLEX [1988]. Scpe1 was 
then solved obtaining 5 as the minimum, and much better ranges were obtained for the other two 
problems, namely 54..63 for scpcyc06 and 24..25 for scpclr10, before execution aborted for running 
out of memory. 

While recognising that set covering is an old and very studied problem with very efficient 
specialised ILP tools to solve it, we reckon that set reasoning is a more natural approach to deal 
with it, and its application with set functions of Cardinal considerably improves other constraint 
approaches. We thus conjecture that a hybridisation of the two approaches with some interaction 
between solvers could add declarativity to efficiency and even improve it. 

 
 

6.7.5  Future Research 

In the previous section we have seen that it was very easy to express set covering problems using an 
attached union function to a set (of sets) variable S. To express a set-partitioning problem instead, 
we need to ensure that the elements of S are pairwise disjoint. This can also be seen as a set function 
concerning each pair <s1,s2> of elements of S (i.e. disjoint(s1,s2)). With such an extension, a set-
partitioning problem could also be expressed with a single variable declaration, this time with three 
attached functions (cardinality, union and pairwise disjointness). 

Hence, Cardinal can be extended with set functions over all pairs or tuples of a variable, in 
addition to including other optional functions such as the minimum or maximum and more 
complex ones, and possibly accept user-defined functions and inferences. 

Being able to express constraints over all pairs of a set variable, allows us to easily force a 
minimum distance between any two elements of a set of integers, for example. Of course, in this 
case, it is enough to force this distance between consecutive elements. Although a set is just a 
collection of unsorted elements, for efficiency reasons the system should provide facilities to 
consider consecutive elements and accept constraints between them (in fact, in practice Cardinal 
codes sets as sorted lists). With such facilities one can also easily force a maximum distance between 
two consecutive elements, which is extremely useful for scheduling applications. For instance, a 
timetable could be represented by a set variable where two consecutive courses should be close 
enough so that no big “holes” are generated. Then other constraints could be included such as the 
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whole duration of the timetable (the difference between the maximum and the minimum function) 
being among some values, and so on. 

Testing new set functions in Cardinal (or other set solver) on different types of problems thus 
seems to be an interesting research direction. Also, on the implementation level, a different and 
more efficient platform than ECLiPSe Prolog should be considered. 

 
 

6.8  Conclusions 

This chapter presented a new general set constraint solver, Cardinal, which efficiently solves CSPs 
modelled with sets by performing a number of inferences over cardinality of sets. Cardinal improves 
significantly existing solvers based on sets, which allows efficient solving of digital circuits problems 
as well as general problems over sets. In addition, the extension of Cardinal to reason on different 
set functions other than cardinality (e.g. the union function) showed that other applications could 
benefit from a simple set modelling with such a powerful solver, thus allying declarativity with 
efficiency. 

The next chapter tackles optimisation problems by developing another logic based on sets, and 
shows its appropriateness in local search to find improved solutions and speed-up reaching of the 
optimum. 
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C h a p t e r  7  
 
 
 

TEST PATTERN OPTIMISATION 

 
We have so far addressed a number of logics that extend Boolean logic with symbolic fault-
dependency values to encode simultaneously an increasingly number of circuits (with different sets 
of faults). A generalising logic was even developed to handle an arbitrary number of diagnoses by 
directly encoding them into sets. 

In this chapter we apply this notion of dependency encoding to handle an optimisation problem 
for TG (hence, we only need to model two circuits: the normal and faulty circuits). After presenting 
the problem (section 7.1) and describing two different model approaches for it in sections 7.2 (SAT) 
and 7.3 (5-valued logic), we discuss their limitations in handling optimality in section 7.4. In section 
7.5, we develop a more expressive extended logic for a single circuit, that, rather than keeping track 
of faults, keeps track of sources of unspecified values and their inversion parities. We subsequently 
add sets of dependencies on specified values to this logic, so as to model a number of alternative 
test vectors used in local search (section 7.6). In section 7.7 we compare the different models in 
terms of solution spaces, and in section 7.8 we combine the different logics into a single tool able to 
optimise test patterns. Finally, in section 7.9, we present results and compare them with an existing 
and efficient alternative tool before conclusions are summarised in section 7.10. 

 
7.1  Description 

As seen in Chapter 3, test patterns may be partially unspecified, allowing the compaction of test sets 
by merging compatible tests. In general, test vectors produced by a fault-oriented TG algorithm are 
partially specified, i.e. some input bits may have an unspecified or “don’t care” value denoted by an 
x. Two compatible tests can then be combined into one to reduce the size of the test set generated by 
an ATG system. For instance, tests 0x1 and x11 could be replaced by the single test 011 by a 
postprocessing operation referred to as static compaction. By contrast, in dynamic compaction every 
partially specified vector is processed immediately after its generation so that it will detect additional 
new faults [Goel and Rosales 1979-80, Abramovici et al. 1986], by assigning Boolean values to 
unspecified PIs. 

Usually, dynamic compaction produces smaller test sets than static compaction with less 
computational effort. Notice, however, that dynamic compaction cannot be used with a fault-
independent TG algorithm. 

Finding input test vectors that are less specified increases the probability of having more 
compatible tests so as to further reduce the length of the test set and, consequently, reduce the cost 
of future testing. Moreover, if a test set is to be implemented on-chip using Built-In Self-Test 
(BIST) logic, a larger test set may imply a larger chip area thus increasing the system cost. 
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For some systems, a single test may also be cheaper to apply if only a small number of inputs 
have to be specified. Hence, in test generation, less specified tests are preferred. Test pattern 
optimisation then consists in finding, for a given circuit diagnosis, a test pattern with the maximum 
number of unspecified inputs. 

 
 

7.2  SAT Approach 

After this problem was addressed in [Hellebrand et al. 1995] by using a completely heuristic 
approach, Flores et al. [1998a, 1998b] proposed what was apparently the first formal model for 
minimising the number of specified primary input assignments in test generation for single stuck-at 
faults (SSFs) in combinational circuits. Their Minimum Test Pattern generator (MTP) tool is based 
on an integer linear programming (ILP) formulation over a propositional satisfiability (SAT) model 
for test pattern generation. 

In this SAT approach for the fault detection problem, each circuit node v is represented by two 
variables, vG and vF, denoting its logic value in the good circuit and in the faulty circuit, respectively. 
In addition, another Boolean variable vS, referred to as the sensitisation status of node x, denotes 
whether vG and vF assume different logic values. 

To deal with unspecified inputs, a logic variable x (either the vG or vF above) should be ternary 
(with possible values coming from the set {0,1,u}). Each such variable is represented with two new 
variables v0 and v1 with the interpretation of Table 7.1. The two variables cannot both have value 1, 
but they can both have value 0 (for an unspecified value). 

 
v (v0, v1) 
0 (1, 0) 
1 (0, 1) 
u (0, 0) 

Table 7.1.  Double Boolean variables 

The sensitisation status variable vS is still kept as a simple 0-1 variable, holding value 1 when vG and 
vF differ and both are specified. 

The problem specification is then given by a set of Conjunctive Normal Form (CNF) formulae 
that must be satisfied to correctly find an assignment to PIs that detects the SSF. CNF formulae 
express, for the good and faulty circuits, each gate with double Boolean variables for its inputs and 
output. Other CNF formulae express conditions for the fault activation, propagation and detection, 

as well as node sensitisation and impossible assignments of values (e.g. 10 vv ∨ , to disallow the (1,1) 
pair). 

Subject to these formulae, the optimisation model for finding a minimum-size test pattern is 
completed with the ILP goal: 

minimise   )( 10 vv
PIsv
∑
∈

+  
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In the worst case, each signal line is associated with five Boolean variables (vG,0, vG,1, vF,0, vF,1 and vS), 
thus representing a potential search space equivalent to using a 25=32-valued logic. 

The SAT model as described in [Flores et al. 1998b] includes, for each node, the constraint that 
an unspecified good value implies an unspecified faulty value (i.e. (vG=u) ⇒ (vF=u)). This additional 
constraint is justified by the fact that the sensitisation status vS of a node can only assume value 1 
when both the values of the node in the good and faulty circuits are specified and assume different 
logic values. Although such extra constraints may ease the task of finding many solutions, they are 
nevertheless incorrect in the sense that feasible solutions are discarded, as can be shown in a simple 
example. In the circuit of Figure 7.1, where values for the normal and faulty circuits are shown in 
the form vn/vf, as a 9-valued logic, the test pattern t = 1x detects fault f = a s-a-0 but forces a node 
(the and-gate’s output) to have an unspecified value in the good circuit and a specified value (0) in 
the faulty circuit. These values (u/0 or u/1) are impossible in the SAT model, which converts them 
in u/u, therefore only accepting completely specified tests (10 and 11) for this circuit. 

 

a
1/0

u/0
1/0

u/ub
 

Figure 7.1.  Counter-example to a SAT model 
assumption 

So, in practice, this SAT approach can only model 7 values, which constitute a subset of the 9-
valued logic as shown in Table 7.2. 

 
 0/0 1/1 0/1 1/0 u/u 0/u 1/u u/0 u/1 

vG,0 1 0 1 0 0 1 0   
vG,1 0 1 0 1 0 0 1   
vF,0 1 0 0 1 0 0 0 (u/u forced) 
vF,1 0 1 1 0 0 0 0   
vS 0 0 1 1 0 0 0   

Table 7.2.  Comparison with 9-valued logic 

 
7.3  5-valued Logic 

In this section we examine the use of the 5-valued logic (Figure 3.6) already discussed in Chapter 3, 
to which we add the logic table for S-buffers in Table 7.3. 
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 Input S-buffer/0 
output 

S-buffer/1 
output 

0 0 D  
1 D 1 
D D 1 
D  0 D  
x x x 

Table 7.3.  S-buffers logic table 

The 5 values {0,1,D, D ,x} provide us with the basic information for each signal line regarding the 
goal of finding tests for a fault with the maximum number of unspecified inputs. Values 0 and 1 
represent constant Boolean values (in the normal and faulty circuits); values D and D  represent 
different specified values in the two circuits (1/0 and 0/1 respectively), thus modelling sensitisation; 
value x represents an unspecified value in either circuit, which allows us to count and maximise the 
number of unspecified PIs. The optimisation goal is then: 

maximise   #{i ∈  PIs: i = x} 

Table 7.4 shows the relation between the 5 values and the SAT encoding discussed above. The SAT 
model, while using 5 Boolean variables for each signal line, includes many impossible combinations 
that must be avoided by explicit formulae. The 4 specified values {0,1,D, D } of the 5-valued logic 
correspond to the 4 listed SAT combinations, while the unspecified value x includes all other 
possible combinations, i.e. those where vG=(0,0) or vF=(0,0), in which case vS=0. There are thus only 
3 such combinations, namely 00000, 01000 and 10000, since combinations 00010, and 00100 
correspond to an unspecified good value and a specified faulty value, which in the SAT model are 
converted into 00000, i.e. two unspecified values. The 5-valued logic makes no distinctions between 
partially or completely unspecified composite values v/vf, (0/u, 1/u, u/0, u/1 or u/u), treating them 
all as simply unspecified (x). 

 
 vG,0 vG,1 vF,0 vF,1 vS 
0 1 0 1 0 0 
1 0 1 0 1 0 
D 0 1 1 0 1 
D  1 0 0 1 1 
x other combinations 0 

Table 7.4.  Comparison with SAT encoding 

It is then possible to model the test pattern optimisation problem using less information with the 
more compact 5-valued logic. 
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7.4  Completeness 

When trying to minimise or maximise some function, the goal is, of course, to reach the optimum 
(usually within a specified limit, such as the maximum allowed computation time). If, however, a 
model is not complete it may fail to produce the best solution. It is thus important to study the 
search space corresponding to a specific goal (such as generating, for a target fault, a test with the 
minimum number of specified PIs) in the adopted model. The search space must not include false 
solutions and should ideally include the best possible solution. We thus want to know whether a 
model always allows the optimum to be reached (given enough time to explore the entire search 
space), i.e. whether the search space always includes the best possible solution. The exhaustion of 
the search space implies that the best solution (if one was found) is optimal only from the viewpoint 
of the model. In a complete model, it is definitely the best possible solution; otherwise, we may not 
ensure it. 

An (assumed) limitation of the described SAT model concerns test patterns that do not 
uniquely identify a set of sensitised paths as in the circuit of Figure 7.2 for the target fault b s-a-1. 
Assigning 0 to b, PI a may be left unspecified since both a=0 and a=1 allow the fault effect to 
propagate to the circuit output (see Figure 7.3). However, the sensitised path (shown in bold) 
depends on the value of PI a, since by itself the assignment of PI b is not enough to yield any 
sensitised path. 

 

a

b

 

Figure 7.2.  Test x0 detects b s-a-1 

0

0
/1 0/1

0/0 1/1 0/1

0/0

0/1

     

1

0
/1 0/1

1/1 0/0 0/0

0/1

0/1

 

(a)                                                                  (b) 

Figure 7.3.  Different sensitised paths for different 
assignments of PI: a) a=0; and b) a=1 

According to [Flores et al. 1998b], the SAT model, as well as any other test generation model based 
on the D-calculus/algorithm [Abramovici et al. 1990], is only able to detect tests which guarantee, 
given the specified PI assignments, propagation of the fault effect to a PO by defining one or more 
sensitised paths. In fact, the models above, while treating all unspecified values alike, are incomplete 
and unable to recognise valid tests whose sensitised path depend on the unspecified values (i.e. 
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although the error is assured to be propagated to some PO, its path is not yet certain). Figure 7.4 
shows this limitation with the failed attempt of the 5-valued logic to recognise the optimal test of 
the previous example. Since the output is unspecified (x) we cannot conclude that the test is valid (a 
PO should hold a d-signal D or D ). 
 

 

x

0
/1

_
D

x x

x

x

 

Figure 7.4.  5-valued logic cannot detect test x0 

Note that this example reproduced in Figure 7.5 for the more complete 9-valued logic, is still not 
optimally dealt with. The 0/u composite value at the output does not allow us to conclude that the 
test is valid since the value for the faulty circuit remains unspecified (u) instead of holding the 
required value 1. 

 

x

0
/1 0/1

u/u u/u 0/u

0/u

0/u

 

Figure 7.5.  9-valued logic cannot detect test x0 

 
7.5  Naming Unspecified Values for an Extended Logic 

To correctly handle many such cases, namely for circuits such as the one shown in Figure 7.2, one 
may extend the logic being used. In this section we propose a method that is able to find the 
optimal test pattern for such circuits [Azevedo and Barahona 2001]. 

The difficulty of the example of Figure 7.2 is the reconvergence of an unspecified value. The 
usual logics, either for a single circuit (e.g. 3-valued logic) or for both the normal and faulty circuits 
(e.g. 5-valued logic or that implicit in the SAT model), cannot detect that two unspecified values 
come from the same source (PI a) but have opposite values (i.e. different inversion parities). 
Therefore, acceptable test patterns may only be found with defined sensitised paths. 

To overcome this limitation we attach, to any unspecified value, information regarding its 
source id and its inversion parity p. An unspecified value is thus represented as a pair id-p. To handle 
the extra information of an unspecified value, the 3-valued logic (section 2.2) is extended as shown 
in the not-, xor- and and-tables of Figure 7.6. The negation of an unspecified value has therefore to 
output a different inversion parity, since it passes through one more inverter. Consequently, when 
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two unspecified values with the same source id meet at an and-gate with different inversion parities, 
its output must be zero, since any Boolean assignment to that source will translate into a 0 and a 1 at 
the and-gate’s inputs. Similarly, when two such signals meet at an xor-gate, the output is necessarily 
1. If, on the contrary, they have the same inversion parity then the output is 0 since the two signals 
have the same value. 

 
NOT   AND 0 1 id-0 id-1  XOR 0 1 id-0 id-1 

0 1  0 0 0 0 0  0 0 1 id-0 id-1 
1 0  1 0 1 id-0 id-1  1 1 0 id-1 id-0 

id-0 id-1  id-0 0 id-0 id-0 0  id-0 id-0 id-1 0 1 
id-1 id-0  id-1 0 id-1 0 id-1  id-1 id-1 id-0 1 0 

Figure 7.6.  Extended logic considering the inversion 
parity of an unspecified value 

The application of this logic to the normal and faulty circuits of Figure 7.2 with input vector v=u0, is 
shown in Figure 7.7. In (a), the normal circuit outputs value 0, while in (b) the faulty circuit (with PI 
b S-buffer s-a-1) outputs value 1 due to the conflicting unspecified values at the or-gate. Hence, since 
it yields two different and specified output values for the two circuits, test vector v=u0 indeed 
detects fault f = b s-a-1. 

 
 

a-0

0 0 0

a-1 0 0
a-0

0 /1 1 a-0

a-1 a-1 1

(a) (b)  

Figure 7.7.  Normal and faulty circuits with extended 
logic 

This logic extension is sufficient in cases with one unspecified PI (or possibly more, as long as 
unspecified values with different sources do not meet at some point in the circuit) or, more 
generally, when there is only one possible unspecified value source. To accept different sources of 
unspecified values, logic operations between them must be defined since they can meet at some 
gate. When, say, and-ing two such unspecified values idA-pA and idB-pB (with idA ≠ idB), the output Z is 
also unspecified. Since we want to keep an idZ-pZ structure for the unspecified output Z, and it is not 
correct to pass any of the inputs to the output as it depends on both inputs, we propose to assign to 
idZ the only possible unspecified source: the gate itself. And since it is the source, the inversion 
parity pZ must be zero, regardless of pA or pB (see Figure 7.8). 
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IdG-0IdA-pA
IdB-pB

IdG

 

Figure 7.8.  Anding unspecified values of different 
sources 

The and operation in this extended logic is now complete and is summarised in Table 7.5, 
remembering that it preserves the ACI (associative, commutative and idempotence) properties. 

 
A B Z=A.B
0 Arg 0 
1 Arg Arg 

Arg Arg Arg 
id-0 id-1 0 

idA-pA idB-pB idZ-0 

Table 7.5.  Conjunction of named unspecified values 

Returning to the circuit of Figure 7.2, for which we managed to find the minimum test pattern t=x0 
with the extended logic, we can make it more complex by turning PI a into a conjunction of two 
other unspecified values. Still, the fully extended logic easily checks that new test t2=xx0 detects b s-
a-1 and is minimum since b must be assigned with 0. Figure 7.9 represents both the normal and the 
faulty circuits with the extra and-gate. As before, the normal circuit outputs value 0, whereas the 
faulty circuit outputs the different value 1. 

 

a-0

0 0 0

a-1 0 0
c-0

d-0
a

        

a-0

0 /1 1 a-0

a-1 a-1 1
c-0

d-0
a

 

Figure 7.9.  Normal and faulty extended circuits 

Despite this improvement, if the same logical signal is obtained through different physical gates, the 
simple dependencies recorded in the values cannot capture this fact, and the model is not able to 
obtain different output values. This is shown in Figure 7.10, where the initial gate a is duplicated. 
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a-0

0 /1 1 b-0

a-1 a-1 w-0
x-0

y-0
a

a-0

0 0
0

a-1 0 0
x-0

y-0
a

b b-0 b-0b

w

 

Figure 7.10.  Limitation of the extended logic: faulty 
circuit output should have value 1 

Hence, if the conjunction a of the unspecified inputs diverges through another gate, as in Figure 
7.11 where the PIs take another and-gate before the reconvergence at the or-gate, then this logic is 
unable to determine that the final output is 1, leaving it unspecified due to the information loss in 
logic operations between different unspecified values. 

 

a-0 a-1c-0
d-0 a

b b-0

g-0g

 

Figure 7.11.  Limitation of the extended logic: final 
output should have value 1 

To correctly handle all such cases for an accurate optimality proof, one could have a complete 
Boolean solver for the unspecified values. Such values should be kept as Boolean formulae with no 
information loss so as to reach the correct solution as in Figure 7.12. This is, of course, more 
expensive and brings little practical benefit since similar example cases occur very seldom. 

 

cd -(cd)c
d

cd

1

 

Figure 7.12.  Possible Boolean reasoning for unspecified 
values 

Notice that the SAT model described in section 7.2 is insufficient despite its Boolean approach, 
needed for the unspecified values. The reason is that the SAT model, although using 2 Boolean 
variables, implicitly implements the 9-valued logic. 

 
7.5.1  Fault Detection Conditions 

Denoting by zn/zf the values of some bit z, under test t, when the circuit is normal and faulty (with 
fault f), the example of the previous section only discussed the case where an input pattern forces an 
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output bit z to take either values z=0/1 or z=1/0. Hence, t detects f if the following proposition 
holds: 

}1,0{}{}{, =∪∈∃ fn zzPOsz  
 
But unspecified normal and faulty values of a PO may still detect the fault, as in Figure 7.13, where 
if b=0 the output is 0/1 and if b=1 the output is 1/0, being thus always sensitised. Therefore, a test 
vector still detects a fault if one output bit takes either values w-0/w-1 or w-1/w-0, for some source 
w. 
 

b-0 / b-1b
a = 0

/1

 

Figure 7.13.  Output is sensitised regardless of b 

The fault detection condition may then be generalised to: 
 

)(, zfnotzPOsz xn =∈∃  
 
where notx(v) stands for the complement (not-gate) operation of value v over the extended logic (see 
Figure 7.6). 
 
Another, more involved, situation may include more than one sensitised output bit, as in Figure 
7.14. Here, one of the two output bits will be sensitised no matter the value of b. If b=0, the or-gate 
output will be sensitised to 0/1; If b=1, the and-gate output will be sensitised to 1/0. 
 

b-0 / 0

b-0 / 1

b

/0
a = 1

0/1  

Figure 7.14.  Different values of b sensitise different POs 

Therefore, the extended logic still detects a fault if two output bits take values w-0 / 0 and w-1 / 0 
(or any symmetric output, obtained by swapping the normal and faulty values, and/or swapping the 
0 and 1). Hence, if from two POs y and z, the 4 values {yn, yf, zn, zf} contain two specified Boolean 
values {B1, B2} and two unspecified values with the same source w with parities {P1, P2}, then it is 
sufficient that the 4 values {B1, B2, P1, P2} have an odd number of 1s. I.e. in general, the fault 
detection condition for two POs is: 
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1},,,,{},,,{,, 21212121 =⊕⊕⊕−−=∈∃ PPBBPwPwBBzzyyPOszy fnfn  
 
In addition, if we consider in the circuit two dummy outputs with values 0/0 and d-0/d-0, this 
condition comprises all the above cases. 

Exemplifying with a 0/1 PO (yn/yf = 0/1), with dummy output d-0/d-0 (zn/zf = d-0/d-0) 2 pairs 
of values are obtained where {yn, yf, zn, zf} contain 2 Boolean values (B1=0, B2=1) and two 
unspecified values with the same source d and inversion parity values P1=P2=0. Hence B1 ⊕  B2 ⊕  P1 

⊕  P2 = 1, i.e. our fault detection condition is set. 
Similarly, for a b-0/b-1 PO (yn/yf = b-0/b-1), dummy output 0/0 (zn/zf = 0/0) can be used to 

obtain 2 pairs of values where {yn, yf, zn, zf} contain 2 Boolean values (B1=B2=0) and two unspecified 
values with the same source b and inversion parity values P1=0 and P2=1, thus yielding again the 
fault detection condition B1 ⊕  B2 ⊕  P1 ⊕  P2 = 1. 

 
 

7.6  Local Search 

In the previous section we have studied a simple yet powerful logic to handle unspecified values. 
The use of a constraint solver over this logic implies large finite domains since any gate is a potential 
source for an unspecified value. Moreover, two inversion parity values are possible thus doubling 
the necessary domain size. Although a variable for a circuit PI may have only three values in its 
domain (the two Boolean values and its own id-0 as possible unspecified source), other variables for 
the successive gate operations along the circuit will have increasingly larger domains due to the 
many possible sources of an unspecified value. In addition, since two circuits (normal and faulty) 
must be simultaneously modelled for TG, domains must be extended to allow all possible 
combinations and the generalised fault detection condition just discussed would require a complex 
disjunctive constraint. Such large domains together with the disjunctive goal make constraint 
reasoning over them very demanding. However, it is straightforward to use this logic to simply test 
alternative solutions, namely those obtained by unspecifying one bit of some already known 
solution. 

An alternative to the constructive approach taken by constraint programming is therefore to use 
a repairing approach that changes slightly the solution and checks whether this modification still 
solves the problem. However, in addition to other problems (e.g. traps in local optima), this local 
search approach relies on a generate-and-test procedure, and may be very inefficient if there is no 
way to direct the changes into the most promising ones. 

 
7.6.1  A Multiple Extended Logic for Local Search 

Despite the positive features of the extended logic to check test patterns, its efficient use on local 
search depends on an efficient method to find which PIs in a current solution can be unspecified. In 
this section we develop one such method that takes advantage of this logic for local search over a 
test pattern in order to improve it by maintaining certain dependencies together with the logic 
values. Inspection of the output produced by an input test pattern (that is a solution), provides 
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information regarding the bits of such pattern that may change their value to x, thus improving the 
number of unspecified bits. 

The basic idea behind the method is quite simple: if a test t detects fault f, can some specified bit 
in t become unspecified while still detecting f ? To find such bit, one could try to unspecify a PI in t 
and check whether f is still detected. If this simulation does not succeed, one proceeds to the next 
possible PI, until an unspecifiable PI is found. Unfortunately, such procedure may become 
cumbersome if there are many possible PIs. 

Instead of trying to turn specified bits one at a time, it is possible to make them all possible 
candidates at start and, with a unique circuit traversal (i.e. linearly with the number of circuit gates), 
check the output to conclude which bits can be indeed unspecified. This is possible by adding 
dependencies to extended logic values as described below. 

 
Denoting the logic value of signal s after unspecification of PI i by s ∝  i, let us examine a simple and-
gate with 2 inputs x and y (Figure 7.15). When two 0’s are and-ed, the output z is 0 even if one input 
becomes unspecified (i.e. z = z ∝  x = z ∝  y = 0). For a 01 input combination, the output is still 0 as 
long as x remains specified (0), i.e. it depends on x. When and-ing two 1’s, the output 1 depends on 
both inputs since if any is unspecified so is the output. 

 

0
0
0 0

0
1 1

1
1

(a) (b) (c)

x
y

z z z

 

Figure 7.15.  Dependencies on a) 0, b) 1 and c) 2 
specified values 

In Figure 7.15 (b) also note that if x is unspecified, the output assumes the unspecified value of x 
with its source id and inversion parity 0 (z ∝  x = x-0). Whereas for the case of (c) the output is 
unspecified (as either x-0 or y-0) according to which of the inputs is unspecified. The three 
dependency cases may thus be represented as in Figure 7.16 where each output signal, in addition to 
the logic value, has attached a set of conditional unspecified values. 

 

{}:00
0

{x/ x-0}:00
1

{x/ x-0, y/ y-0}:11
1

(a) (b) (c)

x
y

z z z

 

Figure 7.16.  Sets of dependencies 

A circuit signal s is now represented in the extended form Set:Value, where Value is, as before, a 
Boolean value (0/1) or an unspecified value in the form id-p. Set is a set of conditional values where 
each member idPI/ValuePI means that if PI idPI alone is unspecified, then the physical circuit signal 
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assumes a different value ValuePI that may also be Boolean or unspecified (s ∝  idPI = ValuePI). 
Conversely, if no idPI/ValuePI is a member of Set, then turning solely PI idPI unspecified alone does 
not affect this circuit signal which assumes value Value in both cases (s = s ∝  idPI = Value). 

Actually, since ValuePI ≠ Value, ValuePI can never be a Boolean value   it will always be 
unspecified due to the following 

Lemma: When a bit in some input vector t is unspecified, signal lines of the circuit may either 
be unaffected or also become unspecified ( pidispidsissi −=∝∃∃∨=∝∀∀ ,, ). 

The rationale for this is that no extra information is added to the circuit. On the contrary, the circuit 
becomes less specified, hence no opposite signal values may arise from the fact that a bit has 
become unspecified, i.e. a signal with value 0 (1) cannot become a signal with value 1 (0). 

The proof is easily obtained by contradiction: let us assume that unspecifying PI a (formely 0) 
flips signal s from 0 to 1. Hence, s would assume value 1 with a unspecified, therefore s is 
independent of a, i.e. it will assume value 1 whatever the value of a may be. But then, even for the 
former 0-value of a, s should take value 1. But this is impossible since we had s=0 with a=0. 

The reasoning is identical for different initial Boolean values. 
 
Therefore, if the Value of s is unspecified in Set:Value, then ValuePI will also be so (although possibly 
with a different source id). If Value is specified (Boolean) then either ValuePI is unspecified or it 
assumes the same value of Value. Of course, in this latter case it will not be in Set, since only 
different values are registered. So, Set only contains conditional unspecified values. 

 
7.6.2  Operational Semantics 

Let us now use signals in this extended form with dependencies to improve local search. Each signal 
in the form Set:Value represents the extended logic value under the initial test t (given by Value) and 
a set of extended logic values for different input vectors (resulting from the unspecification of some 
PI in t). Hence, this is a compact representation for circuit signals under t and under all input 
vectors resulting from the unspecification of any single PI in t. 

To compute all these signals, it is necessary to consider PIs with their initial value taken from t. 
If a PI b is specified with Boolean value Value then it is represented by {b/b-0}:Value since it 
depends on itself being specified, otherwise Value is already unspecified and is then represented by 
{}:b-0. 

Output signals of the successive gates must be obtained by finding for each gate its output logic 
value not only under t (as before), but also for all conditional inputs, i.e. for each idPI such that 
idPI/ValuePI is a member of the set of dependencies of at least one of the gate inputs. Each gate then 
outputs an initial value (the one under t) together with a set of conditional values. This computation 
must be performed for both the normal and faulty circuits to check the fault detection. 

Hence, if in some circuit a gate performs operation op over inputs, say, x and y to output z (i.e. z 
= x op y), then for each PI i we need to know the value of z ∝  i. 

We first notice that z ∝  i = (x op y) ∝  i = (x ∝  i) op (y ∝  i), i.e. ∝  is compositional with respect to 
op. Therefore, 
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•  if both x and y are independent of i, so is z and there is no need to explicitly compute z ∝  i; 

•  otherwise (x ∝  i) op (y ∝  i) is computed to yield z ∝  i and if it is different from the original value 

of z, then i/ z ∝  i is placed in set Setz of conditional values of z. 

Note that value x ∝  i (y ∝  i) is either present in Setx (Sety) in the form i/ x ∝  i  (i/ y ∝  i) or is the 
same as the original x (y). 

 
The not-operation is very easy to compute with such logic signals, being the negation (in the 
extended logic) of the original value and any conditional value in the input set, as shown in Table 
7.6. 

 
NOT  
S : 0 {i/id-0: i/id-1 ∈  S} ∪  {i/id-1: i/id-0 ∈  S} :1 
S : 1 {i/id-0: i/id-1 ∈  S} ∪  {i/id-1: i/id-0 ∈  S} :0 

S : idx-0 {i/id-0: i/id-1 ∈  S} ∪  {i/id-1: i/id-0 ∈  S} : idx-1 
S : idx-1 {i/id-0: i/id-1 ∈  S} ∪  {i/id-1: i/id-0 ∈  S} : idx-0 

Table 7.6.  Not-operation for local search 

Or, more compactly, the negation of a signal S:V is given by {i/id-B: i/id- B  ∈  S} : notx(V), for any 
Boolean B. Hence, the original value is negated, and the encoded dependencies change parity. 

The general rule for computing a gate output in this logic is to find all values for the relevant 
input vectors (the original one and the ones with a PI turned into unspecified). This procedure is 
exemplified with the and-operation in the pseudo-code of Figure 7.17. 

 
Procedure And (In: Sx:Vx,Sy:Vy, Out: Sz:Vz); 
 Vz Å Vx and Vy % compute original output value. 
 Sz0 Å {}   % start with empty set. 
 for each i such that i/_ ∈  Sx ∪  Sy do   % conditional values. 
  i/VXi ∈  Sx or else Vxi Å Vx % x ∝  i 
  i/VYi ∈  Sy or else Vyi Å Vy % y ∝  i 
  VZi Å VXi and VYi % z ∝  i 
  if VZi ≠ Vz then Sz0 Å Sz0 ∪  {i/VZi} 
 end for 
 Sz Å Sz0 
end Procedure 

Figure 7.17.  And-operation procedure for local search 

Additionally, we present in Table 7.7, for the and-operation, computation rules for the set of 
conditional values SetZ of  Z = X and Y  as dependent on the original extended logic values of X and 
Y. Since not all logic values have to be computed and conditional values equal to the original one 
are not explicitly considered, when translating the general rule to handle signals in the form Set:Value 
the result is a table of different cases for different inputs. In this table, inversion parity values P are 
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Boolean; SX (SY) is the set of conditional values of X (Y); z is the id of the and-gate; and SX ⊕  SY  

represents the exclusive union of sets SX and SY, which is given by SX ⊕  SY = (SX ∪  SY) \ (SX ∩ SY) 

= (SX \ SY) ∪  (SY \ SX). Wherever unspecified sources idX and idY occur, they are assumed to be 
different. 
 

original X original Y SetZ of  (Z = X and Y) original Z
0 0 {i/id-P: i/id-P ∈  SX ∩ SY} ∪  

{i/z-0: i/idX-PX ∈  SX ∧  i/idY-PY ∈  SY} 
0 

1 1 {i/id-P: i/id-P ∈  SX ∧¬∃ idy,Py i/idY-PY ∈  SY} ∪  
{i/id-P: i/id-P ∈  SY ∧¬∃ idx,Px i/idX-PX ∈  SX} ∪  

{i/z-0: i/idX-PX ∈  SX ∧  i/idY-PY ∈  SY} 

1 

0 1 {i/id-P: i/id-P ∈  SX ∧¬∃ idy,Py i/idY-PY ∈  SY} ∪  
{i/z-0: i/idX-PX ∈  SX ∧  i/idY-PY ∈  SY} 

0 

0 idY-PY {i/id-P: i/id-P ∈  SX ∩ SY} ∪  
{i/idY-PY: i/idY-PY ∈  SX ∧¬∃ id,P i/id-P ∈  SY} ∪  

{i/z-0: i/idX-PX ∈  SX \ SY} 

0 

1 idY-PY {i/id-P: i/id-P ∈  SX ∩ SY} ∪  
{i/id-P: i/id-P ∈  SY ∧¬∃ idx,Px i/idX-PX ∈  SX} ∪  

{i/z-0: i/idX-PX ∈  SX \ SY} 

idY-PY 

idX-PX idX-PX {i/id-P: i/id-P ∈  SX ∩ SY} ∪  
{i/z-0: i/id-P ∈  SX ⊕  SY} 

idX-PX 

idX-0 idX-1 {i/id-P: i/id-P ∈  SX ∩ SY} ∪  
{i/z-0: i/id-P ∈  SX ⊕  SY} 

0 

idX-PX idY-PY {i/id-P: i/id-P ∈  SX ∩ SY} ∪  
{i/idX-PX: i/idX-PX ∈  SY ∧¬∃ id,P i/id-P ∈  SX} ∪  
{i/idY-PY: i/idY-PY ∈  SX ∧  ¬∃ id,P i/id-P ∈  SY} 

z-0 

Table 7.7.  Z = X and Y  in local search 

As an example, the case in the last line of the table occurs for unspecified inputs of different sources 
idX and idY, in which case the normal (original) output is, in the extended logic, unspecified z-0. The 
output signal may assume one of three possible different extended logic values (always unspecified) 
under the unspecification of PI i: 

1. id-P  (for some id different from idX, idY or z) when i/id-P is a member of both SX and SY (i.e. x 
∝  i = y ∝  i = id-P), in which case z ∝  i = (x ∝  i) and (y ∝  i) = id-P and id-P = id-P. 

2. idX-PX (same as original value of X) when i / idX-PX is a member of SY (i.e. y ∝  i = idX-PX), and 

there is no i/id-P in SX (i.e. x ∝  i = idX-PX , as originally), in which case z ∝  i = (x ∝  i) and (y ∝  i) 
= idX-PX and idX-PX = idX-PX. 

3. idY-PY (same as original value of Y) in the symmetric situation (swapping X with Y in the 
previous case). 

The union of all such conditional values yields SetZ, used in a logic signal in the form SetZ : z-0 to 
improve local search. 
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7.6.3  Improving Local Search 

In Figure 7.18 we return to the example of Figure 7.2 (that other logics could not optimise) with test 
t=00 that detected b s-a-1 by entailing a 0/1 output. Values for the normal and faulty circuits (b s-a-
1) are shown, respectively, above and under each line. 

 

/1

{b/b-0}:0a=0 {a/a-0}:0

{}:1
b=0

{a/a-0}:0

{b/b-0}:0
{b/b-0}:0

{b/b-0}:0

{b/b-0}:0

{a/a-0}:0

{a/a-1}:1
{a/a-1}:1

{}:1 {}:0

{a/a-1}:1

 

Figure 7.18.  Local search logic: PI a may be made 
unspecified 

The faulty circuit output always takes value 1 since if a were unspecified the or-gate inputs would be 
the opposite unspecified values a-1 and a-0. The initial normal 0 output is however dependent on 
whether b is specified or not. Hence, the fault is detected even if a is unspecified since the detection 
condition only depends on b (if b is unspecified the output is b-0 / 1). Therefore, the test can be 
improved to t’=x0 with the output value remaining as 0/1. 

In general, a test t for fault f in circuit c can be improved by unspecifying PI a if output vector Z 
∝  a still satisfies the fault detection condition. By inspecting the circuit POs with their dependency 
sets after local search, one may conclude that a PI may be made unspecified with no further tests. 

Since the original test t already detected fault f and the unspecification of a PI does not bring 
any new information, we may just look at the originally sensitised POs (i.e. those with a 0/1 or 1/0 
original value): 

• If for one such PO z, the conditional value a/Va is not a member of neither 
dependency sets (normal or faulty), then zn = zn ∝  a and zf = zf ∝  a (or, more 
compactly, z = z ∝  a) and PI a may therefore be made unspecified 

• If both zn and zf depend on a but remain opposite due to the same source of unspecification 
with different inversion parities, we have the w-0/w-1 or w-1/w-0 case (i.e. zn ∝  a = notx(zf ∝  a)) 
and PI a may also be made unspecified. 

• If only one of zn and zf depends on a, there is still a chance that f may be detected after the 
unspecification of a, but then we have to look at other POs to check whether a situation such 
as the one in Figure 7.14 occurs. Then, after unspecification of a, zn/zf forms a pair of an 
unspecified value w-P1 and a Boolean B1, and the two values yn and yf of another PO y must also 
include an unspecified value with the same source w-P2 and a Boolean B2, to satisfy B1 ⊕  B2 ⊕  

P1 ⊕  P2 = 1 as explained in the previous section. These values of y ∝  a are easily obtained by 
direct inspection of the corresponding dependency sets. 

This latter situation is exemplified in Figure 7.19 (corresponding to b=0 in Figure 7.14) with a local 
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search over test t=10. Here, PO z was originally sensitised but is dependent on both PIs a and b. 
However, as indicated in the local search logic values, after unspecification of b we obtain 
composite values b-0 / 0 and b-0 / 1 for y and z, respectively. Hence, test t’=1x still detects fault f = 
a s-a-0 due to the general fault detection condition where for POs y, z, we have for the 4 values {yn, 
yf, zn, zf}, 2 Boolean values (B1=0, B2=1) and two unspecified values of the same source (b-0, which 
means P1=P2=0), yielding B1 ⊕  B2 ⊕  P1 ⊕  P2 = 0 ⊕  1 ⊕  0 ⊕  0 = 1, thus assuring detection of f. 

 

y

z

b=0

/0
a = 1 {a/a-0}:1 {a/a-0}:1

{}:0

{a/a-1}:0
{}:1

{b/b-0}:0

{b/b-0}:0
{}:0

{a/a-1,b/b-0}:0
{}:1

{b/b-0}:0
{a/a-0}:1

 

Figure 7.19.  PI b can be made unspecified since either y 
or z will be sensitised 

7.6.4  Multiple unspecification 

The logic with dependency sets presented above allows one to conclude if a test can be improved 
by unspecifying one single PI. Let us now examine how it can be used when more than one PI can 
be made unspecified. 

In the example of Figure 7.20, representing ISCAS circuit c17, test t=00000 detects fault f= 
23gat s-a-1 (last PO nand-gate). Local search over t produces the displayed logic values for the normal 
and faulty circuits. When the normal and faulty values of a signal line are the same, only one value is 
displayed; otherwise, they are shown above and under the line as in the previous example. 
Computationally, it is also enough to perform just one logic operation for any gate as long as each 
of its inputs has two equal values (normal and faulty). Here, only the S-buffer PO presents different 
values and, by looking at the initial (0/1) and conditional values, we conclude that under this test t, 
only PIs b and e are crucial and cannot be made unspecified and still detect fault f. Hence, any other 
PI (a,c, or d) may be made unspecified thus improving the test. 

23gat

a  0

b  0

c  0
d  0

e  0

{a/a-0}:0

{b/b-0}:0

{c/c-0}:0

{d/d-0}:0

{e/e-0}:0

{b/b-1}:1

{b/b-0}:0

{e/e-1}:1

{b/b-0,e/e-0}:0

{}:1

{}:1 {}:1/1

 

Figure 7.20.  PIs b and e cannot be made unspecified in 
test t=00000 
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It is then assured that unspecifying one of PIs a, c, or d in t=00000 produces a still valid test (x0000, 
00x00, or 000x0) for fault f. Unspecifying more than one of these PIs may also produce valid tests, 
but this is not guaranteed. For a clearer understanding of the logic for local search, let us check g’s 
output in Figure 7.21 with the extended logic for the previous example where all 3 candidate PIs a, 
c, and d were simultaneously unspecified. Again, only one logic value is displayed when the values 
for the normal and faulty circuit are the same. It may seem strange that the value here is the 
unspecified g-1, whereas in Figure 7.20 it was the specified value 1 with no conditional values. The 
reason for being an “unconditional” value 1 is that it means that unspecifying one of the PIs does 
not change its value. When, as in the case of Figure 7.21, more than one PI is unspecified on the 
initial test, values cannot be guaranteed (even if independent of any single PI of those unspecified). 
Therefore, such tests with multiple unspecification are not guaranteed to still detect the fault. 
 

a   x

b   0

c   x
d   x

e   0

a-0

c-0

d-0

1

g-0

1

0/1

g-1

h-1
/1

g

h

 

Figure 7.21.  Verification of improved test t’=x0xx0 

One can iteratively improve the test by unspecifying one PI and then perform another local search 
over the improved test to check whether at least one more PI can be made unspecified, and so 
forth. However, all candidate PIs can often be simultaneously made unspecified and the optimally 
improved test remains valid since path sensitisation remains independent of all those input values 
together, as shown in Figure 7.21. The S-buffer output is the only one to present different values 
(0/1) and since they are specified at a PO, the fault is still detected. So, when there is a number of 
candidate PIs, one can use the heuristic of unspecifying all of them and verify whether the resulting 
test is still valid (this proved to be a good heuristic on experiments, described in section 7.9, where 
up to around 30 PIs could often be simultaneously made unspecified, thus avoiding a lot of local 
search). 

Hence, although computation of outputs given the inputs of a circuit is not very demanding, 
significant efficiency improvements can be obtained by directly checking the test with all possible 
unspecified PIs, since it is not necessary to go through the circuit over and over again. If it is 
verified that the test does not detect the fault, one can still try with half the possible PIs and then, if 
it is a valid test, perform another local search, otherwise halve the PIs again until only one is 
possible. 
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7.7  Solution Spaces 

The models with the logics studied so far are all incomplete when dealing with unspecified values 
since feasible solutions may be discarded. For completely specified signals, all these models are 
equivalent, but when there are unspecified inputs, this is not so. It is interesting at this point to 
compare the logics in terms of the solution spaces of the corresponding models. In the schematic 
Figure 7.22, Sol represents the space of all solutions for a TG problem with possibly unspecified 
values. In Sol, 5 solution spaces relative to other 5 models and their logics are included: 

5V 5-valued logic 
9V 9-valued logic 
X Extended logic with named unspecified values (section 7.5) 
SAT SAT model shown in section 7.2 
SAT+ Complete SAT model, i.e. with the same encoding of SAT but without the limitation 

that xG=u implies xF=u 

 

Sol

X 9V = SAT+

5V

SAT

 

Figure 7.22.  Relative solution spaces 

Of course, the sizes of the solution spaces should not be taken rigorously from this diagram. The 
only relations that it expresses are: 

Sol(X) ⊇  Sol(9V) ⊇  Sol(SAT) ⊇  Sol(5V) 
Sol(9V) = Sol(SAT+) 

where Sol(Model) represents the solution space of Model. 
These relations have already been addressed in the previous sections. All models treat specified 

values alike but differ when encoding unspecified values. While we have seen that X is not 
complete, any unspecified value id-P is encoded as u in the simpler 9V. Hence, X carries more 
information. Similarly, any of the three unspecified composite values {u/0, u/1, u/u} of 9V is 
simply encoded in SAT as 00000 (u/u). Even more “drastically”, value x of 5V covers all possible 
unspecified values (i.e. SAT’s, 10000, 01000 and 00000, or, more readably, 0/u, 1/u and u/u). 
Therefore, the solution spaces can be regarded as a Russian doll, i.e. one inside the other. Models 
carrying more information on unspecified values include all solutions of weaker ones and possibly 
more. This is illustrated with a number of examples that show that a test may be recognised by one 
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of these models and discarded from the other. When applicable, values for the normal and faulty 
circuits are presented using the vn/vf notation. Alternatively, these two values may be shown, 
respectively, above and under a line as before. In all figures, the weaker model appears on the left 
with a failed test, whereas a more complete model correctly identifies the test on the right. 

In Figure 7.23, test t=0x for fault a s-a-1 is accepted by the SAT model but rejected by 5V. The 
partially specified composite value 0/u at the and-gate’s output is simply treated as unspecified (x) in 
the 5-valued logic, which given as input to the or-gate will also only imply an x at the PO, instead of 
the desired 0/1, correctly computed with the SAT model. 

 

a
x

x
xb
D

     

a

10011 (0/1)

10000 (0 /u)

00000 (u/u)
b

10011 (0/1)

 

Figure 7.23.  Test t=0x belongs to Sol(SAT)\Sol(5V) 

The difference between the two SAT models (SAT and SAT+) is illustrated in Figure 7.24 where 
test t=1x for fault a s-a-0 is accepted by 9V (=SAT+) but rejected by the incomplete SAT model. In 
this model the unspecified value (u) at the and-gate’s output in the fault-free circuit forces also an 
unspecified value in the faulty circuit, which given as input to the or-gate will also only imply an 
unspecified value (u) at the PO. Thus, the final partially unspecified composite value 1/u (i.e. 01000) 
does not guarantee sensitisation. This is opposed to 9V that correctly obtains 1/0 at the PO. 
 

a

01000 (1/u)

00000 (u/u)
01101 (1/0)

b
00000 (u/u)

      

a
1/0

u/0
1/0

u/ub
 

Figure 7.24.  Test t=1x belongs to Sol(9V)\Sol(SAT) 

The strength of the extended logic X is shown in Figure 7.25 where it is able to recognise test t=x0 
(for b s-a-1). The 9V logic (on the left) cannot, due to its impossibility of detecting opposing 
unspecified values (in this case, a-1 and a-0 at the faulty circuit’s or-gate). 

 

0/1

u/u u/u 0/u

0/u

0/ua

b
          

0/1

a-0/a-0 0/a-1

0/a-0

0/1a

b

a-1/a-1

 

Figure 7.25.  Test t=x0 belongs to Sol(X)\Sol(9V) 
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As seen before, X is still not complete, as illustrated in Figure 7.26 where valid test t=xx0 for g/0 is 
not recognised due the reconvergence of two and-ed unspecified values (from c and d) through 2 
and-gates (a, b), instead of one. The output of normal or-gate g is given as unspecified (g-0), instead 
of the correct 1-value, because the inputs have two different single sources (a, b) , instead of the 
same “double” source (cd). 

 

a-0 a-1c-0
d-0 a

b b-0

g
0

g-0
0

g-0/0

        

cd -(cd)c
d

cd

1/0

0
1/0g

 

Figure 7.26.  Valid test t=xx0 does not belong to Sol(X) 

 
7.8  Combining Logics 

Optimisation problems may be addressed by constructive or repairing approaches. In this section 
we show, for this specific problem of test pattern optimisation, an approach that adapts constraint 
propagation with results obtained from local search in order to outperform the use of each of these 
techniques alone. The tool that we developed to solve this problem, Maxx [Azevedo and Barahona 
2001], uses a model based on multi-valued logics and implements a specialised constraint solver, 
incorporating such adaptation. An interesting characteristic of this adaptation is that constraint 
propagation and local search do not handle the same modelling of the problem, given the different 
nature of the constructive and repairing approaches. 

A search procedure that produces all the solutions to a problem may be adapted to an 
optimisation algorithm, by producing all the solutions and choosing the best. This naïve and 
inefficient method is usually improved by a branch and bound [Papadimitriou and Steiglitz 1982, 
Balas and Toth 1985] algorithm, available in most Constraint Logic Programming systems. When 
minimising (maximising) a function, rather than producing all solutions, for every partial solution a 
minimum (maximum) bound for any solution that completes it is computed. If this bound is worse 
than the current optimum (an already found solution) the partial solution is abandoned, thus 
pruning the search space. Of course, branch and bound pruning depends heavily on the ability to 
compute these bounds.  

Unfortunately, such bounds may not be obtained in a simple way in the constraint 
programming approach to test pattern generation. The function to optimise is the number of 
unspecified inputs, but the presence of sensitised POs can only be guaranteed when all PIs (or at 
least those in the transitive fanin of POs under consideration) are instantiated. Although the model 
of the circuit could be changed in order to make it possible to guarantee that a partially specified 
input entails a certain output, this improved model is too complex to be of practical use. For an 
incomplete solver, checking entailment requires, in general, full enumeration of the input variables, 
exactly what one wants to avoid ! 

Alternatively, we use the 5-valued logic that explicitly considers an unspecified input as an extra 
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value of the logic, x, making it possible to count the number of such values in the input pattern. 
With such logic, bounds on the number of x-values in the solutions obtained by completion of a 
partial solution may be maintained, enabling the use of a branch and bound algorithm to obtain an 
optimal solution. Since the logic does not enable the model to cover all possible solutions, it does 
not guarantee that an optimal solution is found. Nevertheless, such cases are rare and the procedure 
is quite efficient. 

 
In the previous section we have seen that the extended logic with named unspecified values is 
particularly suitable for local search by attaching sets of dependencies (on specified PIs) to circuit 
signals. However, for global search, constraint reasoning over a reduced domain seems to be more 
appropriate. We thus used constraints over the 5-valued logic since with this domain simplification, 
constraints can be handled more efficiently while a large majority of valid tests can still be modelled. 

Since our local search method requires an already found solution, it is not convenient to address 
the full test generation problem. However, it might be used to improve the branch and bound, 
constructive, approach. Whenever a solution (i.e. an input pattern) is obtained, a local search around 
it (obtained by changing some of the input bits) can be performed to further improve this solution. 
Such approach hopefully circumvents the inefficiency of changing, by backtracking, the earlier 
choices made, making it possible to change choices in a non-chronological order. 

By integrating these various approaches, we combined these logics to implement a tool, Maxx, 
that aims at maximising the number of unspecified inputs in test sets. 

 
Maxx does so by performing a cycle of local search and branch and bound improvements. For a 
given test, a local search is performed first to quickly find a good initial bound that is passed to the 
branch and bound procedure using a constraint solver over the 5-valued logic, so as to maximise the 
number of PIs with the x value. If the constraint solver finds an improved solution, another local 
search is performed around it, possibly improving the solution. Control passes back to branch and 
bound with the new bound. If in a branch and bound phase no improved solution is found within a 
limited amount of time, Maxx exits with the current best solution. If during that time it concludes 
that no better solution is possible, then Maxx exits with an optimal solution in the sense that the 5-
valued cannot improve it. Although the proof of optimality is obtained with the 5-valued logic, 
optimal solutions are not restricted to the solution space of this logic since all solutions pass 
through a local search using the more expressive extended logic. 

 
Maxx (Figure 7.27) can receive as input a set of diagnoses, each possibly extended with some 
known test or tagged as redundant. The goal then is to improve the tests, i.e. to find an optimal test 
for each diagnosis (an SSF or a set of faults). 
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Figure 7.27.  Maxx system 

Given, for some circuit, a test set (possibly empty) referred to as Base, Maxx tries to improve it as 
follows: for each possible diagnosis (usually a single fault), if a test is present Maxx proceeds as just 
described above; if the fault is given as redundant then Maxx also simply considers it as redundant; 
otherwise nothing is known about the fault and Maxx tries first to find a test for it. 

When trying to find an initial test, there is no need to consider unspecified values, since what is 
important is to know whether some test exists for the fault (or, otherwise, whether it is redundant). 
After one test is found, one aims at improving it with local search and branch and bound as before. 
Hence, for faster results, the simpler 4-valued logic of section 3.4.2 may be used together with the 
Iterative Time-Bounded Search (ITBS) technique of section 3.6. If the search space is completely 
exhausted with no solution found, the fault is redundant since the model with 4-valued logic is 
complete for completely specified tests. If no such solution exists then there is also no solution with 
a partially specified test. If a time limit is reached during the search then it is aborted. If a solution is 
found we may then proceed to the local search phase to unspecify some PI bits. 

Actually, a solution coming from the constraint solver over the 4-valued logic may already 
contain some unspecified bits in the form of uninstantiated variables. This is due to the labelling 
strategy that needs only to instantiate those PIs in the transitive fanin of a sensitised PO to ensure 
that the test is valid. We know that this partially specified input vector entails our desired output 
since the sensitised PO does not depend on the remaining variables and all possible signals that 
could affect it are already instantiated, i.e. all the line justification problems for this sensitised path 
have been solved. This is, nevertheless, a naïve method of checking entailment since this transitive 
fanin often includes most of, if not all, the PIs. Such method is not sufficient for branch and bound 
with 4-valued logic, as above discussed, since it does not assure optimal solutions, as many labelled 
PIs may still be made unspecified and detect the fault (a stronger checking of entailment would be 
necessary for that). 

Figure 7.28 shows a general flowchart of Maxx, for each test optimisation, where LS stands for 
Local Search and BB stands for Branch and Bound. 
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Figure 7.28.  Maxx flowchart 

In our test, the initial time limit of the ITBS on the solver over the 4-valued logic for aborted faults 
in the base was 5 seconds. The time limit is consecutively doubled in subsequent rounds until a 
maximum of 320 (5*26) seconds (i.e. the maximum continuous search time for each possible d-value 
in the circuit output is restricted to 320 seconds). As to the BB phase with the constraint solver over 
5 values, the time allowed to improve a solution was 7 seconds. All these values may nevertheless be 
parameterised. The propagation strategy used in this 5-valued logic solver was the same as the 4-
valued logic solver (described in Chapter 3), with just one more logic value (x) to take into account. 
 

 
7.9  Results 

In this section we present several results of Maxx with different base test sets over the ISCAS 
circuits (summarised again in Table 7.8   PI: primary inputs; G: gates; F: faults) and compare them 
with similar tools. All results refer to Maxx implemented with ECLiPSe Prolog [ECRC 1994] on a 
Pentium III, 500 MHz, 256 MB memory. Reported times are in seconds. 

 
 c17 c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552

PI 5 36 41 60 41 33 233 50 178 32 207 
G 6 160 202 383 546 880 1193 1669 2307 2416 3512 
F 22 524 758 942 1574 1878 2746 3425 5350 7744 7550 

Table 7.8.  ISCAS circuits: PIs, Gates and Faults 

Although Maxx was primarily designed to improve a test set, it may also build a test set from 
scratch if the base test set is empty. Table 7.9 shows the results in this case, where R stands for the 
number of redundant faults and A, for the aborted ones; X is the total number of unspecified bits 
in the final test set and %X its percentage; Opt is the number of optimal solutions from the 
viewpoint of Maxx, as explained before, and %Opt its percentage; T/f is the average computing time 
spent per fault. 

If F is the number of faults to cover and PI is the number of primary inputs, the length of the 
test set, Patterns, is given by F - R - A, and the percentages refer to this number. Then, %Opt is 
simply 100*Opt / Patterns, and %X = 100 * X / (Patterns * PI). 
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 R A X %X Opt %Opt T/f 

c17 0 0 53 48.18 22 100.00 0.02 
c432 1 3 13273 70.90 16 3.08 10.42 
c499 8 0 8770 28.52 0 0.00 8.45 
c880 0 0 47268 83.63 266 28.24 7.17 
c1355 8 0 11077 17.25 0 0.00 8.27 
c1908 6 2 33201 53.80 24 1.28 9.44 
c2670 105 11 577970 94.32 966 36.73 17.85 
c3540 128 15 125398 76.42 762 23.22 26.71 
c5315 59 0 885245 94.00 1334 25.21 10.32 
c6288 34 60 75696 30.92 14 0.18 207.72 
c7552 131 2 1362863 88.77 350 4.72 14.77 

Table 7.9.  Maxx results from scratch (empty base test 
set) 

The toughest circuit, c6288 (probably due to its much higher level and average fanout, together with 
a small number of PIs and POs), required a large time per fault due to the aborted faults where, as 
referred, ITBS is left running at the last round for 320 seconds for each possible output d-value. 
Moreover, many such output d-values were often possible after setting up circuit constraints, thus 
multiplying the computation time (up to twice the number of POs, i.e. 2*32=64, since each PO may 
have both d-0 and d-1 in its domain), which may lead us to think that the ITBS technique may be 
fine-tuned for some circuits. Still, it is this technique with these parameters that produces the best 
results, as made clearer in the discussion of the results shown in Chapter 4, devoted to diagnosis. 
 
Since the general idea was to improve a given test set, we picked the results coming from a highly 
specialised ATG tool, Atalanta [Lee and Ha 1993]. Atalanta’s goal is to quickly produce a test set 
with a high fault coverage (see Chapter 3), hence test generation is not fault oriented since a 
generated test with the aid of powerful heuristics (see section 3.5) may already cover many faults 
which are immediately discarded. Once a test is found, no improvements on the number of 
unspecified bits are tried, although there are also heuristics to keep this number high. A user-defined 
search limit (such as the maximum number of backtrackings) allows Atalanta to leave some aborted 
faults and generate test sets in just a few minutes. Remember that Maxx is fault-oriented; uses no 
special heuristics; is an optimisation (rather than satisfaction) tool and is implemented in Prolog. 
 

Atalanta results are shown in Table 7.10. 
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 R A X %X 
c17 0 0 48 43.64 
c432 3 1 10527 56.23 
c499 8 0 5262 17.11 
c880 0 0 46471 82.22 
c1355 8 0 8556 13.33 
c1908 8 0 27589 44.71 
c2670 97 20 563624 92.01 
c3540 134 0 122854 74.66 
c5315 59 0 872143 92.60 
c6288 34 387 51976 22.18 
c7552 77 181 1311209 86.87 

Table 7.10.  Atalanta results 

From the tables we see that Atalanta already produces some good results in terms of the number of 
unspecified inputs, although Maxx is naturally better for that. We may now see how much can we 
improve Atalanta results by taking it as the base for Maxx, in Table 7.11. To ease comparison, 
Atalanta results for the percentage of unspecified bits are reproduced in gray as column %XAtalanta. 

 
 R A X %X %XAtalanta Opt %Opt T/f 

c17 0 0 53 48.18 43.64 22 100.00 0.01 
c432 3 1 13363 71.38 56.23 16 3.08 7.71 
c499 8 0 7872 25.60 17.11 0 0.00 7.95 
c880 0 0 48154 85.20 82.22 272 28.87 6.08 
c1355 8 0 12868 20.04 13.33 0 0.00 7.93 
c1908 8 0 32579 52.79 44.71 18 0.96 7.51 
c2670 105 11 576664 94.10 92.01 963 36.62 12.48 
c3540 134 0 130397 79.24 74.66 755 22.94 7.07 
c5315 59 0 881923 93.64 92.60 1104 20.87 7.53 
c6288 34 12 69989 28.41 22.18 19 0.25 52.59 
c7552 131 0 1396176 90.91 86.87 328 4.42 10.05 

Table 7.11.  Maxx results with Atalanta as base 

Now the number of aborted faults is much smaller and tests considerably better. Also many proofs 
of redundancy and optimality were obtained. Curiously, in terms of optimality and “quality” of tests, 
results with an empty base test set often produced better numbers. This means that initial tests 
generated by Maxx with the 4-valued logic are already quite good and compensate the time spent on 
it. Of course, with a large base, the time per fault decreases especially due to a lower number of 
aborted faults. Now this time tends to be around 7 seconds which is the branch and bound (BB) 
time limit of the Maxx cycle of local search (LS) plus BB (Figure 7.28), since generally only one 
cycle is necessary until LS obtains no more improvement. Only two circuits present very different 
numbers: c17, because optimality is almost immediately reached; and c6288, because of the 
remaining aborted faults. 
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The previously described MTP tool (section 7.2) also tries to improve a given base test set but, in 
addition, another pre-processing tool, TG-Grasp [Silva and Sakallah 1997], is used for initial aborted 
faults, so as to obtain a start-up test pattern for MTP. Table 7.12 presents the MTP results over 
Atalanta test sets when allowing 100 conflicts per fault. The values were collected from the original 
output test sets, which were kindly sent to us by the MTP designers. 

 
 R A X %X Opt %Opt T/f 

c17 0 0 52 47.27 22 100.00 n/a 
c432 4 0 11376 60.77 0 0.00 3.21 
c499 8 0 5759 18.73 0 0.00 4.35 
c880 0 0 47361 83.80 110 11.68 2.54 
c1355 8 0 8791 13.69 0 0.00 9.12 
c1908 8 0 29856 48.38 9 0.48 9.61 
c2670 117 0 566103 92.42 598 22.75 10.99 
c3540 134 0 127243 77.33 489 14.86 16.81 
c5315 59 0 874845 92.89 727 13.74 9.34 
c6288 34 0 52874 21.43 55 0.71 36.65 
c7552 131 0 1334794 86.92 322 4.34 17.46 

Table 7.12.  MTP100 results over Atalanta 

A number of remarks have to be made on these results. We first note that c2670 is reported to have 
117 redundant faults, when from Table 7.11 we can conclude that there may be at most 116 such 
faults. The reason for this is that fault ‘2007’/0 is considered as redundant in MTP, while Maxx is 
able to find a test for it in a couple of seconds. An example test for it is given below: 

xxxxxxxx1xx1xxxxxx100100000xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx0x
00000000xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
0xx0xx0x11x111111111x11111xxxxxxxxxxxxxxx 

 
The test was confirmed with different simulators, both of our own and by others commercially 
available. Interestingly, we may add that Atalanta is not able to find a test for it, even after a week of 
computation. 

One could argue that MTP considered the fault to be redundant due to its incompleteness, as 
discussed before, but MTP is only incomplete when dealing with unspecified values. Finding a 
completely specified test is sufficient to prove that the fault is not redundant, and MTP is 
theoretically able to recognise the above test by replacing the unspecified values for Boolean ones. 

Hence, the numbers of redundant faults and the absence of aborted faults can not be taken 
rigorously. Also, the time to find an initial test is not taken into account since it comes either from 
Atalanta or from TG-Grasp. 

In the MTP results, the notion of optimality is again relative. If complete, it should correspond 
to the 9-valued logic. But, as we can see for the c17 circuit, one less unspecified bit was achieved 
with MTP, although still considering 100% of optimum tests. This disparity occurs for the fault 
6gat/1, corresponding to PI d s-a-1 in Figure 7.29. Here, the optimal test found by Maxx, t=x110x, 
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is simply discarded by MTP since it does not allow a composite value such as the output u/1 of gate 
g in the circuit (it converts it to u/u as explained in section 7.2), thus losing the possibility of 
recognising the sensitised PO. The “optimal” test given by MTP is t’=0110x, which, by specifying 
PI a with Boolean value 0, although not enough to remove the “impossible” value u/1 from g’s 
output, allows the first PO to have value 1/0 instead of 1/u. 

 

a   x

b   1

c   1
d   0

e   x
0/1

0/1

1/u

u/1

1/0

x

1/0

g
 

Figure 7.29.  Maxx optimal test not recognised by MTP 

Other strange results occurred with c6288 where a few tests were not recognised by a 9-valued logic 
simulator, being only recognised by the extended logic, which the MTP model does not have the 
power to recognise. 

Despite these difficulties, the MTP test sets were tested and its validity verified, so we compared 
its results with ours in Table 7.13, having both Atalanta as base. 
 

 Atalanta  MTP   Maxx   
 %X %X Gain T/f %X Gain T/f Diff 

c17 43.64 47.27 6.44 n/a 48.18 8.06 0.01 1.61 
c432 56.23 60.77 10.37 3.21 71.38 34.66 7.16 24.29 
c499 17.11 18.73 1.95 4.35 25.60 10.24 7.95 8.29 
c880 82.22 83.80 8.89 2.54 85.20 16.76 6.08 7.87 
c1355 13.33 13.69 0.42 9.12 20.04 7.70 7.93 7.28 
c1908 44.71 48.38 6.64 9.61 52.79 14.63 7.51 7.99 
c2670 92.01 92.42 5.13 10.99 94.10 26.16 5.90 21.03 
c3540 74.66 77.33 10.54 16.81 79.24 17.92 7.07 7.38 
c5315 92.60 92.89 3.92 9.34 93.64 13.51 7.53 9.59 
c6288 22.18 21.43 -0.96 36.65 28.41 7.99 12.51 8.96 
c7552 86.87 86.92 0.38 17.46 90.91 30.69 10.17 30.31 

Table 7.13.  MTP and Maxx improvements on Atalanta 

Assuming that the resources spent in testing the circuit are proportional to the number of specified 
bits, we show the Gain (in %) for MTP and Maxx wrt Atalanta given by (XMTP-XAtalanta) / (100-
XAtalanta), i.e. the saving of resources that can be achieved with the solutions provided by these tools, 
as well as their difference, Diff. The average time spent per fault in each tool, T/f, is also shown (for 
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a fairer comparison, the time required to find an initial test was subtracted from Maxx times). 
Because of different numbers of aborted faults in some circuits between the different tools, 

which implies different number of test patterns, the percentage of unspecified bits may not be 
absolutely comparable (as in the negative gain of MTP over its base, for c6288). Still, the effect is 
not significant and the results show that the Gain obtained with Maxx is always better than those 
obtained with MTP, with similar times spent per fault in both tools, the algorithms being executed 
in computers with similar characteristics (MTP in a SUN SPARC, 166 MHz and 384 MB memory, 
where the slowest SPARC clock is compensated by its RISC architecture and larger memory). 

Additionally, we have used MTP as base for Maxx to check the improvements. The results that 
Maxx thus obtained are shown in Table 7.14. MTP results, which served as base, are reproduced in 
gray in column %XMTP for the percentage of unspecified bits. 

 R A X %X %XMTP Opt %Opt T/f 
c17 0 0 53 48.18 47.27 22 100.00 0.01 
c432 4 0 13338 71.25 60.77 16 3.08 7.03 
c499 8 0 8077 26.27 18.73 0 0.00 7.08 
c880 0 0 48672 86.11 83.80 274 29.09 6.00 
c1355 8 0 10589 16.49 13.69 0 0.00 7.44 
c1908 8 0 35477 57.49 48.38 19 1.02 7.50 
c2670 117 0 576847 94.17 92.42 965 36.71 5.57 
c3540 134 0 132613 80.59 77.33 773 23.49 6.95 
c5315 59 0 883658 93.83 92.89 1115 21.07 7.49 
c6288 34 0 66052 26.77 21.43 21 0.27 12.34 
c7552 131 0 1397193 90.98 86.92 346 4.66 9.61 

Table 7.14.  Maxx results with MTP as base 

The number of redundant faults in c2670 is kept as 117 since Maxx used the MTP results. 
Maxx considerably increased the number (and percentage) of unspecified bits in all circuits 

while keeping the time per fault at an average of 7 seconds (BB time limit). So, from this table we 
verify that with a simple round of local search and branch bound of Maxx (7 seconds), the tests 
provided by MTP were still significantly improved. 

Let us now see whether MTP obtains better results when left more time running. Instead of 
limiting the number of conflicts in MTP to 100, (as in Table 7.12 that we rewrite as MTP100), we 
obtained solutions with MTP with the number of backtracks per fault increased to 1000, MTP1000, 
in Table 7.15. (Results for larger circuits were not available.) 

 R A X %X Opt %Opt T/f 
c17 0 0 52 47.27 22 100.00 n/a 
c432 4 0 11599 61.96 9 1.73 27.04 
c499 8 0 5987 19.47 0 0.00 33.71 
c880 0 0 48356 85.56 378 40.13 22.34 
c1355 8 0 9753 15.19 0 0.00 64.86 
c1908 8 0 31452 50.97 26 1.39 73.44 
c2670 117 0 569424 92.96 659 25.07 83.46 

Table 7.15.  MTP1000 results over Atalanta 
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With the time per fault considerably increased let us check whether it was worthy. To test the 
importance of the time limits and starting points imposed to the execution of both MTP and Maxx, 
we tested the tools in a different way, aiming to compare the improvements to the previous MTP 
solutions that could be found by MTP and Maxx. The results are shown in Table 7.16. For Maxx, 
we considered as starting points the solutions obtained in MTP100 and kept the 7 seconds time limit 
in the branch and bound phase. Here, MTP1000 times refer to the difference of time per fault of 
Table 7.15 to the time of MTP100, which corresponds to the time needed to improve the MTP100 
solutions. 

 
 MTP100  MTP1000   Maxx   
 %X %X Gain T/f %X Gain T/f Diff 

c17 47.27 47.27 0.00 n/a 48.18 1.73 0.01 1.73 
c432 60.77 61.96 3.03 23.83 71.25 26.71 7.03 23.68 
c499 18.73 19.47 0.91 29.36 26.27 9.28 7.08 8.37 
c880 83.80 85.56 10.86 19.80 86.11 14.26 6.00 3.40 
c1355 13.69 15.19 1.74 55.74 16.49 3.24 7.44 1.51 
c1908 48.38 50.97 5.02 63.83 57.49 17.65 7.50 12.63 
c2670 92.42 92.96 7.12 72.47 94.17 23.09 5.57 15.96 
c3540 77.33 n/a n/a n/a 80.59 14.38 6.95 n/a 
c5315 92.89 n/a n/a n/a 93.83 13.22 7.49 n/a 
c6288 21.43 n/a n/a n/a 26.77 6.80 12.34 n/a 
c7552 86.92 n/a n/a n/a 90.98 31.04 9.61 n/a 

Table 7.16.  MTP and Maxx improvements on MTP100 

The results are quite meaningful. The improvements achieved on the MTP100 results by Maxx are 
much higher than those obtained with MTP1000. Moreover, they are obtained in a fraction of the 
time that MTP1000 requires (for circuits larger than c2670 we could not even get results with 
MTP1000). 

Finally we analysed what were the sources of our improvements, namely whether the 
combination of local search and CP was effective. The results are shown in Table 7.17. 

 
 MTP LS0 CP1 LS1 CP2 LS2 CP3 LS3 CP4 LS4 

c17 51 2         
c432 11,376 1,714 247 1       
c499 5,759 1,455 863        
c880 47,361 1,064 239 8       
c1355 8,791 867 931        
c1908 29,856 4,318 1,303        
c2670 566,103 9,073 1,637 30 2 2     
c3540 127,243 4,935 397 35 2 1     
c5315 874,845 7,616 1,184 13       
c6288 52,874 10,749 2,126 303       
c7552 1,334,794 56,052 5,630 628 22 29 26 8 2 2 

Table 7.17.  Breakdown of Maxx improvements 
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The MTP column shows the number of unspecified bits obtained in MTP100. An important increase 
in the number of unspecified bits in the test patterns is obtained purely by local search on the initial 
MTP100 solution (LS0). Nevertheless, a significant improvement is still obtained by executing a 
constraint programming branch and bound search with the initial bound updated to that obtained in 
the local search phase (CP1). Such solution is still often improved by a subsequent local search (LS1) 
and in circuit c7552, three additional constraint programming and local search steps (CP2, LS2 and 
so on) still improve the previous solutions. 

These results show that although the model used in the constraint-programming step (with 5-
valued logic) is less complete than that used in the local search step (extended logic with set 
dependencies), it does provide a different starting point that enables local search to escape from 
local optima. When a solution is found by constraint propagation, the extended logic used for local 
search, which is too complex to be the basis of a CP solver, is applicable to the new solutions and 
usually improves these solutions quite fast. 
 

 
7.10  Conclusions 

This chapter has shown that using both constraint propagation and local search to solve constraint 
satisfaction and optimisation problems may outperform the use of each of these techniques alone. 
Although we show this in a particular problem in a specific domain, we believe that integrating 
these two techniques is an important improvement in constraint programming and should be 
further exploited. 

The problem that we solved is an optimisation problem, but a similar technique can be used in 
constraint satisfaction problems if we allow “slightly” inconsistent solutions, which can be 
improved by some local search optimisation, as done in a different domain [Krippahl and Barahona 
1999]. 

The tool that we developed, Maxx, does not fully integrate constraint propagation with local 
search. In fact, once a better solution is found in local search, the constraint propagation phase 
would start from scratch, although with an updated bound for the branch and bound algorithm. 
Better integration would be achieved, if the constraint propagation phase could be suspended to 
allow some local search, and then resumed with the updated bound. Such integration is not available 
in Maxx since it relied on the built-in branch and bound meta-predicate available in most CP tools. 

Although the two approaches could be more fully integrated, we believe that our experience is a 
case for allowing the usual branch and bound procedure of a constructive approach, available from 
most CP tools, to be parameterised with a user defined local search procedure. In fact, rather than 
fixing the problem to our specific application, it would be important that such ability would be 
made available by the CP tools themselves, enabling such a parameterisation of their branch and 
bound primitives with some local search procedure. The local search step may even use a different 
and more complex model than that of CP, as exemplified in this chapter, where different logics 
were used. In fact, the 5-valued logic allowed a more efficient propagation of constraints, and an 
extended logic in local search allowed reaching improved solutions that the simpler logic could not 
recognise. Moreover, local search with a more complete model often allowed to easily obtain a 
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substantial leap in current optimal solutions of CP, thus fastening the branch and bound procedure. 
We believe the approach followed can be easily adapted to handle other constraint satisfaction 

and optimisation problems, namely concerning digital circuits. 
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C h a p t e r  8  
 
 
 

GENERALISATION, DISCUSSION AND CONCLUSION 

 
In this thesis we covered a number of different problems over digital circuits, which we handled 
with different multi-valued logics. Such logics were formalised and we developed models and 
constraint solvers for those problems, generalised to MSFs, and compared different approaches. 

In this final chapter, we show (section 8.1) that all developed techniques generalise to the 
agents’ paradigm, to which the discussed problems are very relevant [Schroeder 1998], with 
applications such as traffic control, integrity checking of databases, alarm-correlation in cellular 
phone networks, and general diagnosis of the most diverse systems ranging from an automatic 
mirror furnace to communication protocols. Afterwards, in section 8.2 we discuss the overall work 
of this thesis and present main conclusions and directions of future research. 

 
8.1  Agents 

General diagnosis problems have been widely studied for agents, e.g. [Schroeder et al. 1997, 
Schroeder 1998, Horling et al. 1999, Fries and Graham 2000], since in single- and multi-agent 
systems, incorrect assumptions made on interacting processes (due to a somehow changed 
environment) are likely to produce undesired results (e.g. a walking robot with people appearing in 
its path). Agents must then adapt to the current environment by first detecting and diagnosing the 
causes for some unexpected change, and then act accordingly. For instance, in [Horling et al. 1999] 
an Intelligent Home environment is described where major appliances such as the dishwasher, water 
heater, air conditioner, etc., are each controlled by an individual autonomous agent. A simple agent 
interaction relates the dishwasher and the water heater, in that the dishwasher uses the hot water 
produced by the water heater. Normally the dishwasher assumes that sufficient water is available for 
it to operate, since that is the water heater’s task. However, if this assumption fails due to some 
malfunction or shortage of resources, and the dishwasher lacks of diagnosis capabilities, then it may 
poorly wash or even going out of order because of insufficient hot water. Being able to diagnose, 
the dishwasher could first detect that a necessary resource is missing (through sensors or some form 
of feedback) and review its assumptions, and later refine and validate the diagnosis after other 
interactions with the water heater for a coordination protocol over the hot water (for example, if the 
owners take showers in certain times of the day, hot water may be scarce and the dishwasher should 
take that into account). 

Moreover, agents must be able to plan and react in face of unanticipated events in their world 
since often they act in dynamic and changing environments [Wilkins et al. 1995], where a priori 
prediction of all situations is virtually impossible. As stated in [Wilkins et al. 1995], “as events render 
some current activities obsolete, the agents should be able to modify their plans while continuing 
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activities unaffected by those events”. The authors thus present a system for persistent agents with 
such capabilities, which was used for applications such as military operations, real-time tracking and 
fault diagnosis. 

Hence, there is a wide range of agents’ applications for the techniques proposed in this thesis 
for the different diagnostic-related problems. 

 
We are generally concerned with systems modelled by means of a set of propositional rules where 
only the systems’ input and output may be observed. This means that although, for the different 
possible faults, we may assume alternative components for the system model, we may not, in 
general, directly monitor them because they are not accessible. This was the case dealt with in this 
thesis (so far) for VLSI combinational circuits, where the propositional theory is embodied in the 
circuit components (gates) but only the input and output bits are accessible for monitoring. 
Nonetheless, the approach is more general and can be adapted to other situations (e.g. an agent 
whose models can only be tested by observing its behaviour for some inputs). 

Three modelling difficulties may arise when trying to generalise the proposed techniques to 
agents or theories modelled by means of a set of propositional rules, namely: 

1. How to model the internal agent system from its set of propositional rules ? 
2. How to model general “faults” ? 
3. How to model alternative behaviours of agents (i.e. different sets of rules) ? 

These difficulties come from the fact that we have only considered basic ‘gates’ and stuck-at 
faults. In the following, we show how to overcome all three points: 

(1)  Modelling propositional rules in terms of Boolean gates is trivial since such rules can be 
logically expressed in, for instance, CNF formulae where each and-, or-, and not-operation is 
modelled by its corresponding logical gate. A digital circuit may thus model an agent. 

(2)  A general fault in an agent corresponds to some altered function such as a ⇒ b instead of a 

⇔ b. Taking this example, we examine the corresponding truth tables in Table 8.1 and consider 

their CNF formulae as a ⇔ b ↔ )).(( baba ++  and a ⇒ b ↔ ba + . 

 
a b a ⇔ b a ⇒ b 
0 0 1 1 
0 1 0 1 
1 0 0 0 
1 1 1 1 

Table 8.1.  Altered agent function 

The equivalence function can thus be modelled as illustrated in Figure 8.1 (a). When the 

)( ba + input to the final and-gate is stuck-at-1, as in Figure 8.1 (b), this function is altered to an 

implication, since only ba +  remains. 
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a+b
a+b            

a+b
a+b /1  

(a)                                       (b) 

Figure 8.1.  (a) Equivalence function; (b) altered 
(implication) function by an SSF 

In Table 8.1, this stuck-at-1 fault corresponds precisely to the 1-value of the implication function 

when ab=01 (when equivalence is false), from which the CNF formula component )( ba +  was 
taken. Similarly, a stuck-at-0 fault could be considered in an alternative modelling from a formula in 

disjunctive normal form. In this case, it would be the ba.  input of the or-gate outputting the 

implication function ( bababa ... ++ ) that would be stuck-at-0 to produce the equivalence function 

( baba .. + ). 

(3)  Modelling alternative behaviours of agents was already exemplified in the last point, since 
when modelling a fault, the ‘faulty’ agent is also modelled, which is an alternative to the ‘normal’ 
agent. 

We now formalise and generalise such modelling. Three generalisations will be performed, 
namely for: 

a) arbitrary altered functions, which may revert the output in more than one input combination (a 
line in the truth table); 

b) functions with an arbitrary number of output bits; 
c) an arbitrary number of alternative agents 

Truth tables for agents whose behaviour is given by a set of propositional rules with n input bits 
{i1,i2,...,in} have 2n entries, each with a corresponding output vector. We first turn each entry index e 
= (b1,b2,...,bn) into a conjunction (and-gate) c(e) = c1c2…cn such that (for each j ∈  {1..n}): 





=

=
=

0,

1,

jj

jj
j

bi

bi
c

 

To each such and-gate c(e), and for each observable output bit o, we place an (S-)buffer (section 2.5) 
s(e)o in its output (i.e. the buffer’s input is the and-gate’s output). Then, for PO o, we model a 
disjunction (or-gate) of all such buffers s(e)o. The global circuit is the general model for an arbitrary 
agent*. 

Now, to model an agent a with output (vector) function Za, each S-buffer s(e)o for which Za(e)o = 
0 (i.e. the value of o in Za for input e is 0) is treated as stuck-at-0. Hence, a simple set of faults (an 
MSF) defines an agent (theory). An arbitrary number of agents may thus be modelled thanks to the 
general nature of S-buffers. 

                                                 
* Here we refer to stateless logical-based agents (without memory). Agents with memory must be modelled as sequential circuits, 

which may then be transformed into combinational, as mentioned before. 
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With our general circuit model we can use the techniques and logics described in this thesis to solve 
the different problems presented, since a diagnosis for this circuit defines an agent and all 
techniques developed accept MSFs. One may thus generate tests for an agent, diagnose an agent, 
differentiate multiple agent models, optimise tests, and so forth. 

 
One may argue that, in practice, the circuit model will be too large since it explicitly considers all 
input combinations. It does not necessarily have to be so since, generally, many such combinations 
are useless or can be combined to drastically reduce circuit size. Also, some POs may share parts of 
the circuit, thus avoiding unnecessary duplication. While we provided theoretical results, circuit 
reduction techniques are, however, out of the scope of this thesis. 

 
8.2  Conclusion and Research Directions 

In this thesis, we covered different satisfaction and optimisation problems regarding general agents 
with a set of controllable inputs and a set of observable outputs. These problems arise from the fact 
that agents may exhibit an unintended behaviour, and theories for possible malfunctions must then 
be modelled or generated. To cope with this, we formalised a number of multi-valued logics that 
express the dependency of Boolean signals on possible faults, based on an existing idea in the 
literature. Furthermore, we generalised all these problems and logics to MSFs, which is a significant 
and useful improvement in the area, where many specialised techniques existed just for SSFs, which 
were then also used to indirectly handle MSFs. 

 
The disjunctive nature of goals in the logic models of different problems led us to develop a new 
search technique, Iterative Time-Bounded Search (ITBS), to be applied in the enumeration phase of 
the CSP to take advantage of more informed heuristics from a more constrained sub-problem and, 
at the same time, to not stick to some disjunct choice. The time-bounded nature of this technique 
ensures that bad initial choices are not ‘fatal’ as in pure chronological backtracking, since a ‘leap’ to 
other choice is allowed after a certain time period. To make the technique complete we made it 
iterative so that all choices are eventually tried before concluding unsatisfiability. ITBS was 
described in Chapter 3 and its adequacy exemplified with the constraint solver over the 4-valued 
logic used in the test generation problem. It was then systematically used for other problems and its 
efficiency again confirmed in Chapter 4 with another multi-valued logic for differential diagnosis. 

 
The known 4-valued logic (encoding 2 theories, as shown in Chapter 3), consisting of a 
generalisation of the Boolean logic (Chapter 2), was generalised to an 8-valued logic (encoding 3 
theories), which we properly formalised (Chapter 4). This logic was then itself generalised to a logic 
over sets and Booleans (Chapter 5) to encode an arbitrary number of theories. In addition, we 
presented a transformation function (in section 5.5.2) for logic signals that allowed modelling 
problems using just sets. 

Such logics allowed: a) modelling problems avoiding the duplication of circuits (theories) of 
SAT approaches, and b) using CLP(FD) solvers to efficiently solve them. 
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The logics involving a small number of values and their solvers may, in a future research, be 
compared with what could be automatically generated from the specification of such a logic [Apt 
and Monfroy 1999]. 

For the logic involving sets, we developed Cardinal, a general CLP(Sets) solver (Chapter 6). We 
presented some applications that were naturally expressed in constraint programming over sets. We 
demonstrated it by testing these applications in Cardinal, and comparing its efficiency with other 
approaches. Namely, a set-based model of differential diagnosis of alternative theories was 
presented and we discussed how such approach could be used to elegantly solve a number of 
diagnostic related problems, in contrast to specific Boolean SAT approaches. Experimental results 
with well known circuit benchmarks in this field showed that Cardinal clearly outperformed another 
widely available set solver, due to extra inferences using the set cardinality function. 

The ability to use attached functions (other than cardinality) to set domain variables in 
constraint programming was then exemplified with set covering applications, where even for ILP 
competitive results were obtained. 

We thus showed how set functions such as cardinality and union become a powerful extension. 
So far, to our knowledge, only the set cardinality function was used in set solvers such as Conjunto 
and in a somewhat passive way. Cardinal showed that extra cardinality inferences and other set 
functions could definitely improve performance and expressiveness. The extension of these set 
functions was then discussed, promising a wide application area. 

 
Since for many problems, some logic signals were irrelevant or unknown, we presented logics with 
one or more extra signals to denote unspecified signals. Nonetheless, we pointed out that another 
advantage of using constraint solvers was that finite domains could simply contain the specified 
values, while the uninstantiated variable represents an unspecified signal. 

However, if unspecified values are part of the problem and we want to reason on them, then 
unspecified values must be explicitly considered. This is the case with the optimisation problem of 
maximising the number of unspecified inputs of a test, dealt with in Chapter 7. For that problem we 
developed and formalised an extended logic that represents unspecified values associated with some 
source signal and its inversion parity. Models with such logic become more complete, since 
solutions formerly discarded (with other logics) can now be easily recognised with the extended 
logic. In addition, we attached to such signals over the extended logic, sets of dependencies on 
specified values of a given test, and defined the semantics of logic operations over the resulting 
composite signals. This formalised a logic for local search around a given test, which definitely 
indicate (by inspection of the output signals) the set of input signals, one of which can safely be 
turned into unspecified so that the resulting improved test remains valid. 

We incorporated such repairing approach in a branch-and-bound procedure to implement 
Maxx, a tool involving a number of different multi-valued logics that generates better tests (and 
faster) than an existing efficient tool based on SAT and ILP. This has also shown the usefulness of 
integrating local search in branch-and-bound, thus directing research to parameterising such 
constructive approaches with a given repairing one that cooperates with it interactively to further 
improve partial solutions. 
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All techniques developed apply to agents modelled as a set of propositional rules, such as digital 
circuits, for which we have used a widely studied set of general purpose benchmarks, so that 
meaningful comparisons with other approaches could be performed for different problems. 
Nevertheless, future research may focus on different specific agents with their particularities and 
problems. Application of techniques to real such agents (or to specific benchmarks) can be direct, 
or it can benefit from some specialisation to take advantage of particular features of different 
instances of the general problems and subjects. 
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