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The instructional models taught in class were similar to the students' models. The 

teachers addressed angle as a basic-level category, discussed its submodels, clarified the 

boundaries, and established cognitive reference points. They gradually increased the use 

of complex metaphors and of several models. 

The study enriched the characterization of the first two levels of van Hiele theory and 

demonstrated the value of categorization theory in understanding how our comprehension 

of mathematics is rooted in basic hun~an attributes pertaining to the material and social 

conditions of human life. The embodiment of mathematical ideas by the material world, 

including our bodies, needs greater emphasis in all facets of mathematics education. 
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CHAPTER 1 

ANGLES AS CONCEPT AND O B J E C T  

What is an angle? The search for an answer to this question motivated the present 

study. Angles seem to be complex geometrical objects. By comparison, take a line, for 

example. Although Heath (1956) discusses at length the different perspectives on lines 

taken throughout history, one can still look at a line (or a triangle, etc.). Lines seem to have 

a substance. But what is the substance of angles? An infinite area bounded by two rays, a 

rotation of a ray, or, as Euclid put it .  the inclination of one line over another? What is the 

substance of inclination? 

These initial considerations led me to search for answers from both a mathematical and 

a historical point of view. A survey of mathematical textbooks, from school mathematics. 

undergraduate courses, and at the graduate level, together with insights from research, 

evidenced several models of angle used in school mathematics. A review of angles in the 

history of mathematics (Matos, 1990, 199 1b) revealed that (a) there is a vast array of 

nonisomorphic definitions of angle in contemporary mathematics, (b) there is disagreement 

over key elementary issues like whether a radian is a unit of measure, and (c) particular 

types of angles, like the angle of contingency, although discussed at length in the past 

because of its nonarchimedean properties, have been put aside by contemporary 

mathematics. Research on mathematics learning (Close, 1981) also showed that students 

display distinct conceptions of angles; namely. the static angle and the dynamic angle. 

Angles seemed, indeed, a complex issue. 



Relevance of Angles for School Mathematics 

But does the study of angles have any relevance for teaching and learning 

mathematics? From the structuralist perspective that swept school mathematics in the late 

1950s and 1960s, it would certainly not be important. The determination with which 

Dieudonnt banned triangles from school mathematics could very well be exerted also to 

angles. From the structuralist point of view, geometry was just a particular case of groups 

of transformations (Choquet, 1964; Dieudonnt, 1964), and angles. in particular, were 

displaced by groups of matrices with specific characteristics. This is not the perspective 

from which I look at geometry. I prefer Freudenthal's (1973) phenomenological proposal: 

[School] geometry is grasping space. ... It is grasping space in which the child lives, 

breathes and moves. The space that the child must learn to know, explore, conquer, in 

order to live, breathe and move better in it. (p. 403) 

Teaching geometry starts by letting students organize spatial phenomena and 

manipulating these means of organization, and not by acquainting children with broader 

mathematical structures, alien to their world of experience. Mathematics is seen as a topic 

of inquiry, rooted in our intellectual abilities, our social interactions, and our material 

world. My perspective on school geometry includes the study of triangles, circles, cubes, 

and similar entities, together with an awareness of the relationships among them and their 

components. For most students, the study of higher geometrical topics can only be 

successful if it is built upon this initial organization of spatial phenomena. In this 

approach to school geometry, angles do play a role, and they are a worthwhile topic for 

scientific research to scrutinize. 



The Search for an Adequate Research Paradigm 

The next question was: How should angles be studied? What would an adequate 

paradigm be that would produce credible results? We use angles to refer to a set of 

mathematical objects with specific characteristics. A way to study them would be to look 

at angles the same way that psychology and linguistics look at categories of things "in the 

world." 

New views have arisen about the ways in which we categorize common objects of the 

world (Armstrong, Gleitman, & Gleitman, 1983; Coleman & Kay, 1981; Pavitt & Haight, 

1985; Rips, Shoben, & Smith, 1973; Rosch, 1973, 1978). These studies distinguish 

between the artificial categories used in former studies of categorization (red triangle) 

and the natural categories of "concepts designable by words in 'natural languages"' 

(Rosch, 1973, p. 329). Natural categories are continuous and not discrete. They are not 

necessarily composed of combinations of simpler attributes, and some stimuli are 

considered better examples than others. The classical example is that of the category of 

birds. People have strong ideas of what a typical member of the class is and of the degree 

to which a given animal is or not a bird. More recently, categorization has become an 

integral part of cognitive scientists' models of learning, helping to explain learning. 

Psychologists have studied several mathematics categories. Armstrong et al. (1983) 

included in their research, together with other categories, the category of odd number. 

Participants were asked to rate the extent to which each given number represented their 

idea or image of the meaning of this category. Although odd number is clearly a 

definitional category-that is, there exists an unique criterion to determine membership 

in the category of odd numbers-participants considered, among others, 3 to be a better 

odd number than 501. The investigation showed that there is no difference in the extent in 

which the classification of well-defined categories differs from that of fuzzy categories 

(those without a clear definition). Moreover, participants seemed to agree extensively on 
- 



the classifications produced. The idea that categories, even of mathematical entities, are 

characterized solely by the properties shared by their members is questioned in the new 

views of categorization. 

Producing a new account of the ways in which the human mind is able to categorize 

entities from its own experience was a task undertaken by Lakoff and Johnson (Johnson, 

1987; Lakoff, 1987; Lakoff & Johnson, 1999). Basically, they argue that: 

The mind is inherently embodied. 

Thought is mostly unconscious. 

Abstract concepts are largely metaphorical. (Lakoff & Johnson, 1999, p. 3) 

They claim that their perspective has broad philosophical consequences. It affects the 

belief shared by many schools of thought that meaning is externally determined and is 

carried by signs and symbols. As a byproduct, this theory of cognitive science blends 

elegantly with a new attitude towards mathematical concepts proposed by some 

philosophers and by some researchers in the sociology and history of mathematics 

(Bloor, 1992; Lakatos, 1976). Mathematical definitions and proofs are seen as the 

product of the social negotiation of meanings. To study the concept of angle, under this 

approach. is to look for cognitive models that are embedded in this category, understand 

the ways in which they relate to each other, and, eventually, understand how the evolve 

over time. as students move from an elementary understanding of geometry to higher 

mathematical systems. The term cognitive model refers to a holistic structure governing 

our understandings of entities, events, and situations we encounter in everyday 

experience. In this study. I restrict the use of this term to the cognitive structures of the 

students. These models reflect image scllemas, which are basic experiential structures 

that are a consequence of the nature of human b~ological capacities and the experience of 

functioning in a physical and social environment. The term basic level refers to a 

significant level of human interaction with the external environment, characterized by 

gestalt perception, mental imagery, and motor movements. Finally, I need to distinguish 
- 



between the models of the students (cognitive models) and the models occurring in 

educational contexts. The term instructional nlodel is, then, applied to classroom 

exchanges or educational materials' content that mirrors a specific cognitive model. 

Characterizing Complexity in Geometrical Reasoning 

The search for the ways in which students move from an elementary understanding to 

higher, more abstract mathematical concepts has been pervasive in mathematics 

education research. In geometry, in particular, van Hiele theory may be credited with an 

elegant model for such abstracting processes. Its paradigm of recursive levels of 

abstraction appeals from both a mathematical and an educational point of view and has in 

broad outline been confirmed by research. As Sche11 (1998) puts it: 

The van Hiele Model of Geometric Thought has been the pivot around which research in 

the learning of geometry has focused. (pp. 2-3) 

The van Hieles have borrowed several psychological perspectives and incorporated 

them into the theory. The first version of the theory, developed in 1957, has a profound 

gestaltist flavor, whereas van Hiele's last book takes a more constructivist perspective. In 

the first version of the theory, abstraction was produced by progressive differentiation 

and restructuring of the field of perception (van Hiele-Geldof, 1984). In van Hiele's book 

Structure and Insight (1986), abstraction occurs at each level and is a recursive process of 

moving from signs to symbols through classroom interactions. 

Lakoff and Johnson's perspectives on categorization stem mainly from linguistic 

studies. Although providing a thorough analysis of the structure of categories, they do not 

offer good descriptions of how categories are formed or how they are learned. The 

recognition of the importance of classroom interactions in the formation of geometric 

concepts makes van Hiele theory a useful complement to their work, providing a graded 



perspective on abstraction and on the means by which generalized geometrical concepts 

are developed. 

Research Questions 

The purpose of the present study was to investigate the ways in which the geometrical 

concept of angle is understood by individual students, and to analyze the contexts 

involved in this understanding. This purpose was accomplished by addressing the 

following questions: 

1. The first set of questions aim at understanding deeper cognitive structures that 

underlie the category of angle: What are the cognitive image schemas related to angles? 

How do they interact among themselves? 

. " .  2. The second set of questions aim at understanding the structure of the category of 

angle: What are the cognitive models students have that constitute the category of angles 

for them? How do these models interact with each other? How do these models relate to 

image schemas? 

3. The third set of questions aim at understanding how this structure connects with the 

cornp1e.t-ih of students' geometric thinking: How are these cognitive models students 

have related to the van Hiele levels of geometric reasoning? 

4. The fourth set of questions aim at understanding the processes under which these 

models are taught: What instructional models relating to the category of angle are used in 

classrooms? What classroom processes give rise to these models? What are the teachers' 

strategies for teaching these models? How do these strategies evolve through time? 

5. The fifth set of questions aim at understanding the background against which the 

teaching and learning occur: What are the instructional models implicitly proposed to 

teachers and students by the materials used during the learning process? What happens to 

the models as the materials penetrate into more complex geometric topics? 
- 



Overview of the Dissertation 

The next chapter (chapter 2) of this report begins with a review of the research related 

to the processes under which we categorize objects. The idea that categories of things are 

built from necessary and sufficient conditions is criticized, as it fails to explain a large 

body of research on this area. The key ideas of Lakoff and Johnson-like idealized 

cognitive models, embodied cognition, metaphoric and metonymic models, and image 

schemas-that largely support the theoretical background of this study are discussed 

here. This chapter ends with an initial discussion of the ways in which their ideas can be 

applied to results from research in mathematics education. 

The third chapter bears on a different topic. For twenty years, van Hiele theory has 

been a reference for studies in geometry and in this chapter multiple aspects of the theory 

are discussed. The purpose is to understand how it can account for the study of 

complexity in geometrical teaching and learning. 

The categorization studies discussed in chapter 2 and the van Hiele theory discussed 

in chapter 3 come from distinct research traditions. To use them together in this study, to 

apply them jointly to several research problems in mathematics education, required 

probins their compatibility and their power to shed light on those issues. That was 

accomplished in chapter 4, in which questions about learning geometry were jointly 

addressed by both theories, producing distinct interpretations. 

Chapter 5 discusses the methodological issues of this research; namely, the context in 

which the study occurred, a description of the participants, and an account of procedures 

for data collection and for data analysis. The next three chapters present the results. In 

chapter 6. four image schemas related to the students' cognitive models of angles are 

presented. Chapter 7 discusses these models, together with the evidence for a basic level 

categorization of angles. This chapter ends by establishing a relationship between the 

co,oniti\.e models and the van Hiele levels. Chapter 8 analyzes lessons where angles were 
- 



taught and examines the materials used by the teachers and the students. The last chapter, 

chapter 9, presents the conciusions of this study. 



CHAPTER 2 

CATEGORIZATION OF CONCEPTS .4ND MATHEMATICAL OBJECTS 

One of the concerns of psychologists and educators has been the ways in which 

students abstract ideas and concepts from their experience. These abstractions help us 

organize our experiential world. Gestalt theory conceived abstraction as a reorganization of 

the field of perception. Piaget viewed it as the formation of schemas. And cognitive 

scientists incorporated into it the mechanisms of generalization, differentiation, and pattern 

recognition. 

Abstraction involves, among other things, the formation of categories of objects. 

Traditional psychological studies assumed that a small set of simple properties is necessary 

and sufticient to establish membership in a category. These categories have defining or 

critical attributes that determine which elements are or are not members of a category. Take, 

for example, the set of red flowers. Boundaries of this category are assumed to be sharp 

and not fuzzy; that is, given any flower, either i t  is red or not (Gardner, 1985). In Piaget's 

studies, for example, equivalence relationships determined membership in categories. 

Moreover, psychologists assumed that we use necessary and sufficient properties of each 

category when performing inferences, making deductions, and constructing a taxonomy of 

categories. In the last three decades, researchers have questioned each of these 

assumptions. 

The classical view of categories was first challenged by Wittgenstein's work. He 

pointed out that the category of gaines does not have a set of common properties shared by 

a11 of its members. Some games share amusement, others luck, competition, skill, or a mix 

9 - 



of these. Wittgenstein (1953) conjectured that game was a cluster concept, held together by 

a variety of attributes but with no instance containing all the attributes. The category of 

games has a family resemblnrtce structure. Like family members, games are similar to one 

another in some but not all ways. Some categories, like games or numbers, have no fixed 

boundaries and can be extended, depending on one's purposes. Some categories, like 

numbers or polyhedra, have central members. Any definition of numbers must include the 

integers, just as any definition of polyhedra must include the cube (Gardner, 1985; Lakoff, 

1987). 

The Study of Prototype Effects 

Experiments by Rosch (1973, 1975a. 1975b, 1977, 1978; Rosch & Mervis, 1975; 

Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976) and her colleagues empirically 

confirmed Wittgenstein's philosophical investigations. Their research proceeded in two 

directions: Horizontally, it looked for asymmetries among members of one category; 

vertically, it looked at asymmetries within nested categories (Rosch, 1978). Their work 

produced evidence of two phenomena: prototype effects and basic-level effects. Later, 

other researchers investigated prototype effects in inferences (Gelman & Markman, 1987; 

Gelman & O'Reilly, 1988; Rips, 1975), deductive reasoning (Cherniak, 1984), and other 

areas. 

The term prototype efects refers to the experimental finding that in some categories not 

all members have equal status. Rosch's (1973) initial research with color showed that there 

are colors (focal colors) that have a special cognitive status. First, they were preferred by 

the participants as best examples. Second. participants learned them easier than the other 

colors. Thls finding ran contrary to the previous view that colors are arbitrarily named 

because colors, as part of one's conceptual system, are determined by language alone. 



Rosch (1975a) called these focal colors cognitive reference points and prototypes. She later 

extended her research to other categories, usually of physical objects. In each case, she 

found prototype effects; that is, participants judged that certain members of each category 

were more representative of the category than others. She showed, for example, that her 

participants believed robins to be very typical birds, whereas chickens were less typical. 

Among sports, football was considered to be very typical, but weightlifting was not. To 

understand the manifestation of prototype effects under several conditions, Rosch and her 

coworkers used a wide variety of experimental devices. They asked participants to rate 

goodness of example and the sensibleness of sentences, measured participants' reaction 

time to declarations of membership, asked participants to produce examples of category 

members, and asked participants to represent proximity to the prototype spatially. 

Prototype effects were consistently shown under these several conditions but they were not 

found in every category. Rosch, for example, was unable to find prototype effects in 

catesories of actions like walking or eating (D' Andrade, 1989). 

Rosch also tried to find other consequences of these prototype effects. She showed that 

they predict performance on several tasks, focusing on the ways in which central members 

of a category are related to peripheral members and to the category itself. She found that: 

(a) less typical members of a category are less associated with that category; (b) typical 

members appear to have an advantage in perceptual recognition; and (c) when people think 

of a category member, they generally think of typical instances of that category. She also 

showed one asymmetry in the ways in which members of some categories are related to 

others: (d) people consider less typical members to be more similar or more representative 

examples thm the converse. Finally, she showed that: (e) the categories studied had a 

structure of family resemblances (Anderson, 1980; Lakoff, 1987; Smith, 1989). 



Basic-Level Effects 

The ways in which people nest the classification of objects have been the object of 

research. Brown (1958) has been credited as the first to pose the problem: 

We ordinarily speak of the name of a thing as if there were just one, but in fact, o f  

course, every referent has many names. The dime in my pocket is not only a dime. It 

is also nlorzey, a rr~etal ol~ject, a tlzing, and, moving to subordinates, it is a 1952 dime, 

in fact a particirlar 1952 di~?le with a unique pattern of scratches, discolorations, and 

smooth places. (p. 14) 

He pointed out that we have the feeling that some of these names are the "real names," the 

others being achievements of the imagination. Although we know that Brown's dime is a 

"coin" or a "thing," we are compelled to think that its real name is "dime."  moreo over, these 

special names seem to be frequently linked with nonlinguistic actions. For example, we 

usually associate the word flower with the action of smelling one. This action is so 

important that mimiclung the action of smelling a flower can stand for the class of flowers. 

Brown hypothesized that a child begins at a level of distinctive action that includes flowers, 

cats, and dimes. Later. she or he develops both to superordinate (plant and animal) and 

subordinate (rose and Siamese) categories (Lakoff, 1987). 

Brown's ideas prompted cognitive anthropologists to search for folk taxonomies-the 

ways in which cultures use the form "A is a kind of B." Berlin and his coworkers (cited in 

Lakoff, 1987) examined folk classification of plants and animals of speakers of Tzeltal 

living in a region of Mexico. They found out that. although their informants could name 

animals and plants in a variety of ways, they tended to use a single level of classification. 

Berlin called this level of classification the folk-generic level (or basic-level). This level was 

in the middle of the folk classification hierarchy and had the following characteristics: 



- People name things more readily at that level. 

- Languages have simpler names for things at that level. 

- Categories at that level have greater cultural significance. 

- Things are remembered more readily at that level. 

- At that level, things are perceived holistically, as a simple gestalt. while for 

identification at a lower level, specific details (called distirzctive fearlcl-es) have to be 

picked out to distinguish, for example, among the kinds of oak. (Lakoff, 1987, p. 33) 

Further research on the Tzeltal language disco\rered that most children initially learn names 

at this folk-generic level. Later they find out simultaneously how to differentiate and 

generalize these terms (Lakoff, 1987). Other examples of categorization at the basic-level 

are the distinction among the several pieces of furniture like tables, chairs, beds, but not 

including, for example, the Louis XV chair. For a person living at an urban site, the basic- 

level of plants may contain trees, flowers, grass, bushes, but not acacias, for example. 

Rosch and her colleagues developed a series of experiments that confirmed most of 

Berlin's findings (Rosch et al., 1976). They found that the psychologically most basic- 

level was in the middle of taxonomic hierarchies. Basic-level catsgories are basic in 

perception, function, communication, and knowledge organization. Essentially Rosch et al. 

found that the basic-level is 

- The highest level at which category members have similarly perceived overall shapes. 

- The highest level at which a single mental image can reflect the entire category. 

- The highest level at which a person uses similar motor actions for interacting with 

category members. 

- The level at which subjects are faster at identifying category members. 

- Ths level with the most commonly used labels for category members. 

- The first level named and understood by children. . . . 

- Thc level at which terms are used in neutral contexts. . . . 

- The level at which most of our knowledge is organized. (Lakoff. 1987, p. 46) 



Other researchers (D'Andrade, 1989) also found that, unlike scientific taxonomies, 

classification in folk taxonomies is not always exclusive; that is, instances can share several 

taxonomic levels. Moreover, the implicit categorization criteria may vary. Sometimes, for 

example, we use the function as the categorization criterion for a superordinate category 

(clothing). At other times, we use the unity of place (furniture). In other cases, we form 

categories (groceries) from a composition of criteria. There is also evidence that folk 

taxonomies are not very extensive (Randall, 1976). 

Prototype Effects in Inferences 

The existence of prototype effects in some categories has changed the ways in which 

researchers conceive the nature of human rules of inference. The consequence of finding 

that membership in a category is not sharply defined (from a cognitive standpoint) and that 

categories have cognitive reference points is that the inference of properties from one 

category member to the whole category may depend on the status of that member within the 

category. 

Rips (1975) analyzed the ways in which category structure influences people's 

inferential judgments. The evidence suggests that people infer from the most representative 

members of categories in ways that they do not from less representative members. He 

found an asymmetry in the relationship between typical and peripheral members; namely, 

that new information about typical members is more likely to be generalized to the whole 

category than the reverse. For example, when told that robins on an island had a disease, 

participants were more likely to infer that ducks could also catch it than the reverse. In 

another investigation, Carey found that young children generalize asymmetrically in the 

domain of animals. When told that a human has a spleen, four year-olds assumed that any 



animal, even a bee, has a spleen, but they did not generalize in the opposite direction 

(reported in Rosch, 1983). 

Gelman and her colleagues, in a series of studies that investigated inferences in 

children, studied children's expectations about unknown properties of natural categories 

(Gelman & Markman, 1987). They compared the ways in which children infer to objects 

within a category and the ways in which they infer to objects of a different category. When 

instances had a similar appearance, 3- and 4-year-olds relied more on categories than on 

appearances for drawing inferences. In another study. Gelman and O'Reilly (1988) 

compared the ways in which preschool children and second graders were able to generalize 

from basic-level to superordinate categories. They found that children drew more 

inferences within basic-level categories (such as dog) than within superordinate categories 

(such as animal). Older children drew more inferences at the superordinate level than 

younger children. 

Deduction often involves the restriction or the generalization of statements to subsets or 

supersets of a given category. If the category exhibits prototype effects, it is reasonable to 

expect that these will influence the outcome of deductive thinking. That is, deduction 

involving superordinates or subordinates is more difficult than deduction involving basic- 

level categories. Moreover, when a solver simplifies a problem by working on an example, 

that example should be "good; that is, it should have the specific characteristics that are 

pertinent to the problem in question. Consequently, deduction using a prototype should be 

easier than using an example removed from the prototype. 

These effects have not been studied extensively. For example, there has been almost no 

study of the effect of prototypical structures in mathematical proof. Chemiak (1984) 

appexs to be the sole researcher who has studied this effect. His experiments seem to 



indicate that, under certain conditions, people use a formally incorrect deductive reasoning 

heuristic that makes use of the prototypicality of categories. 

Implications for  Cognition 

The identification of prototype and basic-level effects has destroyed the notion that 

concepts are organized by sets of necessary and sufficient conditions and has prompted the 

development of new cognitive models to accommodate the experimental findings. At the 

core of this theoretical effort is the notion of rlzerltal r-epr-esentations-"a set of constructs 

that can be invoked for the explanation of coznitive phenomena, ranging from visual 

perception to story comprehension" (Gardner, 1985, p. 383). This section examines the 

ways in which several psychological theories account for the effects described above. 

The holistic perspective provides the simplest account for prototype effects. This theory 

maintains that, for example, a term llke dog refers to the mental category dog, which is in 

itself an unanalyzable gestalt. It assumes that mental categories are composed of templates, 

usually imagistic, that are isomorphic to the object they represent, are unanalyzable, and 

implicitly show the relations between the several features or dimensions of the object. An 

object belongs to a certain class if it provides a holistic match to the template of the class. 

Computer scientists working in pattern recognition have been using this theory. The 

theory, however, seems to be limited to the categorization of concrete objects-it is difficult 

to talk about templates for categories like ficr-nirrtre, or for more abstract entities like justice 

(Smith & Medin, 1981). 

Another theory, the featural perspective, rests on the idea that human minds use 

e lementq  categories and that only a few of the ;vords we manipulate code unanalyzable 

concepts. Rather, most words are labels for mental categories that are themselves sets of 

simpler mental categories. usually called features, properties, or attributes. Each concept is 



represented by groups of features that have a substantial probability of occurring in 

instances of the concept. Some proponents of this theory have developed the notion of a 

group of weighted features. An object is an instance of a category if the sum of its values 

for each feature is greater than a given threshold. Each member of a category is further 

removed from the prototype the more it differs in highly weighted features (Lakoff, 1987; 

Smith & Medin, 1981). 

Some researchers (McDonald. 1989a, 1989b: Rips, Shoben, & Smith, 1973) have 

designed a similar theory using dimensions instead of features to represent concepts. This 

view departs from the featural perspective especially in the treatment of continuous 

dimensions like size. Specific instances depart from the prototype in continuous degrees. If 

the relevant dimensions of birds were thought to be animacy, size, and ferocity, for 

example, a robin might have a 1 in the feature of animacy. .7 in size, and .4 in ferocity. A 

key concept that is a consequence of this approach is the notion of semantic metric spaces, 

which are thought to be multidimensional Euclidean real spaces. The vector (1, .7, .4) in 

~ b u o u l d  represent a robin (Smith & Medin. 1981), providing a literal meaning to the 

notion of semantic distance, which is interpreted as the Euclidean distance in a semantic 

space. Typically, researchers using this theory attempt to determine relevant dimensions, 

discuss the meaning of clusters of concepts, or discuss meanings of translations in the 

semantic metric space. The semantic distance between an instance and the prototype 

corresponds to the degree of category membership. 

Critics of these last two perspectives have pointed out that: (a) the knowledge 

represented in a concept includes more than a list of features, namely, the relationships 

amon2 the features: and (b) the model does not provide for contextual, background, or 

cultural effects. The dimensional perspective also raises additional problems because of its 

use of semantic metric spaces. The requirement of orthogonal dimensions, the necessity of 



the isotropy of the semantic space, and the possibility of coexistence of concepts and their 

members in the same space are examples of the difficulties of these theories (Lakoff, 1987; 

Smith & Medin, 1981). 

Global theories of cognition have provided ways to accommodate prototype effects. 

Rumelhart (1980), for example, proposes that knowledge of each concept is represented by 

a schema (he uses schemata as the plural). A schema is "a data structure for representing 

the generic concepts stored in memory" (p. 34) and contains the relationships among the 

components of the concept in question. A very similar construct, a frame, is proposed by 

Minsky (1981). Rumelhart describes the features of schemas using four analogies. 

First, each schema is a type of informal, private, unarticulated theory about the nature 

of events. objects, or situations that we face. The total set of our schemas constitutes our 

private theory about the nature of reality: "Schemata are our knowledge" (Rumelhart, 1980, 

p. 41). This means that we are constantly testing our theory, and that we use it to make 

predictions about unobserved events. According to Minsky (1981), this process is 

accomplished by an itzfomzation retrieval network. Rumelhart also claims that schemas 

represent knowledge at all levels of abstraction. 

Second, schemas are active processes, like procedures or computer programs. As such, 

they are able to determine the extent to which they account for the pattern of observations 

and are capable of invoking other subprocedures (or other subframes). 

Third. schemas are like parsers that work with conceptual elements. On the one hand, 

we are able to find and verify the appropriate schemas. On the other hand, schemas enable 

us to find constituents and subconstituents in our observations. 

Finally, the internal structures of schemas are like the scripts of plays that can be 

performed with different actors. The scripts correspond to prototypes of the concepts. They 

have several ~,arial>les that can be "associated with (bound to) different aspects of the 



environment on different instantiations of the schema" (Rumelhart, 1980, p. 35). Minsky 

(1981) talks about tennitzals, which are "slots that must be filled by specific instances or 

data" (p. 96). We are aware of the typical values of these variables and of their 

interrelationships. 

Schemas and frames provide similar explanations of prototype effects. Rumelhart 

claims that the meaning of a concept is encoded in terms of the prototypical situations or 

events that instantiate that concept, and Minsky defines a frame as the representation of a 

stereotyped situation. In more specific explanations, both researchers stipulate that each 

schema's variables have defnlllt values that are responsible for our expectations and other 

kinds of presumptions. These default values are "attached loosely to their terminals" 

(Minsky, 1981, p. 97), which allow their replacement by new items that better f i t  our 

experience. 

Cultural Models 

The previous models still do not account for contextual or background effects, nor do 

they provide any explanation for basic-level effects. From an educational point of view, 

contextual effects are very important for understanding children's enculturation into school 

mathematics. It is a plausible conjecture that children's conceptualizations depend heavily 

on the social and cognitive context in which learning takes place. Students and their 

teachers live in a school culture, and one can expect that they intersubjectively share 

mathematical concepts to some degree. Both students and teachers are also members of 

larger social groups, and one car, expect that they bring the mathematical knowledge of 

such groups into the school. 

A broader approach to mental representations is needed, one that takes into account the 

role played by the community of human minds acting on the individual. To describe this 



common knowledge, cognitive anthropologists and linguists have developed the notion of a 

cultural model-"a cognitive schema that is intersubjectively shared by a social group" 

(D'Andrade, 1989, p. 809)-used by American researchers. A similar notion is that of 

social representations. These are systems of values, ideas, and practices with a twofold 

function: first, to establish an order that will enable individuals to orient themselves in their 

material and social world and to master it; an3 second, to enable communication to take 

place among the members of a community by providing them with a code for social 

exchange and a code for naming and classifying unambiguously the various aspects of their 

world and their individual and group history (Duveen & Lloyd, 1990; Moscovici, 1989). 

The construct of social representations was proposed by Durkheim and is used by 

investigators working in the European tradition. 

A special case of cultural models is the notion of scripts, developed by Schank and 

Abelson (1976) in the context of text comprehension. Scripts are cultural models adapted to 

the study of events. A script is "a coherent sequence of events expected by the individual, 

involving him either as a participant or as an observer" (Abelson, 1976, p. 33), and it can 

be interpreted as an extension of schemas to dynamic episodes (Anderson, 1980; Gardner, 

1985). A script may be thought of metaphorically as a cartoon strip. Forgas (1981) prefers 

the term social episodes, which he defines as "internal, cognitive representations about 

common, recumng interaction routines within a defined subcultural milieu" (p. 166). The 

departure of an instantiation of events from the expected prototypical episode gives rise to 

prototype effects. People, for example, have a "restaurant script" that is composed of a 

stereotyped set of events that they expect to happen under certain circumstances. The 

restaurant script depends on a sociocultural institution; that is, the existence of a place that 

serves and sells food (D'Andrade, 1989). 



Idealized Cognitive Models 

Recently, linguists and anthropologists have been converging in their study of cultural 

models. An example is Lakoff and Johnson's work on cognitive models. Lakoff and 

Johnson (Johnson, 1987, 1997; Lakoff 1987; Lakoff & Johnson, 1999) develop an idea of 

mental representations that borrows some of the features of Rumelhart's schemas, 

Minsky's frames, and Abelson's scripts, and adds linguistic and cultural components. 

They propose that we organize our knowledge by means of idealized co~ilitive r~zodels, and 

category structures and prototype effects are byproducts of that organization. As Johnson 

(1997) puts it: 

Human beings understand their world by means of idealized cognitive models for the 

kinds of entities, events, and situations we encounter in everyday experience. Recent 

empirical studies in lexical semantics have shown that words do not map directly onto 

states of affairs in the world, but rather are defined by their roles in idealized models 

of situations, which are holistic structures called "frames". Words get their meaning 

by the role they play in frames. . .. Frames are inzaginative, not only because they are 

idealized models that do not exist objectively "in the world," but also because they 

are defined partly by image schemas and experiential metaphors. (p. 155) 

Lakoff (1987) disagrees with two assumptions shared by the featural and the dimensional 

approaches. The first is that goodness of example is a direct reflection of degree of category 

membership; that is, people's willingness to say that a chicken is not a good bird implies 

that chickens do not have a high degree of membership in the category of birds. Although 

the construct of a graded membership in mental categories can explain some prototype 

effects. i t  cannot explain others. A classical example of a category (first presented by 

Fillmore) that does not have a graded membership is the category of "bachelor," for which 

there are clear conditions for membership. Nevertheless, persons like the Pope or Tarzan 



do not have a clear status of membership in this category. Lakoff proposes that prototype 

effects in this category are produced not because the category is graded but because people 

have an idealized cognitive model of bachelor based on the context of a human society in 

which there are certain expectations about marriage and marriageable age. The worse the fit 

between that idealized cognitive model and our knowledge of the background conditions, 

the less appropriate we feel it is that the concept be used (Lakoff, 1987; Quinn & Holland, 

1987). Later in this chapter, I discuss the category of even number, which is not graded 

either. 

The second assumption shared by the featural and the dimensional perspectives with 

which Lakoff disagrees is that prototype effects mirror mental representations of categories; 

that is, categories are represented in the mind in terms of prototypes, and degrees of 

category membership are determined by their degree of similarity to the prototype. This 

assumption does not capture the complexity of some categories. For example, the concept 

of mother is based on a complex aggregate of several models: 

- The birth model: The person who gives birth is the mother. . . . 

- The genetic model: The female who contributes the genetic material is the mother. 

- The nurturance model: The female adult who nurtures and raises the child is the 

mother of that child. 

- The marital model: The wife of the father is the mother. 

- The genealogical model: The closest female ancestor is the mother. (Lakoff, 1987, 

P. 74) 

The concept of mother is not defined by necessary and sufficient conditions, and all the 

models converge in a prototypical ideal case. Prototype effects can be explained by tensions 

between these models in some situations (stepmother, surrogate mother, foster mother, 

etc.). 

Lakoff (1987) claims that a major source of prototype effects is associated with our use 

of merotz~~~~z~-"a situation in which some subcategory or member or submodel is used . . . 



to comprehend the category as a whole" (p. 79). Social stereotypes, where a subcategory 

has a socially recognized status as standing for the category as a whole, are examples of 

our use of metonymy. For example, in the United States, the category "working mother" is 

not a mother who happens to be working. Rather it is defined in contrast to the social 

stereotype of a "housewife mother" that is defined by the nurturance model. Prototype 

effects in the case of a working mother arise from its comparison with only one of the 

models in the cluster and not against the whole category. Put another way, the "housewife 

mother" usually stands for the whole category of mothers: 

Consider an unwed mother who gives up her child for adoption and then goes out 

and gets a job. She is still a mother, by virtue of the birth model, and she is 

working-but she is not a working nrother! 

The reason is that it is the nurturance model, not the birth model, that is relevant. 

Thus, a biological mother who is not responsible for nurturance cannot be a working 

mother. though an adoptive mother, of course, cap be one. (Lakoff, 1987, p. 80) 

Other kinds of metonymic models include: typical examples, ideals, paragons, salient 

examples. Neither the featural and dimensional perspectives, Rumelhart's schemas, 

Minsky's frames, nor Schank and Abelson's scripts account for prototype effects that 

result from metonymy. 

The catezory of mother combines two different models: One is a cluster of models, and 

the other is a stereotypic model. The category of mother has a structure with a composite 

prototype: "The best example of a mother is a biological mother who is a housewife 

principally concerned with nurturance, not working at a paid position, and married to the 

child's father" (Lakoff, 1987, p. 82). Although mothers in other cultures and in other 

historical times differ in several aspects from this description, it is likely that such cultures 

or epochs have their prototypes for mothers. Prototype effects arise when a given 



individual is compared with the prototype as a result of a particular representativeness 

structure. Representativeness structures exist in other categories and are the ones detected 

by the research on prototype effects. As these structures are linear-they focus on 

closeness to the prototype-they hide much of the complexity of the category. 

Another important source in the construction of all kinds of models is the use of 

nletaplzor. Each metaphor is based on a similarity between a source and a target domain, 

together with a source-to-target mapping (Lakoff, 1987). Metaphors allow us to extend the 

similarities between the domains beyond their initial state, and they structure most of our 

conceptual system. We use them to map structures usually in the physical world and 

eventually in the mental world into other domains throuzh imaginative processes (Lakoff & 

Johnson, 1980): 

The result of any such mapping, from physical experience in the source domain to 

social or psychological experience in the target domain, is that elements, properties, 

and relations that could not be conceptualized in image-schematic form without the 

metaphor can now be so  expressed in the terms provided by the metaphor. (Quinn & 

Holland, 1987, p. 28) 

Johnson (1987) elaborated this notion and proposed the construct of kinesthetic image 

schemas (1 987) or schematic mental images or image schemas (1 997)-basic or primitive 

experiential structures that are a consequence of the nature of human biological capacities 

and the experience of functioning in a physical and social environment. Reason, for 

Johnson. is no longer detached from human beings as functioning organisms. Image 

schemas sisnificantly structure our experience prior to, and independent of, any concepts 

and are rzsponsible for many of the metaphors we use in abstract domains. Examples of 

these schcmas include: the container schema tli'tr consists of a boundary distinguishing an 

interior from an exterior; the part-whole schema that involves the whole, the parts, and a 



configuration; the link schema, where there are two entities and a link connecting them; the 

center-periphery schema, where a central element is thought to be rnore important than the 

periphery; the source-path-goal schema that includes a source, a destination, a path, and a 

direction; the up-down schema; the front-back schema; and the linear order schema 

(Johnson, 1987, 1997; Lakoff, 1987). Quinn and Holland (1987) argued that these 

imagetic schemas, from which metaphors are based, are not only predicated on our bodily 

experiences but may also be built on elements shared by the cultural group. 

In summary, Lakoff (1987) and Johnson (1987) propose that the structure of thought 

in general, and the categorization in natural languages in particular, is characterized by 

cognitive models that fall into four types: 

1. Propositional nzodels that specify elements, their properties, and the relations 

holding among them. 

2. Image-schematic models that specify schematic images. 

3. Metaphoric models that are mappings from one of the above models in one domain 

to a corresponding structure in another domain. 

4. ~Wetonynzic models that make use of the previous models and map one element of the 

model to another. 

By distinguishing among these types of cognitive models, Lakoff was able to propose a 

process of creating complex cognitive models that can "characterize the overall category 

structure, indicate what the central members are, and characterize the links in the internal 

chains" (p. 114). He argued that there is a "significant level of human interaction with the 

external environment (the basic-level), characterized by gestalt perception, mental imagery, 

and motor movements" (p. 269). This is the level at which people function most efficiently 

and successfully using basic-level and image-schematic concepts as proposed by Johnson 

(1987). Gelman's finding mentioned previously that older children generalize more easily 



to superordinate categories than do younger children supports this proposal (Gelman & 

O'Reilly, 1988). 

But how do categories gain their structure? In what ways do metaphors relating distinct 

domains of experience come about? Why this metaphor and not another? How does each 

individual relate to particular metaphors? How do we learn metaphors? These are crucial 

questions for educators. Grady and colleagues (Grady, 1996; Grady, Taub, & Morgan, 

1996) distinguish between primary (or prinzitive) and complex (or compound) metaphors. 

The former pair subjective experience and judgment with sensorimotor experience and the 

later are formed from the primary ones through fitting together small metaphorical "pieces" 

into larger wholes. Conflation, a stage at which the two domains that will later be related 

metaphorically are combined, plays a key role in the formation of primary metaphors 

(Lakoff & Johnson, 1999). Metaphors have also been shown as being the sources for 

innovative solutions to problems. Indurkhya (1994) denominated them similarity-creating 

metaphors and Carroll (1994) visual metaphors. But how does this process occur? And 

how do teachers create contexts to facilitate the creation of rich mathematical metaphors? 

Are there specific pitfalls to avoid? 

Categorization of Mathematical Objects 

Mathematical categories have been the object of research by psychologists, linguists, 

and mathematics educators. For some of these researchers, mathematical knowledge is a 

field of certainty, bound by the laws of logic and a clear example of analytic truth. 

Armstrong. Gleitman, and Gleitman's (1983) investigation on prototype effects provides a 

typical example. In an attempt to prove that prototype effects are unrelated to the ways in 

which we categorize, they compared the categorization of mathematical entities with the 

categorization of real world objects. The rationale for this approach was that if prototype 



effects could be found in mathematical categories, like "even number," then Rosch's 

prototype theory would be wrong, because these prototype effects are unrelated to 

membership gradience-the category of even numbers has a clear membership rule. Their 

implicit assumption was that mathematical entities have a clear declarative membership rule, 

and that their participants were applying it. 

This conception of mathematics runs contrary to developments in the philosophy, 

history, and sociology of mathematics (Bloor, 1991; Lakatos, 1976; Restivo, Bendegem, 

& Fischer, 1993). As a result of investigating the roots of mathematical knowledge, 

researchers in these fields have been proposing that mathematics knowledge is generated by 

social interactions and that mathematical truth is intersubjectively shared by the community 

of mathematicians. Lakatos's work, in particular, shows how mathematicians themselves 

may not be in agreement over the meanings of mathematical entities, even when such 

meanings are provided by definitions. Although Lakatos's field was the history and 

philosophy of mathematics. he provided evidence of prototype effects in the category of 

polyhedra. In his historical account of the discussions over a precise definition of the 

concept of polyhedra, Lakatos showed how some mathematicians came up with 

counteresmiples of polyhedra that did not verify Euler's formula and how other 

mathematicians claimed that they were presenting "monsters" and using "wrong" 

definitions of polyhedra. Moreover, there are central examples of polyhedra-all 

mathematicians would agree that any definition of polyhedra should include prototypes like 

the five platonic solids. 

Mathematics educators (Matos, 1991a; Sfard, 1994) have pointed out how Lakoff and 

Johnson's proposals may entail a change in the view about the nature of mathematical 

knowledze. They reflect a shift from an objectivist viewpoint, in which mathematics 

categories are a reflection of the structure of an external reality, to a subjective perspective 



where these categories are mental products shaped by three ingredients: an embodied 

cognition linking our inner mental workings to the particularities of our physical body, 

social interactions that rely on language. and an external reality that, although inaccessible, 

conditions all our mental world. The affective dimensions of rationality may, however, still 

be missing from this picture (Damisio, 1994; Lakoff, 1997). 

A second point can be made about Armstrong et al's (1983) investigation. Even if we 

accept that mathematical categories are classical, we would still have to show that they were 

viewed as such by the participants. As Gardner pointed out (1985), the study may very 

well show that even mathematical categories display a structure similar to other categories. 

Later in this chapter, I discuss further this research. 

A strong case for the subjectivity inherent in mathematical entities was put forth by 

Fischbein (1987). In his review of the role of intuition in thought, he gave examples of 

what he termed analogic and paradignzatic models in mathematics and physics. His 

definition of analogic models is similar to the previous notion of metaphors-"two objects 

or two systems are said to be analogical if. on the basis of a certain partial similarity, one 

feels entitled to assume that the respective entities are similar in other respects as well" (p. 

127). Apczradigm, in Fischbein's terminology, is an instance of a category that is used to 

represent the whole category and is thought to be a particularly good example of the 

category. This definition shares both the characteristics of a prototype and a metonymic 

model. Fischbein also agreed that mathematical categories may not be classical. He 

proposed that when we define a concept we never do it as a pure logical construct: 

The meaning subjectively attributed to [the concept], its potential associations, 

implications and various usages are tacitly inspired and manipulated by some 

particular exemplar, accepted as a representative for the whole class. (p. 143) 



Fischbein's point is as much about students as about mathematicians themselves. He 

compared these reasoning processes with Kuhn's paradigms in scientific thought and called 

this phenomenon "the paradigmatic nature of intuitive judgment" (p. 143). 

To adjust Lakoff s theory to mathematics learning, Dorfler (1991, 1995) proposes three 

changes. First, he emphasizes the need to stress a social perspective on the genesis of 

knowledge, which. in a way, is already implicit in Lakoff s account. Second, he interprets 

image schematic models as condensations of actions, much as Piaget would. Third, in 

order to adapt the theory to mathematics, Dorfler proposes an image schema to be a 

perceptive or cognitive interaction with an object-like model-a material model, a drawing, 

or just an imagined model-together with the manipulation of this model. He calls this 

material model the concrete carrier for the image schema. 

Evidence of prototype effects has been empirically found by mathematics educators. 

McDonald (1989b) studied the relationship between high school students' level of cognitive 

development and the way in which they structure geometrical content. This investigation 

was followed up a year later to study changes in the structure geometrical content 

(McDonald, 1989a). Both studies used ratings of the similarity of two mathematical terms 

(equilateral triangle, right triangle, parallel, corresponding sides, ratio, and others) to 

produce a map of these concepts into a two-dimensional semantic mental space. The studies 

also compared students' maps with experts' maps. McDonald's research showed that the 

semantic map of students at the formal level was significantly closer to the experts' map 

than was that of the students at the concrete level. Moreover, after one year, the formal 

group had more stable structures than the concrete group. Although these studies exhibit 

differences in the geometric concepts of the students, it is difficult to claim that they allow 

us to model students' mental structures. As shown above, the notion of semantic mental 

spaces has severe limitations in the study of mental representations of concepts. 



Presmeg (1992, 1997a, 1997b) focused on prototypical mental images and the use of 

imagery in metaphoric and metonymic ways in mathematics. She was especially concerned 

with the role played by these mental images in more advanced thought processes in 

mathematics and found that imagery is central in the development of mathematical 

reasoning, even in areas that have been traditionally considered akin to algebraic, nonvisual 

explorations. 

Concept Images and Concept Definitions 

The construct of prototypes has also been used in another area of research in geometry 

learning. Some researchers have reported that students' choice of examples of geometric 

concepts and their definitions of the same concepts do not match (Burger, 1985b; Fuys, 

Geddes, &i Tischler, 1985; Mason, 1989; Wilson, 1988). The construct of concept inzages 

has been proposed by Vinner and his colleagues (Tall & Vinner, 1981; Vinner, 1983; 

Vinner & Hershkowitz, 1983) as an explanation for these findings. 

A concept image is "the total cognitive structure that is associated with a given concept" 

(Tall & Vinner, 1981, p. 152) and is composed of the images associated with that concept 

together with a set of properties and processes. For example, the concept image of a 

function may include a picture of the graph and a picture of the algebraic expression that 

defines the function, together with the students' definition of function. Concept image is 

contrasted with concept definition, which is a verbal definition that accurately explains the 

concept (Vinner, 1983) and may differ from the mathematical definition (Vinner & 

Hershkonitz, 1983). Vinner distinguished between formal and informal learning and 

claimed that in the latter people need a concept image and not a concept definition. Concept 

definitions introduced by means of a definition remain inactive or are eventually forgotten. 

In a specific intellectual task, only portions of the concept image are actually evoked 



(temporary or evoked concept image). These portions might be contradictory and produce 

conflict in one person's mind when these opposing portions of the concept image are used 

simultaneously (Tall & Vinner, 1981; Vinner, 1983). 

Vinner and his colleagues have used this construct to interpret the finding that often 

visual identifications and drawings made by students do not match their definitions 

(Hershkowitz, Bruckheimer, & Vinner, 1987; Vinner & Dreyfus, 1989; Vinner & 

Hershkowitz, 1980; Vinner & Hershkowitz, 1983). Although these researchers did not 

perform their investigations within the framework of categorization theory, Hershkowitz 

(1989b) attempted a reinterpretation of their findings that is consonant with categorization 

theory and van Hieie theory. I discuss her proposals in chapter 4. 

Applying the construct of concept image to the problem of the mismatch between the 

students' choice of examples and their definitions, one could say that their concept images 

and concept definitions did not align and that the concept image took precedence in 

identification or production tasks. However. one would still fail to explain the 

incompleteness of the definitions, the absence of a distinction between necessary and 

sufficient conditions. the ambiguity of the terms, and how a contradiction between an 

imaged and a propositional representation of concepts could occur in students' minds. 

There are other ways in which the construct of concept images is not open to research. 

Although concept images have a domain similar to that of Lakoff s image-schematic models 

and although concept definitions are close to his propositional models, Hershkowitz (1987) 

claimed that prototypes are mainly a visual phenomenon and provided no explanation for 

prototype effects derived from propositional models that do not involve mental images. To 

conclude this chapter, I present examples of a metonymic model and a metaphoric model 

not encornpassed by the notion of concept images. 



An Example: The Concept of Number 

Rosch (1975a) studied examples of cognitive reference points. They included vertical 

and horizontal lines and numbers that are powers of 10. As part of her research, Rosch 

looked for prototype effects using linguistic hedges-"terms referring to types of 

metaphorical distance" (p. 533)- like nlrnost, \irtunll>.. esserztinlly, or loosely speaking. 

She made use, for example of such stimuli as "103 is essentially 100." She found that in 

the decimal system, multiples of ten constitute reference points. Both 97 and 102 were 

judged essentially 100, but not vice versa, and both were considered closer to 100 than 100 

was close to them. As a byproduct, these asymmetries called into question the isotropy of 

semantic spaces. 

Analyzing these results from a linguistic perspective, Lakoff (1987) added that the 

natural numbers, for most people, are characterized by the words for the integers between 

zero and nine, plus addition and multiplication tables and rules of arithmetic. These digits 

are the central members of the category of natural numbers from which the other members 

are generated. Any natural number can be written as a sequence of digits, the properties of 

large numbers are understood in terms of the properties of the single-digit numbers, and 

computations with large numbers are understood in terms of computation with single-digit 

numbers. Each of the single digits generates subcategories of its own when multiplied by 

10, 100, and so on. These results were actually predicted by Wertheimer (1938). He may 

be credited as being the first to draw attention to the special place multiples of ten have in 

our vocabulary: "He is a man in his thirties." or "X died in the twenties of the last century." 

Natural numbers are an example of a category composed of some central members and 

some rules for generating the other members. Lakoff (1987) claimed this category is a 

metonymic model in which the single-digit numbers stand for the whole category. He also 

claimed that the category of natural numbers itself is a central category in more general 



categories of numbers. For example, rational numbers are understood as quotients of 

natural numbers, real numbers as infinite sequences of single digits, and so on. These other 

categories of numbers are understood metonymically in terms of the natural numbers. 

Every axiomatic system involving numbers must include the natural numbers, so their 

centrality is reflected even in the work of mathematicians. Data from researchers in 

mathematics education confirm this "dissolution of hierarchies" (Fischbein, 1987, p. 147), 

at least in older students. Tall and Vinner (I98 I) report that often students did not regard fi 
as a complex number although some of them defined real numbers as "complex numbers 

with imaginary part zero" (p. 154). The structure of the category of numbers in younger 

children has yet to be understood. 

The effects found by Rosch are explained because we use the powers of ten as a 

submodel to comprehend the relative size of the numbers, especially in the context of 

approximations and estimations. We also use other models to comprehend numbers. For 

example, in the context of body temperature, 98.6" Fahrenheit (or 37" Celsius) is a 

cognitive reference point where fever is involved, and as far as American money is 

concerned, a cognitive model often includes multiples of five (nickels, dimes, quarters). 

Each of these models produces prototype effects. 

These prototype effects are not equivalent to graded category membership. In fact, 

participants in Armstrong et al.'s (1983) investigation agreed that the categories of even and 

odd numbers are well defined. Nevertheless, the researchers found prototype effects using 

reaction time and ratings. Lakoff (1987) claimed that these effects are the result of the 

superposition of the other models over the even-odd structure of the natural numbers. 



Another Example: Preferred Triangles 

Geometry, in particular, relies heavily on metaphors. Examples are the terms altitude, 

height, base, length, and width. We talk abcut "the altitude of a triangle," "the altitude of a 

trapezoid," "the altitude of a parallelogram," but very rarely about "the altitude of a 

rectangle" (length and width are used instead), or the "altitude of a square" (we use side), 

and never about "the altitude of a rhombus." The same can be said about the term base. 

There is "the base of a triangle" but not "the base of a rhombus." Base and altitude are also 

used with solids in the same way. Virtually every textbook will say that to calculate the area 

of a rectangle multiply the length and the ~r-idth. whereas the area of triangle is computed 

using the base and the height. 

The phrase "the altitude of '  is used in ordinary English mainly in relation to mountains. 

We use the phrases "height of a building" or "height of a person" but not "the altitude of a 

house." Although we would say that "the plane is at an altitude of 9 kilometers," we are 

less likely to say "the altitude of the plane is 9 hlometers." The underlying message is that 

we are asking students to imagine triangles as being like mountains, whereas rectangles are 

thought to be like rooms or football fields (rhombuses apparently are :bought to be 

diamonds or kites). We are, in fact, using a '-mountain metaphor" to work with triangles 

and a "football f i e ld  or a "room metaphor" to compute the areas of rectangles. 

Although such worldly terminology would be condemned by Hilbertian formalists, its 

use helps students attribute meaning to their actions on mathematical objects. But 

mathematicians themselves also make an extensive use of metaphors. As Thom (1973) puts 

it, "the mathematician gives a meaning to every proposition" (p. 202). The terms manifold, 

3 b e r  bictzdle, curvature, projection, kernel. closure, and many others are all evidence of 

mathematicians' concern for meaning. Lakoff and Nuiiez (1997) provide many such 

examples that show the pervasiveness of metaphors in mathematics and distinguish 



between grounding metaphors and linkilzg nzeraphors, the former ground mathematical 

ideas in everyday experience and the later link one branch of mathematics to another. 

The mountain metaphor may only be part of the picture. Several researchers (Burger & 

Shaughnessy, 1986; Fisher, 1978; Fuys et al., 1985; Presmeg, 1992; Vinner, 1983; 

Wilson, 1986) have reported students' preference for the uprightlhorizontal position of 

geometric figures, and in one case (Burger & Shaughnessy, 1986), one of the informants 

(Bud) distinguished among several triangles by the directions in which they were pointing. 

Some researchers (Fuys et al., 1985) have interpreted these phenomena as "perceptual 

difficulties" (p. 137), but this description does not provide specific information. I claim 

instead that it is a cognitive, not perceptual. problem produced by the interaction of several 

cognitive models. The up-down schema in Johnson's terminology (Lakoff, 1987) may 

account for the preferred orientation, and a metaphor mapping the human act of pointing to 

some of Bud's triangles may help to explain his answers. I discuss these points in 

chapter 4. 

The use of such processes is a necessary and unavoidable characteristic of thought. It 

facilitates the identification of relevant elements and their relationships and permits their 

integration with previous knowledge (Petrie, 1979). There is, however, an unwanted side 

effect. It is hard to imagine the direction in which an ~b tuse  triangle points. In the culture of 

school mathematics, moreover, it is irrelevant where triangles are pointing, and students 

tend to have problems when they attempt to apply the mountain metaphor to triangles that 

are not in the "mountain position" (no side horizontal) or that do not look like mountains 

(obtuse triangles with a horizontal side other than the larger side). A non-obtuse triangle in 

a "mountain position" seems to be the cognitive reference point (Lakoff, 1987) used by 

students. Prototltpe effects are likely to occur with different triangles, as shown by the 

investigations of Vinner and Hershkowitz (1983) and Wilson (1986), in which the concept 



of the altitude of a triangle was included. Comparable effects were detected by Mariotti 

(1 995) in polyhedra. 

Conclusion 

At the beginning of this chapter I started by discussing the role of abstraction in the 

formation of mathematical concepts. I showed how developments in categorization are 

questioning the very notion of a cotlcepr: namely, the conviction that propositional 

statements suffice to sharply define the boundaries of mental categories, in particular 

mathematical categories. I propose instead that the ways in which we organize our concepts 

(as individuals or as a group) assumes complex forms involving mental images, 

propositional statements, and metaphoric and metonymic projections. Attempts have been 

made to incorporate this perspective into mathematics education. Sfard (1994, 1997), in 

particular, reflected upon the relationship between the formation of metaphors and the 

process under xvhich meaning of abstract mathematics objects is created. 



CHAPTER 3 

THE VAN HIELE THEORY 

Dina van Hiele-Geldof and Pierre van Hiele developed their theory in Holland, when, 

in the middle of the 1950s, they wrote their doctoral dissertations under the direction of 

Hans Freudenthal. Pierre was essentially concerned with the study of geometrical insight, 

and Dina was developing a didactical approach to geometry for 12- and 13-year-olds. 

They produced their research amid the dawning of tremendous changes in the field of 

mathematics education. Cuisenaire rods and the geoboard had just emerged, and there was 

a strong movement in Britain towards the creation of what later became the Association of 

Teachers of Mathematics. The Royaumont meeting that played a significant role shaping the 

modem math movement in Europe was still in the future, as was the launching of Sputnik. 

In Holland, in particular, discussions of the teaching of geometry were popular, and the 

van Hieles played a very important role in them. So, although mathematics curricula had 

not yet been changed, the international community was discussing new methods, new 

purposes, and new curricular content (Matos, 1985). 

The van Hieles's work reflects this duality of influence. On the one hand, they 

developed their work in the context of an Euclidean geometry curriculum (now virtually 

gone in most of the world) that viewed geometry as an instrument for exercising the mind's 

logical abilities. On the other hand, their pedagogical standpoint embodied a very 

contemporary approach. This approach is visible in Pierre's concern for insight and Dina's 

emphasis on the m:lnipulation of shapes, the use of geoboards, and drawing using rulers 



and compasses. Her students were drawing, folding, arguing, comparing, and observing, 

and such activities are at the core of today's recommendations for georneirical activities. 

The research of the van Hieles is based on three elements. There was, on the one hand, 

a strong structuralist basis for their work. They were not siding with Bourbakian 

structuralism that proposed the early study of broad mathematical structures. They were 

advocating instead that mathematics education shouid take advantage of structures that are 

"out there" in the world. Structures, in fact, permeated their view of the world, of the 

organization of cognition, and of mathematics teaching and learning. On the other hand, the 

influence of gestalt psychology provided a framework for the analysis of the perception and 

interpretation of these structures. Finally, the van Hieles were concerned with the didactics 

of mathematics, especially the development of insight in the classroom. Their research 

developed out of their previous work as teachers and maintained direct connections with 

mathematics classrooms. Dina van Hiele-Geldof s work consisted of the development of 

new teaching methods, and Pierre van Hiele incorporated into the theory the interactions 

that occur in a classroom setting. 

A Gestalt View of Cognition 

The van Hieles were essentially concerned with the actual teaching of mathematics and 

did not provide a detailed psychological account of mathematics learning. Nevertheless, 

some of their proposals had a psychological base that I analyze in the following sections. 

Cognition, for Pierre van Hiele, proceeded recursively from the construction of a global 

perception, to the formation of a mental structure, its progressive differentiation, and its 

final restructuration into a new mental structure. For the van Hieles, as for gestalt 

psychology, there were no isolated objects nor concepts per se, but all entities existed in a 

contest, a stntctrtre in Pierre van Hiele's terms. 



Van Hiele did not provide a definition of structures. Instead, he explained some of their 

properties, described kinds of structures, and gave some examples. Following Popper's 

distinction among three worlds, van Hiele proposed that there are several kinds of 

structures: (a) the structures in the world we live in (World I); (b) the structures in our 

mind (World 2); and (c) structures in the world of common human knowledge (World 3). 

Van Hiele insisted that, in cognition, it is very important that a structure can be seen as a 

totality because a structure is more than the sum of its elements. 

Pierre van Hiele borrowed from gestalt psychology four properties of structures: 

1) Structures can be extended; 

2) A structure may be seen as part of a finer structure; 

3) A structure may be seen as a part of a more inclusive structure; and 

4) A given structure may be isomorphic with another structure. 

The first and fourth properties are obvious because they involve activities that are innate in 

human thinking. The other two properties assert that, in line with the gestalt tradition, 

structures have other structures embedded in them or are part of larger structures. Van 

Hiele claimed that these two last properties should be taught. 

Mental structures exist in World 2 and are built upon structures in World 1. Examples 

of mental structures include the following: 

- Action structures, which are automatic motor actions that we cannot make explicit, 

like the movement of the fingers of a pianist playing the piano or of a driver of a car who 

can react directly to road signs. These structures are very close to stimulus-response 

patterns, and van Hiele questioned whether these can be considered mental structures at all. 

- Visual structures, which are constructed in our mind reacting directly to structures in 

World 1. 

- A global structure of acting, which is van Hiele's terminology for imitation. 



The formation of mental structures demands rapid switches between receptive and 

active moments. Receptive moments permit "the absorption of the 'spontaneous' structures 

emanating from the materials" (van Hiele, 1984a, p. 237). During the active moments the 

individual concentrates "on the analysis and modification of these structures" (p. 237). 

Learning, for the van Hieles, is a progressive differentiation and restructuring of fields 

that produce new and more complex mental structures. Higher levels are attained if the 

rules governing lower structures "have been made explicit and studied" (van Hiele, 1986, 

p. 6) leading to the development of more complex mental structures. Mental development 

proceeds as the students gradually transform their structures (trunsstructuring) or actually 

substitute one structure for another (restructuring). Transstructuring occurs, for example, 

when, in van Hiele theory, the original visual structures are gradually transformed into 

abstract structures. Instances in which restructuring occurs are, among others: (a) a 

restructuring of the field of observation leading to the integration of several structures that 

have been developed independently and (b) the solution of a problem for which we have to 

try several structures. 

Pierre van Hiele departed from other structuralist approaches to mathematics education 

of his time. For example, Piagetian educators (and also Dienes and Papy) attempted to use 

in classrooms the "three mother structures of the Bourbaki mathematicians" (Piaget, 1970, 

p. 23): the algebraic, the order, and the topological structures. Van Hiele's structures are all 

based on World 1 structures that can be immediately perceived as a gestalt. 

Insight was, for van Hiele (1986), a key mechanism that allows students to visualize 

different fields (structures in his terminology) that permit them to build more complex 

concepts. He used the gestalt idea that "insight might be understood as the result of 

perception of a structure" (p. 5). and proposed that it is characterized by the following 

properties: 



1. Insight requires adequacy either in a new situation or within an established structure. 

This adequacy demands a social mechanism for establishing criteria for objectivity, which I 

discuss later. 

2. Insight also requires irttention which means that the person will act according to the 

perceived structure and not at random. 

3. Insight cannot be planned. (pp. 24, 154) 

Fostering insight must focus on the development of students' ability to see structures as 

part of finer structures, or as part of more inclusive structures. 

The creation of mental structures has two distinct "acts of thought" (van Hiele, 1984a, 

p. 238). First, there is an undifferentiated identification of the structure under observation. 

At the beginning of geometric thought, for example, 

the presentation of concrete (study) material evokes visual undifferentiated structures. 

Children become familiar with these structures fairly early in life, long before they 

reach the level of secondary education. (p. 238) 

These undifferentiated structures are not truly mathematical, nor can they produce a 

truly mathematical insight. After this first identification, the analysis of the object enables 

us to abstract and eliminate a certain number of its qualities, which leads to new forms of 

identification and thus to new mental structures. 

A second act of thought proposed by van Hiele is the classification of interrelated 

structures. When we have several principles of classification, the principles of classification 

themselves are a new undifferentiated structure. Then the process starts again, recursively, 

resulting in a new structure with classifying principles of the classifying principles 

themselves. Van Hiele (1986) called this new process of thought a "higher level of 

thinking" (p. 238), and maintained that "it takes place under the influence of a teaching- 

learning program" (p. 50). 



Students' Learning 

As noted in a previous section, van Hiele proposed that learning is a process 

recursively progressing through discrete levels of thinking-"jumps in the learning curve" 

(van Hiele & van Hiele-Geldof, 1958, p. 75)-that can be enhanced by an adequate 

didactical procedure. He assumed that there are several levels of geometric learning and that 

the passage from one level to the next must occur through a sequence of phases of 

instruction. The van Hieles characterized the levels as follows: 

Level 1 (Visualization) - Figures are judged by their appearance 

Level 2 (Descriptive) - Figures are bearers of their properties 

Level 3 (Theoretical) - Properties are logically ordered 

Level 4 (Formal logic) - Geometry is understood as an axiomatic system. (van Hiele, 

1986; van Hiele & van Hiele-Geldof, 1958) 

In some of their works, the van Hieles also proposed the existence of a fifth level (the 

nature of formal logic, in which axiomatic systems are studied), or even higher levels 

(van Hiele, 1984b, 1986; van Hiele-Geldof, 1984a). Pierre van Hiele warned, however, 

that these levels have very little importance in the teaching of geometry and urged 

researchers to concentrate on the first three levels. 

According to van Hiele (1986), students, for example, understand an isosceles triangle 

differently at each level. At Level 1, the student develops visual structures of isosceles 

triangles based on previous undifferentiated structures and is able to recognize isosceles 

triangles among other triangles. At this level, World 1 and World 2 are the main actors. At 

Lsvel 2, with the mediation of language, the visual shape loses its importance, and the 

student recognizes an isosceles triangle by the totality of its geometrical properties. The 

student knows, for example, that an isosceles triangle has two equal sides and two equal 

angles, that the altitude bisects the side common to the equal angles, and that it has one axis 

of symmetry. As the visual aspect of the figures loses its importance, imperfect drawings 
- 



are no longer a problem. At Level 3, the object of study is the nature of the relations 

among the theorems, and the student is able to differentiate the field of geometrical 

properties, distinguishing between definitions and propositions. The student understands 

that the fact that an isosceles triangle has two equal sides implies that it must have two equal 

angles. These are, however, local relationships. and only at Level 4 does the student feel 

the need for the establishment of a global relationship among the properties. Only then can 

he or she relate the properties of an isosceles triangle to the axioms of Euclidean geometry. 

At Level 5, a student is able to discuss whether an axiom that postulates the existence of 

isosceles triangles is independent of a subset of the Hilbert axioms. 

This description of the levels has an interesting characteristic. Consider an analogy. In 

the beginning the carpenter has certain tools with which he or she can manufacture new 

tools. Once produced, these new. tools become available to construct even more complex 

tools. Now apply this metaphor to the van Hiele levels. One can see in the isosceles triangle 

example that some elements are mentally constructed at each level; that is, they are new 

concepts that the student forms based on the observation of structures. Other elements are 

mentally manipulated; they are mental tools from whose manipulation the constructed 

elements are produced. For example, at Level 1 the student constructs an image of a figure 

by observing it. At the end of Level 2, after this image has been manipulated, a new 

structure will emerge, and he or she will be able to observe the properties of the figure in 

that new structure. At Level 3. the student will reflect upon the properties and will 

eventually order them logically. This order will become the basis for an axiomatic system at 

Level 4. At Level 5 ,  the student will reflect on the axiomatic systems and will understand 

formal logic. This relationship between observed and manipulated objects can be 

summarized in the following table: 



Level Manipulated Objects Observed Objects 

1 Figures 

2 Figures Properties 

3 Properties Ordering of properties 

4 Ordering of properties Axiomatic system 

5 Axiomatic system Logic 

Students notice the observed objects as they become familiar with the structure of the 

manipulated objects. This relationship between manipulated and observed objects has 

several implications. On the one hand, what was intrinsic at one level becomes extrinsic at 

the next level. This means that the relationship between levels is one not of subsumption 

but of "aboutness," making it impossible to skip levels or pass through them in a different 

order (Olson, Kieren, & Ludwig, 1987). On the other hand, each level has its own 

linguistic symbols, its own language, which makes the communication difficult between 

persons operating at different levels. In fact, if the teacher is talking about properties, trying 

to show their logical relationships (Level 3), but the language that students possess only 

allows them to understand the manipulation of figures (Level 2), van Hiele claimed that 

communication is impossible. He thought that this problem explains geometry students' 

frequent complaint that they do not understand what the teacher is talking about. 

A Didactical View of Cognition 

Van Hiele (1986) proposed that there is an additional property that the theory 

possesses. namely, that "the transition from one level to the following is not a natural 

process: it takes place under the influence of a teaching-learning program. The transition is 

not possible without the learning of a new language" (p. 50). This teaching-learning 

program comprises a precise didactical sequence of five phases (or stages) of learning. 
- 



During the first phase (information), the teacher holds a conversation with the students 

in order for them to get acquainted with the working domain. The teacher, for example, 

shows triangles and informs students that they are called "triangles." 

During the second phase (guided orientation), students are guided by tasks that they 

establish themselves or that are given by the teacher, to find networks of relations between 

the objects they are manipulating. The purpose is to guide students through the 

differentiation of new structures from the ones observed in the first phase. 

The third phase (explicitatiorz) is based upon class discussions in which the students 

give their opinions about the regularities they have found, become conscious about the 

relations, and express them in words. In other words, this phase involves making the new 

structures observed in the previous phase explicit through language. The class discussions 

permit students to learn the necessary language to express what they have discovered. The 

teacher now introduces all the technical language. For the van Hieles, true understanding 

requires the successful accomplishment of this phase. 

In the fourth phase (free orientation), the teacher gives students general tasks, and they 

have the opportunity to get acquainted with the topic from all directions. During the fifth 

phase (integration), the teacher does not present anything new. The students build a "global 

survey" of what was learned before. New discoveries are integrated into the existing 

structures, thus promoting the process of transtructuring. The teacher's role is to help 

students see how it all fits together. 

Suppose, for example, that a teacher is preparing a group of lessons to lead his or her 

students from Level 1 to Level 2 on the topic "rhombus" (van Hiele, 1986, p. 54). The 

teacher will show his or her students several rhombuses and will ask if other figures are 

rhombuses or not. This will constitute the first phase of Level 1. At this point, it would be 

meaningless to discuss logical reasons why a figure is a rhombus because at Level 1 

figures are visually perceived. Although the students can distinguish and name rhombuses, 



they perform these actions on the basis of a global visual recognition. During the second 

phase, other kinds of activities will be performed on the rhombus. For example, the 

rhombus will be folded on its axes of symmetry, and the angles and the sides will be 

measured. These will be followed, in the third phase, by a discussion among the students 

about what they have discovered. For the next phase, the teacher will pose the problem of 

drawing a rhombus given some of its sides and vertices. Finally, in the last phase, the 

properties will be summarized and memorized. 

A Linguistic Perspective 

Pierre van Hiele often claimed that the movement to a higher level is accompanied by 

the learning of a new language. His main point can be appreciated if one notes that, 

recalling the example of the last section, the properties of the rhombus code relations 

among its components. In this last example, students move from the knowledge of the 

properties of a rhombus (Level 2) to the knowledge of the logical relations among the 

properties (Level 3). Yet, the discussions that students can have about the properties are 

very different from an exchange of ideas about the relations among the properties 

themselves. For example, in the first case, students may discuss whether any rhombus has 

a symmetry of 90". In the second, they may discuss whether the equality of the sides of the 

rhombus implies that some sides are parallel. 

Consider in more detail how this linguistic shift occurs during the phases of learning. 

At the beginning of the first phase, students possess several significatory items (symbols, 

in  van Hiele's terminology). In the case of Level 1, these can be images of figures, or, in 

the case of other levels, they can be properties, relations among properties, or axiomatic 

systems. If during the first phase, the teacher were to send a message that used those 

significatory items as objects of reflection, the message would not be easily decoded by the 

student. At the beginning of the first phase, he or she is still using these significatory items 
- 



mainly as instruments of action, and is just starting to use them as instnirnents of reflection, 

following von Glasersfeld's (1974) terminology. 

In the rhombus example, when students finish Level 1 they are able to discuss whether 

a rhombus possesses the property that "its diagonals are perpendicular." At the end of 

Level 1, they are capable of using the significatory items components of rhombuses as 

instruments of reflection. They know what a rhombus is, what the diagonals are, and the 

meaning of saying that "the diagonals are perpendicular." They also know how to condense 

the relations between these terms when they state properties of the components of 

rhombuses. Yet at Level 3. the significatory items as instruments of action become the 

properties. The teacher is sending messages about relations among properties and not about 

relations among the figures and their components. The properties become the instruments 

of action, and it is only at the end of the second phase of Level 2 that the student will start 

to understand the properties as instruments of reflection. This means precisely that their 

symbols become signals. in Pierre van Hiele's terminology. At the end of the second 

phase, students begin to reflect on the symbols they had at the beginning, and the symbols 

become signals. 

During the third phase of learning, the student will make "explicit the structures" (van 

Hiele, 1986, p. 97) that were previously only known implicitly. Before the third phase, 

symbols are controlled implicitly ("one has understood the structure and knows how to 

work with it," p. 79). The third phase aims at allowing students to talk about the new 

things they have discovered during the second phase, in order to make the symbols 

explicit. Only then does "it become] possible to talk with other people about it" (p. 79). 

The analogy between a passive language (the portion of the language that a person 

understands) and an acti1.e language (the portion of the language a person speaks) is 

apparent. The purpose of the third phase is to force the transformation of a passive 

language acquired during the first two phases into an active language. It is also during this 



phase that the teacher introduces the technical terminology-technical words will not add 

new symbols, they will only allow precision (shortcuts) in the discussion. 

Now that students possess the symbols and know how to operate with them in the 

context of a given level, the fourth phase will allow further explorations of the topic, and 

"in this way signals, precursors of [new] symbols, are developed (van Hiele, 1986, p. 

97). The free orientation will provide students with the basis for the construction of new 

.,relations among the old symbols that will constitute the initial symbols of the next level. 

Clearly, each level has its own linguistic symbols and its own system of relations that 

connect these symbols. Symbols and relations in the van Hiele theory are dependent upon 

the context in which they are produced, and the theory produces a hierarchy of levels that 

contains a hierarchy of symbols. This construction permits van Hiele to answer his initial 

problem of the apparent differences between the languages of the teacher and the students. 

It also allows him to state one of his major claims: Two persons who reason at two 

different levels cannot understand each other. 

Another important consequence that derives from this didactical process is van Hiele's 

implicit explanation of the stability of concepts. Piaget, for example, proposed the 

mechanisms of accommodation and equilibration to account for the change and stability of 

our concepts. Van Hiele took a different path. In the van Hiele model, change and stability 

of concepts are achieved by the social interactions among students and teacher that take 

place mainly during explicitation, free orientation, and integration. This approach 

guaranties that the geometrical concepts will be intersubjectively shared, and therefore 

objective. in van Hiele's sense-truth shared by a social group having an adequate 

language. 

One area to which van Hiele (1986) applied the theory was the problem of the reason 

why some students resort to rote learning. For example, he analyzed arithmetic teaching in 

the first grade. If the teacher teaches arithmetic at the second level to students who are still 



at the first level, rote learning will most likely occur. From the teacher's point of view, the 

mathematical knowledge he or she has explained to the students is an action structure, 

because it is so common to him or her as to be automatic. From the point of view of the 

students, since they are still at the first level, they are not capable of deciphering the 

teacher's justifications but can only hope to imitate the teacher's actions. In the long run, 

with enough persistence, the students are able to calculate as the teacher does, but their 

knowledge is only an imitation and is incapable of adjusting to new situations. 

A Gestalt Approach in Practice 

The depth to which gestalt principles influence the theory can be appreciated if we take 

a closer look at Dina van Hiele-Geldof s work (1984b) developed in her 1957 dissertation. 

She starts the teaching of geometry with an observation of cubes. After having counted and 

observed the faces, vertices, and edges, she asks students to build a cube. Then activities 

of the same type are performed with other regular polyhedra-for example, the octahedron 

and the tetrahedron-and some terms are introduced. 

During this first part, van Hiele-Geldof s emphasis is on what students can immediately 

see; that is, on what van Hiele calls the 'LLspontaneous' structures of the material" (1984a, 

p. 237). An assumption of objectivity is implicit in this approach, as everyone is assumed 

to observe the same structure and interpret it similarly. There is no need for the negotiation 

of meaning at this point, and language is used only to present some new terms. 

Van Hiele-Geldof then moves to a unit based on tessellations and begins by asking 

students to look for a way to tessellate a sidewalk with squares. After they have completed 

this tessellation, she leads the discussion to what they see in that tessellation. It is possible 

to observe straight lines, groups of equidistant straight lines, distinct groups of parallel 

straight lines, right angles, squares. and so forth. She then asks students to find other 

means of paving the floor, and for each of the tesselations she leads discussions about what 
- 



can be seen in these structures. Depending on the particular tessellations, other 

organizations of geometric objects may be perceived. 

Van Hiele-Geldof then leads students to observe the tessellation (the perceptual field, 

the structure) from more than one perspective. She wants students to restructure their 

perceptual field in such a way that they can see another type of organization. She continues 

to guide students through the spontaneous structures, but now language must play the role 

of showing other structures embedding or encompassing the original structure perceived by 

the students. These are the two properties of structures that Pierre van Hiele claimed should 

be taught. 

In the process of observation and discussion of these tesselations, properties like "the 

angles of triangles sum to 180'" and the ideas of saw (a broken line with two directions) 

and stairs (a line segment intersected on one side by parallel line segments) are used to 

represent the properties of the angles between groups of parallel line segments. 

Saw Stairs 

The equality of opposite angles of a parallelogram can be established using saws and stairs. 

Now. Dina prepares the shift from Level 2 to Level 3, making use of genealogical trees of 

properties to facilitate students' reflection on the logical structure of the properties of 

figures. 



A Critique of the Theory 

Van Hiele theory provides a fresh perspective on mathematics teaching and learning in 

general, and on geometric learning in particular. Its impact on mathematics education can be 

compared to a paradigm shift during which 

scientists adopt new instruments and look in new places. Even more important, during 

revolutions scientists see new and different things when looking with familiar 

instruments in places they have looked before. (Kuhn, 1970, p. 1 l I )  

This passage portrays what has happened to mathematics educators who have used the van 

Hiele theory to study the teaching and learning of geometry. Most of its importance comes 

from the way in which the levels are defined and how they are articulated. 

Nevertheless, the theory leaves broad areas for which it provides no explanation. In 

this section, I discuss some of its limitations in the areas of cognitive development, the 

goals of geometric learning, the importance of individual differences, and students' 

autonomy in the learning process. 

Van Hiele's perspective on cognition is not (nor does it intend to be) a psychological 

theory on its own terms. On the one hand. it relies very heavily sometimes on gestalt 

psychology and at others times on a form of constructivism. On the other hand, it leaves 

many areas uncovered. Imagery is one such area. In the last two decades there has been an 

appraisal of the role imagetic thinking plays in mathematics learning and in scientific work 

(Bishop, 1980; Clements & Battista. 1992: English, 1997; Fischbein, 1987; Hershkowitz, 

1989a; Hershkowitz, Parzysz, &: van Dormolen, 1996; Sutherland & Mason, 1995). The 

idea that "at the third level, it is no longer possible to use visual structures to clarify ideas" 

(van Hiele, 1986, p. 141) denies the iole that mental images play in higher order thinking. 

Other areas at the heart of the learning of geometry, like visua!ization, spatial orientation, 

and the two-dimensional representation of three-dimensional objects, are also absent. 



In fact, the theory implicitly assumes that the teaching and learning of geometry should 

aim at developing a deductive approach. The theory does not explicitly contemplate areas 

such as spatial orientation and representation, measurement, trigonometry, or analytic 

geometry, which are very important in contemporary approaches to geometry. As was 

noted at the beginning of this chapter, this omission has its roots in the pre-new-math 

environment in which the theory was created. Today, the goals for geometric learning have 

changed. The first Standards document of the National Council of Teachers of Mathematics 

(NCTM, 1989), for example, included, among some goals for geometry learning 

consonant with the van Hiele theory, others such as the development of a spatial sense, the 

visualization and representation of geometric figures, the representation and solution of 

problems using geometric models. the development of an appreciation of geometry, and 

proficiency in analytic geometry, none of which the theory directly addresses. 

The van Hieles' narrow interpretation of the goals of the geometry curriculum has 

impacted most of the investigations about the theory. In a review of research on geometry 

learning (Hershkowitz, 1989a), it was apparent that the research community has perceived 

van Hiele-based research as an area distinct from, for example, visualization, spatial 

orientation, higher level concepts (like transformation geometry or proof), measurement, 

and geometric problem solving. The only exception to this trend is research that attempted 

an extension of the theory to the Logo environment (Olive, Lankenau, & Scally, 1986; 

Olson et al., 1987). 

Among the areas in which the theory does not provide satisfactory explanations is that 

of individual differences. In van Hiele theory students are always treated as a homogeneous 

group. and there are no such entities as individual students with different cognitive styles 

and different learning preferences. The purpose of the van Hieles' didactical approach is to 

socialize (normalize) students into the mathematical knowledge agreed upon by the 



"committee of experts" (van Hiele, 1986, p. 217) constituted by the community of 

mathematicians. 

The theory does not admit the possibility that students might develop autonomous 

mathematical knowledge. One reason is that, as mentioned above, Level 1 is based on the 

perception of the "'spontaneous' structures of the material," which are objective in the 

sense that many people agree on their content. Consequently, all students are assumed to 

perceive these structures similarly. Another feature that hinders students' autonomic 

processes is the proposed role of the teacher. Throughout the van Hieles' discussion of the 

phases of learning, the teacher is assumed to be the source of knowledge in the classroom. 

The teacher is to hold conversations, help students trace relations between the language 

symbols, and guide the explicitation phase, providing the technical terms. The teacher 

assumes the role of the enculturator (some would say the enforcer) of the students into the 

accepted school mathematics culture. Throughout this process, students are never expected 

to contribute their own knowledge or experiences, nor are they expected to produce 

alternative mathematical productions. This presupposition of the objectivity of mathematics 

and the nullification of the role of students' knowledge in school mathematics makes it 

extremely difficult to explain why some students seem to build unconventional 

mathematical concepts (Vinner & Hershkowitz, 1983; Wilson, 1986). 

In spite of such limitations, the theory has replaced previous paradigms of geometric 

learning proposed by Piaget, Bruner, and the behaviorists. Many mathematics educators 

seem to believe that the theory can be amended to fit more contemporary views and have 

used it in some areas of research. Later in this chapter, I note some attempts that have been 

made to articulate the theory with alternative geometric perspectives. 



Van Hiele and Mathematics 

In this section, I discuss two issues that reveal some of the positions of van Hiele in 

relation to mathematics knowledge: the nature of mathematical truth and the nature of 

mathematical knowledge. 

Van Hiele's philosophical position about truth is what Lakatos (1970) calls truth by 

consensus; that is, van Hiele suggested that objectivity is a social artifact, never absolute 

and always a matter of degree. In fact, he claimed that there are two ways in which 

objectivity is achieved: by relying on the opinion of a group of experts and by establishing 

operational norms that reflect a consensus within a group. In either case, the development 

of an adequate language is paramount. Mathematical propositions satisfy his criterion for 

objective judgments because they are discussible, testable, and shared by a sufficient 

number of people. Moreover, mathematical language permits very little variation of 

interpretation, which means that propositions have a high potential for being accepted. Still, 

the issue of their certainty is not resolved externally to the group. To obtain a higher degree 

of certainty, van Hiele (1986) proposed that mathematics is based on a "sufficiently ordered 

field of nonmathematical, or perhaps not yet mathematical, knowledge" (p. 219) from 

which mathematical elements and their relationships originate. In this field, the relationship 

between these elements is sufficiently known and accepted to make the elements of the field 

an objective base for mathematics. Van Hiele did not provide examples that would help 

characterize this field of nonmathematical knowledge, and one can only infer that he was 

trying to base mathematics both on the knowledge we share through our culture and on the 

L " ~ p ~ n t a n e ~ ~ ~ '  structures of the material" (van Hiele, 1984a, p. 237) on which geometric 

knoivledge is based. 

This position with respect to mathematical knowledge explains why van Hiele 

considered mathematical structures, together with Islamic architecture or a winding 

staircase. examples of rigid (or strong) structures. Rigid structures are those that can be 
- 



uniquely extended. The style of a painter, a man driving in heavy traffic, or fallen leaves 

are examples of feeble structures whose process of extension may vary. If a structure is 

strong, it will usually be possible to superpose a mathematical structure onto it. Van Hiele, 

however, proposed that such distinction is not absolute but a matter of degree. In 

particular, "mathematical structures are very rigid if the rule of the structure is given. But 

they lose their rigidity if the rule is not given" (van Hiele, 1986, p. 20), as when one has 

the first few terms of a sequence and can use several mathematical rules to continue it. 

Research on the van Hiele Levels 

Van Hiele theory did not produce immediate effects on the field of mathematics 

education. Soviet researchers used the theory in the late 1960s as a base for the 

development of a new geometry curriculum (Wirszup, 1976). Only after Freudenthal 

(1973) and Wirszup (1976) presented brief discussions of the theory did other researchers 

start to focus on it. Investigators' interest in the theory has prompted research in three 

areas: (a) validating the theory, (b) extending it, and (c) using it as a framework for 

research. These categories are not exclusive, and in fact many researchers investigated 

more than one of them. I briefly analyze the first two categories. 

When the theory was discovered by mathematics educators, there was virtually no 

empirical research, besides the van Hieles' studies, to support the theory. Since it departed 

radically from the tradition of research at the time, the objective of the first studies was to 

validate the theory. These studies attempted to confirm the hierarchical nature of the levels, 

their sequence, their discreteness, and their appropriateness to describe events in geometry 

classrooms. The van Hiele theory, however, is general in nature and lacks operational 

definitions. Consequently, each of these researchers faced the very difficult task of 

operationalizing the levels by designing his or her own instruments and procedures. 

Different methodologies were produced, some using tests and others interviews, and there 
- 



is disagreement among researchers on their validity (Crow!ey, 1990; Gutierrez, Jaime, 

1998; GutiCrrez, Jaime, & Fortuny, 1991; Usiskin & Senk, 1990; Wilson, 1990). 

Mayberry (1981) conducted the first North American investigation on the van Hiele 

theory after the van Hieles themselves. A key concern in her research was "to investigate 

whether the levels form a hierarchy and whether the levels were topic-free; that is, that the 

student performed at the same level on different geometric concepts" (Mayberry, 1981, 

p. 9). She identified several topics in geometry and developed a sequence of tasks that 

would assign a level to each participants for each of the topics. She showed that the 

sequence of the lower levels seemed to hold but found that most of her participants were at 

different levels for different topics. Other researchers obtained similar results using the 

same instruments (e.g., Mason, 1989). 

The sequence of the levels was also evaluated in a project at the University of Chicago 

(Usiskin, 1982). After testing a large sample of high school students in the United States, 

the researchers confirmed the sequence of the first four levels and raised doubts about the 

testability of Level 5.  Gutikrrez and Jaime (1987) designed a research study with objectives 

similar to Mayberry's, but used a much larger sample and a different methodology, using 

tests instead of interviews. They designed three tests based on different topics (polygons, 

measurement, and solids) and found that although the global hierarchy of the first four 

levels held, the results were inconclusive on the issue of the globality of the levels across 

geometric topics. 

The results obtained by Mayberry and confirmed by GutiCrrez and Jaime apparently call 

into question the possibility of assigning a global van Hiele level to each student. Could, 

for example, a given student be at Level 1 on triangles and at Level 3 for circles? 

Apparently not, according to the original theory, but the globality of the levels could be 

reinterpreted by assuming that the levels have a fractal-like structure in which a global level 

of thinking could be assigned to each student, influencing, but not determining, the level of 



thinking for each conceivable mathematical topic. In an interview reported by Maybeny 

(1981), Pierre van Hiele indicated that students might be at different levels on different 

concepts. He proposed that higher levels in one topic might facilitate learning in other 

topics. However, no investigation has yet tackled the problems raised by this issue; 

namely, how far apart can knowledge of mathematical topics be? Clearly it seems possible 

that a student may be well advanced in one topic but ignorant of everything in another. But 

what are the consequences of this situation for the learning of the second topic? To what 

extent does advanced knowledge in one topic allow students to move to a high level in 

another topic? If they can move in this way, are there some topics that would be better 

suited to facilitate the subsequent learning of other topics? 

The project directed by Burger (Burger & S haughnessy, 1986) aimed at determining 

whether the van Hiele levels can serve as a model of students' development in geometry. 

The researchers designed eight tasks and videotaped students' responses. In a procedure 

similar to that used by Maybeny (1981) and by Gut ihez  and Jaime (1987), they attributed 

a van Hiele level to each subject for each of the eight tasks. They also assigned an overall 

van Hiele level to each student. Finally, they developed a list of level indicators aiming at a 

better characterization of the levels. Their results support the hierarchical nature of the 

levels. They designed their investigation so that it permitted the detection of sources of 

confounding effects in assigning levels to students. A rater of the videotapes would assign 

a predominant level on a given task to a student, adding conflicting evidence that would not 

support this assignment. For example, one rater might assign Level 1 to a task with 

conflicting evidence for Level 2, and another might do the reverse. No global quantitative 

results about these discrepancies are provided in the literature cited here, but as far as the 

van Hiele theory is concerned, this research seems to help characterize the levels 

qualitatively. Contrary to van Hiele, it rejects the idea that the levels are discontinuous. In 

fact. Burger and Shaughnessy believed that many of the discrepancies in the assignment of 



a level to some students may have been due to the possibility that they were in a transition 

process from one level to the next. Other researchers have also felt the need to classify 

students in a transitional stage (Fuys, Geddes, & Tischler, 1985; Olive et al., 1988). 

Burger and Shaughnessy also found evidence that some students oscillate between two 

levels, sometimes during the same task. Fuys, Geddes, and Tischler also confirmed this 

phenomenon. Other students seemed to regress to lower levels after having successfully 

completed geometry courses. These facts allowed Burger and Shaughnessy (1986) to 

conclude that 

the levels appear to be dynamic rather than static and of a more continuous nature 

than their descriptions would lead one to believe. Students may move back and forth 

between levels quite a few times while they are in transition from one level to the next 

( P  45) 

It is, however, far from clear that this oscillation between levels is necessarily caused 

by a transitional state between one level and the next. An alternative explanation could be 

provided if the nature of the levels is assumed to be such that every student is capable of 

jumpins to lower levels if he or she feels that these are appropriate to the solution of the 

problem in question. In other words, one can assume that human cognition allows for 

changes in level depending on the context in which the person is operating. The oscillation 

would not then be caused by a transition, an abnormal state, but would be inherent in the 

levels themselves. 

Fuys et al. (1985) developed a working model of the levels with detailed level 

descriptors. They then elaborated three teaching modules, each correlated with specific 

level descriptors that included instructional activities and assessment tasks. They conducted 

clinical interviews based on the modules for sixth and ninth graders. These interviews 

allowed them to characterize the geometrical knowledge of the students. 



The investigations just cited started from the theory and developed instruments that 

would operationalize it. Villiers and Njisane (1987) took a different approach. They 

developed their own geometry test with questions on several "geometric thought 

categories" (p. 117) and used it with a large population of 9th- through 12th-grade South 

African students. They concluded that: (1 )  reading and interpreting definitions did not 

correlate with other aspects of geometric learning. (2) the hierarchy of geometric abilities 

was very close to van Hiele's proposals, and (3) the hierarchical classification of geometric 

figures was much more difficult than longer deduction. Their results are discussed in 

chapter 4. 

Despite the number and variety of the investigations devoted to validating the theory, 

there are some areas that have received no attention from researchers. For example, no 

investigations have used the theory to describe geometric learning in regular classrooms. 

Most investigations either used tests (Gutierrez & Jaime, 1987; Usiskin, 1982; Villiers & 

Njisane, 1987), interviewed students in clinical settings (Burger & Shaughnessy, 1986; 

Fuys et al., 1985; Mayberry, 1981), or conducted actual teaching in clinical settings (Fuys 

et al.. 1985). None observed interactions in re~ular  geometry classrooms. Although some 

curriculum development projects have been influenced by the van Hieles' ideas (Maxwell & 

Schell, 1998; Treffers, 1987; Wirszup, 1976). no recent investigation has attenipted to 

change the didactical process of geometric learning as the van Hieles proposed and to 

evaluate the effects on the quality of the geometric learning. Consequently, there is no 

information about the validity of the didactical process-the phases of learning-proposed 

by the van Hieles for moving from one letfel to the next. On the contrary, the very fact that 

researchers have been able to study rel~~ibly the levels in the absence of this didactical 

process suggests that the transition from one level to the next is produced under much 

broader teaching conditions than those anticipated by the van Hieles. 



Virtually every researcher who interviewed students has presented strong evidence that 

the distinction between the levels is accompanied by the linguistic distinctions predicted by 

the theory. There is, however, no information about the linguistic details that accompany 

the progression from one level to the next. 

A second category of investigations attempted to "articulate the paradigm" (Kuhn, 

1970, p. 29) either by building upon the theory or by establishing links between the van 

Hiele theory and other theories. In an early theoretical work, Hoffer (1981) provided a 

description of the levels in terms of other "skills" that play an important role in geometric 

learning: visual, verbal, drawing, logical, and applied skills (pp. 15-17). He provided 

examples of each of these skills in each of the levels. In his article he calls the first level 

6' recognition," and presents examples of visual skills for each of the levels. 

Lunkenbein came closer to establishing a representation-based model compatible with 

the van Hiele theory. In an initial didactical experiment (Lunkenbein, 1983b), he confirmed 

the explanatory power of the first two levels. In a second approach (1983a), he hinted at a 

cognitive interpretation of the theory in terms of mental images and attempted to develop 

links with Piaget's theory of groupings: 

A grouping consists of: 

(1) "static" elements, called states or objects and which represent instances of a given 

conceptual context or problem situation; 

(2) "dynamic" elements, called operations or transformations that act on the states or 

objects and relate them to each other; 

(3) properties of or relations between states or objects brought out as the effect of the 

operations on the states. (p. 256) 

Lunkenbein defined three types of groupings: (1) the infralogical groiipings relate 

spatial figures to each other on a concrete basis and are the result of activities involving 

concrete materials and actions; (2) the groupings of the classes of a partition relate those 

- 



figures on the grounds of verification or not of specific properties; and (3) the groupings of 

logical inclusion are based on class-inclusion relationships. Lunkenbein claimed that these 

three types of groupings correspond to the first three levels of the van Hiele theory. 

Although Lunkenbein believed that class inclusion is an attribute of the third level, 

Villiers and Njisane (1987) concluded that it should precede Level 3. Kay (1986) took a 

different point of view toward characterizing this class-inclusion problem. She developed a 

teaching experiment that started with quadrilaterals, proceeded to rectangles, and ended 

with squares. She used names for these shapes that emphasized the class-inclusion 

relationships, and at the end of the year a majority of her first graders understood the 

hierarchical relationships among these figures. She speculated that van Hiele theory may be 

well adapted to instruction that proceeds from specific to general, but not the reverse. In 

chapter 4, I discuss this issue and propose a different interpretation. 
- " 

In an investigation aimed at a description of the impact that Logo has on students' 

mathematical thinking, Olive, Lankenau, and Scally (reported in Olive, Scally, & 

Skaftadottir, 1987) conducted two case studies that suggest links between the van Hiele 

theory and the Solo Taxonomy. One of their subjects who was at the lowest van Hiele level 

tended to execute tasks at the unistructural and multistructural Solo levels. The other 

subject, who was at a higher van Hiele level, performed mainly at the relational and even 

extended abstract Solo levels. Other investigations (Clements & Battista, 1988; Olson et 

al., 1987) proposed the development of hierarchical levels in the Logo environment that 

were similar to van Hiele's levels. 

Apparently. no investigations have attempted to link the van Hiele theory with recent 

research on cognitive science. This study attempted to establish such links to the process of 

categorization. 



CHAPTER 4 

C A T E G O R ~ Z A T I O N  OF MATHEMATICAL OBJECTS 

AND THE VAN HIELE THEORY 

In the last two chapters, I present an overview of two theories relevant for the study of 

the concept of angle. Categorization studies, and especially the work of Johnson and 

Lakoff in the context of cognitive semantics, provide a framework within which the 

category of angles can be understood. Van Hiele theory was born out of the mathematical 

education community, and so it comes from a different scientific tradition. The present 

chapter should be understood as an effort to examine the viability of the simultaneous use 

of both theories in the study of geometric concepts and to explore the ways in which they 

jointly help to shed light on research problems in mathematics education. In other words, 

as the purpose of this study is to investigate the concept of angle by making use of two 

distinct theories, it is useful to understand the ways in which they are potentially useful to, 

or may actually hinder, research efforts. 

As angles are at the center of this study, I choose to analyze in this chapter five areas 

that have been the focus of research on geometric learning. In each of them, researchers 

have detected evidence of students' nonstandard mathematical knowledge. None of these 

cases seems to be partially or completely explained by van Hiele theory. I attempt to look at 

each area in light of the discussion about the categorization of mathematical objects that was 

developed in chapter 2 and provide an explanation of the sources of that knowledge. This 

analysis reveals prototype effects with roots in distinct cognitive models. Later, I propose 



an outline of the ways in which van Hiele theory should be amended to account for those 

effects. 

Preliminary Questions 

In terms of categories, the van Hiele theory explains how geometrical objects move 

from a category composed of concrete geometrical objects to increasingly abstract 

categories. These categories are characterized first by properties, then by clusters of 

properties, and finally by minimal sets of properties. Van Hiele proposes that the objects to 

be categorized vary depending on the level of thinhng the person is using. Categories also 

encompass a hierarchy of abstractions: There is a basic-level and image-schematic models 

on which other models are built, but there is not a precise organization as in van Hiele 

theory. 

Van Hiele theory also claims that each level is characterized by a specific language, with 

its own specific symbols and relations, and, as shown in chapter 3 (p. 5.9 ,  researchers 

have confirmed this theoretical prediction. Researchers investigating the properties of 

categories seem not to have focused on this characteristic. 

Van Hiele theory is based on classic categories. For example, one key characteristic of 

this theory is the notion that when there is a shift to an upper level, the observed objects 

become manipulated objects. This move involves whole categories of objects, and it may 

be the case that not all members of these categories have the same status. The van Hiele 

theory does not make any such distinction. 



An Attempt to Explain Some Prototype Effects 

in the Framework of van Hiele Theory 

Hershkowitz (1989a) attempted to accommodate some prototype effects in the structure 

of the van Hiele levels. Her description is closely influenced by Vinner's concept images 

described in chapter 2 (p. 30). 

According to Hershkowitz (1989), for each concept, students form one or more 

prototypical examples composed of the critical attributes of the concept together with 

specific noncritical attributes that have strong, salient, visual characteristics. Students use 

these prototypical examples in the first two van Hiele levels "as a model in their judgment 

of other instances" (p. 83), in what she terms prototypical judgment. This kind of judgment 

is contrasted with analytical judgment, which is a correct judgment based on the concept's 

critical attributes. At the first two van Hiele levels, students make use of the prototype in 

distinct ways. Type I prototypical judgnrent occurs at Level 1 when students use the 

prototype as a frame of reference to perform visually comparisons. At Level 2, students 

make use of the prototype's attributes instead of the prototype's image and try to impose 

them on every instance. This is called Type 2 prototypical judg~?letzt. Level 3 is, in contrast, 

based upon analytical (or Type 3) judgment. Hershkowitz found that as students move 

through the levels, Type 1 judgment decreases but never disappears completely, whereas 

Type 2 completely disappears. 

The featural and dimensional perspectives discussed in chapter 2 (pp. 16-17) seem to 

have been the main influence on Hershkowitz's (1989a) approach. Consequently, by 

assumins that prototype effects derive only from an overevaluation of specific features of 

the ,oeometric objects, her model shares many of its limitations: the impossibility of 

explainin: basic-level effects, especially those derived from nonvisual sources, or 

metaphoric models, among others. In particular, her definition of prototypes seems to be 



narrow. She explicitly states that "the prototype phenomenon and prototypical judgment 

seem to be mostly a product of visual processes" (p. 83). In fact, her proposals only 

explain phenomena that involve visual prototypes. In general, although Hershkowitz's 

proposals adequately characterize some research findings at the first van Hiele levels, they 

must be enlarged to incorporate others. 

The Influence of Visual Prototypes and Metaphoric Models 

Prototype effects caused by image-schematic models, characterized by a gestalt of a 

geometrical figure, are well known by researchers (Burger, 1985a; Clements, Sarama, & 

Battista, 1998; Fuys et al., 1985; Hasegawa, 1997; Hershkowitz et al., 1987; Junqueira 

1995; Mariotti, 1995; Mason, 1989; Presmeg, 1992; Scally, 1987; Shaughnessy & Burger, 

1985; Vinner & Hershkowitz, 1983; Wilson, 1986b). They are the most simple cases of 

prototype effects. The characteristics of these prototypes can be summarized as follows: 

1. A preferred position; namely, triangles. squares, rectangles, and parallelograms 

must have a horizontal base (Fuys et al., 1985; Hasegawa, 1997; Mason, 1989; 

Presmeg, 1992; Scally, 1987; Vinner & Hershkowitz, 1983; Wilson, 1986b); 

2. Symmetry; for example, obtuse triangles with their smallest side as the base are not 

recognized, or a right triangle is thought of as a half triangle (Burger, 1985a; Fuys 

et al., 1985; Hasegawa, 1997; Vinner & Hershkowitz, 1983); and 

3 .  An overall balanced shape; namely students do not recognize "skinny" triangles, 

"pointy" triangles, or extremely small squares (Burger, 1985a; Fuys et al., 1985; 

Hershkowitz et al., 1987). 

These characteristics provide a good description of prototypical geometrical figures. 

Moreover. the gestalts do not require some characteristics that are significant from a 

standard mathematical point of view. For example, sides may be curved or "crooked" 



(Burger, 1985a; Fuys et al., 1985; Scally, 1987). There is also some evidence showing 

that students form such image-schematic models even when only a verbal definition is 

given (Vinner & Hershkowitz, 1983). Students also show substantial agreement about 

these models. 

In fact, it may happen that in some cases these image-schematic models are intermixed 

with some metonymic models. In the case of triangles, Vinner and Hershkowitz (1983) 

present evidence suggesting that "overall balanced" isosceles triangles are taken 

metonymically as best examples of the whole category of triangles. This idea can be 

extended to other categories. It is reasonable to conjecture that a whole set of "overall 

balanced" rectangles may stand for the whole category of rectangles. In this particular case, 

there is historical evidence that the search for overall balanced rectangles gave rise to the 

propositional model of golden rectangles built out of the metonymic model of balanced 

rectarzgles. The quest for the ultimate perfect rectangle in Greece, embodying beauty, 

universal order, unity, among others, produced a well determined (propositional) 

procedure to obtain one. 

There is a substantial agreement about the sources of these models. Upon entering 

school. children are able to identify balls, cans, boxes, and other shapes. In school they are 

taught the names of two-dimensional geometric figures. The former objects are real-world 

objects. Children learn about them by manipulation or observation, and they are capable of 

identifying them regardless of their position. The latter objects, geometric figures, tend to 

be learned and used mainly in school. Research has shown (Fuys et al., 1985) that 

geometric figures are usually presented in pictures that match the three characteristics of 

students' mental images described above: preferred position, symmetry, and balanced 

shape. In summary, children's prototypes are heavily influenced by the best exemplars 

sho~vn to them in the school environment. 



Image-schematic models, however, do not present a complete picture of children's 

learning. There is evidence that there are also perceptual problems involved in the 

identification of geometrical figures, namely, in the perception of right angles. Vinner and 

Hershkowitz (1983) provided some evide~ce suggesting that isolated right angles or right 

angles included in right triangles are more difficult to identify when none of the sides is 

horizontal. Some of their participants used the strategy of turning the figure so that they 

could achieve a better identification. 

Other models may also be involved in the identification of geometrical figures. In 

chapter 2, I mentioned a metaphoric model used (or implicitly used) by the mathematical 

community, the "mountain metaphor." Here I analyze two examples of students' 

metaphoric models. Burger (1985) reports that Bud (one of his participants) explained that 

some of his triangles were different from others because they were "pointing that way [to 

the right, or down]" (p. 52). The idea that triangles point in one direction is what Johnson 

(1987) would call a metaphoric model based on our kinesthetic image schema of pointing. 

Trianzles, for Bud, are embodied; that is. some of their properties "are a consequence of 

the nature of human biological capacities and of the experience of functioning in a physical 

and social environment" (Lakoff, 1987, p. 12). This way to think about triangles is not 

Bud's particular model. Rather it is a social model because we are all able to understand 

Bud's point. In some contexts, we ourselves would be willing to say that a triangle is 

pointing in one direction. 

Fuys et al. (1985) report an example of another metaphoric model. One of their 

participants (Gene), when asked if a square was a rectangle, answered "Na, that's a box" 

(p. 83). Of course, Gene knew that, literally, a square is not a box. He was using a box as 

a metaphoric model of a square. Gene also thought that "the sides of a rectangle" referred to 

the vertical sides, whereas the horizontal sides were not "sides" but "top" and "bottom." 



Again, he was using the metaphoric model of a rectangle thought of as a box. When we use 

English words to speak about objects in the world that look like rectangles, like boxes, we 

may make this linguistic distinction among sides, bottom, and top. Both these metaphoric 

models were based on Gene's experiences with objects in his environment. 

Prototype effects produced by image-schematic and metaphoric models are reported to 

occur with students at the first two van Hiele levels. At the first level, students make 

extensive use of them, and at the second level, students may describe properties of the 

geometric figures that are heavily influenced by them. Hershkowitz (1989a) has detected 

these effects even in subjects at Level 3. There is, however, evidence suggesting students' 

ability to overcome these effects after Level 1 (Junqueira, 1995). 

The role played by these models at higher levels is unclear. There are strong arguments 

to support the idea that mental images play a powerful role in higher order thinking in 

general, and scientific thought in particular (Clements, 1981). However, it is uncertain 

whether these are still image-schematic models as I have defined them here, or if they have 

different characteristics. 

The Classification Issue 

In this section, I discuss van Hiele's predictions about the hierarchical classification of 

quadrilaterals, analyze the mathematical basis for this classification, describe research 

findings that challenge the predictions of the theory, and propose an alternative explanation. 

The classification of quadrilaterals is an area in which van Hiele theory makes 

predictions that challenge the usual notion of whzt students are able to learn. According to 

the dominant interpretation of the theory, at the end of the first level, students are able to 

identify rsctangles, squares, rhombuses. and other figures. At the end of the second level, 

they are able to enumerate several properties that each of these figures has. Only at the third 



level do students agree with the usual hierarchical classification of quadrilaterals, namely, 

that a square is a special type of rectangle and that both are special parallelograms. The 

reason for this change is that at the third level students are able to understand locally logical 

connections between properties, and consequently are capable of accepting the logical 

consequences of a definition (van Hiele, 1984a). 

Occasionally, the van Hieles defended the position that class inclusion of quadrilaterals 

could be understood at Level 2. Dina van Hiele-Geldof (1984a) said it explicitly: "At level 0 

[Level 1 in my terminology] a square is not perceived as a rhombus: at the first level of 

thinking [Level 21 it is self-evident that a square is a rhombus" (p. 222). Pierre van Hiele 

said the same thing in his 1973 book Begrip en Inzicht. He proposed that class inclusion 

may occur at Level 2 since a child may realize that a square is a rhombus because it has all 

its properties (cited in Villiers & Njisane, 1987). This interpretation has not been used by 

the research community. Perhaps it is not known, or perhaps it runs contrary to the way in 

which Level 3 is conceived; namely, the acceptance of squares as particular rectangles is 

thought to be the consequence of understanding the role of definitions, which occur at 

Level 3, or perhaps it has not been used because van Hiele himself proposed the opposite 

position elsewhere (van Hiele, 1984a). 

A review of the research does not provide conclusive evidence to accept or reject either 

of the previous points of view regarding class inclusion. Many researchers have accepted 

as a crucial characteristic of Level 3 the ability to correctly classify quadrilaterals and have 

incorporated it into their criteria for level classification. To decide the position of class 

inclusion in the hierarchy, one would need to correlate students' ability to understand class 

inclusion with their levels, which would need to have been determined without recourse to 

class inclusion itself. That was the approach followed by Villiers and Njisane (1987). They 

identified eight geometric thought categories (GTCs): 

1. recognition and representation of figures 



2. visual recognition of properties 

3 .  use and understanding of terminology 

4.  verbal description of properties of a figure or its recognition from a verbal 

description 

5 .  one-step deductian 

6. longer deduction 

7. hierarchical classification (inclusion of classes) 

8. reading and interpretation of given definitions 

A test that included questions related to these GTCs was given to a large number of 9th- 

through 12th-grade South African students. Villiers and Njisane grouped the results for 

each category and performed a statistical analysis looking for ordered relationships. They 

found that Category 8 (reading and interpretation of definitions) did not correlate with the 

other categories. That is hardly surprising given the close relations of this category with 

linguistic rather than geometric abilities. The other seven categories did correlate with each 

other and formed a hierarchy, the first being the easiest and the seventh the hardest. Only 

then did they assign a level to each of the seven categories. They concluded that the levels 

match the hierarchy, which confirmed the predicted sequence of the levels. 

Villiers and Njisane research provides strong evidence that the seventh category 

(hierarchical classification) is either at Level 3 or above. In fact, in contrast with all the 

other seven categories, only 5 %  of the students correctly answered half the test items that 

related to this category. Moreover, there was almost no change in the percentage of correct 

answers across the grades. Also, category 7 was the most difficult of all, far more difficult 

than deductions involving several steps. These results seem to suggest that only students at 

the final stages of Level 3 or even at the beginning of Level 4 could understand hierarchical 

classification well. As Villiers (1994) puts it: 

children's difficulty with hierarchical class inclusion (especially older children) does 

not necessarily lie with the logic of the inclusion as such, but often with the rneaning 



of the activity, both linguistic and functional: linguistic in the sense of correctly 

interpreting the language used for class inclusions, and functional in the sense of 

understanding why it is more useful than a partition classification. (p. 17) 

Other investigators have reported the extreme difficulty of hierarchical classification 

(Burger & Shaughnessy, 1986; Fuys et al., 1985; Mason, 1989; Usiskin, 1982). One 

researcher reported that "to many children, squares are not rectangles and rectangles are not 

parallelograms, even though they share many properties. Such beliefs persist among many 

high school students, even those who memorize correct definitions of the shapes" (Burger, 

1985a, p. 53). 

There have been some attempts to explain the source of such difficulty. Fuys et al. 

(1985) call it "interference of prior learning" (p. 137), which is not very specific. Others 

have suggested that textbooks and instructional practices may be responsible (Burger, 

1985a) and still others have contended that teaching the hierarchical classification of 

quadrilaterals runs against a constructivist perspective that values students' active 

participation in the learning process (Villiers, 1994). However, the question still remains of 

what is specific to the classification of quadrilaterals that makes it more difficult to 

understand than, for example, the classification of figures into quadrilaterals, triangles, 

circles, and others. 

Kay (1986) provides a more conclusive explanation. She showed how the use of a 

different naming procedure facilitated first graders' learning of quadrilaterals' inclusion. 

She began instruction with the category of quadrilaterals and proceeded to the subordinate 

categories of rectangle-quadrilateral and square-rectangle. Apparently by avoiding naming 

problems in the class inclusion hierarchy of quadrilaterals. she was able to teach 

successfully to the majority of her first graders the hierarchical relationships among classes 



of quadrilaterals. Kay's dissertation shows that language can help students distinguish 

among the several types of quadrilaterals. 

First graders are capable of understanding class-inclusion relationships, namely, that 

dogs and cats are kinds of animals, or that triangles and squares are kinds of shapes. 

Therefore Kay's finding that some first graders can understand certain objects as kinds of 

others should not come as a surprise. It is, however, a surprise from the perspective of van 

Hiele theory, because her first graders were hardly at Level 3-the theory's necessary and 

sufficient condition to understand the hierarchical classification of quadrilaterals. Kay 

concluded that the theory may describe the development of concepts within a hierarchy 

when instruction proceeds from specific-to-general but not the reverse. In what follows, I 

show that the classification of quadrilaterals, as understood in school mathematics, is not 

simply a move from general-to-specific, and I propose a different interpretation. 

I first argue that there is no absolute classification of quadrilaterals and in fact that the 

very notion of quadrilateral is based on a particular notion of geometry. At first sight the 

way in which we classify quadrilaterals seems to be the correct way. The classification is 

based on a Euclidean approach to geometry, and it is hard to imagine other ways to 

organize our mathematical knowledge that would be scientifically adequate. However, there 

is no complete agreement about the classification of quadrilaterals in the scientific 

community. In fact, there is no such thing as a standard definition of quadrilateral. Some 

mathematicians include the requirement that a quadrilateral be a simple curve, whereas 

others do not. Consequently, the drawing below, where the intersection of the two lines is 

not a vertex, is a quadrilateral for some (Vinner & Hershkowitz, 1983) and not even a 

geometric figure for others. 



There is a similar disagreement about the definition of trapezoid. For some a 

parallelogram is a special kind of trapezoid (see Burger, 1985a, p. 55; or European 

textbooks), but not for others. 

One can extend this relativistic point of view further. The class of quadrilaterals is 

significant in the context of Euclidean geometry but is irrelevant in other approaches, like 

analytic geometry or linear algebra (DieudonnC, 1964). The notion of a trapezoid has no 

importance in Logo, but spirolaterals, immaterial to Euclidean geometry, do. The traditional 

hierarchical classification of quadrilaterals is seriously challenged by a Kleinian approach to 

geometry, where the relevant classification procedures involve invariants under groups of 

transformations. 

Mathematicians are familiar with this lack of asreement and have mastered the art of 

living with it. Usually the issue is resolved by negotiating a definition of the terms and 

accepting its consequences. In more extreme cases, this disagreement may be at the very 

source of the production of mathematical knowledge (Lakatos, 1976). Mathematicians have 

learned to accept that there is no "natural" (scientifically accepted) way of defining 

mathematical objects, just as there is no "natural" way to categorize objects in the real 

world. 

Van Hiele himself (1986) seems to agree that the classification of quadrilaterals is 

socially determined: 

An intelligent person need not conclude that every square is a rhombus; this is only 

submission to a traditional choice. In some Greek philosophies, a square could not be 

a rhombus, for it had some properties a rhombus could not have. Even now there are 



people arguing that a parallelogram is not a trapezoid because a trapezoid can have 

only one pair of parallel sides. (p. 50) 

One can say the same about the classification of triangles. 

As I have shown previously (chapter 2), investigations of the ways in which we form 

our mental representations indicate that we start categorizing at what is called the basic- 

level. Categories at this level share many of the characteristics of the Level 1 of van Hiele 

theory; namely, category members are globally perceived, they have a similar overall 

shape. and there is a mental image associated with the category. This is the first level 

named and understood by children, who are later able to differentiate subordinate and 

superordinate categories predicated on these basic categories (Lakoff, 1987; Rosch et al., 

1976). 

It is possible to use this basic-level to interpret the ways in which we categorize 

geometric figures. Typically, by kindergarten or first grade, children already know how to 

group and name different shapes of objects, namely, balls, boxes, stars, coins, footballs, 

and cones. among others. Schooling usually means that they will learn to name additional 

groups of shapes like squares, triangles, rectangles, and circles. Sometimes 

parallelograms, diamonds, or kites are also included. These groups have what Fischbein 

calls "the same level of generality" (1987, p. 147); that is, each of these groups of shapes is 

assimilated into a basic-level category: Each group of shapes has a common name and 

shares a common mental image. There is one basic-level for squares, another for 

rectangles. still another for balls, and so on. These basic-levels of the categories used in 

early grades are sometimes called folk-generic levels because they reflect the levels that are 

most commonly used by the society to communicate. Even when one mathematics educator 

asks another to dran. a rectangle, he or she usually means a folk-generic level rectangle and 



not a square. At the end of van Hiele's Level 1, children have learned to identify and name 

thesz distinct basic-level categories. 

Later the basic-level categories may be grouped informally into two superordinate 

categories, the three-dimensional figures and the two-dimensional figures. This distinction 

between these two superordinate categories is not sharp, and it is unclear whether it exists 

for many children, or whether it has dimensional connotations. In fact, many children 

experience only textbook representations of mathematical solids, and others experience 

squares and triangles as flat prisms. Moreover. two-dimensional figures are metaphorically 

thought of by children as three-dimensional shapes. For example, a circle is often called a 

ball, and a rectangle is a door. (Lakoff would say that the ball is a metaphor for a circle and 

the door a metaphor for a rectangle.) 

At some point in their instruction. students are asked to switch the status of the majority 

of the categories of quadrilaterals from basic-level to superordinates. Squares remain a 

basic-level category, but rectangles and rhombus are now superordinates that contain both 

the old categories and the category of squares. The category of parallelograms is now a 

superordinate category containing most of the others. The category of trapezoids may either 

maintain its status as a basic-level category or shift to a superordinate category that includes 

all the other basic-level categories, depending on the definition used. The understanding of 

a hierarchical classification of quadrilaterals involves the destruction of an organization of 

the category of quadrilaterals as a collection of basic-level categories, and its reconstruction 

into a category in which basic-levels exist only for a small portion of its members. 

Research has shown that this cognitive reorganization is very difficult for students to 

accept. Burger (1985b) reports the case of a good ninth-grade student who in the last 

month of his geometry course would not admit that rectangles were parallelograms. His 

definition of paralle10,orams was "a quadrilateral with opposite sides parallel and has no 



right angles" (p. 12). This student knew that this was a "bad definition" because it was not 

the textbook definition, but it was his own definition and he was able to be mathematically 

consistent with it. Apparently, this student was carrying his basic-level concept of 

parallelogram up to Level 3. 

There seems to be no other domain of students' experience outside mathematics where 

such a global reorganization takes place. In their taxonomic experience, the only major 

shifts were probably associated with learning facts such as that "dolphins are not fish." In 

this case, children have to shift the basic-level dolphins from the superordinate "fish to the 

superordinate "mammals," but "dolphins" remains a basic-level category. There is evidence 

that students accept the global reorganization of geometrical categories as a peculiarity of 

school mathematics and are ready to forget it later, reverting to the earlier basic-level 

categories (Burger & Shaughnessy, 1986; Shaughnessy & Burger, 1985). Kay (1986) 

successfully circunvented the class-inclusion problem by teaching the social entities 

rectangle-quadrilateral and square-rectangle when children had not yet had any contact with 

school geometry. 

There are other examples of this type of interference between mathematical hierarchies 

and basic-level effects. In geometry, the hierarchical classification of triangles seems to 

present similar problems (Burger & Shaughnessy, 1986). In arithmetic, as I mentioned in 

chapter 2, students are reluctant to consider specific integers or real numbers as examples 

of complex numbers, even when they can quote the accepted definitions (Fischbein, 1987; 

Tall & Vinner, 1981). A close look at Lakatos's (1976) case study on the historical 

development of the concept of polyhedra shows there is evidence of such effects in the 

community of mathematicians. 

The difficulty students experience in understanding the classification of quadrilaterals 

is, therefore, an example of basic-level effects. These seem to explain why the hierarchical 



classification of quadrilaterals is so hard for students, whereas the understanding of the 

category of quadrilaterals, pentagons, or hexagons is not. It is possible to conclude that the 

classification of quadrilaterals is much more than a class-inclusion problem. It does not 

involve exclusively the learning of new hierarchical relation: rather it involves also learning 

that in the school mathematics culture some basic-level categories change their hierarchical 

status. 

This interpretation has some consequences for the van Hiele theory. On the one hand, 

the characteristics of the first van Hiele level seem to be compatible with the interpretation 

and are confinned by the anthropological and psychological research on basic-levels. On 

the other hand, van Hiele theory underestimates the psychological restructuring necessary 

to accept this classification or, in other words, overestimates the power of deduction at 

Level 3. It may be the case that students are only able to accept fully the consequences of 

definitions, especially when they run contrary to a basic-level classification, at Level 4. 

Prototypical Actions (Scripts) in Geometry 

Investigations focusing on students' difficulties in drawing elements in a figure have 

also found prototype effects. Previous explanations have interpreted these phenomena as 

prototype effects produced by comparisons with a prototypical image of the expected 

drawing. In this section, I argue for a more dynamic interpretation that takes into account 

the actions that students are expecting to perform when asked to draw elements of 

geometric figures. I focus on two important cases: drawing the altitude of a triangle and 

drawing the diagonals of a polygon. 

This interpretation is compatible with Dorfler's (1989) account of the learning of 

mathematics. He proposes that learning is a cognitive reconstruction of the mathematical 

content involving the accomplishment of relevant actions. The main tool allowing a 



reflection of and about action are the protocols for action (p. 214). These protocols try to 

denote and describe the characteristic and relevant stages, the steps, and the outcomes of 

the actions, through the use of perceptive objects, like written signs. Protocols for action 

are the cognitive reconstruction of the concept (p. 215). 

Research on students' drawing of the altitude of triangles has focused on determining 

the characteristics of the triangle with which students experience the most problems. Vinner 

and Hershkowitz (1983) asked students to draw an altitude in 14 triangles. The triangles 

varied in their orientation, their type (isosceles, right, or obtuse), and whether the altitude 

to be drawn was inside or outsidz the triangle. The results showed that the orientation had 

almost no effect on the students' ability to draw the altitude. However, altitudes that fell on 

a side or outside the triangle and triangles that deviated from isosceles triangle had a 

negative impact on students' performance. As a consequence of their research, Vinner and 

Hershkowitz were able to produce a sequence of triangles of increasing and statistically 

significantly different difficulty in which to draw an altitude. From the easiest to the most 

difficult, the sequence is isosceles triangle (non-equilateral) with altitude to the side of 

different lenzth, scalene triangle with altitude falling inside the triangle, obtuse triangle with 

altitude fallins outside the triangle, and risht triangle. 

These researchers conducted a similar investigation using the diagonals of a polygon 

(Hershkowitz et al., 1987; Hershkowitz i3r Vinner, 1984). It showed that in the case of 

concave polygons, only those diagonals inside the polygon and that did not contain any 

side were drawn. 

The models involved in these investigations are distinct from the ones previously 

described because they involve action. The participants were not using image-schematic 

models exclusively. They were expected to perform a sequence of actions familiar in a 



certain context. This sequence of familiar actions fits exactly the definition of script 

mentioned previously (Abelson, 1976). 

An interpretation of Vinner and Hershkowitz's research using scripts may say that the 

typical script for drawing the altitude of a triangle occurs in the context of isosceles (non- 

equilateral) triangles. Students then seem to attempt to adapt this script to the other cases. 

When given an isosceles triangle, the student draws the altitude of the triangle so that it falls 

perpendicularly on the middle of the side that has different length (74% of the students 

were able to do it). When the triangle is quasi-isosceles, this script is still maintained, but it 

breaks down for many students, producing prototype effects when the triangle is 

considerably nonsyrnrnetric (only 40% of the students answered correctly). In the case of 

the isosceles triangle, the altitude coincides with the median and with the perpendicular 

bisector. This is no longer the case when the triangle does not resemble an isosceles 

triangle. The original script is changed by the students into two incompatible scripts. A 

considerable number of students choose to draw the median (20%), whereas a smaller 

number (7%) draw a perpendicular bisector to the base. The original script breaks down for 

an even greater number of students in the last two cases (only 32% and 30.5% of the 

students answered correctly in the last two cases, respectively), and again some students 

choose the median (21% and 20%), others the perpendicular bisector (7% and 9%). A 

similar interpretation can be produced in the case of the diagonals of polygons. 

The research performed in these areas has not attempted any connections with the van 

Hiele levels. Nor did van Hiele give examples of the different types of actions that students 

would be able to perform at each of the levels. Apparently the only theoretical attempt in 

this direction was made by Hoffer (1981). Junqueira's (1995) study established some 

connections between students actions and verbalizations. She studied ninth graders' 



justifications for their geometric constructions using the Cabri-Giomktre software. She 

found that some of these justifications could be linked to van Hiele levels: 

T v ~ e s  of iustification van Hiele levels 

Based on visual appearance Level 1 

Description of the process of construction 

together with the observation of invariant relationships Level 2 

Deduced in one or two steps showing logical ordering 

of the properties of figures Level 3 

Mixed Level transition 

She argued that participants developed specific scripts using Cabri-Giomktre to solve 

geometric problems, and their justifi2ation.s are a hint of the geometric reasoning involved 

in these scripts. 

The  Mismatch Between Visual and Verbal Representations 

In this section I apply some of the constructs outlined in the previous sections to one 

issue that has been discussed among researchers on geometric learning. One important 

consequence of prototype effects due to image-schematic and metaphoric models and basic- 

level effects is the apparent mismatch between students' visual productions and their 

definitions. In this section I argue that those differences are the result of expecting a 

mathematical type of reasoning when students are not using it. 

Wilson (1986a, 1986b. 1988) investigated the relationship between students' 

definitions and their choices of examples. On the one hand, she found that students' choice 

of examples was based on a limited image-schematic model that became increasingly 



complex as students' knowledge expanded. On the other hand, their definitions departed to 

some extent from the classroom definitions. Often students' definitions were incomplete, 

with ambiguous terms, and did not distinguish between necessary and sufficient 

conditions. Although from the observer's point of view, the students were apparently not 

applying the definitions they wrote when choosing examples, they said they were using 

definitions to help them make decisions and used reasoning that made sense to them, rarely 

applying formal logic. 

Other researchers have reported similar findings. Mason (1989), for example, reported 

the case of three students who identified the figure below as a rectangle and included "has 

four right angles" in their definition of rectangle. Later, in interviews, Mason found that 

these students were aware of the right angle characteristic of rectangles, but they decided 

that the attribute "has two long sides and two short sides" took precedence. 

Fischbein (1987) offers an explanation of this apparent conflict. His point of view is 

that students have to learn the role of explicitly defining concepts as a necessary condition 

of avoiding errors in using the terminology. For him, the students have to learn the 

following: 

When you affirm that a parallelogram is a quadrilareral the opposite sides of which 

are parallel (or with opposite equal angles) this is exactly what is meant by a 

parallelogram. Nothing is said about adjacent angles or sides. They may be equal or 

not. (p. 153) 



It is this literal meaning, characteristic of mathematical definitions, that children fail to use, 

and that may explain students' ambiguity of language and their lack of distinction between 

necessary and sufficient conditions. After all, contrary to mathematics, everyday language 

draws much of its power from its equivocal nature. 

Consequently, when students at the first two van Hiele levels are defining a geometric 

term, they are not deJining but describing the term. At the first level, they are describing 

their image-schematic models of geometric objects in global terms, and at the second level, 

they are also describing them but referring to their properties. That explains the ambiguity 

of students' language uncovered by Wilson and the preference for some relevant 

characteristics over others mentioned by Mason. Learning to define in mathematical terms 

involves using the opposite procedure. Students have to learn to accept that the images are 

produced by the definitions. In fact, they have to transform their image-schematic and 

metaphoric models into propositional models. 

There is also a second distinction not made by the van Hiele theory: the distinction 

between a set of necessary and sufficient conditions and a mininlal set of necessary and 

sufficient conditions. A student at Level 3 may formulate a set of conditions like "A 

rectangle is a quadrilateral with four right angles and two pairs of parallel sides." Although 

this is not a minimal set, it uniquely defines rectangles. The student may very well 

understand that this set of conditions determines the stipulations under which a quadrilateral 

is a rectangle, but still not understand that the set is not minimal and therefore not a 

definition. In fact, it is only possible to be certain that specific sets are minimal when one 

has a relatively complete perspective on the axiomatic system. Moreover, even being 

concerned with minimal sets makes sense only when one is considering the organization of 

an axiomatic system. Consequently. a full understanding of definitions requires Level 4 

thinkins. 



In the analysis above I focused on how children verbalized the particularities of a given 

class of geometric shapes. That process is only part of the picture since there is the 

complementary process: namely, how children find shapes given their verbal description. 

Shaughnessy and Burger's (1985) research included a task of the type "What's my shape?" 

This task asked students to guess the researcher's shape given several statements. The 

statements were presented one at a time, and students could make a guess at any point. 

Most of the students did not take the statements as mathematical conditions, nor did they 

distinguish between necessary and sufficient conditions or take the set of all statements as a 

mathematical conjunction. For example, after the first two propositions ("It is a closed 

figure with four sides" and "It has two long sides and two short sides"), many students 

guessed that the shape was a rectangle. The next three statements seemed to confirm that 

the mystery shape was indeed a rectangle, but when the sixth statement came ("The two 

long sides are not the same length"), their guesses collapsed. 

It seems that the students were using the kind of thought processes that work in 

everyday life; namely, that the large majority of the shapes with the first two characteristics 

they had previously found in school mathematics were indeed rectangles. Among the 

entities we call shapes, rectangles were salient. Apparently, for each clue they would make 

one best guess based on a prototypical type of reasoning. The processes used by students 

in these two complementary areas (producing a definition given an image and producing an 

image given a definition) seem to depart extensively from standard mathematical processes, 

and it is difficult to use the usual characterization of the van Hiele levels to explain them. 



Conclusion 

This chapter intends to understand the ways in which two distinct paradigms, research 

on categorization and van Hiele theory, can illuminate studies in mathematics education. 

The interplay of these two theories clarifies five research issues and shows that: 

1. There is evidence that image-schematic models play a very important role at the first 

van Hiele levels and have a decreasing role after Level 3 (Hershkowitz, 1989). It is 

possible to conjecture that images play a role in higher geometric thinking. 

2. There is evidence of an extensii~e use of other imagetic processes like metaphoric 

models by virtually every participant in school and university mathematics from children at 

the first level (Gene's box metaphor) to textbooks (the mountain metaphor) to 

mathematicians (Lakatos, 1976). 

3. There is evidence of basic-level effects that may begin at the first level and continue 

their influence well into Level 3 (Villiers & Njisane. 1987; the classification of 

quadrilaterals) and may even affect mathematical research. 

4. There is evidence of scripts that seem to affect the ways in which students perform 

geometrical constructions (Vinner & Hershkowitz, 1983; Junqueira, 1995), but their 

relationship to the van Hiele levels still needs to be clarified by research. 

As noted previously in chapter 3, the van Hiele theory considers the mathematical 

structures as prime examples of very rigid structures, which students are assumed to 

understand by a mixed process involving observation, teaching, and explicitation (van 

Hiele, 1986). The theory, as stated before, provides very useful insights into the didactics 

of g e o m e q  and has been the source of ver-y revealing research and development in the 

field. But changes in the theory, as i t  \\.as originally put forward by the van Hieles, must be 

made to accommodate the explanation of the phenomena discussed in this chapter prompted 

by the work in categorization. 



In the remainder of this section, I discuss changes in the theory that may allow the 

previous discussion to be understood within it. These changes will also be incorporated in 

the ways in which the present study interprets the theory. 

There are two types of changes that need to be addressed: changes in the implicit 

cognitive theory and changes in the characterization of the levels. I do not address changes 

in the phases of learning because of the lack of investigation in this area. 

A first change in the implicit cognitive theory has to do with the assumption about the 

"'spontaneous' structures of the material" (van Hiele. 1984a, p. 237). The structuralist 

premise that mathematical structures are somehow objectively embedded in the material and 

that our role is to observe them poses tremendous obstacles to understanding both 

mathematics from a historical and cultural perspective and the process of children's 

production of mathematical ideas. As shown during the discussion of the categorization of 

mathematical objects, and later in the discussion of the classification of quadrilaterals, there 

are no such things as "natural" (objective) mathematical objects, nor "natural" (objective) 

ways to classify them. Consequently, a first change is to drop this requirement of an 

external spontaneous organization waiting to be objectively perceived by the human mind. 

A second change, which is a natural consequence of the first, is to accept that the 

process under which we shape our mathematical knowledge is constructive. By this, I 

mean the assumption that students do not acquire mathematical knowledge by the 

observation of external structures, nor is their mathematical knowledge a mere extension of 

the teacher's. Rather, mathematical structures are built by the students themselves. This 

change permits the existence of autonomous student productions that depart from standard 

mathematical knowledge, and it accepts that students will generate definitions, images, 

metaphors. and convincing arguments that are signiiicant for them. The role of the teacher 



could, however, be maintained as an active participant in the formation of these 

constructions. 

A third change has to do with discreteness in the learning curve. Research on the levels 

has shown no such jumps, nor has it shown sharp separations between the levels. The 

levels should be understood rather as a corriplex progression through geometric knowledge 

(Burger & Shaughnessy, 1986). 

A fourth change, resulting from the previous one, involves the characterization of 

Levels 3 and 4. Research shows that students have major difficulties in the use of 

definitions. I mentioned how Villiers and Njisane (1987) found that the category of 

definitions did not correlate with other geometric abilities, how basic-level effects produced 

major prototype effects in the classification of quadrilaterals even when students knew the 

definitions, and how an understanding of minimal sets of conditions required Level 4 

thinking. I also showed how students made use of thinking strategies relying heavily on 

prototypes in tasks like "What's my shape?'' A full comprehension of the consequences of 

using mathematical definitions sezms to be acquired by students only at the very end of 

Level 3, and most likely requires an understanding at Level 4. 

The simultaneous use of the work of Lakoff and Johnson and the van Hiele theory 

proved productive. It provided new perspectives on some research issues on geometric 

learning, and prompted the need for several changes in the van Hiele theory. These changes 

are incorporated into the background of the empirical study, whose methodology is the 

topic of the next chapter. 



To achieve the main goal of this study, an initial survey of the types of angle used in 

school mathematics was performed (Appendix A). Then, the teaching, learning, and 

understanding of the concept of angle were investigated with fourth- and fifth-grade 

teachers and students. The participating teachers had been working with the Department of 

Mathematics Education of the University of Georgia in the Geometry and Measurement 

Project (McKillip & Wilson, 1990) to revise the elementary school geometry and 

measurement cuniculum. 

The first three questions of the present study dealt with students' cognitive models and 

were addressed through a test with geometric tasks related to the concept of angle taken by 

all the students in the participating classes and an interview conducted with some selected 

students from those classes. The fourth question was related to teaching events and was 

addressed through the observation of lessons in which the concept of angle was used. 

These observations were focused on episodes involving instructional models. The fifth 

question was addressed by the analysis of mathematics textbooks and other materials used 

by the participating teachers and students. 



Participants 

The study was conducted in May and June 1990 with two fourth-grade and two fifth- 

grade classes of an elementary school in rural north Georgia that had been participating in a 

cumculum development project. 

The Geometry and Measurenzent Project 

The Geometry and Measurement Project (McKillip & Wilson, 1990) aimed at revising 

the geometry and measurement strands of the elementary school mathematics curriculum 

for kindergarten through Grade 6. It worked for four years, from 1986 to 1990, in one 

Georgia school and one South Carolina school and had already finished when the data for 

the present study were collected. The project produced 158 geometry and measurement 

lessons, each including activities for students and instructional procedures for the teachers. 

These lessons were developed by the project staff, reviewed by some of the project's 

participating teachers, and first tried out in 1988 by the teachers in their classrooms. 

Lessons were then reviewed by some participating teachers and revised by the project staff. 

A second field trial was conducted during the school year 1988-1989, after which a final 

revision was performed. During the second and the third year, as the teachers were 

experimenting with the lessons, the project staff helped them prepare to teach individual 

lessons and attended the classes where the lessons were being taught to help teachers and 

students. 

During the second and the third year of the project, inservice workshops were 

conducted with the participating teachers. These workshops aimed at introducing the 

teachers to ideas of content and method that formed the basis for the project and to get them 

involved in the actual process of curriculum development. Inservice workshops were 

conducted during the school year 1988-1989 as the teachers were trying out the lessons 

with their classes and focused, among other things, on the lessons the teachers would use. 



I was a member of the project staff for the whole project and participated in the writing 

and revision process of the lessons, especially those involving solid geometry and 

measurement of length, area, and volume. During the school years 1987-1988 and 1988- 

1989, I attended second-, fourth-, and fifth-grade classes where the project lessons were 

being tried out. I also performed the analysis of tests given to students following the field 

trials of the second and third years. 

The Participating Teachers 

The teachers participating in the present study had more than ten years of experience 

teaching mathematics and were involved with the project. Both fourth-grade teachers 

participated in the project from the beginning. They both attended the inservice workshops, 

developed prototype lessons, and tested the materials on their classes. During the second 

year of the project I attended classes of these teachers. These teachers continued to use the 

project lessons in the school year 1989-1990, after the field trials were over and the final 

version of the lessons was produced. 

The two fifth-grade participating teachers worked with the project from the second year 

on. They attended the workshops and tried out lessons in their classes. In the second year I 

attended two classes of Teacher D. This teacher continued to make extensive use of the 

project lessons during the school year 1989-1990. 

The Participating Students 

There were 33 fourth graders and 24 fifth graders in all, from two fourth-grade and two 

fifth-grade classes. A total of 16 students were interviewed. Each of the fifth graders had 

been in the same school the previous year. Moreover, most of the fifth graders had been in 

classes triught by the fourth-grade teachers, and I had observed them during the previous 

year. 



This study proposed to identify distinct cognitive models of angle and also to examine 

relations between these models and the van Hiele levels. Therefore there was a need to 

select students having distinct background geometrical knowledge. Having explained this 

necessity to the teachers, an extreme cases sanlpling method was used (Patton, 1986). A 

test that included geometric tasks related to the concept of angle was designed for each 

grade level (Appendix B) and was given to each class by its respective teacher. Results on 

these tests enabled me, together with each teacher, to select students below the average and 

students above the average representing a diversity of familiarity with geometry. In 

addition. the test responses provided data on specific tasks and a basis for questioning 

during the interview. 

Four students, two above average and two below average, were selected from the class 

of each fourth-grade teacher, Teachers H and A. Tapes from one below the average fourth 

grader's interview were lost due to an equipment malfunction. Fifth-grade Teacher E only 

selected three students from her class. The other fifth-grade teacher, Teacher D, devoted 

more attention to the teaching of geometry, specifically of concepts relating to angles. 

Hoping that her students would provide a broader perspective on cognitive models of the 

concept of angle, the teacher and I chose six students from her class, three above average 

and three below average. Table 1 lists the pseudonyms of the students grouped by their 

teachers. The names of the participants in this study (students, teachers) have been changed 

to maintain confidentiality. 

Table 1. Participating Students by Grade and Teacher 

Grade Teacher Students 

4 H Beth, Mally, Rick, Susan 

A James, Laurie, Louise 

5 Z Julie, Linda, Mike 

D Alice, Angela, Bob, 

Hill, Jessie. Marie 



Instruments 

Tests Used to Select Students for tlze Interview 

Two tests were developed, one for each grade level (Appendix B). Each test had two 

parts, which were administered in succession at times that were at the discretion of the 

classroom teacher. Students usually took about 20 minutes to complete both parts. 

The two tests were similar in most of the questions. On both tests, there was a set of 

four questions that asked students: 

1. to draw an angle, 

2. to draw another angle that was different in some way from the first angle, 

3. to explain how the angles were different, and 

4.  to explain how the angles were alike. 

This set of questions was later used in the interview in Task B4 (Appendix C). A fifth 

question probed students' understanding of the infinity of the set of angles. A last common 

question asked students to identify angles in figures. The potential angles provided 

variation along the foliowing attributes: straightness of the sides, concavity/convexity of the 

figure, size of the angle, orientation of the angle, and angle of tangency. 

Fourth-grade students were also asked to identify points inside an angle (Questions 7 

through 9). Fifth-grade students were asked to distinguish between the measure of an 

obtuse and an acute angle (Question 10) and to answer a question that required them to use 

facts related to the internal angles of a triangle (Question 11). 

Developr~lerzt of the Tasks Used i;z the Interviews 

Interview tasks (Appendix C) n.ere designed to elicit attributes significant to the 

students' characterization of angles and to assess their van Hiele levels. The tasks attempted 

to judge srudents' van Hiele levels across a broad range of competencies (Hoffer, 1981 ). 

Special techniques were used so that tasks could elicit students' meanings. An overall 
- 



concern about rzeutralify was incorporated into the interviews. Neutrality means that the 

person being interviewed can tell the interviewer anything without engendering the 

interviewer's favor or disfavor with regard to the content of the answer (Patton, 1986). 

This was accomplished by an initial conversation with the student, explaining that the 

interview had the purpose of obtaining his or her opinions about angles, without any 

evaluative purpose. Occasionally a variation of the illustrative examples format was used in 

several questions (Patton, 1986). This is a special way of achieving neutrality. It has the 

purpose of letting the interviewee know that the interviewer has had contact with a broad 

variety of answers. In the format used in this research, the student was asked questions in 

the form: "Some students told me that.. .. What do you think?" 

Other tasks included questions that used sit~rulation techniques (Patton, 1986). The 

effect of these questions was to provide a context for what would otherwise be difficult 

questions. An example can be found in Task V1 (Appendix C), where the student is asked 

to imagine a phone conversation with a friend. 

Tasks Used in the Interviews 

The interview tasks covered five areas of geometrical competencies: verbal, drawing, 

visual, applied, and logical (Hoffer, 1981). The interview protocols are reproduced in 
. - 

Appendix C. 

Students' ability to describe geometrical objects was one of the competencies 

investigated in this study. There were two tasks whose main purpose was the investigation 

of students' ability to describe and compare angles and turns: Tasks V1 and V2. The first 

required students to describe an angle "over the phone," and the second asked for the 

description of a turn. As the emphasis of these tasks was on the verbalization of attributes 

of angles, these were the first tasks of the interview, when no material representations of 

angles had yet been presented to the student. 



Students' ability to make angles and turns was evaluated by tasks that required them to 

perform turns with an arrow, draw these turns, and draw angles: Tasks B3 and B4. In the 

first task, I asked students to draw a 90" turn that I performed. The second task explored 

drawings of angles made by the students during the test. Meanings attached to these 

drawings were also explored verbally during the interviews. 

The ability to visually identify and compare angles and turns was included in Tasks 14, 

12, 15, and C4. The first task had two versions. The short version was used with students 

who had re-jected angles with curved sides on the identification question of the test. This 

version consisted of a verbal exploration of students' answers to the identification question. 

Students were essentially asked why they had chosen to identify or not identify an angle at 

a particular vertex. Special attention was paid to vertices with curved segments and to 

concave fisures. The longer version of the first task was used with students who accepted 

angles with curved sides. This version had three parts: (a) the identification of angles in a 

series of drawings that provided variation along the attributes of straightness of the sides, 

presence or absence of a vertex, number of angles shown, size of the angle, orientation of 

the angle, and angle of tangency; (b) a comparison between pairs of angles that varied 

along the attributes of size of the angle, size of the sides, orientation of the angle, and 

orientation of the sides; and (c) a part similar to the shorter version. Task I2 investigated the 

attribute of flatness in students' prototypes of angle by asking students to identify angles in 

solids. Task I5 investigated the components of angles; namely, the vertex, the infinity of 

the sides, and, with fifth-grade students, the interior of an angle. Task C4 prompted 

students to compare turns. Pairs of representations of turns were presented to the students, 

and I asked ivhich turned more. The compansons varied on the attributes of: angle of turn, 

radius of turn, direction of turn, congruency modulo one turn, and speed of turn. 

Students were asked to apply their knowledge of angles mainly in two tasks. One task, 

Task D2. asked students to partition an angle in a scalene triangle into two equal angles. 



Another task, Task P4, asked students to solve a problem involving the sum of the internal 

angles of a quadrilateral. This last task was ~ ~ s e d  with fifth-grade students only. Other 

tasks, like Tasks V 1, 12, 15, and D2, included specific questions that required students to 

apply their knowledge of angles. 

Logical competencies were mainly explored in Task P3, which was used with fifth- 

grade students only. In this task. I gave some information about an angle or a class of 

angles, and the student had to identify which angle or class of angles was involved. 

Qualifications like all, some, may, and sltoi~l~i \\..ere ~lsed. Logical competencies were also 

present in all the tasks fourth graders were given except Task 15. 

Procedure 

This section describes the procedures of the study. It includes a description of the 

student interviews, the class observations, and the textbook analysis. 

Strfdetzr Ituenliews 

Interviews with students provided the core of the research data used in this study. At 

the end of the school year, students' u~derstandlng of angles was assessed by a videotaped 

interview composed of several tasks and problem-solving situations that essentially 

followed a standardized open-ended fomut  (Patton, 1986) . This format is used when it is 

the intent of the researcher to minimize intervieu er effects. In this format, every participant 

is asked exactly the same questions. and probrns questions are placed in the interview 

protocol at appropriate places. In this study, I followed the protocol for each task, but 

occasionally. when a student's answers did not seem clear, I pursued a line of questioning 

that deparred from the outlined sequence. Morsover. the fifth-grade students were given 

two extra tasks based on the cuniculum at that yade level. All interviews took place in a 

room at the students' school. 



Data analysis of the interviews occurred in two distinct phases: First the interviews 

were vertically analyzed: that is, the interviews were sequentially analyzed, one after the 

other, and categories relating to the purpose of the study were developed. Then a horizontal 

analysis was performed to examine consistency within each category: that is, each category 

generated in the previous phase was checked for internal consistency, and a comparison 

among the categories was performed, to seek duplicated categories or omissions in the 

categorization of data. As one of the objectives of this work was the development of 

cognitive models of the students' categorization of angles. nuclear categories relating to 

these cognitive models were identified. These nuclear categories were triangulated with data 

produced by a systematic analysis of key words that could be linked to each model. Several 

models were developed by identifying subcategories for each category that specified the 

elements, their relationships, the type of cognitive model they were related to, prototype 

effects, and metaphorical projections. Finally, image schemas proposed by Johnson (1987) 

that were related simultaneously to several models of angles were identified. 

A second phase of data analysis operationalized a van Hiele criterion developed for the 

analysis of angles. Specific tasks from the interviews were analyzed horizontally across the 

interviews. and each student was classified according to the van Hiele levels using an 

adaptation of the descriptors provided by Fuys, Geddes, and Tischler (1988) 

(Appendix D). 

Memos (Strauss, 1988) were written for each student. These included a description of 

the student's performance on each task, comments on the van Hiele levels of specific 

behaviors, and any additional comments I could produce. 

Class Obsen~atiorzs 

I obsen.ed lessons in the targeted classes where angles were being taught. These 

obser~rations included lessons whose main focus was on the concept of angle itself 

(identifying. drawing, defining, classifying. measuring) as well as lessons that made use of 
- 



the concept of angle (sidelangle relationships in triangles.) Table 2 shows the distribution 

of the 16 observations. 

Table 2. Number of Lessons Observed by Grade and Teacher 

Grade Teacher Lessons 

-- - - -- - - 

Note. See Appendix E for a list of the topics of the lessons. 

I assumed the role of a non-participant observer (Goetz & LeCompte, 1984). although 

on some occasions when students or the teacher requested help, I shifted to the role of a 

participant. Field notes (Patton, 1986) were recorded on an observation grid to categorize 

observed phenomena into verbalizations, which included remarks addressed to the whole 

class by the teacher, exchanges between teacher anci students, and exchanges among 

students; and actions, which included drawings, movements, and nonverbal messages 

produced by the participants. My comments and impressions were also recorded, together 

with some general information about the class. Artifacts (Goetz & LeCompte. 1984), 

which included students' work and other material produced or used by the teachers, were 

also collected. 

Materials Analysis 

The four teachers participating in this research used extensively lessons produced by 

the Geometry and Measurement Project (hlcKillip & Wilson, 1990). There were four basic 

ideas underlying the lessons: (a) children can learn much more geometry and measurement 

than they learn in school, (b) children should learn geometry and measurement in the 

context of their personal activity, (c) children should talk about the mathematical knowledge 



they are developing, and (d) teachers should be treated as professionals able to make their 

own curriculum decisions. Teachers using the lessons were encouraged to choose from 

among the lessons those that would be suitable for the needs of their classes and to use 

them in the order they felt was appropriate. 

Teachers occasionally used the regular textbook (Thoburn, Forbes, & Bechtel, 1982a, 

1982b) together with other materials. Copies of all these materials relating to the observed 

lessons used by each teacher were collected. These artifacts were then analyzed by a 

procedure similar to the one used in the analysis of student interviews. 

Summary 

A survey, focusing on the types of angle used by school mathematics, was performed 

initially. Data collection in this study was accomplished in the following sequence. 

Between April and May of 1990, fourth-:;rade and fifth-grade classes making use of the 

concept of angle were observed and the materials were collected. Tests were given to these 

classes in the week between lMay 21 and May 25, 1990. By the end of this week students 

to be interviewed were chosen by me and the teacher. Between the last week of May and 

the first u.eek of June 1990 the students were interviewed. 

Data analysis proceeded by the development of cognitive models of angles through the 

analysis of student interviews, and these are presented in the first two sections of chapter 7. 

The understanding of these models as m.etaphors of image schemas was the next step. 

Literature characterizing image schemas was reviewed again, especially Johnson (1987), 

and image schemas relevant for this study were identified and the associated subschemas 

were developed. These are presented in chapter 6. Only then were cognitive models related 

to van Hisle levels, and these connections are presented in the third section of chapter 7 .  

Instructional models associated with students' cognitive models observed in the classrooms 

and in the materials were then analyzed and are presented in chapter 8. 
- 



In the course of the development of cognitive models of angle, four image schemas not 

directly related to angles were found to be incorporated into them: the corztainer. the turn, 

the path, and the link schemas. Most of them were analyzed by Johnson (1987). Instances 

of these schemas (Lakoff, 1987), labeled subschemas in the present study, that relate to the 

category of angles are presented. A metaphoric schema, far is up, near is down, was 

pervasively used during the interviews and is also described. In this chapter, these schemas 

are presented. Diagrammatic representations of the schemas are provided when appropriate. 

These representations do not attempt to portray images associated with the models. Rather, 

they illustrate the elements and their relationships by means of a graphical image. 

The Container Schema 

Our understanding of geometric concepts relies heavily on our awareness of spatial 

relationships. The ways in which we make these spatial relationships meaningful to us 

characterize spatial forms in general, and geometric forms in particular. Johnson (1987) 

proposes that our pervasive physical experience of containment and boundedness produces 

an irnase-schematic structure that partially accounts f ~ r  the ways in which we understand 

spatial relationships. "We are intimately aware of our bodies as three-dimensional 

containers into which we put certain things (food, water, air) and out of which other things 

emerze (food and water wastes, air, blood. etc.)" (p. 21). We also have experiences of 



physical containment as we move into and out of many distinct objects and as we put 

physical entities into and take them out of containers. Johnson proposes that these 

experiences occur in a repeatable spatial and temporal organization, producing typical 

schemas for physical containment. These experiences of physical containment are 

metaphorically projected into nonphysical entities. They also show up in our expressions 

about geometric entities. Even with one-dimensional objects, we say that points lie in a 

circle or in a line segment. 

Lakoff and Johnson (1999) propose that this schema (which they call the container 

schema) has the following structure: a boundary, an inside, and an outside. It is a gestalt 

structure because the parts make no sense without the whole. These are related because the 

boundary separates the inside from the outside. Figure 1 is a diagrammatic representation 

of the container schema. 

Inside Outside 

Figure I .  Diagram of the container schema. 

In this study, the container schema was metaphorically related to various models. 

Lakoff and Johnson (1980) call these metaphoric projections ontological metaphors 

because they are "ways of viewing events, activities, emotions, ideas, etc., as entities and 

substances" (p. 25). For example, experiences of perceiving containers from the inside 

contributed to the angles are interior comers model. Experiences with containers taken from 

the outside also showed up in several models and schemas. In this case, these containers 

had specific attributes: namely, they had protruding points (in the case of the angles are 

points model). they were the locus from which substances emanated (angle are sources), or 
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they opened or closed (ntzgles upen model). Each of these models of angles relies on a 

metaphoric projection of a particular subschema of the corztairzer schema adapted to the 

idiosyncrasies of the container in question or to the transformations that the container will 

undergo. I briefly describe some of these subschemas relevant to this study: the puitzted 

object, the itlterior cortzer, the source, and the open subschemas. 

In our lives we experience pointed objects: a pen point, a dagger, a needle, a thorn, and 

so on. There are some attributes that we associate with pointed objects: a sharp or tapering 

end, a projecting part. The pointed object subschema is a kind of container characterized by 

four elements: a boundary, an inside, an outside, and a point (Figure 2). 

Outside 

Figure 2. Diagram of the pointed object subschema. 

The container has a special kind of boundary from which a point protrudes. This 

schema may be thought of as a special lund of container schema from which a point "comes 

out." This endows the pointed object with a force that projects part of the container to the 

outside. In other words, pointed objects are understood using a part-whole schema 

(Lakoff, 1987). and a special part is the point. 

The i/ztrrior conzer subschema is associated with our experiences of being inside a 

special kind of contamer, one that has a corner. It has four elements: a boundary, an inside, 

an outside. and a force. The force is a movement from the inside to the outside that forces 

the boundar) to protrude. This subschenla is experienced from inside the container 

(Figure 3). 



Fig~~re  3. Diasr-am of the irzterior conzer subschema. 

Another subschema of the coizrcriizer schema is the solirce subschema. It is related to our 

experiences with containers from which specific entities (liquids, light, air, etc.) emerge. 

One model of angles the students evidenced, the citzgles ure sources model, was 

metaphorically projected from this schema. This subschema is composed of six elements: a 

boundary. an inside, an outside, an origin, an entity projected from it, and a trajectory that 

starts at the origin and is followed by the entity (Figure 4). 

Trajectory 
Inside e&w Projected entity 

Figure 4. Diagram of the source subschema. 

Containers may undergo specific transformations. One transformation is that they may 

open. In other words, we have the open subschema of the container schema, in which a 

container is in one state and undergoes a transformation that changes it into a second state. 

In State 1 the interior of the container is not available. But in State 2 the interior of the 

container becomes accessible to the outside (Figure 5) .  



c:J cv 
Outside Outside 

Stage 1 Stage 2 

Figure 3. Diagram of the opetz subschema. 

This is a graded transformation because the container can open more or less. Containers 

open in dissimilar ways. Boxes. doors, flowers, eyes, newspapers, and wounds open in 

distinct manners, which means that there are distinct transformations that fit this subchema. 

The way in which a door or a box opens sugsests that a special part of the boundary 

actually changes its position relative to the container by a transformation related to the t i m  

schema discussed in the next section. 

The Turn Schema 

This is the only schema not rzferred to by Johnson. It is associated with our motor 

experiences of rotating following a trajectory with a starting and a stopping position, as in 

turn aroutrd, tLim IefC, turn right, or the act of turning so as to face a different direction. It is 

distinct from the action of following a path and turning a comer, which are classified as a 

different schema. The tlcm schema is an image schema composed of a body with an 

orientation and a trajectory that has a starting and a stopping point (Figure 6). A possible 

attribute of the trajectory is the speed with which the movement is performed. Another one 

is the extsnt of the turn. 



Stop .*\ Trajectory 

Oriented lafl 
Figure 6. Diagram of the turn schema. 

There are certain kinds of turns that we perform more often than others, like tr(17z 

aro~lnd, tr ln~ left, turn right, or rrir-?I a!! tlzr v t - c r ~ ~  ar-orlnd. In fact, translating to ordinary 

words what in mathematical language would be. for example, a 4.5" t~tnz  to your left. yields 

some sentences rarely used in everyday life. The four kinds of turns listed are those used 

most frequently and constitute cognitive reference points for this schema. This schema is 

also used when saying "she is turned that way," meaning "she is facing that direction." In 

this case, the emphasis is put on the stopping point of the trajectory. This schema is also 

metaphorically used in expressions like "let's turn our attention to the matter at hand." 

The open subschema I discuss in the previous section is related, at least in the way it 

showed up in this study, to both the co/.ztainer and the turn schemas because the change 

from Stage 1 to Stage 2 occurs as part of the boundary performs a turn. 

The Path Schema 

Our common experiences involve paths that we encounter either as actual routes we 

walk, as trajectories we observe, or as paths we imagine. In all of these cases there is a 

recurrin? image-schematic pattern composed of an origin or a starting point, a goal or 

endpoint, and a sequence of cont i~uous locations connecting the origin to the goal. "Paths 

are thus routes for moving from one point to another" (Johnson, 1987, p. 113). Johnson 

proposes that there are certain consequences of assuming a pcrth schema: (a) a path 



presupposes that to move from the starting point to the endpoint one must go over all the 

intermediate points, (b) paths may have directionality, and (c) there is a temporal dimension 

associated with the path schema, which provides an important way to understand 

temporality. Johnson proposes several metaphorical models that are projected from the path 

schema: for example, purposes art. pl.zysica1 goals. 

The path schema showed up in the present study in several variations. A special kind of 

path is used by the arzgles are sortrces model and another by the angles are contours model. 

In these models the endpoint is irrelelrant. An event associated with paths is implicit in the 

arzgles are two corzrzecting 1iiie.r model, but here the endpoint is a special landmark, in this 

case the path schema has an "end-point focus" (Lakoff, 1987, p. 423). 

The contour subschema is a special kind of path schema composed of two trajectories, 

a landmark, and an entity that proceeds through the two trajectories. The landmark is the 
. . 

endpoint of one trajectory and the starting point of another. This is a dynamic model, and 

the switch from one trajectory to the other is performed instantly. It also presupposes that 

the two trajectories do not have thz same direction (Figure 7). 

Entity 

------b 
Trajectory 1 

Landmark 

Figilrr 7. Diagram of the contour subschema. 

The Link Schema 

We experience the binding of physical objects that involves a spatial contiguity and 

whose closeness relates the connected objects through the link. We also learn temporal 

connections as we experience events that are temporally related. Sometimes we may have 
- 



the feeling of observing causal connections. There are several types of causal connections. 

One is the genetic connection in which one or more entities are related to a common source. 

Another causal connection is the functional linking of entities. This links objects that may 

be intrinsically unrelated but that are linked by virtue of their relation within a functional 

unity. An example of a functional linking is solubility or compressibility (Johnson, 1987). 

The simplest structure of the link schema consists of two entities connected by a 

bonding structure. Typically these entities are spatially conti,ouous within our perceptual 

field (Johnson. 1987). If the cntitics are interpreted abstractly, we may have, for example, 

logical entities connected by logical connectives. This means that "the ~netaphorical 

elaboration of the link schema is one of the primary ways in which we are able to establish 

connectedness in our understanding" (p. 1 19). Lakoff (1987) argues that this link schema 

is at the root of our understanding of relational structures. A version of this schema is 

implicit in the angles are hvo conrzecting lines model. 

One of the ways we understand linlung is the action (the event) of meeting people. In 

this sense is has strong social and cultural dimensions. This nleeting subschen~a, at least in 

the way is showed up in this study, has several elements: two entities that follow 

trajectories (paths) that end at thz same landmark (the meeting point). Figure S shows this 

subschema. 

Trajectory 1 

Landmark / 

Trajectory 2 ' 8 
Entity 2 

Figlire 8. Diagram of the meeting subschema. 



This subschema involves an action, namely, that the two entities follow different paths 

and at some point in time are at the same position, where an event, a meeting, occurs. The 

nleetirzg subschema is related to both the link schema (the two entities became linked) and 

the path schema (both trajectories are paths and there is a focus on the endpoint ). The 

subschema shows up in the arzgles are bvo cotrrzectirzg lirzes model. 

Metaphoric Projection of the Up-Down Schema 

Geometric figures have an orientation in relation to a person. Some features are closer 

than others. We tend to express this idea by a metaphor. We usually replace the close-far 

feature by the up-ciouvrz orientational schema. This is seen in our terminology for some 

geometrical properties (base, height). Some schemas, although they are not models of 

angles, are constantly used by students. One is an up-rlorvrr orientation, and another is the 

far is ~ c p .  near is ciorvn metaphoric schema. 

When drawing geometrical f i~u res ,  we tend to take as a cognitive reference the 

horizontal. The dichotomy horizontallvertical provides a very useful orientation in our daily 

lives. We eat or write on tables, sleep in beds, and watch the sea, all of which are more or 

less horizontal. Horizontal paths tend to be easier to transverse. This daily (bodily) 

experience leads to the development of a horizontal schema. This schema naturally 

transforms the horizontal into a cognitive reference (Rosch, 197%). I showed in chapter 2 

(p. 33) how a preference for horizontality can explain several naming procedures that 

geometry uses together with some nonstandard uses of geometric terms by students. This 

schema is closely associated with the verticul schema described by Johnson (1987). 

.Another schema used by students is what may be called a far is up, near is dokvrz 

met~phoric schema. In their experiences in classrooms, students often asked to look at 

diasrams (including words and other entities) that are drawn on the board. Many times 

teachers ask them to copy these diagrams. As they do this, students naturally perform a 
- 



projection of what was drawn on the board, having top-to-bottom, left-to-right dimensions, 

to a drawing on their desk or tables that has far-to-near, left-to-right dimensions. The top- 

to-bottom dimension is projected into a dimension of more or less close to the student in 

such a way that what was a horizontal line on the board becomes a line that is in front of the 

student. This conversion leaves out the original names, and so students still use "up" and 

"down" to describe elements that are more or less further away from them. The chart below 

shows the correspondence between the up/tiown and the fnr/tzenr schemas: 

up/down schema far/nenr schema 

UP far 
down near 

higher farther 

lower nearer 

This metaphor is not restricted to schools. In fact, it is used very early in the life of 

children when they start to draw pictures. In the present study, the students made extensive 

use of this schema without any conflict. 



CHAPTER 7 

STRUCTURE O F  T H E  CATEGORY OF ANGLE 

This chapter is devoted to the description and analysis of the basic-level category for 

angles and the students' cognitive rnodels of angles. Attempts were made to identify 

prototype effects. cosnitive reference points, and metaphoric and metonymic projections. 

Seven coznitive models were identified: rrrzgles ore points, angles are interior corners, 

rrrzgies are sorlrces, culg1e.s open, nll~1e.s turn, nrrgles are corzfolrrs, and angles are two 

connecfiizg lines. 

Basic-Level Categorization of Angles 

Students learning angles started by forming basic-level categories of this new geometric 

entity. At this level, category members are globally perceived, they have an overall similar 

shape, and there is a mental image associated with the category. These basic-level 

categories share most of the characteristics of van Hiele Level 1. In this section I 

characterize prototypical mental images of angles, some of which are associated with re- 

enactment of classroom actions. 

Basic-level elements of the category of angles were composed of acute angles, right 

angles, and obtuse angles. Very rarel!. students mentioned other angles. Table 3 shows the 

number of answers of srudents to one test question asking them to draw an angle, together 

with the ansn.ers to a second question that asked them to draw another angle different in 

some way from the firs[. 



Table 3 

Frequency of Choices of Basic-Level Elements by Grade Level 

Basic-level elements of the category of angle 

Grade Acute Right Obtuse 180" angle 360" angle 

4 2 5 20 5 - 3 0 

Note. n = 52 at Grade 4; 11 = 44 at Grade 5 .  

Both acute angles and right angles stand out in Table 3 as central elements in the 

category of angles. Obtuse angles, 180" angles and 360" angles are \.cry rarely chosen, and 

angles between 180" and 360" were not mentioned. Moreover. the 180" angle and the 360" 

angle were only included in answers to the second question. The acute angles drawn by the 

students measured between 30" and 60". Throughout the interviews this pattern was 

repeated. It was as if all the category of angles was metonymically projected into the acute 

angles between 30" and 60" or the right angles. 

Task V2 asked students to perform turns and so i t  is possible to have an indication of 

the structure of the category of turns. Table 4 shows the kinds of turns students chose to 

make. In this task, full turns stand out as central in the category of turns, and no student 

performed a quarter turn or a turn less than 90". During the interviews students were aware 

of, and. in fact, used other kinds of turns, but these were not central in the category of 

angles. Students may have seen them as important as long as angles were being learned at 

school. All students that performed turns different from a full turn fall into two very distinct 

groups: four students, mainly fourth graders. that just flicked the spinner so that it would 

spin randomly, and four fifth sraders hairing a good performance in geometry, that 

executed their turns carefully so as to show exactly the land of turn they intended to show. 

These latter students were mahng used of a scholarly. catesory of turns, well blended with 

the catzgory of angles, whereas the former group of students was making use of a 

"worldly" category of turns. - 



Table 4 

Frequency of Turns Performed by Students by Grade Level 

Grade Full turn Half turn 2 full turns 540°+ turn 270°+ turn 180"- turn Other 

4 3 1 0 0 0 0 3 

5 3 1 1 I 1 1 1 
- -- - -  

Note. 12 = 7 at Grade 4; 11 = 9 at Grade 5. 

I now look into the image schernas the students had for the category of angles. It is 

plausible to assume that almost all the participating students used image-schematic models 

composed of rich mental images, as all basic-level categories do (Lakoff. 1987). A first 

grasp of these models may be obtained by analyzing the students' responses both in the 

interviews and on the test. Table 5 shows the number of students that, when asked on the 

test to identify angles in several geometric figures, identified angles in several 

configurations. In general, students in both grades recognized convex angles (angles at a 

convex vertex of a configuration) much more often than concave angles. Also. convex 

vertices of configurations with curved sides (gl ,  g4) were seen as angles, even by fifth 

graders, as long as their appearance did not depart significantly from that of an acute angle: 

b l ,  b2, d l ,  and d2 were rarely chosen. These preferences were confirmed during the 

interviews. Obtuse angles (a3, f2, g3) were less likely to be seen as angles than acute 

angles were, confirming the centrality of acute angles and the periphery of obtuse angles. 

Many times these images were associated with a preferred orientation of the angles. Most 

angles drawn by the students had one side horizontal. For example, a non-horizontal side 

was considered "slanted" by Beth. 



Table 5.  

Note. 12 = 33 at Grade 4; n = 24 at Grade 5.  



Occasionally students used common symbols from their environment to explain what 

angles are. For example, Beth said that to make different angles you could "turn it around 

and make it like a L, or you can make i t  a different way .... You can put i t  a different way 

and then make a [sic] angle." Louise said that to make an obtuse angle a friend of hers 

would have to "kind of try to make an A, but not just like an A. . . . [It's an A] but further 

apart." And a right angle "is kind of like half of a square." Jessie said that "an angle is just 

.. . a sort of a V shape." In these two sequences angles are metaphorically thought of as 

letters. It is as if angles have a shape that resembles other shapes known to students. The 

metaphor is used only as shapes are concerned. 

Image-schematic models are not only composed of rich mental images. It is possible to 

observe that they are also composed of re-enactments of actions associated with the ways in 

which angles were introduced. In all classes, angles had been taught in association with 

dynamic "protractors" made from two sticks, usually unequal in length, connected by 

means of a flexible drinking straw (Figure 9). One stick could be moved about the other in 

a circular motion. The trajectory tvas the movement produced by one stick as it rotated 

about the connection point. 

Straw 

Figure 9. Dynamic protractor used to introduce angles 

Tn.0 fourth-grade students, Beth and Mally, exhibited an image-schematic model of 

anzles that \.cry closely resembled a re-enactment of the actions they experienced in class. 
- 



In this model, an angle is composed of two unequal sticks and a trajectory. Beth's 

characterization of angles, for exanlple, reflected the use of this model: 

Beth: A [sic] angle is what you .... [It has] a long part [seems to be holding an 

imaginary line between her hands] and then a short part [moves her left hand so 

that the imaginary drawing is like the figure below]. 

You move i t  like .... You move the top part, and then you say you have half. 

And then you move it around. And then you move around again, and you have 

a whole [completes a fu l l  turn with her left hand]. 

Beth was remembering what angles had been like in the class when she talked about 

them. She mentioned a "long part" and a "short part." Similarly, Mally explained that an 

angle "has two long pieces or two short pieces." Both students seemed to refer to the 

protractor made with two unequal straws that had been used in class. Asked to draw angles 

that uc re  different. Beth drew one right angle and one acute angle. When she was asked to 

explain her drauings, she resorted to the two conizecti~zg lines model and said that the 

second angle "moved the top down some," by which she meant that the oblique side on the 

top had been rotated so that the angle was smaller. These two students exhibited what 

Grady and colleagues (Grady, 1996; Grady, Taub, & Morgan, 1996) would call a prirmry 

metaphor for the category of angles, with a strong conflation (Lakoff & Johnson, 1999) 

betwccn angles and the protractor. 



Cognitive Models of Angle 

In this section I characterize seven cognitive models of angle that the students used. 

These models are metaphors for the image schemas described in the beginning of this 

chapter, and the correspondences in each metaphoric projection are outlined. 

Angles Are Poit1r.s 

Seven students characterized angles as similar to points: 

Angles are k ind  of a point. 

Angles tlCi\  i. a polnt. 

Angles h:i\.t: a sharp end. 

Angles corile out as a point. 

This an,olc is sharper t h a n  that one. 

Angles are like thorns on a rosebush. 

Angles are like the tip of a triangle. 

All these expressions. tosether with some others, reveal a cognitive model of angles 

thought of as points or pointed objects. This is a metaphorical model projected from the 

schemapoirzred ohject ~nzntioned previously. The correspondence between the two can be 

characterized as follows: 

pointed object subschema angles are points model 

container angle 
point vertex 

edge (point) vertex 
edges (boundary) sides 

end vertex 
inside inside of angle 

relations 
sharp enci 
prolmdirlg 

vertex of an acute angle 
angles come out as a point 



This model has an implicit "\.iewpoint" (Johnson, 1987, p. 36) because the movement 

is observed from the outside, so one can see the sharp erzcis of angles. This model was 

extensively used by almost all fourth graders (James, Laurie, Mally, Rick, and Susan), and 

some fifth graders (Jessie and Mike), who thought that crrzg1e.s Iln\le I I  poirzt. Other students 

used it occasionally. 

[Anglesl must h~1L.e a point. (Laurie) 

[Angles] have . . . a point in their end. (Rick) 

[An angle] has a point in it. (blally) 

[Angles] would always hatte a point. (Alice) 

[Angles have a ]  sharp end. (Rick) 

Mally indicated that the similarities between angles and points may constitute a learning 

problem because as "triangles all have points on it, [some students] might think that i t  is a 

angle." Most students believed that a point is something that angles hove. Two students 

(James and Jessie) also claimed occasionally that angles are points. Junlzs said that an angle 

is "land of a point" but distinguished between triangles and angles. Thz forrner have three 

points. whereas the latter are actually points. There seemed to be tn.o similar models at 

work here. For most of the students, angles were an entity with a part that is a point. In 

Lakoff and Johnson's terms, one would say that these students understood angles using 

the part-u.hole schema, one of the parts being the vertex, which was understood in terms of 

the pointed object subschema. James and Jessie, however, were exhibiting a conflation 

between the domain angle and poirlr characteristic of a primary metaphor (Grady et al., 

1996: Lakoff 22 Johnson. 1999). 

This schema had consequences ior the meaning attributed to the action of measuring 

m ~ l e s .  Jessie explained how to nleasure an angle: 



Jessie: [An angle is] a line with a point at the end of them, the lines with a point set at 

the end of them, and you measure them by degrees. And I would tell you [how 

to] measure the points. When you measure them, you measure the side of i t .  

I noted above how the pointedobject schema may involve a protruding force that is 

associated with movement. Its movement was instantiated by Rick using a mixture of 

words and gestures. He said that angles "got pointing ends at the end, they got pointing 

ends when they come up," and he placed his hands vertically in an inverted V. Rick 

repeated this last gesture several times. Students expressed other ways in which the 

movement produced by this force could function. Angles "come out as a point" (Rick) or 

angles point "across" (Mike). or "you look at the point where [the angle] ends" (Alice). 

This model does not exclude angles with curved sides. In fact, some students (e.g., Jessie) 

accepted angles with curved sides but rejected drawings where the lines did not connect. 

If angles are thought of as pointed objects, it makes sense to use language with them 

that is usually associated with pointed objects. Some angles can be sharper than others 

(Laurie. Susan), and Mally showed an angle that "doesn't really have a pointy end." Susan 

said that an "angle is straight at the edses." 

This model can be seen as being applied in another context. Mike only recognized 

angles in convex configurations. He first called the vertex a in the figure below "an arrow" 

and said it was pointing up and should point down. 

Later. with other figures, he distinguished between '-in" and "out." If the point is ortt 

there is an angle. if it is irz there is not. Geometric figures contain something (they are - 



containers). and angles are protruding points that come out. Mike's approach had difficulty 

dealing with obtuse angles and certainly excludcd angles larger than 180". So, for Mike. 

angles in figures could only be conceived of in the interior of the figures. 

Tlic notion of sharpness helps to reveal further the structure of this model. Mally, 

Susan. and Laurie, for exarnple, recognized obtuse angles in several contexts. However, 

tlicy mostly irsecl acute angles and right angles as examples. Although they made use of 

otlicr types 01' ~ I ~ ~ I c s ,  right angles and acute angles seemed to stand for the whole set of 

anslcs. Thcir riiodel of angles had a metonymical structure in which right angles and acutc 

angles could stand for all angles. This n~etonymical structure seems to be a source of 

prototype effects because an obtuse angle "doesn't really have a pointed end" (Mally), or i t  

is not as sharp as an acute angle (Susan, Laurie). This metaphorical model can give rise to 

other metaphorical models. Laurie said that an angle is like "the edge of a pencil, the point 

of a pencil." Others remarked that an angle "looks like, ... sort [of] like a thorn on a 

rosebush" (James), like "the tip of a triangle" (Susan), or like "the pointing top of a 

triitngls" (lfikts), and Jessie, fcx- example, associated angles having small amplitudes with 

"little" points. 

Atzgles Are Itzterior Cortzers 

Many students associated angles with comers. In the previous model, the angle (the 

points) were perceived from outside. But here students used a modification of the corltainer 

schema. relating angles to a comer as perceived from the inside. In other words, they used 

a metaphoric model atzgles lire irztcrior conzers projected from the interior comer subschema 

of the c.otztaitler schema. 

Angela used this model, for esample, in the following excerpt in which she had been 

asked to explain to a friend what an angle is: 

.-Itlgela: I guess like in a corner of a wall. in the very corner, that's the angle, I 

suess. That goes across from wall to :vall. - 



Josc;: Goes across? 

A: You have a comer [puts her left hand on thc table ~ i n d  opens two fingers like a V], 

rind [it] goes across [points at the "verteu;" formed by her fingers] like that [she 

~estures]:  

J: So !.ou tell her to think of a corner of a room. 

A: [Yods.] 

J: And think about.. .. 

A: The t\\ o walls that are right next to it [the corner]. 

In this excerpt, Angela was implicitly using the following correspondences: 

interior corner subschema angles are interior corners model 

container angle 

goes across from wall to wall (inside) interior 

ivalls ( b o u n d q r )  sides 

corner of the room (force) vertex 

In this model, there are two versions of what constitutes the inside. Many students 

believed that the angle had a limited interior. For example, Jessie, Julie, and Linda 

indicated that the interior of the angle in Question 7 of the test is the drawing on the left 

below. whercas Beth indicated that i t  is thz drawing on the right: 



Susan also believed that the interior of this angle \bras like the drawing on the right and 

explained that point B was not inside the angle because "it's \Lay out there" and traced a 

line as indicated in the figure below: 

The interior of the angle in Question 9 was similarly expressed. Susan, for example, 

indicated the interior to be as follows 



Mally had a similar idea both in Question 7 and in Question 8 of the test, but resorted to 

gestures to express it: 

Mnllg: See, right down here, I have lust in  between these two lines right here. [She 

gestures as indicated below.] 

Beth and Linda. although indicating that angles have limited interiors, believed that 

there not a clear boundary. When asked. in Question 8, if she could draw a line showins 

the separation between the interior and the exterior of the angle, Linda said: 

Litzdn: No. See, you could draw on? like that, but that wouldn't be it. 

However, later, in Question 9, she dren. such a line non-verbally, expressing that it was 

an approximation. Beth shared a simil~ir opinion. In  Question 8, she said that 

Betll: [the interior of the angle] would probably SO u p  like this. [Starts at the rightmost 

endpoint of the horizontal side 2nd goes near :he point C.] Or it  probably wouldn't 

make the C. . . . [C is] in betwecn. 

B 

Beth also belie\.ed that point B was "there too with the C." 
A second \.ersion of this model concei\.ed the interior to be like an infinite surface. Hill 
and Marie expressed this second opinion. !\'hen asked what points were inside the angles 
(Question 7 of the test) they both ansn ered that it  depended on whether a concave or a 
convex angle was intendzd, and proceeded to give the adequate answers for both cases. 



Hill carefully extended the sides of the angles so as to be sure whether specific points were 

or not in the inside. Marie also expressed the idea that the line segments could be extended. 

In this task, Bob and Mike, after giving answers according to the limited interior 

version of the ntzg1e.s are interior corner model, asked whether the lines could be extended. 

After obtaining the answer that the sides of the angles are infinite, they proceeded to adjust 

their answers to the second version of the model. 

The second version of this model. conceiving of angle as a corner with an "infinite 

area," showed up more clearly in two students with better knowledge of geometry than 

most students that participated in this study. The first version of this model was shared by 

many students. most of whom also exhibited the angles are points model. I t  can be 

conjectured that as students learn more geometry both the model angles are points and the 

limited interior version of the angles are interiorcomers model converge into the infinite 

surface version of the second model, which resembles closely the portion of tlze plane kind 

of angle used in school mathematics (Appendix A). 

Anglcs Are Sollrces 

Some students thought of ansles as sources of trajectories. In this model, an angle is a 

projection of two rays from the vertes. It establishes the following correspondences: 

Source subschema Angle is a source model 

container angle 
projected entity (two rays) sides 

trajectories straight lines 
starting point vertex 

inside interior 

Relations 
lines that can go on forever infinite length of sides 

.Alice and Hill made use of this model. When asked why she thought there was an angle 
- 

in a rriangle, Alice answered: 



Alice: lieally i t  starts at a point [points to the vertex of the angle]. I didn't do i t  

because, just because i t  starts at a point. It starts at a point, and i t  has a certain 

way that i t  goes [traces the sides of the angle]. 

Alice was identifying angles wit11 a certain kind of path, for which she indicated both the 

origin and the trajectory. The trajectory was also special: it went "a certain way," in this 

case, straight paths emanating fro111 the vertex. Hill expressed the same idea: 

Hill: [Angles] have a starting point like a ray [traces one side of an angle], and then 

they go on and on. You can make the angle like a ray. 

This model was also visible in the Lvay in which Alice interpreted the action of drawing 

an angle: 

Alice: You always make a point and then you can draw where you want i t  to be. 

They always start at some point. [She draws the figure below.] 

marks a new point here 

initial point 

Because they can be ... an!.where, but they have a starting point. 

Sometimes, Alice and Hill referred only to some elements of the model. The idea that 

the vertex is the source of somsthing can be found in Alice's comments. On several 

occasions, she mentioned that :tn,ules "start at a point," or "have a starting point." Hill 

described the trajectory as the extension of two lines. Two other students (Bob and Mally) 

hinted at the use of this model by using Zestures indicating the two trajectories. 

There are certain metaphors the stuclcnts used that were related to this model. Hill, for 

example. believed a ray is similar io an angle: 



Hill: Because if  you havc a ray [draws a ray]. you have a point [points to the 

endpoint of the ray] that goes on and on. But they might get i t  confused for an 

angle because i t  has a point like an angle, a vertex. Not a vertex, because a 

vertex has ... it's where two lines meet. But a point to where a line goes on and 

on, never stops. does not go away, as a, sort of like a flashlight. 

Several times he rcfened to this metaphor, but Alice proposed a different metaphor. 

She says that an angle "is like, i f  you're walking straight, if you start from a point on the 

playground and tiow you can keep walking for a long time." It is a dynamic model, 

because an angle is thought of as the source of a dispersing movement of two lines. 

Students that made use of this model saw i t  as independent of the length and the 

straightness of the sides. This model has close resemblances both with the portion of rhe 

plane and the set of two r q ~ s  types of angles in school mathematics. 

Angles Operz 

Angles are thought of in the ~:/l,yles open model as geometric objects that have the 

property of opening. It is a metaphoric pro-jection from the open subschema of the container 

schema. 

Two students (Bob, Marie) mentioned that angles "open up," and one student (Alice) 

compared angles using "the opening of the angle." Laurie, for example, said that an angle 

is "like when a door opens." Bob used this model several times. In his use of the model, 

angles opened much like a lid or a door, in which one side would rotate from a "starting 

point." For example, Bob drew a risht angle and an obtuse angle each having a horizontal 

side. and he used this model to explain the similarities between them. He said 

Boh:  They both start at the same point, you see. They open up at the same point 

[indicates the horizontal line5 in both angles]. They both start right here. One of 

them [right angle] goes right here. One of them [obtuse angle] opens a little bit 

there. - 



Bob also used this model to explain why he identified an angle in a triangle. To do 

that, he traced the "starting point" (the beginning position of one of the sides). and he 

showed where the action of opening (a rotation) took place by saying, "[It] opens up right 

there," drawing a small arc inside the angle near the vertex. The angles open model that 

Bob was using here is related both to the container and the rlrrtl schemas. 

Marie also used the nng1e.s open model. However, she used a different kind of 

transformation unrelated to the t~lrtz schema. Marie showed that angles open by making 

an unfolding gesture with her hands, like the blossoming of flowers: 

This transformation is different from Bob's turn and is closer to the way in which 

newspapers or flowers open. Each time Marie used this model, she continued the 

discussion by using the angles t~lt-n model. 

Alice. Jessie, and Mally used the angles open model to compare angles. Alice 

compared angles according to "the opening of the angle," which she associated with a 

Sesture encompassing the interior of the angle: 

Jessie explained that two angles are different because one of them "is a new open kind," 

and Mally characterized congruent angles by saying that "they both open about the same 

length" and made a small V with her fingers. 

In summary, these are correspondences that characterize the angles open model as a 

metaphoric projection of the open subschema: 



opetl siibschema ang1e.s operl model 

container angle 
transformation (stage 1 to stage 2) open up 
transformation (stage 1 to stage 2) turn 

transformation (stage 1 to stage 2) unfolding gesture 

small transformation opens a little bit 

degree of openness opening of the angle 
degree of openness angles open the same length 
degree of openness angle opens a little bit (small angle) 

Relations 
part of the border changes position one side of the angle turns 

Anglrs Trrr-11 

Students used several ways to refer to the relation between angles and turns: "angles 

turn." "angles haxre turns," "angles are turns," "angles and turns are the same." Some 

students explicitly identified angles with a rotating line. I propose that most of these usages 

of the notion of turn represent variations of the modzl anglesturn. More specifically, the 

imagt schzma model rrtnl described above is metaphorically projected onto the model of 

angles as turning bodies. 

Ten students (Alice, Angela. Beth. Bob, Hill, Jessie, Julie, Louise, Mally, Marie) said 

that ansles turn. Sometimes they identified angles with turns. Bob, for example, saw "no 

difference" between angles and turns. Jessie said that "a turn is the same as [an] angle," 

and Angela stated that turns and angles "sort of are alike, because an angle, i t  can turn." 

Louise said that angles can "turn bigger or wider." Alice said that "as long as it starts at a 

point and turns about wider, i t  [is] a angle." James several times compared angles by 

saying that one turned more than the other. Several of these students explained that certain 

tisurss xf.erz angles because there \s as a turn involved. Linda, however, rejected this model 

saying that an angle -'stays in one place." Only three students explicitly said that a line 

(Alice. Hill) or a ray (Julie) was turning. 
- 



Some students added some gestures to the use of this model. Marie, for example, 

when asked to show points in the interior of an acute ansle. asked: "Which way does i t  

turn? This way or this way?'She traced the two choices: 

The use of the arzgles turn model enable her to distinguish between the two angles. This 

distinction is not so easily noted using other n~odels. Later she traced two other angles 

like this: 

During this task, Marie constantly referred to angles as turning objects. Bob also 

made similar Sestures. Alice and Julie used this model in a more elaborate way. They 

both referred to angles as a line (or a ray) that turns. 

The image schema of a turn endows the metaphoric model angles turn with a 

metonymic structure. Louise, for example, described the special angle she called "turn 

around," which meant a 90" angle, and Mally referred at several points to angles that 

went "all the way around." In another examp1.e. Jesbie, when referring to an obtuse angle, 

said that "[the obtuse angle] is almost a finished turn." Previously she had said that the 

same obtuse angle "is almost half of a whole turn." The "finished turn" here seemed to be 

a 180" turn. and the obtuse angle was compared uSith it. Bob referred to the "full turn" as 

a means to compare angles. The "finished turn." the "whole turn," and the "full turn7' 

were used as cognitive reference points. 



The image-schematic nature of the projected model could be observed in Alice's use of  

incorporation. Asked about the differences between an acute and an obtuse angle, she 

asked me to become the angle and "go like that" or "turn all the way around." She was 

asking me to make use of my bodily experiences associated with going or tumirzg aroiirzd to 

make sense of what happens with angles. 

Alice pointed out a problem in establishing turns as a metaphor for angles: 

Alice: [ A turn is different from an angle] because angles, they have ... they always 

have a point. I mean, like this right here [points to the center of a spinner] is a 

angle. The corner right here. that is a turn, i t  is not really a angle. [It] is a angle 

but ... Okay, most angles they always start at a starting point. ... It is like most 

angles, they always have a point. [Draws the figure below.] 

Like, they always start, most of them. But some angles like that [refers to angles 

made by turning the spinner], they can curve around like that [draws]: 

making a square, something like that. But mostly, when you turn, like when 

someone tell you to turn around, there would be more than half of a circle 

[draws]: 



Alice was essentially saying that the vertex, a key element in an angle, is not easily apparent 

in a turn. 

In summary, there is a correspondence between the turns schema and the atlgles riirrr 

model: 

tiirn schema angles turn model 

body lint: or ray 
trajectory turn 

trajectory go around 

turned this way direction of the angle 

full turn 360" angle 
turn around 180" angle 
turn around 90" angle (Louise) 

turn all the way around 360" angle 
stop and turn acute angle 

almost a finished turn obtuse angle 

Some students associated angles and turns with a circle. Apparently, one of their 

models for circle was a metaphoric model projected from the same model that the 

metaphoric model angles turrz used. In other words, they were using a model circles tlim 

together with angles tlim and concluded that. "in a way," both entities, angles and circles, 

can be equated. 

Alice, for example, was able to provide an extensive explanation of this association: 

Alice: The only thing I could think of is a circle that's bigger than all of the angles 

because there is a full turn [traces a circle on the table, then makes a half turn 

with the pencil]. A fu l l  .... A circle is really an angle because if it's like you 

started [at] one point [points to the edge of the pencil]. This is the point you 

started [points to the other endpoint of the pencil], and .... You started here 

[points to the edge of the pencil]. I t  is like you can turn the pencil all the way 

around [rotates the pencil 180' to the left]. Then you can start there, there 



would be a angle. Then you keep turning. That would be a angle, that would be 

a angle [indicates successive angles as she rotates the pencil around the endpoint 

opposite to the edge beg~nning at the horizontal]. And that would be the end 

where you started at [ends the rotation of the pencil by moving i t  to its initial 

position]. And that would be a circle. 

Alice developed this idea on other occasions. Different students also developed similar 

ideas. Jessie, for esanple, said that "the turn and [the] angle, they both can ... they both 

can n.ind a circle." Alice went one step further. She also developed a similar metaphoric 

model for a sphere and compared the sphere to an angle: 

Alice: In a Lva!. it's a angle. because i t  starts and it turns around [traces a great circle 

of the sphere]. It starts ns an angle. but then it goes around. So  in a way I would 

say this is a angle. 

She also used the same method to compare cylinders to angles. 

Students mads use of this model when they wanted to convey a dynamic interpretation 

of angles. This model, however. is not appropriate for referring to geometric entities like 

acute angles, obtuse angles, vertices, or sides. because they do not correspond to attributes 

of the original trtnl schema. Hill used this model to'feject the possibility of curved sides in 

an angle, saying that the drawing was "not a line that turns." In fact, in this model the sides 

of an angle are conserved by a rotation, and so they cannot become curved. No student 

made use of this model to explain his or her acceptance of angles with curved sides. 

Ths direction of turning is one attribute of the turn schema that was not projected to the 

arz,glt~srrirrz model. The velocity of turning is another attribute that should not have been 

imported. There is. however. some indirect evidence that velocity may have been 

associ~ted with angles by some students. When asked to compare turns, some students 

indicated that turns made faster produced larger turns (James, Jessie, Laurie, Linda, Mike): 

Jessie: Becuuse the faster i t  soes the more it has inside the angle, the more_ space. 



Other believe that the slow turns turn more (Beth, Julie, Louise, Susan). 

Louise: [The slow turn]  probably rotated mcre. because it  used more tie, i t  took 

longer. 

It is reasonable to suppose that this property of the turn schema may be transferred to the 

angles turn model. causing some learning problems. 

The idea that angles turn Ivas also found when I investisated the kinds of angles used in 

school mathematics (Appendis A). Two kinds of angles involved rotations depending 

whether angles differing by multiples of turns were considered equivalent. The cognitive 

model angles trtrrz shows strons similarities with the type mod~llar external rotation, 

whereas no student gave indication of conceiving turns above one full turn, as the 

continiro~ts esternnl rotation type of angle does. 

Angles Are Corzroitrs 

Alice used the path schema extensively as a metaphor for angles, comers, turns, and 

triangles. All of these figures can be described by specific paths. In particular, she used the 

model angles are contours, u.hich is a metaphoric model from the contour subschema 

described previously. Some correspondences are as follows: 

Contour subschema Angles are contours model 

trajectories sides 
landmark vertex 

entity lines 

Relations 
entity goes through the trajectories lines curve 

landmark is a stopping point 
landmark is a curve 

A good example is provided b!. Alice as she used the contour subschema to distinguish 

between angles and comers: - 



Alice: [An angle] would always have a point. [She gestures.] 

Alice: You always.. . . It would always have a point, and. ... A comer, i t  doesn't 

always.. .. Sometimes i t  can curve. [She gestures.] 

This set of gestures is associatzd with the model of angles as contours. As Alice put it 

the easiest way to draw an angle is 'just look at how does the lines curve." At the same 

time, she made a gesture similar to the figure above. She was talking about a continuous 

path that moves along a line, at a certain point makes a sudden "curve," and continues 

along another line. This curve is so sudden that it produces a point. At a later time. Alice 

even stressed this instantaneous change of direction by drawing a small curve around the 

vertex of an angle. 

Alice made repeated use of the angles are cotztortrs model. Later she used it to 

distinguish between angles and turns: 

Alice: If you're gonna turn a comer, sometimes they're round. [Traces the figure 

below.] 

And sometimes they're not. [Traces the figure below.] 

Sometimes they are just like angles. ~ i k e ,  you can Lvalk and then you have to turn.- 



[Traces the figure below.] 

Other [times] you can just, you can just curve. [Traces the following figure.] 

In other words, for Alice, an angle was a special path composed of two trajectories with a 

special relation to each other, whereas a turn has a special path that follows a curve. In 

the excerpt above, one can see that the proposed angle is composed of a "line" that "goes 

straisht" but that "curves" at some point. In another segment, Alice explained the 

relationship among the trajectories and the landmark: 

Alice: [The angle] kind of comes down and then . .. comes down and curves like that 

[and she gestures]: 

Alice used the attributes of the trajectories to explain why the sides of the angles are 

straight: 

,4lice: [It is not an angle] because this curves [traces one "curved" side back and forth], 

and angles mostly don't curve. It's like one line goes straight, and then it curves 

like that [draws a semicircle]. But a angle doesn't curve when i t  goes [draws a line 

segment]. 



. Hill also used the angles are contoL1r.s model as a basis to develop a metaphor for 

angles. An angle can be seen as a path that people follow. They go along a line, stop at a 

comer (the vertex), and then turn and continue in mother direction: 

Hill: A right angle [traces one side of a right angle]. when it comes as a vertex 

toward sort of like a stopping point ... i t  makes a turn go up, just like a sidewalk 

on rt comer. People come this way, and then they stop and come this way, and 

then they have sort of a stopping point [points to the vertex of a right angle] 

before they turn. or they can come this way [traces the other side of the right 

angle away from the vertex] 

In the case of Alice, the use of the angles are corztortrs model seemed to be a part of a 

more general model. Several times she used apatlz schema to refer to turns. 

Straightness of sides seems to be an attribute associated with the angles are contours 

model. There may be, however, some learning difficulties associated with this model. It 

ma>. be difficult for students to distinguish between angles that add to 360". Alice also 

shou eif some difficulties understanding the relation between angles and turns, namely, that 

there can be an angle associated with each turn. 

The notion that angles are related to changes in direction of paths, as in the model 

angles are contours, was found in the intrinsic rotation type of angle discussed in 

Appendix A. 

Angle-< Are Trvo Connecting Lines 

In the metaphoric model of angles are nt-o connecting lines, angles are thought of as 

pro-lsccions from the nleetirzg subschema. Hill, Jessie, Mally, and Susan made use of a 

mod?! of an angle as a meeting point of two lines. This model involves "two lines that 

conlit :figether." as Hill and Susan put it, and angles are "where two lines meet" or where 

the!. I r z  "together." where there is a "cross" between two lines, as Susan said, or where 

..tn.o i:nes connect," as Jessie and Mally said. The vertex is "where two lines meet," as Hill 



put it. An angle is "where two lines meet," and to find angles one ivould have to look for 

"where two lines come together," said Susan. 

Jessie used the ~tngles are nvo cor~rzectirzg lines model extensively as a means to justify 

the existence of angles. From her statements, one can observe that this model was 

associated with a visual configuration of t\vo intersecting l~nes  and the action of two lines 

attempting to connect to each other. When asked why there were angles in a triangle, Jessie 

replisd. 

Jessie: Right here is connecting the lines, is connecting right there. And they're 

having a point right here. there, and there [points to the \.ertices]. 

Later \<.hen explaining why she did not identify angles in other triangles. she said that "I 

must have overlooked ... the lines connecting this and that [points to the vertices]." In 

man!. other instances, she discussed angles in terms of connectin: lines. 

Jsssie seemed to endow the connecting lines with a will to connect. For example, when 

explaining what was most difficult to learn about ansles she said. 

Jessie: One other thing that is difficult to learn about angles. the most difficult thing, 

is when you try to have. you know. parallel.. . parallel lines [draws two parallel 

lines with a curved portion on one end so that the lines intersect] ... and get 

them confused. When, you know. the lines that have a line, you know, the lines 

that keep going, and then the lines that connect when they keep going so they 

are curved, i t  connects. I think it 's the most difficult thing about learning 

angles. 

She larsr repeated the same drawing: 

Jessie: [ I  am talking about] the ones that connects [s ic]  when they're still going 

[draws q a i n  two parallel lines \kith a curved portlon on one end so that the !ines 

intersect], like when they start going like that [emphasizes the small curved 

piece she drew]. - 



This model involves several correspondences: 

Meeting subschema Angles are nt.o connecting lines model 

entities lines 
trajectories go a certain way 

landmark (meeting point) vertex 

relations 
tr~tjectories meet 
trajectories meet 

lines intersect 
lines connect 

This model excludes configurations in which lines do not intersect visibly or that do not 

contain two distinguishable lines. Jessie did not identify angles in the fo l lou in~ 

configurations: 

She did identify the following as angles: 

Dirsct connections between this last model and the set of nt.0 rays kind of angle used in 

school rnsthsrniitics (Appendix A1 can be established. 



Sunzmary 

This section shows seven cognitive models of angles displayed by the participating 

students. These models are metaphoric projections of subschemas discussed in the 

previous section. Figure 10 describes the relationships among the several image schemas 

together with their subschemas and their metaphoric projections into students' cognitive 

models. Associations between cognitive models and types of angles used in school 

mathematics (Appendix A) are also summarized. 

Schema Subschema Cognitive model Type of angle in 
school mathematics 

Instantiation Meta~horic proiection Relation 

Pointed object + Angles are points 
4 

Container --v Interior corner --) Angles are interior corners d Po*ion plane 

\ ' 4 \ Source 4 Angles are sources f 
\ \ 

4 Angles open 

Turn - Angles turn + Mo ular external rotation a 
Path ,;---) Contour + Angles are contours .-b Intrinsic rotation 

'4 
Link Meeting 4 Angles are two connecting lines -b Set of two rays 

Continuous external rotation 

Slope 

Trigonometric angle 

Ficeltre 10. Relationship amon: schemas, subschemas, cognitive models and types of 
angles in school mathematics in the category of angles. 

- 



For example, the putlz schema has as instantiations the source, the contour, and the 

tneetirzg subschemas. The angles are sorrrces model is a metaphoric projection of the source 

subschema. This model was found to bear a relationship both with the portion of the plane 

and the set of two rays types of angles used in school mathematics. No relation was found 

among fourth and fifth graders' models and the types continuous externalrotatiorz, the 

slope, and the trigonometric angle, which show up much later in the curriculum. 

Learning the Concept of Angle 

This section addresses the second question of this study, which sought to understand 

how the category of angles changes its complexity and how is it related to students' van 

Hiele levels for the concept of angle. 

Learrzirzg tlze Basic-Level Concept of Angle 

All the fourth graders were starting to learn about angles; that is, they were learning the 

initial details of a new kind of school entity that their teachers were calling an angle. Two 

cases are typical of the ways in which they were conceiving angles, the cases of Louise and 

Rick. 
.. . 

Louise was able to draw angles carefully and recognized most of the angles in the test. 

She recognized the angles with a very small amplitude but missed all the angles at concave 

vertices. Later, during the interview, she identified two of them. She identified as angles 

some configurations with curved sides and was not sure about others: "I don't know, 

because it is straight right here [points to the straight side], and it curves right here [points 

to the curved side]." She believed that if the sides of an angle were extended, that would 

makr: the ansle "longer." 

Louise thought that angles hllve different shapes and different sizes. When asked what 

she meant b!. "shape," she answered "like this [points at a right angle] is kind of like half of 
- 

a sqiiare. And this [points to an obtuse angle] is like the shape of a wide, wide A." During 



the interview, she also clarified the difference between "shape" and "size." When I drew a 

right angle with sides longer than the right angle she had drawn previously and asked her if 

the two were different, she said that the two angles were not different and added that "they 

have the same shapes even though they are not the same sizes." Then, I drew an angle 

congruent to her right angle but with shorter sides and flipped vertically. I asked her which 

one was bigger. She said that "it's the same, just upside down." 

Louise's descriptions of angles relied heavily either on images or on actions: "Angles 

have one side. I mean, if they were trying to make a triangle, and they would only have to 

cut in half to make a angle." All the angles "use letters to show their points." To explain to 

a friend how to do a 90" turn. she said: "I would tell her just to draw a circle. I could tell 

her 'it's like a clock and go from number nine down to number six."' She summarized 

what angles are by saying: 

Lo~tise: There is [sic] different kinds of angles, and one of them is turn around. You 

can just take i t  [out of] two parts of a square. It is just one line, and the other 

two connect it. And you can fit a corner of a paper into it. That's how you turn 

around.   here is [also an] obtuse angle. It's kind of like an A but not exactly. 

Jose: And how would you tell [a] friend how to make an angle? 

L: Turn around, it is just the comer of a piece of paper. And for an obtuse angle, 

she can kind of try to make as A, but not just like an A. 

J: How is it different from an A'? 

L: [It's an A] but further apart. 

Louise's last description of angles show how she was making sense of this new category 

of things by relating i t ,  simultaneously. to several other entities she knew: turns, squares, 

lines that connect, letters. and comers. It is possible to recognize several cognitive models 

described above: angles tlinz, atzgles are five connectirlg lirzes, and angles are interior 

cnnlers. - 



Rick had much in common u.ith Louise. He drew striking angles with thick sides. 

Apparently, he needed to keep a close relationship between angles and the physical means 

by which they were represented in class. In other terms, he was functioning within primary 

metaphors for angles. He chose to draw angles in geometric figures: in a triangle or a 

square. He identified the vertices of these angles with one of the vertices of each figure. 

Rick recognized most, but not all. the angles in the test. When asked during the interview 

why he skipped some angles, he said that he was not sure about some of them because they 

"would be like a square." He identified angles that had a small amplitude. During the 

interview, he expressed doubts as to whether angles in concave configurations were 

angles. 

For Rick, some angles were alike because they had "a point in their end." When asked 

if an angle with shorter sides was different from a congruent angle with longer sides, he 

said they were different, because "that one is just a little bigger than this one" although they 

were congruent. When asked if an acute angle was different from an obtuse angle, he said 

that the t n o  angles ivere different because we could rotate one of the sides of the acute 

angle to make i t  like the obtuse. When asked if two congruent angles facing different 

directions were different, he ansnered, "They're different. They're the same but they're 

different. One is turned that way. and the other is turned that way." 

Up to this point. it is possible to see similarities between Rick's and Louise's concepts. 

Rick. howrever, brought up something extra. As it was difficult for him to express all the 

complexities of an,oles by means of speech. many times he resorted to gestures. For 

esarnple. \\.hen asked to explain to a friend over the phone what an angle is, he said (and 

enacted) th? follo\vins: 

Ric-A: Triangle. square. and circle, and sharp ends. [Pauses] They have [pauses] a 

[point] on the end [makts a V with his left hand], a pointing end [gestures 

upward w i t h  his hands 2s if  modelin: a pyramid]. They have a angle [make a - 



kite with his hands using his forefingers and his thumbs]. They come up 

[repeats the modeling of a pyramid]. 

To explain the difference between angles and corners, Rick made use of the model ajzgles 

are poiizts: 

Rick: A comer is like a sharp end, and a angle is something, whatever i t  is, that 

comes up like that [makes a gesture with both palms of his hands that looks like 

a tent or the roof of a house] or something like that, like i t  comes up like that 

[repeats the gesture]. like.. . 

[ . . . I  

Jose': How are they the same? 

R: They got pointing ends at the end. They got pointing ends when they come up 

[repeats the gesture]. 

Rick begins by using the angles are interiorcorners model and shifts after to the model 

angles are points. 

Both Louise and Rick understood angles in terms of other categories of objects. Rick, 

in particular, needed to bring up examples from the real world to explain what angles were 

like. His striking and abundant gestures showed how these categories in the world, and 

consequently his angles, had rich images associated with them and were full of movement. 

As Lakoff and Johnson (1999) would put it, the metaphors used by these two students 

were conflating the two domains: school geometry and the real world; that is, angles were 

for them a primary metaphor. 

These two students above \%.ere using metaphors of image schemas to understand a new 

category, angles. that had been taught to them recently. Alice. however, although using 

rich images, was taking advantage of  metaphors in a different sense. Two excerpts show 

hon she was using similarity-creating metaphors (Indurkhya, 1994), with which she could 

use metaphors as a strategy to imagine geometric entities in a new way. - 



At the beginning of the interview, Alice did not interpret turns as angles. When shown 

a rotating arrow, she did not initially believe it to have any relationship to angles. Only later 

did she say that "in a way" the rotating arrow was an angle. She saw this only after having 

drawn a 45" turn of the arrow. After drawing a turn of 90°, she said, spontaneously: 

Alice: Funny. In a way i t  is like a angle [looks at her drawing]. The way I see it  [it is 

an :in_elel. Because you kind of turn in  there [traces the 90" turn]. ... I t  is like 

this pencil. I f  I had i t ,  and I turn i t  that way [rotates the pencil 90" on the top of 

the table havin_e the middle of the pencil as the center of rotation], i t  will end 

right there because of the point of the pencil. In a way i t  is like a angle and in a 

way i t  is like a triangle, because at this end ... at both ends they'd curve right 

there [Alice rsfers to the two curves sketched by the pencil. one at the edge and 

the other at the other endpoint]. So in a way it  is like a circle. 

She is using a similarity-creating metaphor, and that is "funny." She interpreted a turn 

as an an,ole using an imuse schema that incorporates a generalized picture of a right angle 

(and a right triangle). In another instance, she tried to think of a cone as a metaphor for an 

angle. and. refixting on the consequences, came up with very creative geometric thinking: 

Alice: I was thinking about [the relationship between angles and spheres], see. In a 

way [the cone] seems like i t  is a angle because of the way i t  is. If you looked at 

it this way, [positions the cone as in the figure below]: 

I n  .! way, i t  would be a an_ele because it  has this starting point [points to the 

v r r r ; . ~ ] ,  and i t  goes from there to there [traces two edges of the cone]. So in a 

w q  i t  would be a angle. If you looked 2t i t  from there [places the cone with the 



base horizontal], i t  doesn't really look like an angle. But if you held it [as in the 

beginning positicn], i t  would look like a angle. mostly because it's like .... If 

you start at the bottom. [Puts the protractor over the cone with her finger, 

holding them together.] 

You start at that point [means the vertex], it would be a angle. You can't really 

tell, but in a way it looks like a angle. In a way. i t  looks like a angle. 

Jose': Could you measure it? 

A: I don't know. It ivould be hard to measure this, because it  rounds at the point 

like this ljoins the protractor and the cone in the same position]. So, in a way 

you wouldn't know where to start. So, if I try tb do like this. I don't know .... I 

would say about 15, from right here. In a way i t  looks like it. I can't really tell. 

Alice came up with an estimation of the '-angle measure" of the cone, although she was 

aware of the uncertainties of her procedure. Through out the interview, Alice used many 

times expressions like "in a way it is," or "it is a kind of," or '-it seems like" as she was 

verbalizing metaphors and establishing similarities. Her metaphors were, however, 

complex metaphors (Lakoff Br Johnson, 1999) as she could limit their scope by using the 

term "really." 

The episodes above shot{. ways in which some students were learning the composition 

of the basic-level entities of a new geometrical category. This perspective has a strong 

similarity with van Hiele Leire1 1, and all interactions reported above are at this level. 



Structuring the Category of Angle 

Few students went beyond the understanding of basic-level categories of acgles; that is, 

few responded at a van Hiele level above the first. Some students, however, developed a 

deeper understanding of the concept. A first example can be taken from Marie's long list of 

attributes related to angles, among them some properties. When asked how she would 

describe an angle to a friend over the phone, she said: 

Marie: If you look at ... the corners on a square ... [you can see angles]. Or [if] you 

trace the square on another square and then you look at the corners, the lines 

are angles. If  you erase everything except the corners and everything in the 

middle of a square, you have a angle. Angles can be bigger than that. You have 

angles on a triangle and you erase all the triangle except where are the comers, 

you have a angle. Angles can go bigger. or [pauses]. Angles can go all the way 

around to it. Angle; can go to a straight line or all the way around. If you had 

two sticks and you put them together, they are straight. And you can put [them] 

rizht on top of each other. If  you do that, and open up the sticks, a little bit 

[you can see an angle] . . . . If you have a string and putting together holding 

those [points], and open them up, your top end will be the vertex. 

Up to this point in this transcript, Marie's verbalizations refer to global descriptions of 

angles and can be classified at van Hiele Level 1. She handles a sequence of several models 

of angles (angles are interiorcorners, angles turn, and angles open) very well. Differently 

from the primary metaphors seen in other students, she uses what Grady et al. (1996) 

\\.auld class if^^ as complex metaphors; that is, her models are metaphoric projections but 

shz \.cry clearly distinguishes the attributes to which the metaphor is applicable from those 

that i t  is not. For example, although her initial angles are expressed as being at the comers 

of fisures, she immediately makes clear that she conceives angle as being "greater than 

that" and exemplifies with 180' and 360" angles. - 



Without interruption, she continues her description of angles as follows: 

Marie: All angles have vertices, and all angles have two sides. And no matter how far 

you open your angle, [you can] make i t  come back around again, so that they 

are lined up again. That's still a angle. If you make them straight out, that's an 

angle. Everything between those [are] angles too. 

Marie is now using a different kind of discourse, one that describes properties of angles. In 

this second excerpt, she displays a typical van Hiele level 2 behavior. She continues to use 

models (arzgles tririz, and angles open) but is relating them to propositions about the 

generality of angles. In Lakoff's (1987) terminology, she is displaying a propositional 

model for angles; that is, one that specifies "elements, their properties, and the relations 

holding among them" (p. 113). Prototype effects were nevertheless present: if the two 

sides of the angle "come back round again . . . that's still a angle" (my emphasis). Although 

she knew that a 360" angle is still an angle, she felt the need to emphasize it. Other 

students. although displaying behaviors at van Hiele Level 2, manifested prototype effects. 

Hill and Marie. for example, identified g l  and g4 as angles in the figure below from the 

test. 

When questioned during the interview about his identification of g l  in the test, Hill said the 

follo~ving: 

Hill: That shouldn't 've been there, I don't know why I put i t  there. It's not an 

angle because a line doesn't.. . It.'s a curve. 

JosP: And what about this one [g4]? 

H: I would say that wouldn't be there either. Because i t  curves up as it  goes [traces 

- 
g4-gl]. A straight line goes straight. 



J: So you say [that] this one is not an angle either. Why did you put them? 

H: At that time I was thinking that this line [traces gI-g4] wasn't .... Since i t  was 

connected that i t  event~ally. .  . be a line somehow, because i t  curved in and then 

i t  was straighten out. 

In a similar vein, Marie argued that near the vertices the lines were straight, so her answers 

\\.ere correct. In the test. both Hill and Marie were misled by prototype effects into 

identifying as angles configurations Lvith curved sides. But, during the interview, both 

Lvere able to either correct this mistake or produce a reason for their answers that would not 

conflict with the notion that angles have straight sides. 

In the last section I mentioned how Alice was able to use metaphors as a means to think 

about the global properties of angles. She was also capable, in the context of another task, 

of revealins a deeper understanding of angles. In Task P4, Alice was trying to find the sum 

of the four angles of a parallelogram. She first measured using the protractor, obtaining an 

angle of 65 degrees, another of 68 degrees, and two of 117 degrees. 

As she was measuring the last angle, 6, she said: 

Alice: [The angle 61 is about 117 too. And that one [XI will probably be the same as 

that one [a], because these [traces the parallel lines p-a and X-61 go the same 

way. Because that [P-a] is the same length as that [x-61, and that [@-XI is the 

same length as that [a-F]. Then if that [P-F] is the same, then that [a-X] should 

be the same. 

In this excerpt, she is not relyins on images nor actions alone. Having obtained 

different numbers when measuring x and a. she is able to state that the amplitudes should 

be equal. She explains this by informally referring to a property associated with systems of 
- 



two pairs of parallel lines. Alice expresses this property using the metaphor paralleffirles 

are lines that go the same wa!. She concludes her reasoning by asserting, "Then if that [P- 
61 is the same then that [a-X] should be the same." The figure shows two diagonals of 

distinct length, but she concludes, however. that they are equal. Although her conclusion is 

false. she is performing an inference. obviously not relying on the figure. 

Marie could use the complex set of characteristics of angles she was aware of to solve 

_~eon~etric problems. In the task involving the calculation of the internal angles of a 

parallelogram, after I divided the parallelogram into two triangles, Marie said that its 

internal angles add to 360" "because two triangles .... If you add up all the angles of a 

triansle, you would get 180 degrees. And 180 degrees times two is 360." 

This task was developed further as I asked Marie if she thought that the same kind of 

argument could be used with quadrilaterals other than parallelograms. At first, she said no: 

Marie: You can only do i t  for ... parallelograms. Because if you divide this in two 

triangles, the triangles won't be equal. If you divide with that [quadrilateral], ... 

I don't think the triangles will be equal. 

She later corrected herself: "That would be, [360] . . .. Because all triangles add up [to 

1801. no matter what shape they are. Doesn't matter. ... They always are. The angles 
. .- 

always add up to 180 degrees." 

When asked whether the same rule would apply to a pentagon. she did not find a way 

to split the pentagon into triangles. She did not draw diagonals that would help solve the 

problem, so tried to estimate the angles in the pentagon. 



She identified Angles 1 and 2 as right angles. argued that Angles 3 and 4 are equal. 

proceeded to measure one of them and obtained 50" because of a measuring errcr. She 

decided to move in a different direction and claimed that Sides 1-4 and 2-3 were equal. 

Sides 5-4 and 3-5 were also equal. She then compared Angle 5 with a right angle and 

concluded it was a right angle. At this point, she checked that she had 270" "so far." I then 

suggested that she divide the two remaining angles in some way. She then drew Diagonal 

4-3 and concluded immediately "This right here is a [trilangle, that's 180 degrees. This 

right here [the remainins quadril~iteral] is 360 degrees. Would i t  be . . . 540 degrees?" She 

argued later that this procedure would work with any pentagon. 

Structuring the category of angles involved the awareness of several properties 

associated with angles and the ability to use multiple models of angles as a means to solve 

geometrical problems. It bears a strong resemblance to van Hiele Level 2. Marie's case 

represents the most complex instance of this structurization found among the participating 

students, but two other students (Angela and Hill) were also able to exercise an 

approximate behavior in specific instances. In all of these cases, prototype effects were also 

detected. 

Conclusion 

The first section of this chapter describes the basic-level of the category of angle. This 

level is composed of elements like acute angles, right angles, obtuse angles, and also 

qitartertitnzs, half turns, and, occasionally, full turns. For the students beginning their 

study of angles, these are barely differentiated wholes, relying heavily on images and 

actions. Prototype effects can be detected, affecting features like the length and the 

straishtness of the sides, the amplitude of the angle, or the preference for a horizontal 

position for one side. Metonymic effects can also be detected, as students are usually 

- 



producing either acute angles or right angles as standing for the category of all angles. 

These effects still show up for students with a more sophisticated knowledge of angles. 

The next section analyzes seven cognitive models of angles by showing how they are 

metaphoric projections of the schemas discussed in chapter 6. Relations between these 

models of angle and bodily experiences of containment, motor actions like turning or 

walking, and social events like coming into contact with somebody are established. 

Relations between these models and types of angles used in school mathematics are also 

highlighted. 

The last section discusses the ways in which these models relate to the complexity in 

geometric thinking. Initial metaphoric models, closely linking the source and the target 

domain of the metaphor, are found to change to complex metaphors, as these domains drift 

apart. The basic-level of the category, closely linked to van Hiele Level 1, loses its 

prominence, as students move to Level 2. At this level, the category of angles has the 

structure of a cluster of distinct models, which students use as they see fit for the situation 

at hand. Propositional models emerge, but prototype effects continue to show. 

Imagination. that is, the ability to reason using rich images, was found to be a powerful 

tool for the mathematical explorations of some students. 



CHAPTER 8 

MODELS OF ANGI,ES IN TEACHING AND IN MATERIALS 

Chapter 7 contains an account of several models of angles exhibited by students, 

together with an identification of the ways in which these models were related to broader 

schemas. In this chapter. I move from the individual sphere into the social context in 

which these models came about and investigate the models of angle taught in the 

participants' classes. I looked for traces of these (or other) models both in the classroom 

discourse and the educational materials that dealt with the concept of angle. 

As stated in chapter 5 .  all classes chosen to participate in the study were also taking 

part in a research project on curriculum development in geometry (McKillip & Wilson, 

1990). This project proposed that angles should be introduced by making extensive use of 

the angles rrlrrl metaphor. Angles should be explored so that students would understand 

that angles cannot be measured by a ruler, but that the amount of turn was important in 

comparing angles. To make sense of the action of measuring angles, students should 

initially be introduced to informal units of measurement, after which the formal unit 

degree was introduced. Properties involving angles where to came later by the 

observation of relationships and the invention of rules (Wilson & Adams, 1992). 

I begin by showing how the teachers chose to teach this specific model of angle. Next 

I show how the structure of this model was shaped through specific classroom strategies. 

I also show the ways in which links between this model, other models of angle, and other 

models of mathematical entities were formed. Other models of angle were also present 

either as a major teaching ropic or as a brief reference. I show how these models were 



used to investigate specific geometric topics. and I finish by analyzing the ways in which 

these models were expressed in the materials used by the teachers. 

Teaching a Model of Angle 

Activities aimed at the introduction of angles were observed in all classes 

participating in the present study. In these lessons, alzgles t l l n l  was the model proposed to 

students. 

In the fourth-grade classes. both teachers decided to spend only one hour introducing 

angles, moving thereafter to other geometric topics not related to angles. The fifth-grade 

Teacher D spent one hour on the introduction of angles and continued by exploring topics 

related to angles for several subsequent lessons. The methodology used by these three 

teachers was very similar. They started by dividing the class into groups. The students in 

each group were asked to construct a "dynamic protractor" made from two different-sized 

D-Stix and a flexible drinking straw. Tape was used to keep the D-Stis in place. During 

the construction of the protractor, all teachers pointed out to the students that it did not 

matter if the two sides were different lengths. Then, using the protractor, the teachers 

discussed the relationship between angles and the turning sticks. An esample taken from 

Teacher D's fifth-grade class shows a typical sequence: 

Teacher D enacts the following motion with the D-Stix: 

Teacher D: This is a quarter turn. A quarter angle [sic] looks like a right angle. 

Srlcdetrr A :  Yeah, a 90" angle. When two lines form a 90" angle. 



Teaclter: You can rotate i t  counterclockwise [and she explains the meaning of this 

word]. 

The teacher enacts the following: 

Ic~achcr: When you have i t  like this, what would you call it? 

Srltderzr B:  A left angle. 

Teacher: No, i t  is more than one fourth of a turn and less than half a turn. 

The teacher then continues by asking students to show angles relative to one fourth turn 

and then to one half turn. 

One can see in this sequence that the teacher was showing the students a state of 

affairs and was talking about it. Really, she was presenting two joined sticks and saying 

that that artifact was an angle. Most students were aware that literally that device was not 

an angle. for they implicitly knew that the teacher was actually aiming at introducing 

some new instructional entity and was using the two sticks as an educational strategy. 

The two sticks were perceived as a metaphor for angles. Moreover, at this stage, it was a 

primary metaphor, because the students were not yet able to distinguish clearly between 

the two metaphoric domains. As she was presenting a dynamic model, she needed to 

show the action needed to produce a specific angle and to speak the words that went 

along \t.ith this new entity. In \.'>.gotskian terms, she was making the protractor a 

mediating instrument. The students. or, the other hand, had two different reactions. 

Student .A recognized the configuration the teacher was showing and was implicitly 

saying. "I know that, it's a right angle." He proceeded by stating what these angles were 

- 



for him: "When two lines form a 90' angle." He was recalling a different cognitive 

model, arlgles are meeting points, and was relating i t  to the new perspective the teacher 

was proposing by means of a proposition. Student B was a different matter, and one can 

imagine what happened. From the point of view of the student. the oblique side was 

bending toward the left. He had already heard about a "right" angle, so it would be 

plausible to imagine that this would be a "left" angle. The teacher's reaction to this 

assertion was to implicitly say that that was not an adequate (socially acceptable) 

interpretation, and she proceeded to express an adequate one. 

A similar sequence but with a different focus can be observed in fourth-grade Teacher 

A's class: 

Teaclrer A. [Look at] what's happening between these two sticks. [Look at how far they 

are] apart. 

She holds the protractor in her hands like the following: 

She rotates the oblique stick around the horizontal stick. 

Teacller A: As I swing this around what is happening to the angle? 

Student: It is wider. 

As she joins the two sticks, she notes the following: 

Teacher: As the sticks rotate, the angle disappears. It is like a clock. . .. Look at what 

happens now. First around. It is smaller. Now it's really big. 



She enacts the configuration on the left. She pauses, and then she ends her movement 

with an angle larger than a 180" angle. The use of the instructional model angles turn 

enables her to go beyond the types of angles usually taught at this grade level and 

meaningfully speak about angles greater than 180". 

Teacher A also made the protractor a mediated instrument, but she performed a 

deeper analysis of the kinds of appropriate actions than Teacher D did. She probably 

knew that her fourth graders had never met angles before, and so from the beginning, she 

carefully warned her students as to where the focus of their attention should be: "[Look 

at] what's happening between these two sticks. [Look at how far they are] apart." This 

was a different model of angle (nng1t.s are nleering points) that the teacher used only on 

this occasion. She then proceeded by dynamically exploring the whole range of 

possibilities and by relating the whole experience to an object from the outside world: "It 

is like a clock." On a different occasion, she asked students to identify the vertex. 

Although one student indicated one of the endpoints of the D-Stix, whereas another one 

wondered, "Do we have a vertex on one half turn?" many students were able to point out 

the vertex. 

Occasionally, the students played a more prominent role. Below is an episode taken 

from fifth-grade Teacher Z that illustrates how students' models were socialized. She 

chose to begin a series of lessons involving angles by introducing the concept. She did 

not follow the project's proposed sequence, deciding instead to start by using the 

textbook (Thoburn, Forbes, Br Bechtel, 1982b), where angles were presented as two rays 

sharing an endpoint. Only after this introduction did she distribute protractors made of D- 

Stix and proceed as the other tzachers did. She had previously explained that acute angles 

turn less than a quarter turn. \i.hereas obtuse angles turn more. Her definition considered 

as obtuse those angles that turn more than one half turn, which is not the standard 

mathematical terminology. But she Leas consistent with her terminology. Then she asked 



students to show her acute angles with their D-Stix protractors. One student showed the 

f~llowing: 

Teacher Z: What did you do? You did i t  like this? 

Teacher Z: That would be an obtuse angle. You need to do like this: 

Teacher Z was setting standards for the adequacy of students' mathematical actions: 

"You need to do like this." Teacher D proposed that her students distinguish between 

these two angles by drawing a small arc "inside" the intended angle. 

Fourth-grade Teacher H discussed with her students what was the largest angle and 

the smallest angle. She also asked students to develop and expand their model by drawing 

an ansle and then drawing another one that was very different. One student drew a right 

angle with one side horizontal and then another angle with a very small amplitude. 

Another student drew a right angle with sides of different lengths and then another right 

angle Lvith both sides at a small tilt and \i.ith congruent sides. Teacher H explained to this 

studznt that "what matters is the amount of turn." 
- 



In summary, this section has shown how teachers made the protractor a mediating 

instrument for the metaphoric understanding of angle as a turn. They showed the 

appropriate physical actions, tried to attribute adequate language to them. and enriched 

the actions by showing multiple kinds of turns, comparing the action with the movement 

of the hands of a clock or with doors opening and closing, or using terminology 

connected to turns ("all the way around." "swing"); that is, established a primary 

metaphor. Occasional connections to other models were spontaneously introduced by the 

students and referred to by the teachers. Students were frequently asked to expand this 

new model and were sometimes corrected so that their actions and utterances would f i t  

the teacher's expectations. 

It is also important to note two aspects of angle that were not explicitly addressed in 

the lessons. A first aspect has to do with the ways in which the dynamic protractor was 

used. Almost all angles shown by the teachers had one side horizontal. A preferred 

position for one side of the angles was therefore implicitly being created. This practice 

also established a distinction between the two sides of the protractor (one stood still and 

the other moved). A second aspect. related to the formation of images, played a more 

prominent role. It is an intrinsic characteristic of school geometry that all its objects can 

be "seen." In the lessons one can see that image-schematic models of angles were 

constantly present or were constantly in the process of being shaped. 

These lessons went well. The model, however, differed from teachers' usual practices 

at teaching angle, and some teachers occasionally got confused over the appropriate way 

of usins the protractor. The students were. nevertheless, able to complete the tasks 

proposed by the teachers, and, from their ansLvers to the teachers' questions, one can infer 

that. in general, they understood the lessons. 



Teaching the Structure of a Model 

After having acquainted their students with the model angles turn, the teachers 

looked deeper into the structure of the model, essentially by characterizing some of its 

submodels (right, acute, and obtuse angles) and identifying some cognitive reference 

points. All the teachers showed "full turns," "complete turns," or "whole turns" (which 

meant a 360" turn of one stick around the other); "half turns" (180 " turns); and "half of 

half turns" or "quarter turns" (90 " turns). All of these turns constituted reference points 

in the model. and the other angles were named in relation to them. These points also 

provided the model with an ordered structure; that is, it is possible to say which angles 

are larger and which are smaller. The diagram in Figure 11 captures the structure of the 

model, identifying its submodels. 

reference points: 
three quarter complete 

quarter turns half turns turns turns - - 
submodels: 

right angles 

Figure 1 1. Structure of the angles turn model. 

All teachers started by looking into the quarter turns submodel. Teacher Z did this 

explicitly by asking questions like, "What things do you have on your desk that show 

quarter turns?" Or she said, "You can check if it is a quarter turn by using a piece of 

paper or a book." Teacher D used a similar strategy: 

Teacher D:  Give me examples of a quarter-turn angle. . . . Look for the comers. 

Stirdetzt (aside): It's got to be a square to be a comer. 

Both examples show the teachers' concern with establishing links between a specific 

submodel and other elements ir, the students' previous experience. The second also 

shows how a student was understanding and fulfilling the teacher's expectations. 
- 



An example of the teaching of the boundaries of the submodels is provided by the 

following sequence. Teacher Z faces the class with the dynamic protractor in her hands 

and says the following: 

Teacher 2: Now I am going to turn [to get an obtuse angle], and you will tell me when 

to stop. [You will tell me to stop] when I have an obtuse angle. 

She starts with the configuration below: 

A 

She then rotates the upper stick counterclockwise. When she arrives at the configuration 

below, she stops: 

She asks. "Is this an obtuse angle?" The students are undecided, but eventually they come 

to agree that i t  is obtuse. 

The students' indecision apparently came from the fact that the configuration was 

visually much closer to a right angle than to an obtuse angle. The teacher chose to put this 

case before the class precisely because of the potential for confusion between an image- 

schematic model of a right angle and the standard submodel of an obtuse angle. She was 

making clearer the boundaries between the submodels for right angles and for obtuse 

angles. 

In the following example. fifth-grade Teacher D employs several reference points, 

using them to name other angles: 



Teacller D: Now show me [angles that are] !ess than one half and more than one fourth 

of a turn. ... Now in this case? How much is it? [She enacts the motion below.] 

Student A: More than one half by more than one third of one fourth. 

Sriidertt B: More than one half by more than one fourth of one fourth. 

There is silence. The teacher is nonverbally signaling that they are giving wrons answers. 

Teacher: Remember your fractions. Where is three fourths? 

It was hard for the students to find the correct name for the angles. The teacher then 

decided to resort to a model that had been used in another mathematical topic. Her last 

remark is very interesting and is discussed in the next section. 

Using a Different Cognitive Model of Angle 

Occasionally there was a need to compare angles, which proved very difficult to do in 

the absence of a measuring system. In both fourth-grade classes, several students found it 

very hard to compare angles by superimposing their drawings. They did not understand 

that vertices should be made to coincide and that it might be helpful to overlap one side. 

One boy overlapped two angles like this: 



One girl in Teacher H's class even proposed that to compare angles one could "measure 

the distance between the sides," hinting at a different model. 

To overcome those problems, the project proposed the use of a unit called a "wedge" 

(Wilson, 1990). After the introduction of angles, both fifth-grade teachers decided to 

teach ways to measure angles by using wedges. In these classes. a "wedge" was an actual 

physical object made from a paper circle by folding and cutting a circular sector with a 

30" amplitude. This was, in fact, a new metaphoric model, which I call the sector model. 

that did not show up in the students' interviews. It is characterized by the following 

elements: a body with a special configuration, two different kinds of borders, and a 

special point (Figure 12). 

Special point 

Figure 12. The sector model. 

One difference between this model and the models presented in chapter 7 is that 

inherent in this case is a joining operation between several bodies to produce a new 

instance of the model (Figure 13). 



Figure 13. The joining operation on the sector model. 

Figure 13 shows that joining two bodies produces a new body having the same 

elements. One can also see that the common border disappears. Angles are here seen as 

metaphoric projections of this model in the following way: 

Sector model angle 

body interior of angle 

border 1 

border 2 side 

special point vertex 

relations 

joining adding 

The model angles turrr was not the focus of these lessons. It was superseded by the 

sector model. and both fifth-grade teachers took care to establish links between this new 

modzl and the previous model. This was done during the initial phase of the construction 

of a ~ v e d ~ e .  Here is what happened in Teacher Z's fifth-grade class: 

Tracller Z: We are goin: to use wedges to measure angles. 

She asks students working individually to cut out a circle (15 cm in diameter) from a 

worksheet. 



Teacher: First thing I want you to do is hold [the circle] like this [with the dynamic 

protractor on top of i t ]  and make a full turn to see i t  going all the way around. 

She then gives directions for constructing and cutting out a semicircle. 

Teacher: [Holds the semicircle.] How much of a turn would you make to [complete this 

semicircle]? 

The teacher now tells students how to cut the semicircle into three equal parts, which are 

then cut in half. She tells them the following: 

Teacller: This is going to be your measurement unit. I ivill call i t  wedges. 

In this episode, one can see how the teacher was constantly recalling the old model as 

she was directing students in the construction of the new one. Instructions like "make a 

full turn to see it going all the way around" were not needed for constructing the wedges. 

They were, however, vital to the establishment of a relationship between the partition of a 

semicircle and the partition of a turn and to allow the actions that were going to be 

performed with wedges to become a mediating tool for the understanding of angles. 

Occasional relationships betu.een the sector model and other models were 

established. For example, a link with the arzgles are irzterior corners model was 

established when the teacher asked students to "see how many you can fit into that 

angle." It was as if Border 2 \vas not a real border. As a means to help students complete 

one worksheet. she also said: 

Teacher: You have to place wedses. Sometimes you have half a wedge. It is like a pie. 

Sometimes you may have like half of a piece of pie. 

I return later to this reference to a pisce of pie. 

Some students had difficulty choosing the proper position for the vertex in the sector 

model. Teacher D went throush a \.sly similar sequence, but she decided to ask students 

to find trays of dividing the semicircle into three equal parts by themselves. This proved 



to be a challenging, task for the students. Although many students divided the semicircles 

shown in figure on the left below, at least two did the division on the right. 

Although many students understood the joining relationship, some did not. In Teacher 

D's class. one student "added" the wedses as shown in the figure below: 

But overall, in Teacher D's class, students were able to use this model to measure and 

draw angles. The answers to three worksheets gave by Teacher D in the third lesson 

observed by me, show that a large majority of students was able to accurately measure 

and draw the angles. Only in the cases of angles involving fractions of wedges, like 1 112 

and 1 113. could some students not providz adequate answers. 

In summary, this section has shown how a new model was introduced and how the 

teachers carefully established links to previous models of angles as a means to ensure that 

this new device would become a tool in the proper understanding of angles. 

Relations to Other klodels 

Another way to give structure to a model is to make explicit its relationship to other 

models. Both students anci teachers did that spontaneously from the beginning. Fifth- 

zrade Teacher Z. for example, started one lesson by using the angles are nzeetirzg points 

model and later changed to the angles titnz model. On several occasions, students brought 

other models to the forefront. I mentioned earlier that one student stated that the angle 

- 



becomes "wider." At other times, the word corner showed up. The term distance between 

the two sides of an angle was used on at least two occasions, once by a student and once 

by Teacher D. 

I have cited two references to fractions and pies. The first instance was when Teacher 

D was asking students to name the angle below: 

The teacher gave the hint "Remember your fractions." The second reference was at the 

end of the previous section (p. 161). These references provide an example of a connection 

between this methodology for teaching angles and another mathematical topic. Through 

the similarity between the names and the images, the sector model was very rapidly 

associated by both teacher and students with the pizza model used in the study of 

fractions. 

After her hint "remember your fractions," the following dialogue occurred: 

Teacher D: Where is three fourths? 

Srudenr: Three fourths is seventy five. 

Teacher: Very good. Come to the board, please. Where is three fourths? Draw a circle 

like an apple. 



The teacher shows how much three fourths of a turn is. She also shows that the unshaded 

part can also be one quarter turn. She concludes by saying that it is important to know 

how the turn was performed in order to relate angles to turns. 

The teacher was using the students' previous knowledge of fractions to lead them to 

understand angles. The pizza model for fractions became a metaphoric projection of the 

sector model. This projection was accomplished essentially by a visual association 

between the two models. The teacher was not, however, completely successful, and some 

students still showed some confusion, especially between one fourth and one third. 

Using Rilodels to Investigate Geometrical Knowledge 

The exploration of a model can lead to some unexpected mathematical consequences. 

In Teacher H's class, understanding full turns was easily accomplished, and several 

students were able to draw a full turn. One boy even proposed that there is an angle when 

the two sides are joined together. He drew two line segments: 

Then he said that when "we have just one side, this is a turn" also. He drew the 

following: 

By this drawing, he was pointing out that a ray is the same as a 360" angle, which is a 

consequence of the model angles trtrn and is a remarkable inference for a fourth grader. 

There Lvere other ways in which different models were used to investigate 

geometrical knowledge. After spending several lessons on teaching some geometric 

concepts. Teacher D discussed angle sums in triansles and quadrilaterals. She started by 

showing th? following triangle on the overhead projector: 
- 



With the help of a student, she used the D-Stix protractor to copy the angles. Her final 

drawing looked like the figure below: 

After making this drawing, she separated the students into groups of two and distributed 

two triangles and one quadrilateral to each group. 

Teaclrer D: When you get your triansles, please number them [the angles] 1, 2, 3. The 

first thing [is to] tear up Angle 1 ,  then Angle 2, and then Angle 3. I want to line 

them up so that we can find out how much of a turn all those turns would make. ... 

[Please remember] sides on sides. vertex on vertex. 

The angles turn model was not really helping the students understand the problem. 

Thz s t r a t e 3  intended for the students in\,olved tearing up figures to allow manipulation 

of their ansles. That is much closer to other models, like angles are interior corners, 

crrl:les are nt.0 contlecting lirles, or the srctor model, than to the angles turn model. The 

teacher became aware of this and decided to change her approach: 



Teacher D: [There is] another way. Draw a dot and a line [and put tosether the three 

angles]. 

She showed the following on the overhead projector: 

The teacher then reported to the class an event that seemed relevant to the solution of the 

problem: 

Teactler D: K found a different way to do it. Please show how you arc doing i t  [K is 

tracing the angles and does not need to tear them.] 

Most students were solving the problem, but some continued to have difficulty deciding 

how to put the angles together. The teacher kept reminding the students "side on side, 

vertex on vertex" as she went from group to group. The next activity involved adding the 

angles of a quadrilateral, and the students were much more successful at that. 

It is important now to look at a lesson that occurred after the students had been 

involved with several models of angles. Fifth-grade students of Teacher D have been 

studying angles for over a week and are about to explore special kinds of triangles and 

quadrilaterals. The teacher distributes D-Stix and connectors, and asks the students to 

work in pairs. She starts by asking students to construct a triangle with all sides different, 

one tvith three sides congruent, and one with two sides congruent. Then the following 

exchange occurs: 

Tenclier D: Now I have a real problem for you: Make a triangle with all angles equal. 

Immediately after the teacher's challenge, one student asks for a protractor and is given 

one. 1,lost of the students proceed to solve the problem by visually comparing the angles. 
- 



One student exhibits a triangle: 

Student A: Do these look equal? 

Jose': You could check with a piece of paper. 

The student then uses 2 piece of paper to compare the angles. He puts the paper like 

this: 

He holds his finger where the arrow is. He then compares the angle formed on the paper 

by the edge and the line from this finger in the corner with the other angles. 

Sr~cdenr A: Yes, they are right. 

The teacher is having a similar dialogue with another student. 

Teacher: How do you know the!, are equal? 

Stltderlr B: I stick this in and move it to the other. [He means that he uses a pair of D- 

Stix and moves i t  from one angle to the other.] 

As students are successfully coming up with triangles with equal angles, the teacher asks 

them "Do they have equal sides?" 

The teacher now asks students to "create a triangle with two angles that are 

congruent." Student C brings his completed triangle to show the teacher. 

Teacher D: Which sides are equal? 

Srltderlt C: [Pointing to the two equal sides] this and this. 

Teacher: Which angles are equal? 



The student hesitates. He points to the equal sides but, from the teacher's nonverbal 

language, sees that something is wrong. Another student corrects him and points to the 

interior of the angles. 

St~ident C: Oh! You mean the comers [and then points correctly]. 

Other students have different perspectives: 

Teacher D: How do you know they are equal? 

Strtderlr E: By looking. 

Sr~ldetzt F: You could trace it. 

Some students are also using a protractor to measure the angles. The teacher then 

attempts to relate the number of equal angles in a triangle to the number of equal sides. 

She challenges the students to find a triangle with two right angles. Marie very quickly 

says it is impossible. Hill argues that "if one angle is a right angle and the other is also [a 

right angle], then we have a square." 

Throughout this lesson, the students were using several models of angles. In fact, 

students lvere at times interacting by using distinct models, but that did not hinder 

communication. Some students were apparently using a generalized model of angle that 

was able to integrate the other ways to "see" angles. There was no sign of the primary 

metaphors used earlier by some students during the introduction of angles. 

By the end of the lesson, it appeared as though the successful students were the ones 

that could choose whatever model would be best adapted to the situation. The teacher 

also played a very important role in challenging students and producing provocative 

comments from time to time. From the perspective of van Hiele levels, the lesson entailed 

a constant movemznt back and forth between Level 2 and Level 3. 



Models in the Materials 

The four teachers participating in the present study had at their disposal various 

materials to assist in the preparation of their lessons. Most of these materials came from 

the Geometry and Measurement Project mentioned above (McKillip & Wilson, 1990), 

but sometimes the teachers would use a textbook (Thoburn, Forbes, & Bechtel, 1982a, 

1982b) or other materials. In this section, I look at the models of angle incorporated in all 

these materials. 

The materials proposed by the project took the form of lessons intended as a 

geometry course for the elementary school. These lessons included straightforward 

directions for activities to be carried out by the teacher, some worksheets, and teaching 

notes that included suggestions, comments, accounts of classes, and so on. The four 

participating teachers were observed as they were using lessons that involved directly or 

indirectly the concept of angle. There were two kinds of lessons: (a) lessons aimed at 

building an artifact and relating i t  to the introduction of a geometrical concept; and (b) 

lessons proposing explorations of spzcific geometrical properties. 

Two lessons (numbered 2.06 and 2.07 in Appendix E) were of the first kind. They 

had the purpose of developing the "concept of angle" and proposed the construction of 

the dynamic protractor mentioned previously. In the text of both lessons, the model 

angles turn is proposed. In Lesson 2.06, the protractor is described. This description 

prepares the teacher for the way in which the protractor is to function: It has two arms, a 

bottom arm that stays horizontal and a top arm that always rotates on the desktop. There 

is a suggestion that the teacher have students make angles with their arms. A picture 

indicating the appropriate procedures for producing "a right angle or a 114 turn" is 

included. Teachers are advised to ask students to look for right angles on their desks or in 

the classroom. The lesson ends by proposing that teachers establish certain cognitive 



reference points (114 turn, 112 turn, 314 turn) and that other arlgles be compared to them 

by using terms like "more than" or "less than." 

Lesson 2.07 expands the previous lesson and presents some important teaching 

directions: 

The students must now develop three crucial ideas about angle: 

1. the size of an angle is determined by the amount of turn, not by the length of the 

arms. 

2. Neither arm of an angle needs to be horizontal. 

3.  In order to properly label an angle we nssd to know which arm turns and the 

direction i t  turns. The arc (or an arrow) in the drawing must be present or the 

student must be able to describe which arm turned and in what way. (McKillip & 

Wilson, 1990, Lesson 2.07, p. I )  

The first two recon~mendations aim directly at countering specific prototype effects 

common in students' misconceptions about angle. This concern is further explored in the 

workshsst for the lesson. The third recommendation is a way both to improve the 

efficacy of the tool by adopting a convention (the arc or the arrow) to eliminate an 

ambiguity and to make sure that students can carry out the actions. 

In these lessons there are occasional references to other models. A drawing 

exemplifying the appropriate movement shows three positions: namely, the start position, 

the opening, and the right angle. The opening, which is the angles open model, is shown 

as an intzrmediate position. Corners are also briefly mentioned. 

Lesson 2.10 is the second type of lesson. It aims at comparing the angle sums of 

trir~nglss and quadrilaterals and determining that the former is a half turn and the second a 

whole turn. No new devices are introduced. The models are to be used to obtain new 

geometrical knowledge. 



17 1 

The lesson starts by suggesting that the teacher begin by showing a triangle on the 

overhead projector and using the dynamic protractor "to show the turning of each angle." 

Then the teacher is to ask, "How much turning is there altogether?'This first part aims at 

enacting each angle as a turn and setting up the problem to be investigated in terms of 

this model. 

The lesson continues by proposing that the teacher give students cutouts of triangles, 

have them tear off the corners, and reassemble them side by side "like the pieces of a 

puzzle." Several steps are proposed to achieve this reassembly. The same kind of activity 

is then proposed for quadrilaterals. Throughout this part of the lesson, angles are interior 

corners is the prevailing model. Angles become physical objects that occupy space (a 

region) that can be moved from one place to the other, and. that can be put side by side to 

produce a new angle. 

Lesson 2.29 taught by Teacher D also fits the second type of lesson. It aims at 

identifying special triangles and quadrilaterals using the sides and the angles. It proposed 

that students should be given D-Stix and asked to find figures that match specific 

descriptions like "a triangle that has all sides congruent." In the case of quadrilaterals, the 

materials also propose, as a summary. a diagram showing the relationships among the 

several types of quadrilaterals. This lesson does not use a specific model of angle even 

though references to the angles are interior corners model can be found. 

The teachers occasionally used the textbooks as a source for their lessons (Thoburn et 

al., 1982a. 1982b). Whereas the project materials were intended specifically for the 

teachers. the textbooks were intended for both teachers and students. The textbooks' style 

was therefore closer to "teaching"; it addresses the student directly. 

The fourth-grade textbook (Thoburn et a]., 1982a) uses two instructional models of 

angle. Angles are presented on page 3 18. The reader learns that a ray is a line segment 

that "goes on forever." The reader also learns that if two rays have the same endpoint 



they form an angle and that their common endpoint is the vertex of the angle. Then a 

figure (Figure 14) is added. 

Vertex: point D 

E 

Figure 14. Figure displaying the model angles are two connecting lines 
(from Thoburn et al.. 1982a. p. 318). 

This is an instructional version of the model rtnglrs are two connecting lines and is 

identical to the type of angle called set of ttvo raTs in Appendix A. 

On the bottom half of the same page, the authors propose that angles also form 

corners: "An angle that forms a square corner is a right angle" (p. 318, emphasis in 

original). A figure shows a rectansular drawins in the interior of the angle (Figure 15). 

C.  An angle that forms a square corner is a 
right angle. 

LG is 3 right angle 

Figure 15. Picture suggesting the model angles are interior corners 
(from Thoburn et al., 19821, p. 3 18). 

This is an instructional version of a second model, angles are interior corners, in the 

limited interior version. It is somehow applied only to right angles. This page is making a 

simultansous use of these two models. which continues on the following pages. Page 319 

may implicitly add a third model. At the bottom of the page are printed two figures 

(Fisure 16): 



Figure 16. Figures suggesting the model angles are soitrces 
(from Thoburn et al., 1982a, p. 319). 

These figures may be visually associated with the model angles are sources. Although no 

words are given that would connect angles to sources. the two pictures may suggest the 

model. 

The fifth-grade book (Thoburn et al., 1982b) starts by recalling the definition of angle 

as "formed by two rays with the same endpoint" (p. 284), asain, literally, a textbook 

version of the set of hvo lines type of angle. A figure is presented on this page (Figure 

17). 

Figure 17. Figure displaying the model crrzgles are htto connecting lines 
(from Thoburn et al., 1982b, p. 284). 

In the figure, the sides are specified from the interior of the angle by an arc, which may 

suggest the angles are interior corners model. The book continues by explaining what 

measuring an angle means, which is to "find how many units [of measure] fill the inside 

of the angle" (p. 284). The idea that angles have an inside and that measuring is filling an 

angle is used extensively in the following pages. At the same time, all drawings of 

individual angles show them as two rays with a common endpoint; that is, through the 

model angles are nr'o connectiflg lines. As in the book for fourth graders, the fifth-grade 

book contains on this page (p. 254) several f i~u re s  that strongly suggest visually the 

model angles are sources (Figurs 18). - 



Figrrr-c! I S .  More figures suggesting the model angles are sources 
(from Thoburn et al., 1982b, p. 284). 

After this introduction to angle measurement, the fifth-grade book continues by 

explaining how to measure angles using a protractor, explaining how to classify angles, 

and discussing properties of figures. 

After those pages in which the book explains how angles are measured by a 

protractor, the only actions with angles that are accounted for verbally are measuring and 

comparing. Angles are increasingly shown in the context of geometric figures. In the 

absence of linguistic references to angles, one must resort to an analysis of the images. In 

them, the interior of the angles is shown as having special importance: right angles 

systematically have a small square inside at the vertex, and other angles occasionally 

have small arcs or have their degree measure stated in the interior near the vertex. As 

individual angles disappear, the model angles are two connecting lines loses its 

importance, and the model angles are interior corners shows up extensively in the 

figures. 



CHAPTER 9 

CONCLUSIONS, IMPLICATIONS, AND RECOMMENDATIONS 

The purpose of this study was to explore the ways in which the geometrical concept 

of angle is understood by individual students, together with an analysis of the contexts 

involved in this process. The study began with an analysis of the notion of mathematical 

concept. I reviewed several perspectives on categorization, especially George Lakoff and 

Mark Johnson's work, relating them to specific mathematical topics. Mathematical 

concepts, however, take distinct forms as students became acquainted with them at 

different grades. The work of Dina and Pierre van Hiele shows that these changes are also 

changes in the complexity of mathematical relationships. It thus was natural to look to the 

van Hiele Theory for insights that n.ould provide a deeper understanding of the quality of 

students' mathematical thinking. 

These theoretical explorations were accompanied by an empirical investigation 

focused on the learning of the concept of angle in Grades 4 and 5 at an elementary school 

in the Southern United States. From an analysis of responses to tasks posed on a written 

test and in an interview, students' cognitive models of angle were identified and 

categorized and were related to the students' van Hiele levels. The social context 

associated with these models was examined by observing the lessons in which the 

concept of angle was taught and by analyzing the materials used by the teachers. 



Conclusions 

Cognitille Structures Utzderl~~ing the Concept of Angle 

The first set of questions aimed at cognitive structures that underlie the category of 

angle. This category was found to be grounded in image schemas produced by our 

interactions with various environments. The schemas were the container, the turn, the 

path, and the l i n k  schemas. Intrinsic bodily experiences of containment, elementary 

motor actions like turning or walking, and basic social events like coming into contact 

with somebody are at the root of these schemas and are used idiosyncratically by 

individuals. Instances were noted of each of these schemas, subschemas, that were 

metaphorically projected onto the cognitive models of angle that students displayed. 

These instances resembled experiences with physical objects, like corners or points; or 

actions performed on objects, like opening or turning; actions performed by objects, like 

opening or pouring; or actions performed in relation to objects (or people), like going 

around. All of these were 

recurnns structures of our bodily interactions in the world, and they exist across all our 

perceptual modrilities (visual, tactile, olfactory, aural, etc.). They are not fixed structures 

or irn.l;es, but rather dynamic patterns of our interactions within various evolving 

environments. (Johnson, 1997, p. 156) 

These environments are thought of as having physical, social, and cultural dimensions 

(Lakoff. 1987). 

Structure of rlle Categon. of Angles 

The second set of questions addressed by this study aimed at understanding the 

structure, of the category of angle. For the participant students (and also for their 

teachers) ansl?s were found to be a class of geometric objects much like many classes of 

objects that  t i  2 find in our everyday lives. For most students, all the fourth graders and 

most of the fifth graders. angles-that is, the category of angles-were composed of - 



basic-level entities like right angles, acute angles, obtuse angles, half turns, and full turns. 

Each of these basic-level entities had rich mental images associated with it. Moreover, 

acute angles and right angles were central elements in the category of angles; that is, 

when students-and teachers-were referring to angles in general, the images that came 

to mind (or the drawings that were produced) were usually those of acute or of right 

angles. In other words, metonymic projections were produced, that yielded prototype 

effects: for example, obtuse angles were not as good exemplars of the category of angles 

as acute or right angles. 

It is also possible to determine features possessed by the image schemas associated 

with this basic-level. Students preferred convex angles over nonconvex angles, and 

configurations with curved sides were recognized as angles, provided they did not look as 

though they had amplitudes larger than a right angle. Acute and right angles were taken 

metonimically to represent all angles. Students usually drew or enacted angles with one 

side horizontal or vertical, or in some cases, having a horizontal or a vertical line of 

symmetry. These preferences at the basic-level yielded prototype effects, with the angles 

having these features being used as better exemplars of angles than others. These 

prototype effects have their roots in models of angles built out of metaphoric projections. 

This study revealed that angles are a cluster category composed of many different 

cognitive models. Seven models of angles were found--angles are points, angles are 

inrerior corrzers. angles are sources, angles open, angles turn, angles are contours, and 

angles are nt3o connectirzg lines-and they shaped the ways in which students drew 

angles, enacted angles, gestured to illustrate the specificities of angles, or argued about 

the characteristics of angles. In brief. these models fashioned students' understanding of 

the category of anzles. All these models were metaphoric projections of image schemas, 

and metonymic projections were found in some of them. All derived from basic 

understandinzs about the ivays in which the students related to the material world, and all 

of them show how angles are shaped by our bodies and brains. In Lakoff and - Nuiiez's 



(1997) terminology, they were grounding metaphors. The models were also a source of 

prototype effects. Pointed objects (angles are points model) do not produce good 

instances of obtuse angles, neither do they clarify the requirement of the straightness of 

sides, for example. The model angles are two meeting lines do not account easily for 

angles greater than 180". It was also possible to highlight ways in which cognitive 

models similar to the ones found in this study may be at the very source of most of the 

mathematical models used by mathematicians in the definition of angle. These models 

were also ideosyncratic, as each student had a personal way of using the models. One 

fourth grader with a very limited knowledge of angles constantly resorted to the angles 

are poirtts model which he accompanied with gestures of his own. A fifth grader with an 

extensive knowledge of geometry used mainly the angles turn model, again resorting to 

special gestures. Another fifth grader used, again in a very personal way, both this model 

and the angles are two connecting lines model. It is as if every student had to cognitively 

make his or her own model of angles, as he or she was re-enacting or re-presenting the 

actions and the images observed in class. 

Contplesir?. oj'strtdents' Geometric Thinking 

The third set of questions aimed at understanding how this structure connects with the 

conlple.\-ir?. of students' geometric thinking. Geometric thinking, as investigated in this 

study, is strongly connected to the development of a new category of entities of a 

geometric nature. Behaviors at van Hiele Level 1, Visualization, enacted by students 

were associated with images and motor actions, as was the case for two students. For oile 

of them. his terminology was not always adequate to express his ideas, and he resorted 

heavily to gestures. This level was found to be strongly connected with the formation of a 

basic-le\.el ciitegory of angles. Primary metaphors shown in statements like "angles are 

points" c7r "a~lgles have two long pieces," expressed by four fourth graders and one fifth 

orader. \\.ere lllso used at this level. .- 
- 



Few students displayed actions at van Hiele Level 2, Descriptive. Only one student 

well exemplified the level, although three others occasionally exhibited behavior at this 

level. As van Hiele predicted, this level is characterized by the emergence of 

propositional models, and students' actions are based upon properties of geometric 

elements. These students were also using a concept of angle composed of complex 

metaphors. Occasionally, prototype effects were shown, but these students were able to 

correct them. All these students were able to understand and use several cognitive models 

simultaneously. They were also capable of entertaining interactions at Level 1. It was as 

i f  at this second level, the complexity of their category of angles changed both in 

extension, allowing them to use many models at the same time, and in intention, so that 

they could separate themselves from the source domains of metaphors and from the 

basic-level of angles. They were, however, able to show typical behavior at this level 

when appropriate. 

An analysis based on van Hiele theory does not explain, however, all the complex 

mathematical activities that were detected. One fifth grader used metaphors-that is, 

similarit\,-creating metaphors (Indurkhya, 1994)-as tools to imagine angles as other 

kinds of mathematical objects. She also claimed that this imagining activity was "funny." 

Spontaneously, she compared angles to triangles, circles, cylinders, cones, discussing the 

ways in which angles "seem like" these other mathematical entities and how they "really" 

departed from them. In Lakoff and Nuiiez's (1997) terminology, she was linking 

metaphors between two mathematical domains. Imagining how one mathematical object 

is like another, or can be thought of as another, is an important source of mathematical 

ideas. Thinking about geometry using algebra (Descartes), about calculus using 

arithmetic (Weierstrass), and about metamathematics using arithmetic (Godel), for 

example. zave powerful insight. That is what this student was doing within the constrains 

of her fifth-grade mathematical knowledge. 



Instr~ictional Models for the Corzcept of Angle 

This study looked for the ways in which the students acquired the cognitive models of 

angle. Class observation revealed similarities between students' cognitive models and the 

instructional model taught in class. The teachers began by addressing angles as a basic- 

level category. The model angles turn was extensively used, and initially the teachers 

created contexts for students to provide rich images and actions associated with this 

model. Occasionally, the model angles are two meeting lines was also used. In this initial 

phase. these instructional models were used as primary metaphors, with no clear 

distinction between the source domain and the target domain. 

The teachers then went on to deepen the discussion. They discussed the submodels 

(acute. right, obtuse, quarter turn, and others) of the basic category of angles, clarified 

their boundaries, and established cognitive reference points. Other models of angle were - 
occasionally used. They gradually moved students away from the initial "real world" 

models; that is, they moved away from the initial primary metaphors into complex 

metaphors. To teach angle measurement. the teachers introduced a new model, the sector 

model. Again. the teachers begun by presenting this model as a primary metaphor. The 

sector model had strong resemblances with a similar model used with fractions. It was 

clear that the teachers and students connected the two models. 

As the lessons moved on, it was possible to detect changes in the instructional 

models. First. the use of several models simultaneously became more common. Second, 

u.hile remaining metaphors of deeper schemas, the models no longer had a direct 

connection to real world objects or situations. Third, prototype effects could still be 

detected. 

The instructional models in the educational materials used in the lessons framed the 

last szt of questions addressed by this study. The models in the lessons used by the 

teachers had i.ery strong resemblances to the instructional sequence they followed. The 

modzls relied strongly on the metaphor angles turn and proposed that teachers make use 



of a tool, a "dynamic protractor" to mediate it to the students. The use of this material 

enabled students to experience a context for actions involving a broad range of angles. 

from 0" to 360". Comparison of the angles within this model was related to the amount of 

turn. Measurement using informal units of measurement of angle was possible by 

employing "wedges." This was enabled by the introduction of a new model, the sector 

model. The textbooks were heavily based on the model angles are hvo conrtecting lines. 

but occasionally other models were shown, esplicitly (as the angles are interior corners 

model) or implicitly (as the aitgles arc. source5 model). Gradually, in both the lessons and 

the textbooks, the category of angle became more abstract, as less space was devoted to 

work with specific models and more was dedicated to the exploration of geometric 

properties involving angles. 

Implications and Recommendations 

This study began with the question "What is an angle?" Ideas originating in the study 

of the \{.ays in which we categorize, especially those coming from the work of Johnson 

and Lakoff, proved to be of crucial importance in exploring that question. Van Hiele 

theory \{.as also important as a means to reflect upon the growins complexity of students' 

geometric reasoning. This study confirmed my initial idea that angles are a complex 

subject. Other mathematical topics may prove to be simpler. It is, however, my 

contention that its findings can have implications in broader areas, namely, characterizing 

cognition and revising van Hiele theory. Eiecommendations are also made concerning 

practice and research in mathematics education. 

Ii?zplicnrions for Characterizing Cognition 

The structure of the category of angles \\.as'found to be very complex. There was a 

basic-level heavily grounded in perception, imases, and motor actions. The seven models 

of anglcs were metaphoric projections of image schemas relatin: to fundamental ways in 



which humans relate to their physical, social, and cultural environment. This organization 

could account for prototype effects and for the role of imagination in the formation of 

mathematical concepts. The picture obtained for the category of angle confirms that this 

category was not determined by necessary and sufficient conditions. Also the meaning of 

the word angle was not fixed by referring to an abstract disembodied entity apart from 

human experience. On the contrary, it was embodied. 

It was possible to envision the ways in which this category changes under the 

influence of schooling. Students begin understanding angles by means of primary 

metaphors in which source domain and target domain are conflated. Gradually these 

primary metaphors are transformed into complex metaphors as students learn to separate 

(abstract) the two domains. The basic-level categorization of angles is, however, never 

forgotten. Its availability can account for many prototype effects found even in the more 

able students. 

Abstraction was found to be not a departure from "real world" characterizations of 

angles into more intangible realms of knowledge, but the development of a categorization 

that made use of a multitude of cognitive models, a cluster of models, that competed with 

each other for primacy at solvins a siven task. The idea of the trading floor of a "stock 

exchange" (Kilpatrick, 1985, p. 13) of models, which is itself a metaphor, seems an apt 

description of the kind of reasoning used by some of the more advanced students. 

This characterization of the category of angles also refutes the idea that its structure 

could be completely accounted for by describing the relevant social environment and its 

influence upon students' concept of angle. Social interactions in the classrooms guided 

by the teachers played a fundamental part in shaping the students' categorization of 

ansles. But social influences alone cannot explain why an angle was thought to be like a 

point or a corner, for example. They cannot explain the determinant role of image 

schemas structuring the category of anzles. 

This study barely scratched the surface of the role played by social interactions - in 



shaping categories, and much research needs to be done in this area. This role is of 

special importance for research on improving teaching methodologies. 

Implications for the van Hiele Tlzeon 

The van Hiele theory was found to be useful in describing complexity in geometric 

thinking, yielding valuable insights in interpreting students' verbalizations and actions. 

Although the van Hiele theory was not the focus of this study, several changes in the 

theory were needed to account for the results. Several changes are discussed in chapter 4 

and were incorporated into the interpretation of the theory used in this study. Two types 

of changes were addressed there: changes in the implicit cognitive theory (that there are 

external spontaneous structures ready to be perceived by the learner and that learning 

proceeds uniformly) and changes in the characterization of the levels (that movement 

through the levels is continuous and that a full understanding of the classification of 

quadrilaterals requires Level 4). This study shows that further modifications should be 

made, all of them consequences of assuming that cognif on is embodied. 

The description of the first two levels can be enriched by the findings of this study. 

Level 1 is characterized by basic-level categorizations based on rich images and motor 

actions. as van Hiele anticipated. But, contrary to van Hiele's ideas, there are no 

spontaneous structures of the material on which our cognition is based. Instead, image 

schemas grounded in our material and social life yield idiosyncratic metaphoric models 

that are construed by each individual. Level 2, as van Hiele proposed, is characterized by 

the appearance of propositional models built upon those of the previous level. These new 

models imply. however, the disappearance of neither the basic-level of categorization nor 

the metaphoric projections. Neither do they imply that the language of previous levels is 

not understood at higher levels. Contrary to van Hiele theory, previous levels are not lost; 

they remain an important asset in a student's cognitive repertoire. They play a crucial role 

in imagination. understood as the formation of similarity-creating metaphors. The relation 
- 



between primary and complex metaphors and the van Hiele levels was not clear in the 

study. Although students with primary metaphors were at Level 1 and students with 

complex metaphors were at Level 2, there was no clear evidence for a sharp distinction. 

An alternative possibility would be that complex metaphors emerge as students progress 

through Level 1. 

This study did not address thinking above Level 2. Therefore, there is no evidence as 

to the kind of models that characterize Level 3 and above. Since from van Hiele's 

perspective Level 3 is characterized by a local logical ordering of properties, it is only 

possible to conjecture that a corzdilit metaphor (Johnson, 1987) for this ordering might 

come into play at this level. Table 6 summarizes this discussion. 

Table 6 

Relation Between van Hiele Levels and Categorization 

van Hiele Manipulated Observed Categorization 

level object object 

1 Figure Basic-level. schemas, metaphors 

Figure Property Propositional models 
1 
3 Property Ordering of properties Conduit metaphor? 

4 Ordering of properties Axiomatic system ? 

5 Axiomatic system Logic ? 

Reco~?rr?zendations for- Teachi~zg 

The ways in which students conceive of the category of angles suggest some 

recommendations for teaching strategies. The present study showed that a new 

mathematical concept is lsarrled in the same way as other concepts are: by establishing a 

basic-level structure that relates the new concept metaphorically to previous models of 

other concepts. Abstraction is gradually built up by enriching the available models for 

thinking about an object and by separating the domains involved in the metaphor. 

- 



Complex mathematical reasoning is supported by the existence of a rich background of 

models. These developments require a departure from practices in which the initial 

statement of definitions is an essential teaching mechanism. Mathematical categories are 

not established cognitively by verbalizing necessary and sufficient conditions. In other 

words, for most students stating a definition does not help their learning. 

Teachers need to pay special attention to prototype effects. There is no way to learn a 

category that is general enough to exclude prototype effects. Research shows the 

pervasiveness of prototype effects, as one of humanity's cognitive tools for relating to the 

environment. Mathematics is no different in this respect from other subjects, and i t  is 

impossible. even if it were desirable, to remove these effects from the teaching and 

learning process. But then, given that the propositional structure of mathematics attempts 

to counter those very effects. what should teachers do? In this study, the teachers moved 

gradually from an initial basic-level category of angles to the more complex 

categorization described above. Pitfalls originating in prototype effects were occasionally 

pointed out by the teachers so as to build a more robust category. The centrality of certain 

subcategories (acute angles and right angles) was not denied, but occasionally noncentral 

exemplars of the category of angles were discussed. 

This stud), showed the role played by image-schematic models in promoting 

mathematical reasoning. One student's explorations of the similarities between angles 

and corners illustrates the sort of activities that should take place occasionally in 

mathematics classrooms. Comparing and contrasting mathematical entities informally 

may prove to be a powerful means of strengthening students' mathematical knowledge. 

Finally, teachers should be aware that several models are available on which to build 

specific mathematical topics. Appendix A, for example, shows several options for the 

case of angles. and this study showed connections between those types of angle, the 

cognitive models of angles of students, and very basic image schemas. Not all models, 

hon.ever. have the same educational value. Lakoff and Nuiiez (1997) discuss an e-xample 



of a metaphoric model for teaching negative numbers that proves to be inadequate for 

specific mathematical properties of these numbers. Although there is a good 

correspondence between the source domain and the target domain for adding and 

subtracting, the model fails in the case of multiplication. 

Reconzrnendations for Research 

The perspective on cognition outlined above raises a number of research questions in 

mathematics education. A first area concerns enlarging the experiential basis for 

understanding the role played by metaphors and basic-level categorization in school 

mathematics. There is no reason to believe that this role is confined to teaching and 

learning angles, and, although there is mounting evidence from the history of 

mathematics of the ways in which mathematics uses metaphors, much research still needs 

to be done at the school level on how metaphors might be introduced and used. 

Longitudinal studies investigating the development of metaphors at several grade levels 

or linking the formation of primary metaphors to the formation of advanced mathematical 

thinking are needed. In what concerns the concept of angle, three types of angle used in 

school mathematics that were identified in Appendix A, the continuous external rotation, 

the slope, and the rrigonoi?letric nrlgle, belong to more advanced mathematics curricula 

and were not found in this study. Research focusing on these types of angle may uncover 

relations that broaden the scope of the diagram in Figure 10 (p. 136). Although the 

corrti~zuous external rotation type of angle has, plausibly, roots in the angles turn model, 

the other two types of angle are apparently of a very distinct nature, and the metaphoric 

projections may prove to be very different. The slope type of angle may be related to 

schemas associated with actions of climbing (up or down), which are experientially very 

different from the four schemas identified in this study. There is historical support for this 

conjecture (hhtos,  1990), as Chinese or Esyptian mathematics, for example, did not use 

ansles as Greek mathematics did, bur [{.ere very proficient in calculating slopes. The 
- 



trigonometric ungle may be a cluster of several models relating to experiences involving 

vibrations and very complex metaphoric mathematical models such as the number line. 

A second area refers to the consequences of the perspective for an epistemology of 

mathematics. Social influences on the development of mathematics have been pointed out 

for some time. The role of external social factors (Struik, 1942) and of internal social 

factors (Restivo, 1990; Wilder, 1981) in shaping mathematics has been acknowledged. 

The study of the influences of social factors on the development of mathematics has been 

moving from a sociology of t7zathe1natics to a sociolog?~ of nznthenzatical ktzorvleclge 

(Bloor, 1991). the latter claiming that social factors play a key role in shaping 

mathematical knowledge itself. What would a comparable epistemology of mathematics 

look like that stemmed from an embodied approach to cognition? It would certainly 

depart from platonist approaches and share broad areas of agreement with the work of 

Lakatos (1976) and of Bloor (1991). This area needs further development. It is a crucial 

area for mathematics education, as epistemologies of mathematics are vital factors in 

learning and teaching school mathematics. 

A third area is also an epistemological problem. It relates to the nature of 

mathematics thinking. Mathematical argumentation at higher levels carries a logical 

compulsion: that is, the truthfuiness of a mathematical theorem appears inevitable to 

those who go through its proof. After understanding the proof, one sees the mathematical 

conclusion as following necessarily from the premises. Rejecting a platonist approach to 

mathematical ideas requires explaining such a necessity. Although some argue that it is 

an artifact of social environments (Bloor, 1991), the origins of this cognitive compulsion 

still need to bz shown. Johnson and Lakoff (Johnson, 1987; Lakoff & Johnson, 1999) 

ha\,e argued that logic too is embodied, but better empirical evidence for this claim is 

needed. hiathematics education seems to be a good area in which the claim could be 

investigatzd. 



A fourth area relates to mathematization. Mathematics can be thought of as composed 

of both concepts and processes. although the distinction is blurry. It appears that an 

embodied approach to cognition can successfully explain the formation of categories of 

objects in general. and of mathe~natical objects in particular. But it still has a long way to 

go before it can come to grips with the processes used in advanced mathematical 

thinking. How can i t  account for processes like generalizing, representing, visualizing. 

conjecturing, inducing, analyzing. synthesizing, abstracting, or formalizing (Dreyfus, 

1989). What is the role of metaphors in these processes? Again, mathematics education 

may be of help by providing a fertile ground for research. 

This study has augmented the van Hiele theory, by enriching the characterization of 

the first two levels, and has demonstrated the value of categorization theory in 

understanding how our comprehension of mathematics objects is rooted in basic human 

attributes pertaining to the material and social conditions of human life. The focus was on 

the category of angles, but this investigation has implications for research into and the 

teaching of mathematical objects across the school curriculum. The embodiment of 

mathematical ideas by the material \i.orld, including our bodies, needs greater emphasis 

in all facets of mathematics education. 
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Appendix A 

Different Types of Angle Used in School Mathematics 

Mathematics educators and mathematicians have characterized the types of angle that 

are used in mathematics and in school mathematics. At issue is the fact that curricula 

make use of distinct mathematical definitions of angle, defined over different domains, 

with different properties, and making use of different representations. At least three 

mathematics educators discuss different types of angles: 

Freudenthal (1973) characterizes four types of angles from a mathematical 

standpoint. The elementary geometry angle. which is the angle of a non-ordered pair of 

rays in the non-oriented plane, determined between 0" and 180"; the goniometry angle, 

which is an ordered pair of rays in the oriented plane determined modulo 271; the analytic 

geometry angle, whose difference from the previous ones is that it involves lines instead 

of rays; and the space geometry angle, which is a non-ordered pair of lines in the non- 

oriented plane between 0" and 90". 

Close (1982) divides mathematical angles into static and dynamic. A static angle is 

the portion of a plane included between two straight lines in the plane that meet in a 

point: a dynamic angle is a plane rotation necessary to bring one side to the position of 

the other. 

Saxon (1985, p. 5 1) seems to be the only high school book that contrasts four 

definitions of angle: (1) An angle can be defined to be the geometric figure formed by 
- 



two rays that have a common endpoint. The measure of the angle is the measure of the 

opening between the rays. (2) An angle is the region bounded by two radii and an arc of a 

circle. The measure of the angle is the ratio of the length of the arc to the length of the 

radius. (3) An angle is the difference in direction of two intersecting lines. (4) An angle is 

the rotation of a ray about its endpoint. 

These classifications do not exhaust the distinct explicit and implicit definitions of 

angle in school mathematics. Below I discuss seven types. 

A. Srr of nvo rays. An angle is defined as a non-ordered set of two rays with the 

same origin. To measure this type of angle is to evaluate the inclination that the two rays 

have relative to each other. The outcome, if measured in degrees, is a real number in the 

interm1 10, 180[. This is Euclid's (and Hilbert's) definition, and it is traditionally used in 

the United States and in some other countries. An angle is associated with sides of 

"infinite length." This is what Freudenthal (1973) calls the elementary geometry angle, 

and it fits Saxon's first definition (1985). 

This definition is very well adapted to an Euclidean or Hilbertian framework, but it 

conflicts with other areas of mathematics and sciences. It does not encompass angles 

greater than the straight angle. In fact. neither Hilbert nor Euclid considered the zero 

angle or the straight angle. Although this definition works well with convex plane 

figures, it causes problems when analyzing concave polygons, and also in the theorem of 

center and periphery angles in the circle (Freudenthal, 1973). 

B. Portion of a plane. An angle is defined as one of the parts of a plane limited by 

two rays with the same origin. To measure this type of angle involves a comparison 

betn.een two "infinite areas," and its outcome is a real number in the interval 10, 360[. 

This is what Close (1982) calls the static angle. This approach was partially present in 

Euclid's work (Freudenthai, 1973). It was revived by the modern math movement and is 

currently used in Europe, Canada, and Israel (Hershkowitz & Vinner, 1984). Although 

this definition is more flexible in allowing angles greater than a straight angle-and can 



consequently be used to discuss internal angles of concave figures, it s:ill cannot 

accommodate angles produced by more than one turn, nor can it accommodate directed 

angles. 

C. Modular external rotation. This angle is associated with a rotation in the plane. 

Mathematically these angles may be defined as the set of isometries on a plane that 

preserve orientation. To measure this angle is to measure the amount of rotation factored 

by whole turns, and its value is contained in the interval [0, 2n[. Sometimes this is a 

directed angle because it is necessary to know the direction of turn. Close (1982) 

identifies this approach as a dynamic angle. 

D. Continrtous external rotation. In some cases that make use of rotations, the number 

of whole turns is not factored out. This is the case in such real-life situations as 

describing the position of a screw. The amplitude of these angles is contained in the 

interval I--, +-[. Angles in the previous definition are topologically equivalent to a 

circle, whereas in this one they are equivalent to a line. 

E. Intrinsic rotation. In the particular case of the Logo environment, an angle can be 

associated with a specific turtle. turn. The student usually types in a number that he or she 

expects will produce a specific turtle turn. This special type of angle may be defined as 

the rotation needed to change the direction of a straight path. It takes values in the 

interval I-=, +=[, and as it makes a difference whether one is talking of a right or a left 

turn, this type of angle is also oriented. This is the kind of rotation that sailors identify as 

backing and veering. This type of angle relates to differences with orientation, of 

heading. whereas the first type of angle, in Definition A, relates to differences between 

the inclination of two rays. 

Definition E is distinct from Definitions C and D from both a mathematical and a 

psychological point of view. With angles other than 90°, the line segments that are drawn 

on the screen may not match the angle of turning. For example, the sequence FD 30 LT 

120 FD 30 does not draw a representation of a 120" angle, but rather a 60" angle. If BK 



30 LT 120 FD 30 is used, the angle is indeed 120" (Figure 19). 

k 3 
Initial position 

F i g ~ ~ r e  19. Comparing commands in Logo: 

FD30 LT 120FD30BK30LT 120FD30 

In other words, if one is walking along a path composed of distinct line segments, the 

angle associated with one's turns may not be the same as the angle formed by adjacent 

line segments on the path. 

Definition E allows the conslruction of a geometry with a different set of priorities 

than Euclidean geometry. Euclidean geometry focuses on the study of static elements, 

whereas Turtle Geometry is concerned with dynamic aspects of geometry. It is also an 

intrinsic geometry, and, for example. one of its natural consequences is to consider the 

total turn theorem, which states that the total turn on a closed path that does not cross 

itself is 360". The theorem about the sum of the internal angles of a polygon, although 

more complex, is much more natural in terms of Euclidean geometry; that is, if figures 

are observed from an external \.ieivpoint. We may say, in this case, that computers are 

enabling us to look at mathematics itself (angles in this specific case) from a different 

perspecti1.e. 

F. Slope. In analytic geometry the inclination of a line relative to a system of 

- 



coordinates is evaluated by the slope. This system needs a fixed system of coordinates. 

and so instead of evaluating inclinations of pairs of lines, it only needs to evaluate the 

inclination of each line against the system of coordinates. Crosswhite, Hawkinson, and 

Sachs (1988), for example, associate the slope with a ratio between the "rise," which 

means the change in y, and the "run," which is the change in x (p. 43). The "inclination" 

of a line is defined as the an,ole between the line and the x-axis. The measure of 

inclination is expressed by a ratio of lengths (a tangent) and does not require any of the 

previous notions of angle. In fact. in affine geometry there is no need for the concept of 

angle as developed in Euclid's Elements (Heath, 1956), because differences in direction 

are evaluated by a dot product function obtained by a product of matrices. Inclination 

may vary from I-.., +m[, which corresponds to angles [O, x/2[ or ]xl2,n[. Although this 

definition can accommodate perpendicular lines, it does not handle vertical lines 

elegantly. 

Definition F loses the association between the additivity of angles and the additivity 

of an,ole measure. Nevertheless, historically, it is one of the earliest notions of angle. This 

may be so because it is naturally associated with our perception of inclination; that is, we 

seem to think about the inclination of each line against the background of a horizontal 

and vertical orientation. 

G Trigononzetric angle. Here angles are identified with the length of the arc of a 

circle of unit radius. This is an oriented angle that allows a distinction between n12 and 

3x12. In high school, this type of angle is usually recalled as an internal angle of a 

triangle and is later extended over real (which later become complex) arguments of 

trigonometric functions. In Crosswhite et al. (1988). for instance, angles are not even 

dra~\.n when discussing circular functions. At most. there is the suggestion of a rotation of 

one point around a circle of radius 1 (see pp. 186-187). The same suggestion of a rotation 

is made by Saxon (1985), which discusses further, for example, the notion of phase 

angles (p. 191) which are used in electronics and elementary physics. This t v p e ~ f  angle 



may be identified with the goniometric angles proposed by Freudenthai (1973). 

Definitions F and G have a crucial distinction. In the slope, the measure of an angle is 

a ratio of lengths, hence it has no dimensions. In the trigonometric angle, the measure is a 

length and consequently should have a unit. This is especially important in dimensional 

analysis, where there seems to be no agreement over the characterization of the measure 

of angles (Krantz, Luce, Suppes, & Tversky, 1971, p. 455). 

Each of these definitions has its specific domain of application. and it may be 

conjectured that mathematicians who need to work with these concepts are able to jump 

pragmatically from one to the other. Children may develop some of these different types 

of angle, but it is not clear how they see the interactions among them. 



Appendix B 

Tests 

The fourth-grade test was composed of Questions 1 through 9. The fifth-grade test 

was composed of Questions 1 through 6. 10 and 11. 



Name: 

Part 1. 

2. Draw another angle in the box below that is different in some way from the first angle. 

- 



How are the anzles different? 

1. How are the angles alike'? 

5 .  How many different angles could you draw? 



6. Put an A at the point of each angle in the figures below: 





Name: 

Part 2.(Grade 4) 

7 - Circle the points that are inside the angle below. 

Example: Circle the points like this w 



8 - Circle the points that are inside the angle below. 



9 - Circle the points that are inside the angle below. 



Name: 

Part 2.(Grade 5 )  

10. How many degrees in angle A? 

11. You can't draw a triangle that has two of these angles! 

What kind of angle is that? 

Draw one. 



Appendix C 

Tasks 



Task V1: Describe an angle 

Purpose: To find attributes that students use when describing and comparing angles 

Area: Verbal 

Materials: None 

Description: 
._  . . .  a. - .b 3 1 

The researcher asks: - . .- - .  - :.+* :%? . - . * 
- 

1. "Suppose you were talking to a'fiiend over the phone who had never learned about 

angles, and you wanted to explain him (or her) what an angle is. What would you 

say?" 

2. "Can you give an example of something that is not an angle, but that a younger kid 

would think is?" 

3. "Now I am going to ask you about the relationships between angles, comers, turns, and 

triangles. How are corners different from angles? How are corners the same as 

anzles? How are turns different from angles? IIow are turns the same as angles? 

How are angles different from triangles? How are angles the same as triangles?" 

4. "What was most difficult to learn about angles?" 

Task V2: Verbalizing turns 

Purpose: To find attributes that students use when describing and comparing turns 

Area: Verbal 

Materials: Spinner 

Description: 

1. Enact the performance of a full turn with the spinner. 

2. Ask the student to perform a turn with the spinner. 

3. Ask: - .  
. -. . . ._ I '  .. . .-.. 

"How would you describe this tu<i& a f r i i , ~ d  over the phone?" 
- 

4. Say: 



"Can you make a turn that is very different from the one you just did? How is it 

different?" 

5. Perform a quarter turn with the spinner. Ask: 

"How would you describe this turn to a friend over the phone?" 

Task B3: Drawing turns 

Purpose: Identify characteristics of students' drawings of turns 

Area: Drawing 

Materials: Spinner, protractor, paper. D-Stix, pencil, ruler. 

Description: 

Ask the student to draw the quarter turn used in step 5 of Task V2. 

Task B4: Drawing angles 

Purpose: Identify characteristics of students' drawings of angles 

Area: Drawing 

Materials: Paper, pencil, ruler, protractor, D-Stix 

Description: 

Use students' answers to Questions ! through 5 from the test to phrase the following 

questions: 

1. Ask: 

"Is there some other way to make angles different, other than just turning them?" 

(Or "making sides longer" or "shorter." depending on the attributes in students' answers 

to the test questions.) 

2. Referring to the student's answer to Question 4, ask: 

"Can you tell me the ways in \\ hich all angles are alike?" 

3. If the student has not mentioned it yet, ask: 

"Does it make a difference whether your sides are larger or smaller? Does it make 

a difference whether you draw it as you did. or like this?" (Rotate his - or her 



drawing 1 80°.) 

Note: Ask about any marks the student used to indicate interior angle, vertex, or 

continuation of rays. 

Task 14: Identification of angles 

Purpose: To find attributes that students use when identifying angles in figures 

Area: Visual 

Materials: Protractor, ruler, pencil, a set of configurations (Addend l), and a set of pairs 

of angles (Addend 2) 

Description: 

For all students: 

1.  Use students' answers to question 6 on the test and ask: 

"Why is there an angle in here? Why there is not an angle in here?" 

Focus specially on the angles with curved sides, and on concave figures. 

Only for students who included cun-ed sides: 

2. Give the student the configurations in Addend 1 in random order. 

Ask the student to select the figures that show only one angle. 

3. Ask: "Can you always tell if an angle is greater than another?" 

4. Present students successively with the following pairs of angles (Addend 2): 

15, 19; 13, 14; 1, 12; 3. 13; 29, 29. 

For each pair ask student which angle is greater, or if they are equal. 

In pair (29. 29). probe the studefits' answer by asking why. 

For all stccde?zts: 

5. Hold configuration 5 (Addend 1) and ask: 

"Can you pick an angle that is larger than this angle?" 



"Can you pick an angle that is smaller than this angle?" 

6. Ask: 

"Is there an angle that is smaller than all the angles?" 

"Is there an angle that is larger than all the angles?" 



Addend 1 to Task I4 - Cotzfigirrrrtiorls.for Step 2 

(The lengths in the figures are 25% of the actual size) 





Addend 2 to Task I4 - Pairs c$ angles for Step 4 

(The lengths in the figures are 25% of the actual size) 

Angles 15 and 19 Angles 13 and 14 

Angles 1 and 12 Angles 3 and 13 

Two equal angles, Angle 29 29 

Task 12: ,4ngles in solids 

Purpose: To find attributes that students use when identifying angles in solids 

Area: Visual 



Materials: A cube, a pyramid, a cylinder, a cone, and a sphere 

Description: 

Show each material successively to the student and ask him or her to show an angle. 

If the student seems to be referring to a solid angle in the pyramid or in the cone, ask: 

"How many angles are there in this shape?" 

Task 15: Components of Angles 

Purpose: Detect students' concepts of the components of angles 

Area: Visual 

Mater ials :  Set of angles: Angles 1 and 2 shown on the same sheet of paper; Angle 3 

drawn so as the sides extend to the edges of the paper 

Description: 

For all students 

1. Show student Angles 1 and 2 (shown below reduced 50%). Ask: 

"How does the vertex of the larger angle differ from the vertex of the smaller 

angle?" 

Angle 1 Angle 2 

2. Ask: 

"How would one of those vertices look when seen through a microscope?" 

3. Shoiv Angle 3. Ask: 

"There was not enough room on the paper to draw completely the sides of this 
- 



angle. How long do you think they could go on'? Would that change the angle?" 

for fifth-grade stzrlieizts 

4. Ask Questions 7. 8, and 9 from the fourth-grade version of the test. 

Tasli C4: Comparing turns 

Purpose: Detect attributes that students use to compare turns 

Area: Visual 

Materials: Spinner. set of drawings 

Description: 

1. Show the studenr turn 1. Explain what is the starting position, the ending position, and 

the purpose of the circle arrot\.. 

Turn 1 (lengths reduced 25%) 

2. Present the student successively with the following pairs of turns (Addend 1): 

11, 13; 13, 14; 7, 8; 3, 6. - 



For each pair of turns ask student which turn turns more. In drawing 8 explain that i t  

represents more than one turn. In  the case of the pair (3, 6) explain that the points 

are in similar positions, the only difference being the direction of turn. 

4. Pick two exemplars of turn 20 (Addend 1) and say: 

"These drawings are the same. but this one turned very fast and this one very 

slowly. Which one turned more?" 

5 .  Ask: 

"Can you show me a turn smaller than all the turns?" 

"Can you show me a turn larger than all the turns?" 



Addend I for Task C4 - Pairs o,fdr.a\tyings of turns 

(The lengths in the figures are 25% of the actual size) 

Turns 11 and 13 

Turns 13 and 14 

Turns 7 and 8 



Turn 3 and 6 

Turn 20 (two exemplars) 

Task D2: Dividing angles 

Purpose: Detect students' understanding of the partition of angles 

Area: Visual, applied 

Materials: Several cutouts of triangles, spinner 

Description: 

1. The researcher picks the triangle below and says: 



"This triangle has three angles, and let us choose this angle. [Points to the angle 

opposite the base.] 

"Can you divide this angle into two equal angles? Show me how." 

2. If the student successfully divides the angle, ask him or her: 

"Some students told me that these angles would not be equal, because this area is 

different from this area. [Points to Areas A and B in the figure below.] What do 

you think?" 

Task P3: Mystery angle 

Purpose: Detect students' ability ro identify an angle given its properties 

Area: Logical 

Materials: Set of cards with properties, set of angles, set of cards with the names: right 

angles, acute angle, obtuse angle 

Description: 

The researcher should warn the student that some of the questions he is about to ask have 

more than one correct ans\r.er or no answer at al!. 

1. The researcher tells the student that they are going to play a game. The researcher has 

an angle in mind, and he is going to show the student one card that gives some 

information about this angle. The student then will choose a card with the possible 

angle. 
- 



The researcher shows the student a card containing one condition and asks the student to 

choose an angle that satisfies it. 

Conditions used: 

Two of these angles are less than a right angle. 

This angle can be found in a square. 

Two of these angles equal a full turn. 

Triangles cannot have two of these angles. 

This angle cannot be found in a square. 

This angle measures 130 degrees. 

For each of these questions, the researcher should ask after the student has answered: 

"Can you find some other angle?" 

2. The researcher tells the student that they are going to play a different game now. The 

researcher has a whole set of angles in mind, and he is going to show the student 

one card that gives some information about this set of angles. The student then is 

supposed to Zuess what kind of angle it could be. 

The researcher shows the student a card containing one condition and asks the student to 

choose a card with the type of angle that satisfies the condition. 

Conditions used: 

Rectangles have four of these angles. 

All triangles have at least one of these. 

Any two of these angles add up to more than a half turn. 

Tnro of these ansles may add up to be an obtuse angle. 

These are not risht angles. 

If you cut any of these angles in half you get two acute angles. 

These angles haire two sides. 

These angles are less than a right angle. 

For each of these questions, the researcher should ask the following, after the student - has 



answered: 

"Can you find some other type of angle?" 

Note: If the student does not recall clearly the meaning of the terms obtiise and acute, the 

researcher will briefly give some examples. 

Task P4: Solve a problem 

Purpose:  Detect students' ability to solve problems requiring the use of geometrical 

properties 

Area: Applied 

Materials: Rectangle made of D-Stix, a D-Stix bar 

Description: 

1. The researcher shows the rectangle to the student and says: 

"If you add up all the internal angles of this rectangle, how much are you going to 

get?" 

2. If the student gives the correct answer, the researcher should tilt the rectangle so that 

there is now a parallelogram with no right angles and ask: 

"Did the angles change?" 

"How much do the angles add up to now?" 

If the student does not give the correct answer, the researcher will remind him or 

her that the angles add up to 360" and proceed to ask the questions above. 

3. If the student seems unsure of how to answer the question in step 2, the researcher 

should say: 

"I am going to give you a hint. Notice that we can divide this figure in two, like 

this:" 

The researcher now places the D-Stix bar on the diagonal and asks: 

"I am going to place this bar here. How much do the angles add up to?" 



Appendix D 

Criteria for the van Hiele Levels for the Concept of Angle 

Level 1 : In general, the student identifies, characterizes, and operates on angles 

according to their appearance. 

1. Draws angles. 

2. Identifies, names, or labels angles in a simple drawing or more complex figure by 

relying on visual clues rather than properties of the angle. The student may use standard 

or non-standard language (such as referring to angles as comers). 

3. Includes irrelevant properties or relationships when describing angles, such as 

length of ray. 

4. Exclude relevant properties or relationships when characterizing angles, such as 

straightness. 

5. Sorts angles on the basis of their appearance as a whole, specifically not having the 

90 degree referent, making inconsistent sortings, or sorting by an irrelevant attribute. 

6. Analyzes or compares angles (in tasks including, but not limited to, turning angles, 

congruent angles, complementary angles, or supplementary angles) on a looks-like basis. 

Level 2: The student establishes properties of angles and uses properties to solve 

problems. 

1. Analyzes and compares angles in terms of their properties. 

2. Identifies relationships among angles within figures. 

3. Recalls and uses appropriate vocabulary for relationships, such as when parallel 

lines are cut by a transversal the corresponding angles are congruent. 

4. Describes angles with a litany of properties or insufficient properties rather than 

necessary and sufficient properties. 



5. Is able to decentrate (orient turning relative to a spinner's position rather than to his 

or her own body's position) in a task to determine angle measure, as indicated by 

accurate estimates of angle turn and by deciding which way to turn. 

6. Accurately estimates angle measure by using known properties (such as right 

angles measure 90 degrees) or by insightful approaches. 

7. Formulates and uses generalizations about properties of angles in problem-solving 

situations and may use related language (all, every, none). 

Level 3: The student formulates and uses definitions, gives informal arguments that order 

previously discovered properties, cirzd fol lo~t~s and gives deductive arguments. 

1. Identifies necessary and sufficient properties in the context of a justification. 

2. Formulates and uses definitions, (a) explicitly referring to them, (b) accepting 

equivalent forms of definitions, and (c) accepting new definitions of previously learned 

concepts. 

3. Is able to conceive of an infinite number of angles. 

4. Explicitly describes relationships between properties, including sub-class relations. 

5. Presents an informal argument or informal proof, justifying the conclusion using 

logical relationships of properties: orders properties, interrelates several properties, or 

discovers new properties by deduction. 

6. Presents an informal argument or informal proof deductively (implicitly using such 

logical forms as the chain rule and modus ponens, or explicitly using "iflthen," for 

example). 



Appendix E 

Topic of Each Observed Lesson 

Grade Teacher Topic Materials 

4 H Developing the concept of angle I, I1 L2.06, L2.07 

4 A Developing the concept of angle I, I1 L2.06, L2.07 

5 Z Measuring angles with wedges 

Measuring angles 

Classification of angles 

Measuring angles 

Classification of triangles 

5 D Developing the concept of angle I 

Measuring angles with wedges 

Constructing a protractor 

Using a conventional protractor 

T p. 284, L2.11 

T pp. 284-285 

T p. 288, posters 

T pp. 286-287 

T p. 290 

12.06 

12.11 

worksheets, L2.12 

12.13 

Comparing angle sums in triangles and quadrilaterals L2.10 

Special triangles and quadrilaterals L2.29 

Special triangles and quadrilaterals L2.29 

Sidelangle relationships in triangles L2.30 

Sidelangle relationships in triangles L2.30 

Note. L refers to Geometry and Measurement lessons coding (McKillip & Wilson, 1990); 

T refers to the textbook (Thoburn, Forbes, & Bechtel, 1982b) 


