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Abstract 

The protein α-synuclein (αSN) aggregates to form fibrils in neuronal cells of Parkinson's 

patients. Here we report on the effect of neutral (zwitterionic) nanoliposomes (NLPs), 

supplemented with cholesterol (NLP-Chol) and decorated with PEG (NLP-Chol-PEG), on αSN 

aggregation and neurotoxicity. Both NLPs retard αSN fibrillization in a concentration-

independent fashion. They do so largely by increasing lag time (formation of fibrillization 

nuclei) rather than elongation (extension of existing nuclei). Interactions between neutral NLPs 

and αSN may locate to the N-terminus of the protein. This interaction can even perturb the 

interaction of αSN with negatively charged NLPs which induces an α-helical structure in αSN. 

This interaction was found to occur throughout the fibrillization process. Both NLP-Chol and 

NLP-Chol-PEG were shown to be biocompatible in vitro, and to reduce αSN neurotoxicity and 

reactive oxygen species (ROS) levels with no influence on intracellular calcium in neuronal 

cells, emphasizing a prospective role for NLPs in reducing αSN pathogenicity in vivo as well as 

utility as a vehicle for drug delivery.  

Keywords: α-Synuclein, Fibrillization, Neurotoxicity, Parkinson’s disease, Zwitterionic 

nanoliposomes. 
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Introduction 

Alpha synuclein (αSN) is a 140-residue natively unfolded protein found in high concentrations in 

neuronal cells. Patients suffering from a range of neurodegenerative disorders show neuronal 

deposits of plaque-like intracellular structures named Lewy bodies and Lewy neurites with a 

high content of aggregated αSN 1. Although the physiological function of αSN remains 

unresolved, degeneration of neurons in the affected region of the brain is linked to αSN 

aggregation 2. Therefore, insight into events triggering fibrillization is crucial for neuroprotective 

strategies against so-called α-synucleinopathies. While many compounds have been shown to 

inhibit αSN aggregation in vitro 3–5, this still remains to be translated into successful treatment in 

vivo 6,7. Therapeutic strategies must also address the fact that αSN aggregates can spread to other 

cells 8,9. The membranes of all mammalian cells are enriched in phosphatidylcholine lipids while 

those of neurons are enriched with neutral lipids and cholesterol 10–12. αSN shows great affinity 

for membranes, particularly those with anionic lipids, and binding is mediated by the N-terminal 

amphipathic domain. The extent of membrane-bound αSN may play a key role in αSN biological 

functions as well as the initiation and kinetics of its aggregation 10,13, all of which is affected by 

the composition (charge, fluidity) and size (i.e. curvature) of liposomal membranes.  

Anionic vesicles interact strongly with αSN, inducing an α-helical structure 14, while other 

vesicles have no such effect 15. Besides charge, the lipid phase also plays a role: αSN interacts 

more strongly with the fluid phase than the gel phase and fibril formation has been reported to 

develop in the presence of lipids in the fluid phase 16. The local increase in αSN concentration on 

the membrane may also promote aggregation through nucleus formation, making the 

protein:lipid ratio a critical parameter 16–21.  
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Given that αSN membrane interactions are complex and unexpected, these aspects must 

obviously be taken into account when considering liposomal nanocarriers for delivery of drugs 

that target αSN 14,16,21,22. Liposomal nanocarriers have properties that are advantages if they are 

to be used in the body, such as biocompatibility, straightforward surface modification, low 

immunogenicity and protection against enzymatic degradation 23,24. However, their potential has 

been challenged by concerns about possible neurotoxicity 25–28.  

Here we report on the effect of zwitterionic (i.e. overall uncharged) modified 

dipalmitoylphosphatidylcholine (DPPC) NLPs on αSN aggregation in vitro and their ability to 

protect two dopaminergic cell lines, PC12 and SHSY5Y, against αSN aggregates. Our choice of 

uncharged liposomes for NLPs was motivated by the fact that charged liposomes are generally 

more toxic 25,27 and can promote αSN aggregation 14, while uncharged liposomes are more 

compatible with the neuronal plasma membrane 11,29. NLPs were formulated to contain either 

cholesterol (NLP-Chol) or cholesterol with PEG (NLP-Chol-PEG). Cholesterol regulates the 

structure, activity and fluidity of biomembranes, particularly in neuronal cells30 while PEG 

increases the stability of nanoparticles against enzymatic degradation during blood circulation as 

well as increasing solubility. Calorimetric studies confirmed that the NLPs were in the gel phase 

under all experimental conditions. In this work we investigated the effect of NLPs on αSN 

aggregation kinetics, antioxidant activity, neuronal cytotoxicity, biocompatibility and 

intracellular calcium levels. We conclude that these NLPs constitute a promising nanocarrier in 

the context of αSN-related neurodegenerative disease. 

MATERIALS AND METHODS 

Materials: Thioflavin T (ThT), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT), 2’,7’-dichlorodihydrofluorescin diacetate (DCFH-DA) and cholesterol were from Sigma-

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Methyl
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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Aldrich (St Louis, MO). Lactate dehydrogenase (LDH) measurement kit was from Pishtazteb 

Co. (Iran). 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoylsn-3-

phosphatidylglycerol (DOPG), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy 

(polyethylene glycol)-2000] (PEG2000 PE), and Mini-Extruder were from Avanti Polar Lipids, 

Inc. (Alabaster, AL, USA). Fura-2AM was from Santa Cruz (American, CA). Annexin-V-

FLUOS Staining Kit was from Roche Applied Science (Mannheim, Germany). PC12 and 

SHSY5Y cell lines were from The Pasteur Institute of Iran. All salts and organic solvents were 

from Merck (Darmstadt, Germany). Cell culture media (DMEM high glucose and DMEM-F12) 

and antibiotics were from GibcoBRL (Life Technologies, Paisley, Scotland). Fetal bovine serum 

(FBS) was from Biosera (Tehran, Iran).   

Small Unilamellar Vesicles (SUVs) formulation and characterization 

Thin film hydration was employed to make liposomes. DPPC was dissolved in 2 mL chloroform 

and a thin film of lipid was prepared using rotary evaporator at 37 °C with 150 rpm shaking in a 

round-bottomed flask. The lipid film was hydrated with phosphate buffer saline (PBS; 8 g/L 

NaCl, 0.2 g/L KCl, 1.44 g/L Na2HPO4 and 0.24 g/L KH2PO4, pH 7.4) at 50 °C for 2 hours. Small 

Unilamellar Vesicles (SUV) with diameter ≤ 100 nm were prepared by extruding the lipid 

suspension through a 100 nm membrane 21 times using a Mini-Extruder set. To formulate NLPs 

containing cholesterol and PEG, they were mixed with DPPC at molar ratios of 15% and 10% 

respectively and dissolved in 2 mL chloroform, followed by the procedures above. NLPs were 

stored at 4 °C until use. Dynamic light scattering (DLS) using a Zetasizer (Malvern, UK) 

determined that the SUVs were almost neutral (by ζ potential measurement, between -

1.301±0.624 mV to -2.582±0.395 mV) and had a size of ≤ 100 nm. The sizes of NLPs estimated 

by DLS (z-average) based on number were 85.86±2.04 (PdI 0.2±0.13) and 88.47±1.03 (PdI 

0.14±0.017) for NLP-Chol and NLP-Chol-PEG, respectively.  

http://www.pishtazteb.com/en/
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Protein production 

Escherichia coli BL21 (DE3) pLysS cells (Novagen, Madison, Wis., U.S.A.) were used to 

express the wild type recombinant human αSN which was purified as described in 

Supplementary Information 4.  

αSN fibrillization, seeding and the fibril formation assays 

αSN was dissolved to 70 µM in PBS supplemented with 200 μM  phenylmethylsulfonyl fluoride 

(PMSF), 1 mM Ethylenediaminetetraacetic acid (EDTA) and 0.05 mM NaN3 and then 

centrifuged for 10 minutes at 13000 rpm to remove aggregates. The supernatant of the solution 

was mixed with 35-1500 µM NLP-Chol and NLP-Chol-PEG (based on DPPC concentration). 

Fibrillization was carried out by incubation at 37 °C while shaking at 300 rpm in a 96-well plate 

(see SI for details). The Finke–Watzky two step model 31 was fitted to the normalized ThT 

fluorescence intensity data: 

𝐹(𝑡) =  
1

1+𝑒
−4𝜐(𝑡−𝑡1/2)    (1) 

𝑡𝑁 = 𝑡1/2 −
1

2𝜈
   (2) 

where t1/2 is the time to reach 50% fibrillization, ν is the growth rate, and tN is the length of the 

nucleation phase. For seeding experiments, fibrils isolated from the plateau phase of fibrillization 

were collected and sonicated for 5 min in an ultrasonic bath sonicator (Bandelin Sonorex 

Ultrasonic baths Digital 10P, Germany) at 50% amplitude. Samples without NLPs were included 

as a control. Additional details are provided in the SI. 

NMR spectroscopy 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi-8J70k7LRAhUDjSwKHRJjBwwQFggbMAA&url=http%3A%2F%2Fbandelin.com%2Fprodukte%2Fsonorex%3Flang%3Den&usg=AFQjCNGqWm-2y2LabMROjgolbW6qNFSDuA&sig2=z4Xn5TJDkmlhF-0dzrdxeg
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi-8J70k7LRAhUDjSwKHRJjBwwQFggbMAA&url=http%3A%2F%2Fbandelin.com%2Fprodukte%2Fsonorex%3Flang%3Den&usg=AFQjCNGqWm-2y2LabMROjgolbW6qNFSDuA&sig2=z4Xn5TJDkmlhF-0dzrdxeg
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NMR samples contained 0.1 mM 15N-labelled αSN in 17 mM HEPES buffer, 33 mM NaCl, pH 

7.4. The internal standard (DSS, 0.4 mM) was used for chemical shift referencing (0 ppm) and 

intensity calibration. NMR experiments were recorded on a Bruker 600 MHz spectrometer 

equipped with a cryogenic probe. The 2D 15N–1H HSQC spectra were obtained at 15 °C, using a 

long recycle delay of 5 s and 512 data points in the 15N dimension. NMR data processing and 

analysis were performed using NMRPipe and Sparky. 

To probe the potential interaction of αSN with liposomes, HSQC spectra were recorded in the 

absence and the 10-fold excess of cholesterol-containing liposomes either with or without PEG. 

Intensity perturbation profiles were obtained by comparing intensities of HSQC cross-peaks 

observed in the presence (I) and absence (I0) of liposomes. 

Oligomer preparation 

12 mg/mL αSN was dissolved in PBS and incubated for 2 hours at 37°C with 900 rpm shaking. 

The sample was centrifuged for 10 min at 13000 rpm to remove insoluble aggregates, incubated 

for an additional 30 minutes in the same condition, centrifuged again for 10 min at 13000 rpm 

followed by oligomer purification on a SuperoseTM 6 10/300 GL, Prep Grade column (GE 

healthcare Life Sciences, Sweden) at 2.5 mL/min in PBS. Oligomer fractions were concentrated 

on a 15 mL stirred-cell Amicon unit using a cut-off filter of 30 kDa (Merck).    

Calcein release 

DOPG vesicles containing calcein at self-quenching concentrations (70 mM) were prepared as 

described 32. Briefly, 5 mg/mL DOPG and 70 mM of calcein were dissolved in 1 mL PBS, 

subjected to 10 times freezing in liquid nitrogen and thawing at 50 °C, extruded 21 times through 

a 100 nm filter and purified on a PD-10 desalting column (GE Healthcare). The vesicles were 
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added at final lipid concentration of 42 μM to a 96-well plate in a 150 μL assay solution in PBS 

together with oligomers and/or NLPs at final concentrations of 0.25 μM and 10-80 μM, 

respectively. Oligomer-NLPs mixtures were mixed and pre-incubated for 2 min at room 

temperature and then added to vesicles. Calcein release was followed for 30 min at 37°C on a 

Genios Pro fluorescence plate reader (Tecan, Mänerdorf, Switzerland) with 485 nm excitation 

and emission at 520 nm. Afterwards complete lysis was achieved by adding 1 μL Triton X-100 

(0.1% (w/v)) and end-level fluorescence intensity measured. Background fluorescence was 

subtracted. The percentage of calcein release was calculated as follows: 

% 𝑜𝑓 𝑐𝑎𝑙𝑐𝑒𝑖𝑛 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 =
(𝐹−𝐹0)

(𝐹𝑡−𝐹0)
            (3) 

where F is the fluorescence intensity after adding oligomer-NLPs mixtures, F0 is the fluorescence 

intensity before adding the materials and Ft is the fluorescence intensity after treatment with 

Triton X-100. 

Hemolysis assay 

100 µL NLPs (lipid concentration 280 µM), were spread onto blood agar medium and incubated 

for 24 hours at 37 °C. As a control, 100 µL of a suspension of Bacillus Cereus (0.5 McFarland) 

was cultured on the same medium.  

Effect of NLPs on αSN neurotoxicity  

The neurotoxicity of αSN (with and without NLPs), towards the dopaminergic cell lines PC12, 

SHSY5Y, and SHSY5Y over-expressing αSN, were evaluated by MTT and LDH assays, flow 

cytometry (to detect early apoptosis and late apoptosis/necrosis), ROS measurement, and 

measurement of intracellular calcium. Cells were cultured for 24 hours in DMEM high glucose 

or DMEM-F12 for PC12 and SHSY5Y, respectively supplemented with 10% FBS, 100 U/mL 
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penicillin and 100 µg/mL streptomycin and incubated at 37 °C in humidified atmosphere with 

5% CO2 and 90% humidity. The cells were then cultured in 96-well microtiter plates to assess 

the mitochondrial metabolism of living cells by the MTT assay, evaluate membrane integrity 

with the LDH assay and assess intracellular ROS production and intracellular calcium (see 

below). A 6-well microtiter plate was used to assess early apoptosis or late apoptosis/necrosis 

with the Annexin V/PI assay.  

MTT assay 

PC12 and SHSY5Y cell lines were seeded in 200 µL growth medium to a density of 3×104 and 

6×104 cell/mL respectively and then incubated for 24 hours. Then, the cells were treated with 

10% v/v αSN pre-incubated with NLPs and incubated in the same conditions for an additional 24 

hours. Medium was removed, and a freshly pre-warmed medium supplemented with 10% (v/v) 

MTT stock solution (5 mg/mL in PBS) was added to each well followed by 4 hours incubation. 

Crystals of formazan were dissolved in DMSO, and absorption at 570 nm (which reflects 

mitochondrial metabolic activity) was recorded on a plate reader (Expert 96, AsysHitch, Ec 

Austria). The control sample (no αSN, no NLPs) was set to 100%. Cell viability was calculated 

as the absorption at 570 nm of treated cells relative to control cells. 

LDH assay 

Release of the cytoplasmic enzyme LDH reflects loss of membrane integrity and by inference 

cell death. Briefly, after the treatment of cells with αSN pre-incubated with NLPs and further 

incubation for 24 hours, 100 µL of growth media was added to 1 mL of the kit substrate and 

absorbance at 340 nm was measured for 4 min at 37° C to follow conversion of NADH to NAD+.  

Flow cytometry 
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We used double staining with fluorescein isothiocyanate (FITC)-conjugated Annexin V (an 

apoptosis marker) and the nucleus stainer propidium iodide (PI) to measure the fraction of PC12 

and SHSY5Y cells undergoing apoptosis or late apoptosis/necrosis. All cells were cultured in 6-

well plates (5×105 cell/mL), incubated for 24 hours, after which 10% v/v αSN alone, or pre-

incubated with NLP-Chol and NLP-Chol-PEG, was added and incubated for 24 hours. Cells 

were detached using 0.25% trypsin and 1 mM EDTA, centrifuged for 5 min at 1000 rpm, and 

pellets were rinsed with PBS and re-suspended in 500 μl binding buffer. FITC-conjugated 

Annexin V and PI were added and incubated in the dark for 15 min. Samples were loaded on a 

BD FACS Calibur flow cytometer (Becton Dickinson Biosciences, San Jose, CA, USA) and data 

analyzed using Flowing Software v.2.5.  

Intracellular ROS 

 To evaluate ROS formation in cells, 2’,7’ – dichlorofluorescin diacetate (DCFH-DA) can be 

used as it crosses the cell membrane to react with ROS and form highly fluorescent 2ʹ, 7ʹ–

dichlorofluorescein (DCF). PC12 and SHSY5Y cells were cultured in 96-well plates at a density 

of 6×104 and 10×104 cell/mL respectively and incubated for 24 hours in a CO2 incubator, after 

which 10% v/v αSN alone or pre-incubated with NLP-Chol and NLP-Chol-PEG was added and 

incubated for 24 hours. Growth media were replaced with serum-free media and 15 µM DCFH-

DA was added followed by incubation for 45 min in the dark at 37 °C. Cells were rinsed twice 

with PBS and the fluorescence intensity was measured at excitation and emission wavelengths of 

485 nm and 530 nm respectively using a Varian Cary Eclipse fluorescence spectrophotometer 

(Mulgrave, Australia). 

Intracellular Ca2+ levels 
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Intracellular calcium levels were determined using the Ca2+ chelator Fura 2-AM based on the 

ratio of its excitation intensity at 340 and 380 nm (emission at 510 nm). SHSY5Y cells were 

cultured in 96-well plates (8×104 cell/mL) and incubated for 24 hours. The cells were then 

treated with 10% v/v 7 h-aged and 24 h-aged αSN pre-incubated with or without NLP-Chol and 

NLP-Chol-PEG. To remove background Ca2+, the culture medium from 24 hours incubated cells 

was replaced with PBS. Intracellular calcium levels were assessed in two ways. In the first 

approach, after treatment with αSN, the cells were incubated for 6 hours, Fura 2-AM from a 

stock of 100 µM in acetone, was added to a final concentration of 2 µM, cells were incubated for 

5 min in the dark and fluorescence was measured. The second approach differed from the first in 

omitting the 6 h incubation step, i.e. Fura 2-AM was added straight after adding αSN; 

furthermore, fluorescence was measured over a 30 min period. 

Statistical analysis 

All experiments were in triplicate unless otherwise stated, and results are provided as means ± 

SD. One-way ANOVA algorithms were used to compute the statistical significance within the 

groups. Unpaired Student’s t-test was also employed to determine the significance results 

between the groups, where a probability value p <0.05 was considered significant. 

 

Results 

NLP-Chol and NLP-Chol-PEG delay fibrillization by extending the lag phase and 

modifying the end point product 

Here we assess the impact of uncharged NLPs with cholesterol decorated with PEG on the 

kinetics of αSN fibrillization. TEM and DLS revealed our NLPs to be spherical and unilamellar 
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uncharged NLPs (Fig. S1) with an average size of < 100 nm. To assess the influences of the 

NLP-Chol and NLP-Chol-PEG on the fibrillization of αSN, we incubated 70 µM αSN with 35-

1500 µM NLPs and monitored fibrillization through ThT fluorescence intensity. Both NLPs 

decrease end-ThT levels by up to ~50% (Fig. S2) after 24 hours of incubation.  

It is worth mentioning that these concentrations are in non-crowding concentration ranges. The 

crowding concentration is ~ 40 mg/ml and above; it is primarily considered in the framework of 

the excluded volume effect 33. Herein, we examined the concentration ranges from 35-1500 μM 

to test whether these non-crowding concentrations have a significant impact on fibrillization. We 

found that at these concentrations the inhibition of fibrillization is dose-independent. To obtain 

more insight into the mechanistic effects of NLPs on the fibrillization process, we followed the 

events in detail throughout the kinetics of fibrillization at two different concentrations of NLP-

Chol and NLP-Chol-PEG (140 and 280 µM), which could be suitable concentrations for drug 

delivery. Both NLPs increased the half time of fibrillization from ~15 to ~25 hours (Fig. 1) and 

the effect was similar at 140 and 280 µM. Analysis of the kinetic data using the Finke–Watzky 

model confirmed that both NLPs increase t1/2 (half-time to maximum signal) and tN (fibrillization 

lag phase) (Fig. 1b and c) but had no significant impact on fibrillization growth rate (Fig. 1d). 

This indicates that although nucleation is impeded, the subsequent elongation rate can proceed at 

the same rate as for untreated αSN. There is a modest decrease in the end point ThT fluorescence 

(Fig. 1e) suggesting that the NLPs may slightly reduce the extent of fibrillization. AFM images 

indicated that after 28 hours of incubation, in the presence of NLPs, low amount of fibrils were 

available in the samples; however, this quantity was much more in the untreated samples with 

NLPs demonstrating the end point products were decreased in the treated samples (Fig. S3). This 

alteration might result from binding the monomers or intermediate species to NLPs (Fig 2 and 

Fig. S4). TEM images of samples after four hours of incubation showed a mixture of fibrils and 
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small spherical aggregates in the control samples, while in the samples treated with NLPs a 

variety of small spherical aggregates were localized around the NLPs (Fig. 2a) suggesting such 

aggregates have an interaction with NLPs. Further incubation led to increasing amounts of fibrils 

in the NLPs-treated samples but non-fibrillar aggregates persisted in the NLPs samples while 

they completely disappeared in the control samples (Fig. 2b and c). It seems that in the presence 

of NLPs, there is an increase in the number of small non-fibrillar aggregates which do not then 

proceed to form fibrils. This is imperative because NLPs seem more likely to interact with 

intermediate aggregated species rather than monomers and to stabilize them, leading to a 

reduction in their cytotoxicity; ultimately hindering their progress towards fibrillization.  

By centrifugation, it was perceived that NLPs interact with monomers and different aggregated 

species of αSN which were detected by SDS-PAGE. However, a dissimilar outcome was 

detected at 48 hours for αSN incubated alone. This is consistent with NLPs having an interaction 

with monomers and small species of αSN aggregate (Fig. S4). At low speed of centrifugation 

(5000 rpm for 10 min), the protein interacting with NLPs was precipitated and consistently in the 

supernatant a lower amount of protein was detected. At high speed of centrifugation (13000 rpm 

for 30 min), more precipitated particles were identified in samples without NLPs. With respect to 

our experience and previous studies, some intermediates of αSN aggregation are SDS resistant 34, 

however, fibrils are characterized as SDS sensitive structures that can be partially disassembled 

in the presence of SDS and appear as a monomeric band in SDS-PAGE 35. 

NLPs affect neither seeding nor depolymerization of the fibrils   

The impact of NLPs on the ability to grow fibrils from fibrillary seeds (by inference to affect the 

elongation step of fibrillization) was assessed by adding sonicated mature fibrils (as shown in a 

TEM image, Fig. S5) to fresh monomeric αSN. The NLPs affected neither elongation kinetics 
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(Fig. S6a) nor did they reduce the ThT fluorescence of existing fibrils when co-incubated with or 

without shaking (Fig. S6b and c). Thus the NLPs do not intervene in the fibrillization process 

once aggregation nuclei have been formed.  

Neutral NLPs bind both monomeric and oligomeric αSN, reducing reversibility of 

monomer-negatively charge membrane interactions probably through N-terminal 

interactions 

Far-UV CD analysis showed that αSN goes over from random coil to β-sheet structures more 

slowly when treated with NLPs (Fig. 3 a-c). Moreover, the plot of the 200/220 nm of CD signal 

ratio revealed that results were almost consistent with our ThT outcomes (Fig. 3 d).  

To identify possible interactions between αSN and the NLPs, we span down NLPs in the 

presence of fluorescence-labeled αSN and saw a decrease in soluble αSN, accompanied by a 

significant increase in the amount of αSN in the pellet (Fig. S7). Similarly, short-term incubated 

αSN (2-3 hours of incubation) which contains oligomeric αSN, but presumably also a significant 

monomer fraction) was pelleted together with NLPs (Fig. S7). Direct evidence for αSN-NLP 

interactions was provided by liquid-state NMR spectroscopy (Fig 4). NMR signals were 

broadened in the presence of NLP-Chol, particularly in the first 12 residues. Less signal 

broadening was observed when NLP-Chol-PEG was employed. Because the NMR experiments 

ran at low temperature (15 °C) and bulky PEG is less flexible at this temperature, lipid surface 

accessibility maybe reduced. We cannot exclude the possibility that the number and identity of 

residues involved in αSN binding to NLPs at higher temperatures may be different than that 

characterized by our current NMR data. Another point is that in many circumstances, the NLPs 

interact with intermediate species like oligomers that cannot easily be recognized with NMR. 

Nonetheless, in the TEM experiments we found that many oligomers are present in treated 
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samples even after a long incubation time. We concluded that the interaction also occurs between 

NLPs and oligomers.  

Another way to probe interactions was to carry out thermal scans in the presence of anionic 

vesicles made using DMPG. Such vesicles bind αSN and induce α-helical structure as the 

temperature increases from 10 to 30-40 °C (Fig 5a); this structure melts out at higher 

temperatures and the whole process is essentially completely reversible. However, adding either 

NLP-Chol or NLP-Chol-PEG to the DMPG/αSN mix severely reduces the reversibility of this 

process (Fig. 5b and c), indicating that neutral phospholipids can impede the interaction of the 

protein with DMPG. Nevertheless, this is a competitive interaction between uncharged and 

negatively charged vesicles. We also detect this phenomenon with oligomeric forms. Calcein 

release from DOPG vesicles by αSN oligomers (prepared by gel filtration, Fig. S8a) was not 

affected by the presence of 10-80 µM NLP-Chol and NLP-Chol-PEG (Fig. S8b, c). Further, 

NLP-Chol or NLP-Chol-PEG alone had no influence on membrane permeabilization (Fig S8d 

and e).  

Neurotoxicity of aggregated species of αSN reduced by NLPs  

To assess whether treatment of αSN with NLPs during the fibrillization process had an influence 

on its cytotoxicity, MTT and LDH assays were carried out. NLPs alone did not show any 

cytotoxicity (Fig S9).  MTT assay (Fig S10a and b) revealed that all concentrations (35-1500 

μM) of either NLP-Chol or NLP-Chol-PEG decreased the cytotoxicity of αSN aggregates in both 

cell lines after 24 hours of incubation. These outcomes were confirmed by LDH assay (Fig S10c 

and d). Furthermore, adding 280 µM NLPs decreased cytotoxicity of different species of αSN 

aggregates produced during the fibrillization (Fig 6a and b). Although intermediate/non-fibrillar 

aggregates in the treated samples with NLPs were greater than that of control, and the control 
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sample had more fibrils (Fig. 2), no considerable toxicity was observed when αSN was incubated 

with NLPs (more intermediate aggregates available). This is a critical point as the 

oligomers/intermediate aggregates have been reported to be more toxic than mature fibrils. This 

could be due to the interaction of such intermediate aggregates with NLPs leading then most 

probably to change their structures or conformations which causes less cytotoxicity. This 

interaction can especially influence on the membrane-permeabilizing effects of oligomers or 

even cause generation of the non-fibrillar aggregates which cannot continue the fibrillization 

process. Such aggregates may be off-pathway or amorphous aggregates which have less 

cytotoxicity. As we observed from Fig 1d, the final products in the presence of NLPs were also 

decreased compared to that of control, corroborating this outcome. In a recent study supporting 

this idea, it was demonstrated that binding nanobodies to αSN induced a fast conformational 

alteration from more stable oligomers to less stable oligomers of αSN, and this consequently 

caused an intense decrease in oligomer cytoxicity 36.  

Apoptosis is one of the primary cell death pathways in neurodegenerative diseases and hence, 

using flow cytometry, the cell death arising from αSN was explored (Fig 7). The rate of early 

apoptosis as well as late apoptosis/necrosis in the samples treated with αSN alone is rather more 

than those treated with αSN pre-incubated in the presence of NLPs and this quantity is more 

evident in the late apoptosis/necrosis stage, especially for SHSY5Y. Finally, we note that the 

NLPs are biocompatible in hemolysis tests (Fig. S11). In this test the amount of lysis of red 

blood cells is categorized with different colors occurring in the media after treatment 37.  

Neurotoxic intercellular events modified when αSN pre-incubated with NLPs 

Changes in ROS levels and calcium homeostasis have been implicated in neurodegeneration. 

While neither NLP types affected ROS and the level of free radicals in vitro or in cells by 
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themselves (Fig. S12), they reduced ROS levels in cells treated with different pre-formed αSN 

(70 µM) aggregates (aged for 7, 12 and 24 hours) compared to the ROS level in the control (Fig 

8). By comparison, the intracellular calcium did not change significantly (Fig. S13a), even when 

the measurement was carried out immediately after treatment in a continuous manner (Fig. S13b 

and c), suggesting an alternative mechanism is involved in neurotoxic intercellular events 

induced by αSN.  

NLPs diminish αSN aggregate neurotoxicity in SHSY5Y cells overexpressing αSN   

It is interesting that the NLPs protect the cells from toxic effects of αSN even in the cells 

overexpressing αSN (Fig 9a). Furthermore, in order to make system more susceptible, sonicated 

48-h aged incubated αSN was added to cells as seeds to trigger the fibrillization process. Here 

again we found that the presence of NLPs reduced the cytotoxicity of αSN (Fig 9a). ROS levels 

were also modified for cells treated with aggregated species of αSN in the presence of NLPs (Fig 

9b). 

Discussion 

This work is part of our ongoing study regarding the employment of zwitterionic NLPs as 

suitable carriers for treating neurodegenerative diseases, especially PD. Here, we have used 

zwitterionic phospholipids (DPPC) to formulate NLPs incorporated and decorated with 

cholesterol and PEG, respectively, motivated by their similarity to the neuronal plasma 

membrane 11. Both NLPs impeded fibrillization by increasing the lag phase and modestly 

reducing the extent of fibrillization. The key to this is likely the NLPs’ interaction with 

monomeric and oligomeric αSN which reduces the amount of αSN available for aggregation. 

The interaction with αSN monomers/oligomers highlights an inhibitory role for NLPs by 

interfering with fibrillization.  
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Membranes can provide an interface that the protein might use for nucleation and drive fibril 

formation or be stabilized in its monomeric form, or even form the off-pathway oligomers 16. 

Moreover, the effect of NLPs’ charge on the interaction and fibril formation of αSN is a subject 

of controversy. Although the interaction of negatively charged NLP with αSN has been 

established 17, the feasibility of binding of αSN to zwitterionic lipid vesicles is controversial. 

Some studies reported that αSN does not bind to zwitterionic/uncharged lipid membrane 

10,17,38,39; however, some indicate a weak interaction 12,22,40 and other reports imply a strong 

interaction between them 18,41. This interaction can even remodel neutral vesicles into tubules 12. 

Here, we found an interaction between zwitterionic NLPs and αSN. 

Cholesterol may have a role in the interaction between NLPs and αSN. Two discrete cholesterol-

binding domains in αSN have been recognized, residues 67–78 which have high affinity to bind 

cholesterol, and residues 34–45 which have lower affinity. In addition, αSN has been 

demonstrated to bind to the isooctyl chain of cholesterol in membranes 42,43. Cholesterol also 

increases the order of the membrane while maintaining lipid fluidity 44. Cholesterol has been 

shown to mediate the interaction between oligomers of αSN and zwitterionic membranes 44.  

Interestingly, NLPs reduce the reversibility of thermal melting of membranes of anionic vesicles, 

suggesting that once thermally denatured, αSN remains more strongly bound to NLPs and is 

therefore not able to rebind to vesicles. The interaction appears to involve the very N-terminal 

region of αSN which is also strongly implicated in membrane binding 17, suggesting a 

competition between anionic vesicles and NLPs for binding to this region. However, the 

interaction is sufficiently weak that NLPs do not prevent monomeric αSN from binding to 

preexisting fibrils to elongate them. Thus only the initial stage of fibrillization is affected, 
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probably because it is more sensitive to even a slight decrease in the amount of free and 

unimpeded αSN in the formation of the fibrillization nucleus.  

Conclusion 

Taken together, we conclude that at the first stage of fibrillization process, some monomers and 

oligomers interact with NLPs at the expense of fibrillization. We summarize our insights in Fig 

10: I) Interactions between the NLPs and αSN, likely correlated to the presence of 

cholesterol/PEG, impede the early stages of fibrillization. Given the absence of overall charge in 

the DPPC vesicles, hydrophobic interactions are likely the dominant factors in the binding of 

αSN to zwitterionic lipid vesicles 22. II) As the oligomers are more hydrophobic 45, they are more 

likely to interact through their hydrophobic regions with liposomal membranes. III) As a 

consequence, NLPs reduce the amount of free oligomer and monomeric αSN, which not only 

impedes fibrillization but also reduces neurotoxicity and ROS levels. It has been assumed that in 

the systems of fibrillization, the progression of the fibril formation competes with substitute 

reactions including the formation of stable off-pathway oligomers or amorphous aggregation 46. 

Considering that different species of aggregates are formed in the development of amyloid 

formation of αSN 47,48, it can be concluded that NLPs may affect one or more of these stages, by 

postponing the direct reaction and/or stimulating the reverse reaction; subsequently affecting the 

cytotoxic effects of the species produced. These findings could open a new avenue in the use of 

NLPs to combat neurodegenerative diseases, and for use as a vehicle for drug delivery given 

their ability to take up and transport both hydrophobic and hydrophilic small molecules 

alongside their intrinsic ability to delay the aggregation process leading to a reduction of both 

neurotoxicity and ROS levels. In this regard, we have recently illustrated the capability of this 

type of NLP for transferring both hydrophobic and hydrophilic small molecules into cells 37. 

These results can help us to establish the therapeutic potential of such NLPs.  
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Figure. 1. The effect of the NLP-Chol and NLP-Chol-PEG on the kinetics of αSN fibrillization. 

(a) The ThT data of the aggregation kinetic of αSN were normalized and the Finke–Watzky 

model was fitted to the normalized data. Arrow indicates extension in lag phase. The excitation 

and emission for ThT were set at 440 and 480 nm respectively. (b-d) Kinetic parameters for αSN 

fibril formation at 140 and 280 µM NLP-Chol and NLP-Chol-PEG relative to those values in the 

absence of the NLPs. (b) relative half time (t1/2/t1/2control), and (c) relative lag time (tN/tNcontrol), 

the half and lag time of αSN incubated in the presence of NLPs was considerably different from 

that of the control condition of αSN incubated alone (* indicates p ≤ 0.05). (d) relative growth 

rate (ν/νcontrol), the growth rate of the fibrillization was not considerably altered in the presence or 

absence of NLP. (e) final amount of αSN aggregation in the presence or absence of NLPs.  
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Figure. 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2. TEM images over time for αSN incubated in the presence or absence of NLP-Chol 

and NLP-Chol-PEG. Oligomers cluster around the surface of NLPs. The images represent αSN 

incubated without (left) or with NLP-Chol (middle) and NLP-Chol-PEG (right) after 4 h (a), 12 h 

(b), 24 h (c). The white arrows indicate oligomers interacting with NLPs and the black arrows 

indicate free oligomers. Scale bar, 200 nm. At the early stage of fibrillization, after 4 hours of 

incubation, (a) the fibrils and oligomers are formed in the control sample while in the samples 

treated with either NLP-Chol or NLP-Chol-PEG the vesicles are covered with oligomers even 

after 12 hours of incubation (b). In the control sample after 12 hours incubation, thin fibrils and 

some oligomers was detected whereas in the treated samples with NLPs aggregated vesicles, 

oligomers and fibrils (in low density) are observed. Despite the increase in fibrils in all samples 

(c), there are more fibrils in the control sample. 
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Figure. 3. 
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Figure. 3. Far-UV CD spectra of the αSN (70 µM) incubated in the presence or absence of 280 

µM NLP-Chol or NLP-Chol-PEG. αSN incubated with NLPs displayed retained its structure up 

to more than 18 hours relative to αSN alone. The spectra represent αSN incubation in the 

absence (a) or presence of NLP-Chol (b) and NLP-Chol-PEG (c). The ratio 200/220 nm of CD 

signal versus time for graphs a-c are shown in direct comparison with the ThT results (d). The 

solid lines represent CD signal and dashed lines indicate ThT. The samples were diluted 10 times 

before running CD.   
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Figure. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4. Preferential interaction of the N-terminal region of αSN with NLPs. (a) Overlay of 2D 
1H,15N HSQC spectra of αSN in the absence (red) or presence of NLP-Chol (blue). No 

significant chemical shift perturbation was observed. To make both datasets visible, the blue 

spectrum has been displaced by 0.02 ppm in the 1H dimension. (b) HSQC intensity perturbation 

profile after addition of lipid vesicles to αSN. NMR signals originating from N-terminal residues 

were broadened after interaction with NLP-Chol (blue bars). Less signal broadening was 

observed when NLP-Chol-PEG was used (green points). 
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Figure. 5. 
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Figure. 5. Far-UV CD thermal scans (222 nm) of 7 µM αSN in the presence of 0.2 mg/ml of 

either DMPG (a), DMPG + NLP-Chol (100 µg/mL) (b) and DMPG + NLP-Chol-PEG (100 

µg/mL) (c). 
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Figure. 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 6. Neurotoxicity of αSN (70 µM) pre-incubated 3-48 hours in the presence or absence of 

NLP-Chol and NLP-Chol-PEG (280 µM) using MTT after 24 hours of treatment for SHSY5Y 

(a) and PC12 (b) cells. 
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Figure. 7. 
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Figure. 7. The amount of the early apoptosis and late apoptosis/necrosis of SHSY5Y and PC12 

cells treated with αSN (70 µM) pre-incubated alone or with NLP-Chol and NLP-Chol-PEG (280 

µM). αSN in the absence or presence of NLPs were put on the fibrillization process and after 24 

hours samples were taken. The cells were then treated with 24 h-aged aggregated species of αSN 

and the amount of apoptotic/necrotic cells were assessed using flow cytometry. The percentage 

of apoptotic and late apoptotic/necrotic cells was measured using Flowing software 2.5.0. The 

flow cytometry experiments were carried out in duplicate and one diagram was shown as sample 

and the percentage of cell count in each quadrant was revealed as mean ± SD. In these diagrams 

the lower left is indicated as live cells, lower right as early apoptotic cells, upper left as necrotic 

cells and upper right as early apoptotic/necrotic cells. 
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Figure. 8. 

    

 

 

 

 

 

 

 

    

 

 

 

  

 

 

 

 

 

Figure. 8. The levels of intracellular ROS in SHSY5Y cells (a) and PC12 cells (b) treated with 

different pre-formed aggregates species of αSN (70 µM) in the absence or presence of 280 µM 

NLP-Chol or NLP-Chol-PEG (* indicates p ≤ 0.05). 
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Figure. 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 9. Neurotoxicity of 7 h-aged aggregated species of αSN (70 µM) in the presence or 

absence of NLP-Chol and NLP-Chol-PEG (280 µM) on SHSY5Y cells overexpressing αSN. The 

cell viability and the level of intracellular ROS were evaluated using MTT (a) and DCFH-DA 

assay (b). Seed was the sonicated 48 h-aged αSN that was added (10% (v/v)) to cells for 2 hours 

before treating the cells with the above materials. Statistically significant differences between the 

treated samples and the control are indicated as * (p ≤  0.05). 
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 Figure. 10. 

 

Figure. 10. Proposed mechanism for the interference of NLPs in the αSN fibrillization process 

leading to a reduction in fibril formation and alteration of the end product. Several reactions in 

this system may occur including: 1) the interaction between monomers and NLPs that different 

data showed to be rather weak, and so this is dynamic and reversible reaction; 2) the interaction 

between oligomers and NLPs that has more significant consequences. Although this reaction is 

also reversible, the forward reaction seems to dominate according to the results and the presence 

of NLPs induces the specific structures in these intermediates which cannot continue along the 

fibrillization pathway but form amorphous aggregates, leading to reduced cytotoxicity.  

 

 


