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Abstract—In this paper, we present a new methodology that
provides i) a theoretical analysis of the two most commonly used
approaches for effective shared cache management (i.e., cache
partitioning and loop tiling) and ii) a unified framework to fine
tuning those two mechanisms in tandem (not separately). Our
approach manages to lower the number of main memory accesses
by one order of magnitude keeping at the same time the number
of arithmetical/addressing instructions in a minimal level. We also
present a search space exploration analysis where our proposal
is able to offer a vast deduction in the required search space.

I. INTRODUCTION

Efficient shared cache utilization in multicore platforms

represents one of the most performance and energy critical

problems, especially for data dominant applications. First,

uncontrolled data contention occurs among different tasks,

because all the cores can unrestrictedly access the entire

shared cache memory [1]. Second, when the total size of

the data structures of the executing application is larger than

the cache size and the data are accessed more than once,

the data are loaded and reloaded many times from the slow

and energy demanding main memory. A well-studied direction

to address the first problem is to rely on software cache

partitioning techniques, called page coloring [1] [2] [3] [4].

A fruitful approach to circumvent the second problem is

by employing compiler level techniques such as loop tiling

[5] [6] and data array transformations [7] [8]. However,

when applying the above optimization techniques, most of

the shared cache architecture details and data reuse patterns

of the (co-)executing applications are not appropriately taken

into consideration. Most importantly, all the related approaches

address the two above problems separately.

In this paper a new methodology is presented which ad-

dresses the shared cache management problem in a theoret-

ical basis taking into consideration the underlying hardware

architecture details as well as the memory characteristics of

the application (e.g., memory reuse patterns of the executing

threads). The proposed methodology assumes a fixed number

of threads (each one mapped into a core) and the shared cache

architecture details as input and outputs the (near)-optimum

tile sizes of the main loops, the shared cache partition sizes,

and data array layouts. The goal is to reduce, to the extent

possible, the number of main memory accesses keeping at the

same time the number of arithmetical instructions at a minimal

level. By iteratively applying the proposed methodology for

all the different mappings between threads and cores, the

best mapping can be calculated (in terms of main memory

accesses), i.e., which threads should run on each core.

We showcase that if the transformations addressed in this

paper are included in a iterative compilation process (in order

to test all different related binaries), the compilation time will

last about 1037 years (for the algorithms studied here). On the

other hand, the compilation time of the proposed methodology

lasts from some minutes to some hours. Thus, an efficient

schedule can be found in a reasonable amount of time (with the

term schedule we refer to a specific transformation parameter

set).

The major contributions of this paper are the following: i)

for the first time, shared cache partitioning, loop tiling, and

data array layout transformations are addressed theoretically

but most importantly in a single framework, i.e., as one

problem and not separately, ii) cache partitioning and loop

tiling are addressed by taking into account the last level cache

(LLC) architecture details and the memory characteristics of

the co-running applications, iii) a direct outcome of the two

previous contributions is that the search space (to fine-tune the

above memory management techniques) is decreased by many

orders of magnitude.

The experimental results are based on the widely used and

cycle/power accurate Gem5 [9] and McPAT [10] simulators.

The proposed methodology has been evaluated over eight well

known data dominant loop kernels (taken from [11]) in terms

of compilation time, main memory accesses, performance and

energy consumption.

The remainder of this paper is organized as follows. In

Section II, the related approaches are provided. The proposed

methodology is described in Section III while experimental

results are presented in Section IV. Finally, Section V

concludes this paper.

II. RELATED WORK

Several studies use page coloring techniques to separate

the shared cache space among concurrently executing threads



[3] [2] [4] [12]. [3] proposes a practical OS-level cache

management scheme for multicore real time system that uses

partitioned fixed priority preemptive scheduling; in this work,

cache partitions are allocated to cores not to tasks. In [2], a

software runtime library is presented that enables programmers

to explicitly manage space sharing and contention in LLC. [4]

describes the implementation of a page coloring framework in

the Linux kernel. Apart from cache partitioning, researchers

tried to increase the the shared cache utilization by employing

compiler transformations and most commonly loop tiling

transformations [6] [7] [5] [13] [14]. [6] describes a

method for automatically generating multilevel tiled code for

any polyhedral iteration space. [14] presents a cache hierarchy

aware tile scheduling algorithm targeting to maximize data

reuse in LLC. To the best of our knowledge, this is the first

work that proposes a combined scheme in which page coloring

and loop tiling are fine tuned in a coordinated way.

III. PROPOSED METHODOLOGY

In this paper we make the following assumptions. First, we

assume a fixed number of threads; this means that no extra

threads are added at runtime. Second, we assume that all the

threads are assigned to a core; otherwise, we can randomly

assign the threads to the cores and then apply iteratively the

proposed methodology for all the different mappings between

threads and cores. Moreover, we assume that no more than

p tasks can run in parallel (one to each core), where p

is the number of the cores in the multicore platform. The

proposed methodology uses per-core and not per-task cache

partitioning; this approach has two important benefits [3].

The target applications are static loop kernels (both perfectly

and imperfectly nested loops, where all the array subscripts

are linear equations of the iterators).
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Fig. 1. Flow graph of the proposed methodology

An abstract representation of our methodology is illustrated

in Fig. 1. First, parsing is applied and all the loop kernels

and their characteristics are extracted. Then, one mathematical

equation is created for each array’s subscript, e.g., (A[2 ∗ i+
j]) and (B[i, j]) give (2 ∗ i + j = c1) and (i = c21 and

j = c22), respectively, where the following integer constants

(c1, c21, c22) are found according to the corresponding loop

bound values.

Definition 1: Subscript equations which have more than

one solution for at least one constant value, are named type2

equations. All others are named type1 equations.

For example, (2 ∗ i + j = c1) is a type2 equation, while

(i = c21 and j = c22) is a type1 equation. Type1 and type2

arrays are treated in different ways as their data reuse patterns

are different.

The next step is to apply one level of tiling to all the loop

kernels of all the tasks. Tiling is applied in order to partition

the data arrays into smaller ones (tiles) which fit and remain in

the cache during the execution. Therefore, the data arrays are

accessed few times from the slow and energy demanding main

memory. Although we apply loop tiling to all the loop iterators

at the first place, the output schedule/binary may contain tiling

to only one or none of the iterators. The tile sizes selection

procedure is analyzed in Subsection III-B.

In order to apply loop tiling in an efficient way, we generate

one mathematical inequality for each loop kernel giving all the

efficient cache partition sizes, tile sizes and shapes. This way,

we take into account the cache architecture details and the data

reuse. Fig. 2 shows an example of the proposed methodology

(it is explained in detail in the next subsections). The tiles have

to be small enough in order to fit in the cache and big enough

in order to utilize the cache size. To satisfy that the tiles remain

in cache, four conditions must simultaneously hold (they are

further explained in Subsection III-A). The tile sizes that are

different than those provided by the proposed equations are

discarded (they are inefficient), reducing the search space.

Given that all the efficient tile and cache partition sizes

have been extracted (Subsection III-A), we preserve only those

giving a main memory access value close to the minimum,

while all the others are discarded further decreasing the

search space. The problem of finding the number of main

memory accesses is theoretically formulated by exploiting

the custom application characteristics (Subsection III-B). In

subsection III-B, one mathematical equation is generated for

each loop kernel, giving the corresponding number of main

memory accesses. The independent variables of this equation

are the tile sizes; the tile sizes that minimize this equation

achieve the minimum number of main memory accesses.

The described procedure is repeated for all the different

iterator nesting level values (loop interchange). More specif-

ically, when all the tile and cache partition sets providing

a main memory accesses value close to the minimum have

been derived, we select (theoretically) the one offering the

smallest number of arithmetical/addressing instructions. To

proceed with this, among all the tile sizes that offer the

minimum main memory accesses, we select those that exhibit

the fewest number of the additional arithmetical instructions.

In general, the number of arithmetical/addressing instructions

is increased when a) a data array layout is changed; in the

case that an array’s tiles contain no consecutive main memory

locations, an extra array is introduced containing all the tile



elements in main memory in order; new arrays are created

which replace the default ones (an extra loop kernel is added),

b) the number of the loops being tiled is increased (the number

of the extra loops being inserted equals to the number of the

loops being tiled), c) smaller tile sizes are selected (the number

of loop iterations is increased). The constraint (a) gives by

far more arithmetical instructions than (b) and (c). Thus, the

schedules are classified according to the number of addressing

instructions, that is, how many of the (a)-(c) constraints they

meet. This way, we can find the schedule giving the smallest

number of arithmetical instructions. By iteratively applying

the above procedure for all the different mappings between

threads-cores, we can find the best mapping (in terms of main

memory accesses), i.e., what threads run on each core.

The reminder of this section is divided into two subsections

explaining in more detail the most complex steps of Fig. 1.

A. Deriving efficient tile sizes, cache partition sizes, and data

array layouts

Loop tiling transformation is the key to the high perfor-

mance and low energy SW for data dominant applications.

However, as we show in this work, in order to apply loop tiling

in an efficient way, the cache size and associativity and the

data array layouts must be taken into account as they strongly

depend on each other.

In order to find suitable tile and cache partition sizes,

a shared cache inequality is produced for each loop kernel

providing all the (near)-optimum tile and partition sizes; each

inequality contains i) the tile size of each array and ii) the

shape of each array tile (e.g., rectangle, line or square). The

inequality that provides all the efficient tile sizes and shapes

for each loop kernel separately is formulated as:

assoc − ⌊assoc/4⌋ ≤ ⌈
Tile1

LLCi/assoc
⌉ + ... + ⌈ Tilen

LLCi/assoc
⌉ ≤ assoc (1)

where LLCi is the LLC size / shared cache partition size

used for loop kernel of task i; the number of different partitions

equals to the number of the cores and LLCi = LLC1 for

all the tasks mapped onto the first core; assoc is the LLC

associativity e.g., for an 8-way associative cache, assoc = 8).

(⌊assoc/4⌋) provides the number of cache ways that remain

unused and defines the lower bound of tile sizes (experimen-

tally derived). T ilei is the tile size of the ith array and it is

formulated as follows:

T ilei = T ′

1
× T ′

2
× ...× T ′

n × type× s (2)

where type is the size of each array’s element in bytes and

T ′
i equals to the tile size of the i iterator, e.g., in Fig. 2, the tile

of C[i][j] is T ileC = T1×T2× 4 (floating point elements; 4

bytes each). s is an integer and (s = 1 or s = 2); s defines how

many tiles of each array should be allocated in LLC according

to the data reuse being achieved (it is explained below).

(LLCi/assoc) gives the size of one cache way.

(⌈ Tile1
LLCi/assoc

⌉) value in ineq. 1 is an integer that represents

the number of LLCi cache lines with identical LLC addresses

used for T ile1. (⌈ Tile1
LLCi/assoc

⌉+ ...+ ⌈ Tilen
LLCi/assoc

⌉) value in

ineq. 1 gives the number of LLCi cache lines with identical

LLC addresses used for all the tiles; if this value becomes

larger than the (assoc) value, the tiles cannot remain in the

cache simultaneously. On the other hand, by using ineq. 1,

an empty cache line is always granted for each different

modulo (with respect to the size of the cache) of tile memory

addresses. For the reminder of this paper we are going to

say that (⌈ Tile1
LLCi/assoc

⌉) cache ways are used for T ile1 (in

other words tiles are written in separate cache ways). For

example, in Fig. 2 the 1st,2nd,3rd terms of eq.13 give the

number of ’ways’ used for C,A,B arrays, respectively. In the

case that Tilei
LLCi/assoc

would be used instead of ⌈ Tilei
LLCi/assoc

⌉,

the number of cache misses will be larger because tiles would

conflict with each other.

In order to satisfy that the tiles remain in the cache, the

following four conditions must be met.

First, shared cache is divided into p partitions (one for each

core) and each core uses only its assigned shared cache space.

As noted, leveraging the fact that the shared LLC (the target

cache level in this work) is typically physically indexed, our

cache partitioning mechanism is based on the well known

OS technique called page coloring [3]. In particular, when

a tasks’s data have to be written onto a specific shared cache

color, the virtual memory pages of the tasks are mapped onto

specific physical pages that corresponds onto specific page

colors. Each processor supports a fixed-maximum number of

partitions (colors) which is given by LLC/(assoc × page),
where LLC, assoc and page are the LLC size, the LLC

associativity, and the main memory page size, respectively.

If the maximum number of colors is 32 in a 4-core system

(p = 4), (LLC1 + LLC2 + LLC3 + LLC4 = 32) and

(LLCi = (LLC/32) × d) where d = [1, 32] and (i) is the

core id.

Moreover, given that consecutive virtual addresses (array

elements) are not mapped into consecutive physical addresses,

we can further modify the OS page table mechanism (as

above), in order the arrays elements to be written into con-

secutive shared cache locations (inside the appropriate cache

partition). It is well-known that compilers allocate all the array

elements into consecutive virtual but not physical addresses.

Consecutive virtual addresses are not mapped into consecutive

physical addresses, but into chains of consecutive physical

addresses. Only the data residing within a page are written in

consecutive physical memory locations. However, the mapping

between the virtual memory pages and physical memory

frames is decided by the OS. Therefore, we can further modify

the OS page table mechanism (utilizing the page coloring tech-

nique) in order the virtual main memory pages of each array

to be assigned into consecutive shared cache locations. Under

this scenario, the physical main memory pages of each array

must contain consecutive color index values. Alternatively, the

OS huge page tables can be used; in this case, the page size

is many times larger and thus for reasonable array sizes, the

array elements are written in consecutive physical memory

locations.



Second, in order the tiles to remain in the cache during

the whole execution, the tile elements that do not contain

consecutive virtual main memory locations must be relocated

(re-paged) in consecutive virtual main memory locations,

known as tile-wise data array layout (new arrays are created

which replace the default ones-an extra loop kernel is added).

However, there are some special cases where the arrays do

not contain consecutive memory locations but their layouts

can remain unchanged. For example, this can happen when

the tile size is very small (T ilei ≺ (LLCi/assoc)/8) (this

value has been found experimentally). In this case, first the

array layout is not changed and second the tile is not inserted

in ineq. 1.

Third, the array tiles directed to the same cache subregions

do not conflict with each other i.e., the number of cache

lines with identical addresses needed for the array tiles is not

larger than the (assoc) value. This is achieved by choosing

the correct tile sizes, tile shapes, and data array layouts.

Fourth, for the tiles that do not exhibit data reuse, i.e.,

if a different tile is accessed in each iteration, we assign

cache space twice the size of their tiles; in this way, the next

accessed tile does not conflict with the current ones, satisfying

that the tiles remain in cache (data reuse). s value defines

how many tiles (one or two tiles) are allocated in LLC for

each array and (s = 1 or s = 2) depending on whether

the tile is reused or not, respectively. s = 1 is selected for

all the tiles that either they are accessed only once, or they

are accessed/reused in consecutive iterations (the same tile

is accessed in each iteration). Tiles that achieve data reuse

contain the iterators with the smallest nesting level values

(upper iterators). Otherwise, if a different tile is accessed in

each iteration, s = 2 is selected; in this case, two consecutive

tiles are allocated into LLC in order the second accessed tile

not to displace another array’s tile. Let us give an example.

Consider the second code of MMM in Fig. 2 assuming that the

arrays are written tile-wise in main memory. The three tiles are

accessed many times (data reuse) and thus they must remain

in the cache. In the case that the three array tiles fit in the

cache without any empty cache space left, when the second

tile of A and B are loaded and multiplied by each other, some

of their elements are going to be written on the tile of C; thus,

some of the tile C elements will be loaded again. On the other

hand, if we choose smaller tiles for A and B such that one tile

of C and two consecutive tiles of A and B fit in the cache,

the above problem will never occur and the number of cache

misses will be minimized.

B. Deriving the model providing the number of main memory

accesses with respect to the tile sizes

In this subsection the number of main memory accesses

is derived theoretically by exploiting the unique memory

behavior of each loop kernel. More specifically, for each

loop kernel one mathematical equation is created providing

the corresponding number of main memory accesses. The

independent variables of this equation are the tile sizes.

Normally, the larger the tile sizes are, the lower the number

of the main memory accesses is (assuming the tiles can

remain in the cache). Obviously, larger cache partition sizes

implies that larger the tile sizes can be used. However, the tile

sizes are constrained by the shared cache architecture details,

the designated cache partition size, and the number of the

cores/tasks.

Based on the Subsection III-A, no unexpected misses occur

(the four conditions explained above hold) and thus the number

of main memory accesses can be calculated as follows. The

overall number of main memory accesses can be extracted by

accumulating all the different loop kernel equations (eq. 3).

For the sake of simplicity, in the reminder of this paper we

assume that each task contains only one loop kernel.

DDR Acc. =
∑i=tasks

i=1
(TaskiArrays+ codei) (3)

where tasks is the number of the tasks. TaskiArrays and

codei represent the number of main memory accesses due to

the thread i data arrays and source code, respectively (for data

dominant applications (TaskiArrays ≫ codei)). The main

memory size allocated for the scalar variables is meaningless

and it is ignored. It is important to mention that (codei) value

is slightly affected by the loop tiling transformation and thus

it is inserted in eq. 3 as a constant value.

For the rest of this work, we assume that the underlying

memory architecture consists of separate first level data and

instruction caches (vast majority of architectures). In this case,

the program code typically fits in L1 instruction cache; thus,

it is assumed that the shared cache space is dominated by the

data arrays of the loop kernels.

TaskiAcc is given by the following equation:

TaskiAcc. = Type1 array acc.+ Type2 array acc. (4)

where Type1 array acc. and Type2 array acc. is the

number of main memory accesses of all type1 and type2

arrays, respectively (for task i). Type1 array acc. and

Type2 array acc. are offered by eq. 5 and eq. 7, respectively.

Type1 array acc. =
∑i=arrays1

i=1
(ArraySizei × ti + offseti) (5)

where arrays1 is the number of type1 arrays, ArraySizei
is the size of array i and ti represents how many times arrayi
is accessed from main memory. offseti gives the number of

main memory data accesses that occur when the data array

layout of array i is changed. Offset is either (offseti = 2×
ArraySizei) or (offseti = 0) depending on whether the data

layout of array i is changed or not; in the case that the layout of

array i is changed, the array has to be loaded and then written

again to main memory, thus it is (offseti = 2×ArraySizei).
ti gives how many times arrayi is accessed from main

memory and is given by:

ti =
∏j=N

j=1
upj−lowj

stepj
×
∏k=M

k=1
upk−lowk

stepk
(6)

where N is the number of iterators exist above the upper

new/tiling iterator of this array (e.g., ii iterator for B array),



M is the number of iterators exist between the new iterators

of this array (e.g., jj iterator for A array), if any. upj , lowj ,

stepj are the bound values of the corresponding new iterator

(in Fig. 2, upii = N, lowii = 0, stepii = T1), e.g., in Fig. 2

and MMM, eq. 6 gives (tA = N
T2 ) and (tB = N

T1 ), for A,B
arrays, respectively. The first and the second products of eq. 6

give how many times the array is accessed due to the iterators

exist above the upper new iterator of this array and between

the new iterators of this array, respectively, e.g., the B array

in Fig. 2 does not contain ii iterator and thus it is loaded

(N/T1) times (the same holds for A array which is loaded

(N/T2) times).

The number of main memory data accesses of type2 arrays

is calculated as follows:

Type2 array acc. =

i=arrays2∑

i=1

(ti ×
up1 − low1

step1
×

×((up2 − low2) + step1) × ((up2
′

− low2
′

) + step1
′

) + offseti)

(7)

where arrays2 is the number of type2 arrays, ti is cal-

culated by eq. 6, up1, low1, step1 are the bound values of

the outermost type2 new/tiling iterator (e.g., ii iterator for in
array in Fig. 2) and up2, low2 are the upper/lower bounds of

the innermost type2 new/tiling iterator (e.g., jj iterator for

in array in Fig. 2), e.g., (up1, low1, step1, up2, low2) values

of in array in Fig. 2 are (N, 0, T4,M, 0); without any loss

of generality we assume that the type2 equations contain

only two iterators here. If only 1 iterator has been tiled, it

refers to the up1, low1, step1 (up2, low2 refer to the other

iterator that has not been tiled). For 1-dimensional arrays the

((up2′ − low2′) + step1′) term is ignored; for 2-dimensional

arrays this term refers to the (up2, low2, step1) values of the

second subscript.

In practice, type2 arrays are accessed more times than type1

arrays because of the extra iterators they contain; when more

than one iterator exists in a single subscript (e.g., in[i+j] array

in Fig. 2), data patterns occur which they are repeated/accessed

many times. For example, as the innermost iterator in FIR

(Fig. 2) changes its value, the elements are accessed in a

pattern, i.e., A[2], A[3], A[4] etc. When the second innermost

iterator (i) changes its value, this pattern is repeated, shifted

by one position to the right (A[3], A[4], A[5] etc), reusing its

elements. This holds for equations with more than 2 iterators

too. The ((up2− low2) + step1× ((up2′ − low2′) + step1′))
part in eq. 7 gives the size of the pattern in the general case (2-

d array) while (up1−low1
step1 ) offers how many times the pattern

is repeated/accessed. It is important to say that eq. 7 holds

when ((pattern size) − tile size) ≥ tile size); otherwise,

the array is accessed only once and eq. 6 changes accordingly.

An example is given in Fig. 2.

IV. EXPERIMENTAL RESULTS

Our experimental results are based on gem5 [9] and McPAT

[10] simulators. The comparison is done for 8 well-known

data dominant kernels of linear algebra, image processing,

and signal processing ( [11]). gem5 is used to simulate a x86

multicore architecture at 2Ghz with a 1MB L2 shared cache.

//MMM

for (i=0;i!=N;i++)

for (j=0;j!=N;j++)

for (k=0;k!=N;k++)

C[i][j]+= A[i][k] * B[k][j];

//MMM – after loop tiling 

for (ii=0; ii!=N; ii+=T1)

for (jj=0; jj!=N; jj+=T2)

for (kk=0; kk!=N; kk+=T3)

for (i=ii; i!=ii+T1; i++)

for (j=jj; j!=jj+T2; j++)

for (k=kk; k!=kk+T3; k++)

C[i][j]+= A[i][k] * B[k][j];

MMM - Main Memory accesses

C: 2 x N2

A: N3/T2 

B: N3/T1

mmm_acc.= 2xN2 + N3/T2  + N3/T1 

//FIR

for (i=0;i!=N;i++)

for (j=0;j!=M;j++)

out[i] += in[ i + j ] * kernel[ j ];

//FIR – after loop tiling 

for (ii=0; ii!=N; ii+=T4)

for (jj=0; jj!=M; jj+=T5)

for (i=ii; i!=ii+T4; i++)

for (j=jj; j!=jj+T5; j++)

out[i] += in[ i + j ] * kernel[ j ];

FIR - Main Memory accesses

out: 2 x N 

in: N/T4 x (M+T4) 

kernel: M x N/T4

fir_acc.= 2xN + N/T4 x (M+T4) + M x N/T4 
Equation giving the number of main memory accesses: 

DDR-acc = Offset + mmm_acc. + fir_acc. + code         (8) 

 

Offset = 0 ,       if (T3=N & T2=N)           (9) 

Offset = 2xN
2
 , if T ≠N & T =N            (10) 

Offset = 4xN
2
 , if T =N & T ≠N            (11) 

Offset = 6xN
2
 , if T ≠N & T ≠N            (12) 

        

Equation giving all the efficient tile and LLC partition sizes for MMM  � � −  � �
4

 ≤  �1  �2  ����1 � �  +  �1  �3  �   2���1 � �  +   �2  �3  �   2���1 � �  ≤ � �     (13) 

 

Equation giving all the efficient tile and LLC partition sizes for FIR � � −  � �
4

 ≤  �4  ����2 � �  +   �4+�5   ����2 � �  +   �5  ����2 � �  ≤ � �          (14) 

 

LLC1+LLC2=LLC             (15) 

LLC1=LLC/d, d=[1,max_colors]            (16) 

LLC2=LLC/d, d=[1,max_colors]            (17) 

(0 < T1, T2, T3, T4 < N)  & (0 < T5 < M)          (18) 

  

Fig. 2. Motivation example of Subsection III-A and Subsection III-B

TABLE I
EVALUATION OF THE ACCURACY OF SUBSECTION III-B

Loop kernel Input size 1 Error Input size 2 Error
mmm (800,800,800) 1.85% (1200,1200,1200) 2.10%

fir (20000,4000) 2.35% (80000,8000) 2.43%
mvm (4000,4000) 1.10% (8000,8000) 1.20%

gesumv (4000,4000) 1.30% (8000,8000) 1.30%
doitgen (100,100,100,100) 2.20% (200,200,200,1000) 2.10%
symm (608,608,608) 2.45% (1200,1200,1200) 2.51%

Gauss Blur (512,512) 0.00% (1024,1024) 0.00%
Seidel2d (512,512) 0.00% (1024,1024) 0.00%

First, an evaluation of the accuracy of Subsection III-B has

been made. Table I illustrates the main memory data accesses

calculated by the equations of Subsection III-B and from

gem5 simulator. The error values are also depicted. As we

can observe, the error is small in both input sizes for all the

kernels. In Gaussian Blur and the Seidel2d kernels, the error

is zero because the critical part of the arrays fits in the shared

cache, thus the arrays are fetched only once from the main

memory (no loop tiling is applied). We did not use larger

input sizes for these two kernels because in our opinion, they

are not realistic.

An evaluation of the compilation time / search space has



also been made over iterative compilation. Simple speaking,

we calculate the number of different binaries related in this

paper. The search space consists of all the different tile sizes

and shapes, data array layouts, cache partition sizes, and

nesting level values. It is given by:

Schedules =
(max colors− 1)!

(cores!)× (max colors− cores)!
×

×

i=N∏

i=1

((2d arraysi × 2)× T ile
loopsi
i × (2× loopsi!))

(19)

where N is the number of the loop kernels, while cores and

max colors are the number of the cores and cache colors,

respectively. 2d arraysi is the number of multidimensional

arrays in loop kernel i and indicates that each multidimen-

sional array uses two different data layouts (the default and

the tile-wise), T ilei is the number of different tile sizes for

loop kernel i and loopsi is the number of the loops of kernel

i. For a fair comparison, we use only (T ile = 20) different

tile sizes for all the loop kernels.

Based on eq. 19, the overall number of binaries that eq. 19

gives is 3.37× 1044 (cores = 8 and colors = 32). Given that

1sec = 3.17×10−8years and supposing that compilation time

takes about 1 sec, the compilation time is about 1037 years.

Instead of testing all those schedules (which is impractical),

the proposed methodology finds the best schedule among those

in a significantly smaller fraction of time (from minutes to

hours).

Moreover, an evaluation over gcc 4.8.4 compiler has been

performed, in terms of main memory data accesses, perfor-

mance and energy consumption (Table II). We have used

four cores and eight loop kernels. Six different thread com-

binations have been used with three different input sizes

(Table II). The thread combination numbers correspond to

(1,2,3,4,5,6,7,8)=(mmm, mvm, symm, fir, gesumv, seidel, doit-

gen, gauss). The first and the fourth kernel combinations en-

gender a higher cache pressure and they produce the smallest

ddr access gain values and consequently the smallest speedup

and energy gain values. This is because in the first and fourth

cases, the three most data dominant kernels (doitgen, symm,

mmm) run on a different core and thus they compete to

each other for cache space. On the other hand, on the other

combinations two of the three above kernels use the same core

and thus only the two kernels compete to each other for cache

space.

TABLE II
FOUR CORES AND EIGHT LOOP KERNELS, TWO TO EACH CORE

kernel combinations DDR gain speedup energy gain
(1-2,3-4,5-6,7-8) 15.48 1.71 1.78
(1-3,2-4,5-6,7-8) 25.43 1.75 1.86
(8-2,3-4,5-6,7-1) 22.6 1.72 1.85
(1-5,4-3,6-7,2-8) 16.31 1.71 1.8
(6-8,7-5,3-1,2-4) 26.06 1.76 1.88
(6-8,5-2,3-4,1-7) 22.04 1.72 1.84

V. CONCLUSION

In this paper a novel methodology is presented providing a

theoretical foundation in the shared cache partitioning and loop

tiling problems, in tandem (not separately). This methodology

reduces the number of main memory data accesses from 7.72

up to 25 times, the execution time of about 1.7 and the energy

consumption of about 1.8.

ACKNOWLEDGMENT

This study is part of the collaborative project ARGO, which

is funded by the European Commission under Horizon 2020

Research and Innovation Action, Grant Agreement Number

688131

REFERENCES

[1] D. Tam, R. Azimi, L. Soares, and M. Stumm, “Managing shared l2
caches on multicore systems in software,” in Workshop on the Interaction

between Operating Systems and Computer Architecture, 2007.
[2] X. Ding, K. Wang, and X. Zhang, “Ulcc: a user-level facility for

optimizing shared cache performance on multicores.” in PPOPP. ACM,
2011, pp. 103–112.

[3] K. Hyoseung, K. Arvind, and R. Ragunathan, “A coordinated approach
for practical os-level cache management in multi-core real-time sys-
tems,” in 25th ECRTS, Paris, France, July 9-12, 2013, pp. 80–89.

[4] Y. Ye, R. West, Z. Cheng, and Y. Li, “Coloris: A dynamic cache
partitioning system using page coloring,” ser. PACT ’14. ACM, 2014,
pp. 381–392.

[5] B. Bao and C. Ding, “Defensive loop tiling for shared cache,” in
Proceedings of the 2013 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO), ser. CGO ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 1–11.

[6] D. Kim, L. Renganarayanan, D. Rostron, S. Rajopadhye, and M. M.
Strout, “Multi-level tiling: M for the price of one,” in Proceedings of

the 2007 ACM/IEEE Conference on Supercomputing, ser. SC ’07. ACM,
2007, pp. 51:1–51:12.

[7] I.-J. Sung, J. A. Stratton, and W.-M. W. Hwu, “Data layout transforma-
tion exploiting memory-level parallelism in structured grid many-core
applications,” in Proceedings of the 19th International Conference on

Parallel Architectures and Compilation Techniques, ser. PACT ’10. New
York, NY, USA: ACM, 2010, pp. 513–522.

[8] Y. Zhang, W. Ding, M. Kandemir, J. Liu, and O. Jang, “A data layout op-
timization framework for nuca-based multicores,” in Proceedings of the

44th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-44. ACM, 2011, pp. 489–500.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[10] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings

of the 42Nd Annual IEEE/ACM International Symposium on Microar-

chitecture, ser. MICRO 42. ACM, 2009, pp. 469–480.
[11] O. S. University. (2012) Polybench/c benchmark suite. [Online].

Available: http://web.cs.ucla.edu/ pouchet/software/polybench/
[12] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page coloring-

based multicore cache management,” in Proceedings of the 4th ACM

European Conference on Computer Systems, ser. EuroSys ’09. ACM,
2009, pp. 89–102.

[13] X. Zhou, J.-P. Giacalone, M. J. Garzarán, R. H. Kuhn, Y. Ni, and
D. Padua, “Hierarchical overlapped tiling,” in Proceedings of the Tenth

International Symposium on Code Generation and Optimization, ser.
CGO ’12. ACM, 2012, pp. 207–218.

[14] J. Liu, Y. Zhang, W. Ding, and M. T. Kandemir, “On-chip cache
hierarchy-aware tile scheduling for multicore machines.” in CGO. IEEE
Computer Society, 2011, pp. 161–170.


