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Substitution-based structures with absolutely continuous spectrum

Lax Chan, Uwe Grimm∗, Ian Short

School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7 6AA,

United Kingdom

Abstract

By generalising Rudin’s construction of an aperiodic sequence, we derive new substitution-
based structures which have a purely absolutely continuous diffraction measure and a mixed
dynamical spectrum, with absolutely continuous and pure point parts. We discuss several
examples, including a construction based on Fourier matrices which yields constant-length
substitutions for any length.

Keywords: substitution dynamical system, spectral measure, absolute

continuity, Lebesgue spectrum
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1. Introduction

Substitution dynamical systems are widely used as toy models for aperiodic order in
one dimension [1, 2]. By an argument of Dworkin [3], the diffraction spectrum of these
systems is related to part of the dynamical spectrum, which is the spectrum of a unitary
operator acting on a Hilbert space, as induced by the shift action. We refer the readers5

to [4] and references therein for recent developments and the current knowledge of the
relationship between these different spectral characterisations. Here we are interested in
systems that feature absolutely continuous spectra, in spite of being perfectly ordered.

A paradigm of such a system is the (binary) Rudin–Shapiro or Golay–Shapiro sequence.1

It was introduced in [5, 6, 7] in answer to a question raised by Salem [6] in the context10

of harmonic analysis; see also [8, Sec. 4.7.1] and [9]. This sequence, represented by a
Dirac comb with balanced weights (±1), is a substitution-based structure with purely
absolutely continuous diffraction spectrum, so it has a mixed dynamical spectrum, with a
pure point part arising from the underlying constant-length substitution structure. Indeed,
this deterministic sequence has the stronger property that its two-point correlations vanish15

exactly for any non-zero distance; a direct proof of this property can be found in [8,
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1For simplicity, we will refer to this sequence as the Rudin–Shapiro sequence, as this is the more

commonly used term.
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Sec. 10.2]; see also [1]. Recall that the diffraction measure is the Fourier transform of the
autocorrelation measure, which in this case is just δ0 (a point measure located at the origin),
so the diffraction measure is Lebesgue measure. Some generalisations of the Rudin–Shapiro
sequence were provided in [10], but to date relatively few examples of substitution-based20

sequences of this type are known explicitly. There are good reasons for this, as one would
expect a generic substitution-based structure to produce a singular continuous spectrum
[11].

In [12], a systematic generalisation of the Rudin–Shapiro system to higher-dimensional
substitutions was derived. It employs Hadamard matrices (matrices with elements ±125

whose rows are mutually orthogonal). The underlying systems are symbolic constant-length
substitutions on a finite alphabet A, based on arrangements of letters on the (hyper)cubic
lattice Z

d. Letters in the alphabet are paired, so for each letter a ∈ A there is a twin
letter a ∈ A, with a 6= a and a = a. In particular, the author proved the following result,
where X denotes the hull of the substitution, µ the corresponding invariant measure, HD30

the discrete spectrum, and Z(f) the cyclic subspace associated to a function f ∈ L2(X, µ).

Theorem 1.1 ([12]). Let (X, Zd, µ) be a dynamical system associated to an aperiodic Z
d-

substitution subject to the conditions that2

• each letter in the alphabet A is only allowed to appear in the position given by its
underlying number (so the images of letters under the substitution differ only in the35

number and/or position of the bars that distinguish paired letters);

• paired letters are substituted by corresponding paired blocks;

• the symbol matrix of the corresponding substitution is a Hadamard matrix.

Then there exist functions f1, . . . , fK ∈ L2(X, µ), each with spectral measure equal to
Lebesgue measure, such that

L2(X, µ) = HD ⊕ Z(f1) ⊕ · · · ⊕ Z(fK).

In this article we provide further examples of substitution-based structures with
Lebesgue spectrum. These systems do not satisfy the last condition of Theorem 1.1,
although they still appear to have a close relationship to Hadamard matrices and their
complex analogues. Our approach is based on modifying and extending the original con-
struction of Rudin [6]. As a consequence, our examples are sequences (εn)n∈N

that satisfy
the property

sup
|x|=1

∣

∣

∣

∣

N
∑

n=1

εnx
n

∣

∣

∣

∣

≤ C N
1

2 (1)

for some positive constant C, where the supremum is taken over complex numbers of
unit modulus. We shall refer to this property as the root-N property. This bound on the40

2We refer to the original article for more details on these conditions.
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growth of the exponential sums implies that the corresponding diffraction measure is purely
absolutely continuous; compare [10, 13]. Similar attempts to generalise the Rudin–Shapiro
system, albeit from a different viewpoint, can be found in [14, 15].

We start by revisiting the recurrence relations that give rise to the Rudin–Shapiro
sequence. We then generalise this approach in Section 3 by introducing a sequence of45

signs in the recurrence relations. This results in substitution-based structures in which the
underlying substitutions are of length 2k for k ∈ N. In Section 4, we go a step further by
considering recurrence relations with complex coefficients, which relate to Fourier matrices.
In this case, we obtain new substitutions for any length n ≥ 3, which give rise to weighted
Dirac combs with (in the balanced weight case) purely absolutely continuous diffraction50

measure.

2. The Rudin–Shapiro sequence revisited

Let us briefly review Rudin’s original construction of the Rudin–Shapiro (RS) sequence.
For details of the construction, see [6].

We start by defining two sequences of polynomials, (Pk(x))k∈N0
and (Qk(x))k∈N0

, where
Pk and Qk both have degree 2k. They are determined by the initial choices P0(x) =
Q0(x) = x together with the recurrence relations

Pk+1(x) = Pk(x) + x2k

Qk(x),

Qk+1(x) = Pk(x) − x2k

Qk(x).
(2)

It is clear from Eq. (2) that the first 2k terms of Pk+1(x) and of Qk+1(x) coincide with
those of Pk(x), and that their remaining terms differ by a sign. By construction, Pk(x) is
of the form

Pk(x) =
2k

∑

n=1

εn xn, (3)

where each coefficient εi is either −1 or 1, so we can define a binary sequence (εn)n∈N
∈

{±1}N from the coefficients. This is the binary RS sequence. For example, for k = 3, we
have the polynomial

P3(x) = x + x2 + x3 − x4 + x4(x + x2 − x3 + x4),

from which we read off the sequence 11111111, where here (and henceforth) we use the55

convention that 1 = −1, with the implied assumption that u v = u v holds for all finite
sequences (or words) u and v. Here and in what follows, we will often switch between
considering (εn)n∈N

as a binary sequence or as a word in the two-letter alphabet {1, 1}.
If ak = ε1ε2 · · · ε2k ∈ {±1}2k

denotes the word of length 2k of coefficients of Pk(x),
and bk denotes the corresponding word for Qk(x), then the recurrence relations of Eq. (2)
correspond to the concatenation relations

ak+1 = akbk,

bk+1 = akbk,
(4)
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on words in the two-letter alphabet {1, 1}, with initial values a0 = b0 = 1.
The concatenation relations (4) can be seen to correspond to the substitution rule

A 7→ AB, B 7→ AB on the four-letter alphabet {A,B,A,B}, which upon completion to a
four-letter substitution rule becomes

S+ : A 7→ AB, B 7→ AB, A 7→ AB, B 7→ AB, (5)

so that the ‘bar’ operation is compatible with the substitution; see [16] for more on substi-
tutions that feature a ‘bar-swap symmetry’ of this kind. This substitution is often referred
to as the four-letter RS substitution rule. Clearly, by induction, this rule gives rise to the
concatenation relations

Ak+1 = AkBk,

Bk+1 = AkBk,

which have the same structure as Eq. (4), but work on the four-letter alphabet {A,B,A,B}
instead of the two-letter alphabet {1, 1}. The connection between the two is provided by
the map, often referred to as a coding,

ϕ :

{

A,B 7→ 1,

A,B 7→ 1,
(6)

which defines a homomorphism from {A,B,A,B}N to {1, 1}N.60

Iterating the substitution rule S+ (defined by Eq. (5)) on the initial letter A (which
turns out to be the relevant choice3 in our case) gives

A 7→ AB 7→ ABAB 7→ ABABABAB 7→ ABABABABABABABAB 7→ · · · −→ w+,

which converges (in the local topology) to an infinite fixed point word w+. We denote the
corresponding one-sided hull, which is the closure of the orbit of w+ under the shift map, by
X+. Here, the (left) shift map T acts on an infinite symbolic sequence w = w1w2w3w4 · · ·
as w 7→ Tw with

(Tw)n = wn+1 for all n ∈ N. (7)

The binary RS sequence is then recovered as the image of w+ under the factor map ϕ of
Eq. (6), which reproduces the sequence (εn)n∈N

∈ {±1}N. Note that there is no two-letter
substitution rule for this sequence, unless you work with a staggered substitution with
different rules for even and odd positions along the word; see [8, Sec. 4.7.1].

The main ingredient in Rudin’s proof [6] of the root-N property (1) for the binary
sequence is the parallelogram law,

|α + β|2 + |α − β|2 = 2|α|2 + 2|β|2, (8)

3Here and below we use the initial letter A to construct a fixed point sequence w. There will always be
a second fixed point sequence, which due to the bar-swap symmetry of our substitutions is just w, which
can be obtained by iterating S+ on the initial letter A.
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where α, β ∈ C, and this will also be the case in our generalisations discussed below.65

It follows that the consequences for spectral properties specifically apply to the binary
sequence (εn)n∈N

∈ {±1}N; the argument does not directly provide information about the
spectral properties of the underlying four-letter sequence obtained from the substitution
rule of Eq. (5).

3. Modifying Rudin’s construction70

Let us now introduce some modifications to the original construction of Rudin, and show
that our newly derived recurrence relations still satisfy the root-N property of Eq. (1). Fol-
lowing this, we compute some concrete examples and derive the corresponding substitution
systems, in the same way as for the RS sequence above.

Our approach to modifying the RS sequence is somewhat similar to that of [14, 15],75

but framed in a different context.
We again work with two sequences of polynomials (Pk(x))k∈N0

and (Qk(x))k∈N0
, with

P0(x) = Q0(x) = x. By introducing additional signs σk ∈ {±1} in the recurrence relations
of Eq. (2), we consider

Pk+1(x) = Pk(x) + σk x2k

Qk(x),

Qk+1(x) = Pk(x) − σk x2k

Qk(x),
(9)

for k ∈ N0. At this stage, we do not yet specify the values of σk.
Clearly, the RS case corresponds to the choice σk = 1 for all k ∈ N0. If instead one

chooses σk = −1 for all k ∈ N0, the recurrence relations correspond to the substitution

S− : A 7→ AB, B 7→ AB, A 7→ AB, B 7→ AB. (10)

Its one-sided fixed point w−, obtained by iterating S− on the letter A,

A 7→ AB 7→ ABAB 7→ ABABABAB 7→ ABABABABABABABAB 7→ · · · −→ w−,

gives rise to the (one-sided) hull X−. It is easy to verify that X+ 6= X−, since there are
subwords of length six in w+ (such as BABABA or BABABA) which do not occur as
subwords of w−, and vice versa. Indeed, the same holds true for the corresponding binary80

sequences and their hulls Y+ := ϕ(X+) and Y− := ϕ(X−). For example, ϕ(BABABA) =
111111 is a subword of ϕ(w+) but not of ϕ(w−), as ABAB does not appear in either w+

or w−. Observe that, in fact, ϕ induces a bijection between the hulls, so X+ and Y+ (and
also X− and Y−) are mutually locally derivable, and the corresponding four-letter and
two-letter dynamical systems (under the shift action) are topologically conjugate; compare85

[8, Rem. 4.11]. This can, for instance, be seen by realising that the subword 1111, which
occurs in both ϕ(w+) and ϕ(w−) with bounded gaps, has the unique preimage BABA in
both w+ and w−.

One can also verify that the substitution matrices for S+ and S− have different eigen-

values (2, ±
√

2 and 0 for S+ and 2, 1± i and 0 for S−), so the corresponding substitution90
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dynamical systems cannot be conjugate (as they have different dynamical zeta functions).
However, this does not answer the question whether X+ and X− are mutually locally
derivable or not, because this difference vanishes if you look at the eighth power of the
substitutions.

Proposition 3.1. The sequence of coefficients (εn)n∈N
of the functions Pk, k ∈ N0, defined95

by the recurrence relations of Eq. (9), satisfies the root-N property of Eq. (1).

Proof. The proof proceeds by induction. Consider the case |x| = 1. By the recurrence
relations (9), we have

|Pk+1(x)|2 + |Qk+1(x)|2 = |Pk(x) + σk x2k

Qk(x)|2 + |Pk(x) − σk x2k

Qk(x)|2.

Applying the parallelogram law (8), we find that

|Pk+1(x)|2 + |Qk+1(x)|2 = 2
(

|Pk(x)|2 + |Qk(x)|2
)

.

Since |P0(x)|2 + |Q0(x)|2 = 2, we can conclude that

|Pk(x)|2 + |Qk(x)|2 = 2k+1,

and hence
|Pk(x)| ≤ 2

k+1

2 . (11)

This proves the root-N property for N = 2k.
In order to tackle the case when N is not necessarily a power of 2, we define partial

sums of Pk and Qk as follows,

Pk|m(x) =
m

∑

n=1

εnx
n, Qk|m(x) =

m
∑

n=1

γnx
n,

where 2k−1 < m ≤ 2k, k ∈ N0, and where εn, γn ∈ {±1} are the corresponding coefficients.
We now show that these satisfy

∣

∣Pk|m(x)
∣

∣ ≤ G 2
k
2 and

∣

∣Qk|m(x)
∣

∣ ≤ G 2
k
2 (12)

for all |x| = 1 and k ∈ N0, where G = 2 + 21/2.
The above estimates are obviously true for k = 0. Suppose that they hold for some

k ∈ N0, and consider an integer m with 2k < m ≤ 2k+1. By using the triangle inequality
together with Eqs. (11) and (12), we obtain

∣

∣Pk+1|m(x)
∣

∣ ≤
∣

∣Pk(x)
∣

∣ +
∣

∣Qk|m−2k(x)
∣

∣ ≤ 2
k+1

2 + G 2
k
2 = G 2

k+1

2 ,

which establishes Eq. (12) for k + 1. The same argument clearly works for Qk+1|m(x).

To complete the proof, suppose that 2k−1 < N ≤ 2k. By Eq. (12), we have
∣

∣Pk|N(x)
∣

∣ ≤ (2 + 2
1

2 )2
k
2 ≤ 2(1 + 2

1

2 )N
1

2 ,

which shows that the root-N property holds.100
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Corollary 3.2. Whatever the choice of the signs σk ∈ {±1} in Eq. (9), the corresponding
sequence (εn)n∈N

is balanced.

Proof. The average value of the first N coefficents is given by

1

N

N
∑

n=1

εn =
1

N
Pk|N(1)

for 2k−1 < N ≤ 2k. By Proposition 3.1, this satisfies

∣

∣

∣

∣

∣

1

N

N
∑

n=1

εn

∣

∣

∣

∣

∣

≤ 2(1 + 2
1

2 )N− 1

2

and therefore the average value tends to 0 as N → ∞.

As mentioned earlier, the root-N property implies absolute continuity of the diffraction
measure for the binary sequence.105

Corollary 3.3. For any sequence of coefficients (εn)n∈N
as in Proposition 3.1, the corre-

sponding Dirac comb
∑

n∈N
εnδn has purely absolutely continuous diffraction measure.

We now consider some examples.

Example 3.1. Let us start with the choice σk = (−1)k+1, so the signs in the recurrence
relations for the polynomials alternate, and we have

Pk+1(x) = Pk(x) + (−1)k+1x2k

Qk(x),

Qk+1(x) = Pk(x) − (−1)k+1x2k

Qk(x),

for k ∈ N0. We could now read off the corresponding substitution rule just as we did for
the RS substitution, but this case is more complicated because of the alternating signs.
One way to overcome this problem is to look at two consecutive steps at once,

Pk+2(x) = Pk(x) + (−1)k+1x2k

Qk(x) + (−1)k+2x2·2k

Pk(x) + x3·2k

Qk(x),

Qk+2(x) = Pk(x) + (−1)k+1x2k

Qk(x) − (−1)k+2x2·2k

Pk(x) − x3·2k

Qk(x).
(13)

Choosing k to be even (which corresponds to the case we are interested in, since our
recursion starts with k = 0) and associating letters A and B, and their counterparts A and
B, to the sequences corresponding to P and Q, we obtain the substitution rule

S−+ : A 7→ ABAB, B 7→ ABAB, A 7→ ABAB, B 7→ ABAB. (14)

This is a substitution of constant length four, because we used a double step of the re-
cursion, and Eq. (13) corresponds to concatenation of four sets of coefficients. As before,
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a one-sided fixed point sequence w−+ is obtained from iterating the substitution on the
initial letter A,

A 7→ ABAB 7→ ABABABABABABABAB 7→ · · · −→ w−+.

By mapping A, B to 1 and A, B to 1 = −1 using the map ϕ of Eq. (6), we obtain the
binary sequence v−+ = ϕ(w−+) = 1111111111111111 · · · as our new RS-type sequence.110

Alternatively, one can see the substitution S−+ as the composition of the two substi-
tutions S+ and S− from Eqs. (5) and (10), in the sense that S−+ = S− ◦ S+. To see this
explicitly, let us verify the composition on the letters A and B,

A
S

+−→ AB
S
−−→ ABAB,

B
S

+−→ AB
S
−−→ ABAB.

The images of A and B can be computed using the bar-swap symmetry.
From Proposition 3.1, we conclude that the binary sequence v−+ = ϕ(w−+) satisfies the

root-N property, and hence the corresponding diffraction measure is absolutely continuous.

Our next example is closely related. We again alternate the signs in the recursion, but
shifted by one. Maybe surprisingly, this produces a different sequence of coefficients.115

Example 3.2. Here we choose σk = (−1)k. The recurrence relations are now

Pk+1(x) = Pk(x) + (−1)kx2k

Qk(x),

Qk+1(x) = Pk(x) − (−1)kx2k

Qk(x),

for k ∈ N0. Using the same approach as above, this gives rise to the substitution rule

S+− : A 7→ ABAB, B 7→ ABAB, A 7→ ABAB, B 7→ ABAB. (15)

This rule can also be expressed as the composition of the two substitution systems S+ and
S−, this time as S+− = S+ ◦ S−, because

A
S
−−→ AB

S
+−→ ABAB,

B
S
−−→ AB

S
+−→ ABAB,

and the relations for the barred letters follow by bar-swap symmetry. Again, Proposi-
tion 3.1 shows that the corresponding binary sequence v+− = ϕ(w+−), where w+− denotes
the fixed point of S+− obtained by iterating S+− on the letter A, satisfies the root-N prop-
erty and hence gives rise to a Dirac comb with absolutely continuous diffraction measure.

The observations of Examples 3.1 and 3.2 show that alternating the sign in the recur-120

rence relations corresponds to the composition of the two substitutions S+ and S−. Clearly,
the two substitutions S−+ and S+− and their respective one-sided hulls are closely related.
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Lemma 3.4. The hulls X−+ and X+− of the substitutions S−+ and S+− defined by
Eqs. (14) and (15) satisfy the relations

X+− = S+(X−+) ∪ TS+(X−+),

X−+ = S−(X+−) ∪ TS−(X+−),

where T denotes the shift map on {A,A,B,B}N; see Eq. (7).

Proof. Let w−+ and w+− denote fixed point sequences for S−+ and S+−. Then the (one-
sided) hulls X−+ and X+− are the closures of the orbits of the fixed points under the shift
map T . Now, S−+ = S− ◦ S+ implies that

S−+(S−w+−) =
(

S− ◦ S+ ◦ S−
)

w+− = S−(S+−w+−) = S−w+−,

which shows that S−w+− is a fixed point of S−+. Similarly, since S+− = S+ ◦ S−, we have

S+−(S+w−+) =
(

S+ ◦ S− ◦ S+

)

w−+ = S+(S−+w−+) = S+w−+,

and consequently S+w−+ is a fixed point of S+−.
Since the substitutions S+ and S− have constant length two, we have

S+ ◦ T = T 2 ◦ S+ and S− ◦ T = T 2 ◦ S−, (16)

which implies that S+(X−+) is the subset of X+− of all sequences starting with a letter A or125

A, since only even shifts are included. By continuity of the action, limits are included, so
the closure does not add any additional elements. Hence the union S+(X−+) ∪ TS+(X−+)
gives the complete hull X+−, and the analogous result holds for the case where the signs
are interchanged.

Notice that, despite this close connection, the two hulls X−+ and X+− are indeed dif-130

ferent, as can be verified by considering words of length six. Note also that the eigenvalues
of the substitution matrices of S−+ and S+− are again different; they are 4, 2 (twice) and
0 for S−+, and 4, ±2 and 0 for S+−. The question of whether the two hulls are mutually
locally derivable remains open.

Still, the following result on induced systems [17, 18] shows that the two systems are135

intimately linked.

Proposition 3.5. (X−+, T ) is conjugate to the induced system of (X+−, T ) on the subset
S+(X−+), and (X+−, T ) is conjugate to the induced system of (X−+, T ) on the subset
S−(X+−).

Proof. Here we prove the first claim; the second follows analogously. As mentioned above,
S+(X−+) = [A] ∪ [ A ] ⊂ X+−, where the brackets denote cylinder sets of words starting
with the given letter. Now, consider the return time function [17, Sec. 2.2], that is, the
return time of the fixed point generated by S+− to the clopen set [A] ∪ [ A ],

r
[A]∪[ A ]

= inf{n > 0 : T n(w+−) ∈ [A] ∪ [ A ]}.

9



As S+ is a substitution of length two, each letter is mapped into a length two word starting140

with A or A and it follows that r
[A]∪[ A ]

= 2. The induced map is then given by T 2, which

maps the set [A]∪ [ A ] onto itself; compare Eq. (16). Hence, ([A]∪ [ A ], T 2) is the induced
system. As S+ is an injective map from X−+ to S+(X−+), the claimed conjugacy follows
[18, Sec. 2.1].

By using the following result, the induced systems inherit the spectral properties of the145

conjugated systems.

Theorem 3.6 ([19, Thm. 2.9]). Let Ti with i ∈ {1, 2} be measure-preserving transforma-
tions of probability spaces. If T1 and T2 are conjugate, then they are spectrally isomorphic.

Note that, as previously, the four-letter hull X−+ and two-letter hull ϕ(X−+) are mutu-
ally locally derivable (as are X+− and ϕ(X+−)), and the corresponding dynamical systems150

are hence topologically conjugate. The argument is the same as above; the subword 1111,
which occurs in both ϕ(w−+) and ϕ(w+−) with bounded gaps, has the unique preimage
BABA in both w−+ and w+−.

The observations of Examples 3.1 and 3.2 suggest the following general picture.

Proposition 3.7. Let (σk)k∈N
∈ {±1}N0 be a given sequence. Then, for any k ∈ N0, the155

sequence of coefficients of the polynomial Pk defined by Eq. (9) is the image under the map
ϕ of Ak = Sσ

0
◦ Sσ

1
◦ · · · ◦ Sσ

k−1
A.

Proof. Let ak := ε1ε2 · · · ε2k ∈ {±1}2k

denote the word of length 2k of coefficients of Pk(x),
and let bk denote the corresponding word for Qk(x). Then the recurrence relations of
Eq. (9) correspond to the concatenation relations

ak+1 =

{

akbk, σk = 1,

akbk, σk = −1,
bk+1 =

{

akbk, σk = 1,

akbk, σk = −1,

with initial values a0 = b0 = 1. These recurrence relations correspond to the substitution
rule Sσ

k
, and by induction we obtain ak = ϕ(Ak) with

Ak = Sσ
0
◦ · · · ◦ Sσ

k−1
A

for any k ∈ N.

Clearly, if we choose σk = 1 for all k ∈ N0, we are back at the RS case with substitution
S+. More generally, for any periodic sequence we have the following result.160

Corollary 3.8. Let (σk)k∈N0
∈ {±1}N0 be a periodic sequence of period p, so σk+p = σk

for all k ∈ N0. Then, the sequence of coefficients of the polynomials Pk defined by Eq. (9)
is the image under the map ϕ of the fixed point of the substitution

Sσ
0
σ
1
···σp−1

:= Sσ
0
◦ Sσ

1
◦ · · · ◦ Sσp−1

with initial letter A.

10



Proof. As the sequence of signs σk is periodic with period p, Proposition 3.7 implies that

Anp = (Sσ
0
◦ · · · ◦ Sσp−1

)nA

holds for n ∈ N, and the assertion follows.

According to the terminology of S. Ferenczi [20] (see also [21, 22]), infinite sequences
obtained in the manner of Proposition 3.7 are called ‘S-adic expansions’. Even in this
framework, our construction still gives convergence in the local topology to well-defined165

binary or quaternary sequences. Our quaternary sequence is an S-adic limit word of
the ‘directive sequence’ (Sσk

)k∈N0
. However, it is no longer a fixed point of a primitive

substitution of finite length, so we do not know much about the corresponding one-sided
hull. Nevertheless, the root-N property and hence absolute continuity of the spectral
measure also holds in this case. Note that this construction is different from the notion of170

random substitutions introduced in [23] and recently considered in [24, 25], where several
substitution rules are mixed at a local level, in the sense that the substitution rule is chosen
independently for each letter of a sequence.

Example 3.3. Let us consider one more example, with

σk =

{

1, if k ≡ 0, 1 mod 3,

−1, if k ≡ 2 mod 3.

From Proposition 3.7, we know that the corresponding substitution is S++− = S+◦S+◦S−,
which turns out to be

A
S
−−→ AB

S
+−→ ABAB

S
+−→ ABABABAB,

B
S
−−→ AB

S
+−→ ABAB

S
+−→ ABABABAB,

together with the corresponding relations for the barred letters.

Proposition 3.9. Let (σk)k∈N
∈ {±1}N be a periodic sequence of period p and Sσ

1
σ
2
···σp

be175

the corresponding substitution according to Corollary 3.8. Its hull Xσ
1
σ
2
···σp

is then mutually

locally derivable with ϕ(Xσ
1
σ
2
···σp

).

Proof. Local derivability of the two-letter sequence from the four-letter sequence is clear,
as ϕ acts locally.

To show local derivability of the four-letter sequence, note that BABA is a legal four-180

letter word for S+ and S− as well as for S−+ = S− ◦ S+ and S+− = S+ ◦ S−. Hence, it is
also legal for Sσ

1
σ
2
···σp

= Sσ
1
◦Sσ

2
◦ · · · ◦Sσp

, and occurs with bounded gaps in any element

of the hull Xσ
1
σ
2
···σp

by repetitivity of the hull. Since ϕ(BABA) = 1111, the latter also
occurs with bounded gaps in any element of the two-letter hull.

Now, observe that ABAB is not a legal word for S+ or S− (as its pre-image would have185

to be AA or BB), or for S−+ = S− ◦ S+ or S+− = S+ ◦ S−. As a consequence, it cannot
occur as a legal word for Sσ

1
σ
2
···σp

= Sσ
1
◦ Sσ

2
◦ · · · ◦ Sσp

either.
Hence BABA is the unique pre-image of 1111, and local derivability follows.
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4. Generalizing Rudin’s argument to Fourier matrices

We are now going to generalise Rudin’s argument further by considering complex coeffi-190

cients in our polynomials, which will naturally lead us to look at Fourier matrices. Here, the
Fourier matrix of order n is the unitary n×n matrix with elements 1√

n
exp

(2πi(j−1)(k−1)
n

)

,
where 1 ≤ j, k ≤ n. The matrices that are going to enter below will be x-dependent
generalisations of these Fourier matrices, without the normalisation factor 1/

√
n.

Our main result in this section, Theorem 4.1, is similar to results of [15], but framed in195

the context of substitution dynamics rather than Fourier analysis.
It will be convenient to express the recurrence relations (2) in terms of matrices as

follows,
(

Pk+1(x)
Qk+1(x)

)

=

(

1 x2k

1 −x2k

) (

Pk(x)
Qk(x)

)

= A(2,k)

(

Pk(x)
Qk(x)

)

.

Now, for n > 2, consider a vector of n polynomials

vk =







P
(1)
k (x)

...

P
(n)
k (x)







satisfying the recurrence relation

vk+1 = A(n,k)vk, (17)

with initial condition v0 = (x, . . . , x)t. Here, A(n,k) is the n×n matrix

A(n,k) =











1 xnk · · · x(n−1)nk

1 ωxnk · · · ωn−1x(n−1)nk

...
...

. . .
...

1 ωn−1xnk · · · ω(n−1)2x(n−1)nk











,

where ω = exp(2πi/n). For x = 1, A(n,k) reduces to the n×n Fourier matrix, apart
from the normalisation factor 1/

√
n. As a consequence, for |x| = 1, the matrix satisfies

(A(n,k))†A(n,k) = n1(n), where 1(n) denotes the n×n identity matrix and M † = M
t
denotes

the Hermitian adjoint of the matrix (or vector) M .200

Generalising Eq. (3), we can now define a sequence
(

εm

)

m∈N
of complex coefficients

εm ∈
{

ωj | 0 ≤ j ≤ n − 1
}

by

P
(1)
k (x) =

nk
∑

m=1

εmxm. (18)

We will show that these sequences also satisfy the root-N property of Eq. (1).

Theorem 4.1. The sequence of coefficicents
(

εm

)

m∈N
of the functions P

(1)
k satisfies the

root-N property of Eq. (1).
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Proof. The proof proceeds by induction. We want to derive a bound for |P (1)
k+1(x)|. To do

so, we express the sum of the squared norms of the polynomials P
(1)
k+1(x), . . . , P

(n)
k+1(x) as

v†
k+1vk+1 =

n
∑

j=1

∣

∣P
(j)
k+1(x)

∣

∣

2
.

Using the recurrence relation and the identity (A(n,k))†A(n,k) = n1(n), we obtain

v†
k+1vk+1 = v†

k(A
(n,k))†A(n,k)vk = nv†

kvk = n

( n
∑

j=1

∣

∣P
(j)
k (x)

∣

∣

2
)

.

This shows that
n

∑

j=1

∣

∣P
(j)
k+1(x)

∣

∣

2
= n

( n
∑

j=1

∣

∣P
(j)
k (x)

∣

∣

2
)

.

Since we have
∑n

j=1 |P
(j)
0 (x)|2 = n by the initial conditions, we conclude by induction that

n
∑

j=1

∣

∣P
(j)
k (x)

∣

∣

2
= nk+1.

Hence we get the bound
∣

∣P
(j)
k (x)

∣

∣ ≤ n
k+1

2 , (19)

and in particular
∣

∣P
(1)
k (x)

∣

∣ ≤ n
1

2 n
k
2 , which proves the root-N property for N = nk.

It remains to prove the property for other values of N . The argument is similar to
that used in the proof of Proposition 3.1. Let P

(j)
k|m denote the m-th partial sum of P

(j)
k for

1 ≤ j ≤ n, where nk−1 < m ≤ nk. We will prove by induction that these functions satisfy

∣

∣P
(j)
k|m(x)

∣

∣ ≤ Gn
k
2 (20)

for all |x| = 1 and k ∈ N0, where G = n + n
1

2 .205

Clearly, this estimate is true if k = 0. Suppose now that Eq. (20) holds for some k ∈ N0,
and consider an integer m with nk < m ≤ nk+1. For nk < m ≤ 2nk, by using the recursion
(17) as well as the triangle inequality together with Eqs. (19) and (20), we obtain

∣

∣P
(j)
k+1|m(x)

∣

∣ ≤
∣

∣P
(1)
k (x)

∣

∣ +
∣

∣ωj−1xnk

P
(2)

k|m−nk(x)
∣

∣ ≤ n
k+1

2 + Gn
k
2 ≤ Gn

k+1

2

for all 1 ≤ j ≤ n.
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Similarly, we can derive bounds for the cases where ℓnk < m ≤ (ℓ + 1)nk for all
1 ≤ ℓ ≤ n − 1, where more and more terms contribute. We obtain

∣

∣P
(j)
k+1|m(x)

∣

∣ =

∣

∣

∣

∣

ℓ
∑

r=1

ω(r−1)(j−1)x(r−1)nk

P
(r)
k (x) + ωℓ(j−1)xℓnk

P
(ℓ+1)

k|m−ℓnk(x)

∣

∣

∣

∣

≤
ℓ

∑

r=1

∣

∣ω(r−1)(j−1)x(r−1)nk

P
(r)
k (x)

∣

∣ +
∣

∣ωℓ(j−1)xℓnk

P
(ℓ+1)

k|m−ℓnk(x)
∣

∣

≤
ℓ

∑

r=1

∣

∣P
(r)
k (x)

∣

∣ +
∣

∣P
(ℓ+1)

k|m−ℓnk(x)
∣

∣

≤ ℓ n
k+1

2 + Gn
k
2

≤ ((n − 1) + (n
1

2 + 1)) n
k+1

2 = Gn
k+1

2 ,

which completes the induction argument.
To finish the proof, suppose that nk−1 < N ≤ nk. By Eq. (20), we have

∣

∣P
(1)
k|N(x)

∣

∣ ≤ (n + n
1

2 )n
k
2 ≤ n(n

1

2 + 1)N
1

2 ,

which shows that the root-N property holds.

Corollary 4.2. For any series of coefficients (εn)n∈N
as in Theorem 4.1, the corresponding

Dirac comb
∑

n∈N
εnδn has purely absolutely continuous diffraction measure.210

Note that the case n = 2 corresponds to Eq. (2), which is the RS case. Let us now look
at a couple of examples.

Example 4.1. Consider the case n = 3. We start by setting P0(x) = Q0(x) = R0(x) = x
and define polynomials Pk, Qk and Rk recursively by





Pk+1(x)
Qk+1(x)
Rk+1(x)



 =





1 x3k

x2·3k

1 ωx3k

ω2x2·3k

1 ω2x3k

ωx2·3k









Pk(x)
Qk(x)
Rk(x)



 ,

where k ∈ N0 and ω = exp(2πi/3). From Theorem 4.1, we know that the corresponding
sequence of coefficients satisfies the root-N property. This is now a ternary sequence in
the alphabet {1, ω, ω2}.215

As above, we can connect this to a substitution rule, where we now need nine letters.
We denote these by A, B and C as well as the corresponding letters with a single or double
bar. Here, A, B and C correspond to the coefficients of the polynomials P , Q and R,
respectively, while the barred versions describe the multiplication by ω (single bar) and ω2

(double bar). Accordingly, we have A = A and similarly for the other letters.220
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The structure of the matrix A(3,k) yields the following substitution rule

A 7→ AB C, B 7→ AB C, C 7→ AB C,

and the corresponding rules for the barred letters, leading to the nine-letter substitution

A 7→ AB C, A 7→ AB C, A 7→ AB C,

B 7→ AB C, B 7→ AB C, B 7→ AB C,

C 7→ AB C, C 7→ AB C, C 7→ AB C.

This is a substitution of length 3, which has a fixed point obtained by iteration on the
initial letter A,

A 7→ AB C 7→ AB CAB CAB C

7→ AB CAB CAB CAB CA B CA B CAB CAB CAB C 7→ · · ·

This fixed point is mapped to the ternary sequence of coefficients of Pk(x) by the factor
map

ϕ(3) :















A,B,C 7→ 1,

A,B,C 7→ ω,

A,B,C 7→ ω2.

By Corollary 4.2, we know that the weighted Dirac comb corresponding to this sequence
has absolutely continuous diffraction measure.

Reasoning as before, we see that the three and nine-letter sequences are in fact mutually
locally derivable. Here it again suffices to consider words of length four, many of which
only have a single pre-image under ϕ(3). An example is 111ω2, for which the only pre-image225

is ABCA. Due to repetitiveness, we can therefore determine the three sublattices locally,
and hence locally derive the nine-letter sequence.

Example 4.2. For our final example, we consider the case n = 4. Our recurrence relations
are given by









Pk+1(x)
Qk+1(x)
Rk+1(x)
Sk+1(x)









=











1 x4k

x2·4k

x3·4k

1 ix4k −x2·4k −ix3·4k

1 −x4k

x2·4k −x3·4k

1 −ix4k −x2·4k

+ix3·4k



















Pk(x)
Qk(x)
Rk(x)
Sk(x)









with initial conditions P0(x) = Q0(x) = R0(x) = S0(x) = x. In this case, we obtain the
16-letter substitution

A 7→ AB C D, B 7→ AB C D, C 7→ AB C D, D 7→ AB C D,
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together with the corresponding rules for the barred letters. The factor map becomes

ϕ(4) :



























A,B,C,D 7→ 1,

A,B,C,D 7→ i,

A,B,C,D 7→ −1,

A,B,C,D 7→ −i.

As before, the four-letter and 16-letter sequences are mutually locally derivable, and again
it is possible to find words of length 4 that only have a single ancestor under ϕ(4). One

example is 1111 (where 1 = −1) whose ancestor is BCDA.230

In the same way, starting from the n×n Fourier matrix, we can construct substitution
rules for any n > 1, which all have absolute continuous components in their spectra. The
general structure is clear from the examples above. The substitutions act on n2 letters,
with n ‘basic’ letters that appear in n different ‘flavours’, each distinguished by the number
of bars, from 0 to n − 1. The distribution of bars in the image of the four basic letters235

can be read off directly from the Fourier matrix, and the remainder of the substitution
is then fixed by cyclic symmetry under the bar operation. The corresponding factor map
ϕ(n) identifies all basic letters and the image only depends on the number of bars, giving
the corresponding power of exp(2πi/n).

Theorem 4.1 shows that the sequences of complex numbers obtained by applying the240

factor map ϕ(n) satisfy the root-N property, and hence the corresponding Dirac comb
has purely absolutely continuous diffraction measure. We conjecture that the dynamical
spectrum of the n2-letter hull of the substitution just contains the absolute continuous
component and the pure point component corresponding to the maximum equicontinuous
factor, which is the corresponding solenoid.245
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