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ABSTRACT 

 

The pigmentation represents one of the most interesting topics in animal life because 

it is a decisive factor for the evolutionary success and the conquest of new ecological 

niches. Through the combination of developmental biology and comparative 

genomics, some aspects of pigmentary dynamics have been studied. 

Given Rabs regulate a plethora of trafficking steps, the members belonging to this 

family are central to the transport of molecules involved in pigmentation. Moreover, 

comprehending the evolution of Rab family is relevant to understand the 

establishment of eukaryotic cellular organization and for its implication in many 

human pathologies. For the first time, I reconstructed the evolutionary scenario of 

Rab family in eleven species of metazoans, spanning from cnidarians to human. 

Phylogeny, intron code and synteny conservation prompted me to depict Rab 

evolution, with a special focus on chordates that exhibit a highly dynamic 

evolutionary pattern. 

I clarified the evolution of Rab32/38 subfamily, fundamental in regulation of 

trafficking related to melanogenesis. It has been clarified the evolutionary history of 

Rab32/38 genes in deuterostomes and the expression pattern in key species as 

zebrafish and amphioxus, demonstrating how events as whole-genome duplications 

have influenced their role during embryogenesis. 

In order to find new genes involved in pigmentation, I analyzed a Kelch-like member 

in ascidian Ciona robusta (Cr-Klhl21). My results point at this gene as a marker of 

pigmented cells, with a dynamic expression profile during embryogenesis: from 

middle tailbud stage, it is expressed specifically in the otolith. Moreover, Cr-Klhl21 

shows an intricate regulatory scenario with the possible intervention of a 
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transcription factors combination (Cr-Mitf, Cr-msxb, Cr-Dmrt). This work contains 

first data about a Kelch-like member in ascidians, providing new insights in 

pigmentation or pigment cell specification. This encourages further analyses on its 

gene regulatory network and possible function. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 – A multitude of molecules and cells for pigmentation 

Pigmentation is one of the most fascinating and variable phenomena in the animal 

kingdom, in fact its evolution has attracted scientific community attention for 

centuries. The perceived colour is the net result of many interacting elements like 

nervous, hormones and environmental controls, rendering animal colouration a really 

interesting process to study, with different approaches and tools from ecology  to 

physiology and developmental biology. Although the enormous differences existing 

between the animal phyla, invertebrates and vertebrates continuously use biological 

pigments contained in chromatophores for their survival and adaptation to a plethora 

of ecological niches. Pigment cells, albeit show different developmental origins and 

functions in distant animal phyla, are present in all the metazoans. As a matter of 

fact, all of them are characterized by formation and storage of biological pigments. 

All vertebrate pigment cells derive from the neuroectoderm and the most studied cell 

type is the black/brown melanocyte, present in birds and mammals containing the 

black pigment melanin. Other vertebrates possess more chromatophores whose 

names depend on the stored pigment, such as xanthophores, leucophores and 

cyanophores, which influence their pigmentary pattern, with an extraordinary colour 

explosion in teleost fishes (Fujii, 1993; Bagnara, 1998). Furthermore, several types 

of chromatophores have also been detected in distantly-related non-vertebrate 

metazoans from cnidarians as jellyfish to mollusks as octopus. 
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1.2 - Melanin: evolution, function, biosynthesis 

Melanin represents the most successful biological pigment across animal evolution, 

probably for its physical and chemical features: its presence and diverse fundamental 

roles has been demonstrated in prokaryotic and eukaryotic domains. Indeed, melanin 

and its intermediates are crucial for maintaining the structure of cells in plant seed 

pods and insect cuticles (Riley, 1992) and increasing virulence in bacteria and fungi 

(Riley, 1997; Plonka and Grabacka, 2006). Animals possess cells containing melanin 

granules employed for a multitude of physiological processes that can be important 

in ecological strategies of species, in particular regarding inter/intra specific 

behaviors as sexual display and mating (Wittkopp et al., 2002).  

Essentially, three kinds of melanin are known: the eumelanin, the most common 

divided in black and brown, the  pheomelanin, that is responsible for red hair and the 

neuromelanin (NM), accumulated in the primate brains with an unknown function. 

Along the tree of life, melanin formation takes place in extra or intracellular 

environments. In bacteria, this pigment is synthesized in the external space for 

antitoxic and chemo-protective effects (Claus and Decker, 2006) whereas some 

phytopathogenic and pathogenic fungi accumulate melanin granules on the cell wall 

increasing the resistance to environmental damage (Eisenman and Casadevall, 2012). 

On the other hand, vertebrates present cells whose cytoplasm contains specialized 

organelles called melanosomes to store melanin granules (Marks and Seabra, 2001).  

In prokaryotes, melanin originates from a series of reactions catalyzed by a single 

melanogenic enzyme while in vertebrates it is produced through the Raper-Mason 

pathway starting from the phenolic amino acid precursor L-tyrosine, with the 

succession of many biochemical reactions (Borovanský and Wiley, 2011). 

Tyrosinase (TYR) and Tyrosinase Related Proteins 1 and 2 (TYRP1, TYRP2) are 
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considered the mammalian key enzymes in this multi-step process, in fact the 

activity of these metalloproteases is crucial for melanin biosynthesis (Figure 1.1). 

Tyrosinase has a central role in the pathway, given that it promotes the first and rate-

limiting reaction steps: the L-tyrosine hydroxylation to 3,4-dihydroxyphenylalanine 

(DOPA) and its subsequent  oxidation in DOPAquinone. Moreover, it catalyzes also 

the oxidation of 5,6-dihydroxyndole (DHI) to indole-5,6-quinone. TYRP2, together 

with metal ions as Zinc and Copper, converts the red DOPAchrome in 5,6-

dihydroxyindole-5-carboxylic acid (DHICA) rather than 5,6-dihydroxyindole (DHI) 

(Palumbo et al., 1991), whilst TYRP1 is implicated in DHICA oxidation to indole-

5.6-quinone carboxylic acid (del Marmol and Beermann, 1996). The stability, 

activation and folding of tyrosinase are finely controlled by the cell modulating 

redox state (in particular Cu
2+

 ions), cysteine concentration and pH conditions. On 

top of this, melanin pigments and pathway intermediates directly inactivate 

melanogenesis (Slominski et al., 2004). TYRP1 and TYRP2 are enzymes considered 

as regulators of melanin production and tyrosinase activity (Slominski et al., 2004).  

 

Figure 1.1. Scheme of melanogenic pathway.  Here is represented the multi-step reaction 

series for the biosynthesis of melanins in the vertebrates (adapted from Gillbro and Olsson, 

2011). 
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Eumelanin is a black/brown pigment constituted by DHI and DHICA whereas 

pheomelanin is a sulphate yellow-reddish macromolecule which comprises cysteinyl-

3,4-dihydroxyphenylalanine (cysteinyl-DOPA), produced from the condensation of 

DOPAquinone and L-cysteine (Meredith and Sarna, 2006). Used in animals for 

protection against UV radiation (UVR), the two components of melanin granules are 

different in their UV response: eumelanin detoxifies from reactive oxygen species 

(ROS) derived from UV light (Bustamante et al., 1993) and transforms light into heat 

energy (Meredith and Riesz, 2004) whereas pheomelanin is involved in redox-

buffering (Kim et al., 2015). The majority of melanin pigments present in nature are 

a mixture of eumelanin and pheomelanin (Ito and Wakamatsu, 2008), whose ratio is 

defined by tyrosinase functioning and disposability of tyrosine and cysteine; in 

addition, it can have consequences for human skin pigmentation (D’Mello et al., 

2016). It has been suggested an involvement of TYRP1 and TYRP2 activity in the 

increase of eumelanin percentage with respect to pheomelanin (Slominski et al., 

2004). Concerning the latter, its presence in vertebrates has been demonstrated in 

birds and mammals and not in teleosts and other poikilotherms (Fujii, 1993). 

Neuromelanin is a dark polymer of 5,6-dihydroxyindoles present principally in 

substantia nigra and locus coeruleus (Fedorow et al., 2005) for which has been 

suggested a role in neuroprotection or senescence. Because melanin biosynthesis is 

influenced by a myriad of factors like transcription factors and hormones and is a 

process implicated in many human diseases, the knowledge of melanogenic 

regulation could be fundamental in cellular and biomedical research. 
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1.3 - Animal melanin-containing cells 

Across animal evolution, many types of melanin-producing cells have been 

recognized. Regarding this field, most of the energy has been spent on vertebrate 

pigment cell structure, function and development: many data have been collected 

about the bridge between human pathologies and genes related to melanogenesis 

(Goding, 2007). Melanogenic genes are implicated in several forms of albinism, 

deafness and vitiligo and their deregulation is linked with melanoma skin cancer 

(Goding, 2007). Under normal conditions, in vertebrates melanin granules are 

synthesized and stored only in membrane-enclosed organelles known as 

melanosomes, lysosome-related organelles (LROs) identified in mammalian skin 

melanocytes, in choroidal melanocytes and in retinal pigment epithelial (RPE) cells 

of the eye, but also in melanophores belonging to teleosts and amphibians (Nilsson 

Skold et al., 2013). The structure of melanosomes depends on the melanin typology 

accumulated, indeed eumelanosomes present elliptical shape and contain fibrillary 

matrix whereas pheomelanosomes are gaping circles with vesiculoglobular matrix 

(Nordlund et al., 1998). Melanosome biogenesis encompasses four steps (I-II-III-IV, 

Figure 1.2): during stage I-II occur matrix organization, in stage III melanin storage 

starts and in stage IV the melanosomes are completely darkened (Slominski et al., 

2004; Bultema and Di Pietro, 2013). Pathological states can cause alterations of 

ordered melanogenesis and erroneous melanosome formation, with the absence of 

completely formed matrix or melanin not bound with matrix (Slominski et al., 2004).  
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Figure 1.2. Melanosome biogenesis in melanocytes. The figure presents a model for the 

formation of melanosomes in vertebrate’s melanocytes, with the proteins implicated in 

melanosomal vesicular trafficking (adapted from Bultema and Di Pietro, 2013). 

The melanocytes present in RPE and eye choroidal cells are crucial for vision and the 

defense of photoreceptor layer (Marks and Seabra, 2001) while those comprised in 

stria vascularis of the inner ear are required for a proper hearing (Steel and Barkway, 

1989). Skin melanocytes cover 5-10 % of epidermis basal cell layer where they serve 

to safeguard from ultraviolet radiations (Sulaimon and Kitchell, 2003) and each one 

is encircled by about 36 keratinocytes of squamous cell layer (Lin and Fisher, 2007). 

The skin colouration is due to pigment-filled melanosome transportation from 

melanocytes to surrounding cells through arm-like cytoplasmatic structures known as 

dendrites, along microtubules (Lin and Fisher, 2007). Before distribution, 

melanosomes need a maturation process depending on extracellular pH growth from 

5.0 to 6.8. Chemical interaction between melanocytes and keratinocytes is intense 

but they are sensitive also to many extrinsic factors, in particular they are strongly 

influenced by extracellular glutamate concentration (D’Mello et al., 2016). Teleost 

melanophores, together with other clade-specific cell types like leucophores and 



18 
 

cyanophores, are fundamental for their social and ecological behavior. Furthermore, 

the melanin-producing cells comprised in kidney and spleen of teleosts are involved 

in immunity response (Press and Evensen, 1999). It supports the use of pigments for 

many challenges relevant for vertebrate’s ecology and physiology. Similarly to 

vertebrates, invertebrates show a myriad of pigment cells covering disparate 

functions. Insects and other protostomes synthesize melanin in haemolinph cells and 

hemocytes for external tasks as egg tanning, cuticle biogenesis and innate immunity 

(Nappi and Christensen, 2005). The cuttlefish Sepia officinalis possesses an ink 

gland with melanin-containing cells used for escaping defense: these ectodermal 

cells contain particulate melanosomes deemed as rudimentary intracellular structures 

if compared to fibrillar melanosomes of vertebrate melanocytes (Fiore et al., 2004). 

Inside invertebrate chordates, there are various structures which include melanin-

producing cells. Cephalochordates as amphioxus, have a complex photoreceptive 

system formed by different cells: among them, it has been shown that some 

pigmented cells are homologous to vertebrate melanocytes (Vopalensky et al., 2012). 

The ascidian unique pigmented sensory organs, otolith and ocellus, house melanized 

cells implicated in perception of light and gravity (Tsuda et al., 2003; Sakurai et al., 

2004). Except these, multiple examples of structure and function of invertebrate 

pigment cells are registered in the literature, specifically it is well-known the 

conservation of genetic developmental pathways across evolution. In light of this and 

their lower complexity, invertebrates can represent a significant tool for 

understanding mechanisms of pigment cell development. In order to comprehend 

vertebrate pigment cell biology, the early-branching chordates with their ease of 

manipulation, simple pigmentary organs and evolutionary proximity to vertebrates, 

can be really important.  
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1.4 - Melanogenesis: transcriptional and hormonal regulation 

The pigmentation process is thought to be influenced by more than 100 genes 

(Bennett and Lamoreux, 2003). Within the tyrosinase family, Tyr is the key enzyme 

in melanin biosynthesis and ultra-conserved in all the metazoans while Tyrp 

represent important Tyr-derived accessory proteins arisen in chordates, (Esposito et 

al., 2012). The expression of these genes is upregulated by α-Melanocyte-

Stimulating Hormone (α-MSH) binding to melanocortin-1 receptor (MC1R) that 

activates adenylate cyclase producing cyclic AMP (cAMP). The α-MSH cleavage is 

operated by pro-opiomelanocortin (POMC) synthesized by the pituitary gland and 

the keratinocytes (D’Mello et al., 2016). Through the phosphorylation of CREB, the 

cAMP-dependent protein kinase A (PKA) is responsible for the positive effects of 

cAMP high levels (Edelman et al., 1987). The absence of cAMP response elements 

(CREs) in Tyrp promoter regions speaks in favor of a direct microphtalmia-

associated transcription factor (MITF) involvement. Among other functions, MITF 

or bHLHe32 represents a fundamental regulator of tyrosinase family members 

recognizing tyrosinase distal elements (TDEs) of promoters (Yasumoto et al., 1994). 

It has been demonstrated the incidence of many distinct factors on MITF 

transcription encompassing PAX3, SOX9, LEF1, ONECUT-2 (Levy et al., 2006). 

MITF activity in melanocytes is post-transcriptionally dictated by receptor tyrosine 

kinase pathway SCF-KIT, in fact it is phosphorylated by kinases as ribosomal S6 

kinase (RSK), mitogen-activated protein kinase (MAPK) and p38, depending on 

environmental stimuli; other pathways modulating MITF activity are Wnt and 

RAS/MEK signaling (Levy et al., 2006). Not only tyrosinase genes, but also other 

genes involved in melanogenesis are finely regulated by MITF, implying a leading 
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role in pigmentation control for this gene. Additionally, the findings in insects and 

ascidians support the conservation of Mitf’s role during evolution (Yajima et al., 

2003; Halsson et al., 2004). In summary, melanin production is an extremely 

complex biological pathway that is at the center of different types of regulation, 

probably for its extraordinary ecological and physiological importance. 

 

1.5 - Pigmentation: a complex molecular machinery 

Aside from the tyrosinase family, melanosome formation and melanogenesis need 

the intervention of a plethora of proteins. Melanosomes are LROs present 

exclusively in specialized cells as melanocytes where they normally co-exist with 

classical lysosomes, in fact these two organelles have in common the major part of 

their molecular machinery (Fig. 1.2, Figure 1.3). In mammals, the stage I 

melanosomes rise by sorting of transmembrane structural protein Pmel17 to early 

endosomes. Pmel17 is responsible for proper melanosome biogenesis through the 

genesis of amyloid fibrils. Two other melanocyte-specific proteins, fundamental for 

early melanosome structure (stages I-II), are the G-protein-coupled receptor 143 

(Gpr143) and the small integral membrane protein Mart1, in fact mice with 

mutations in DNA encoding these three proteins are characterized by 

hypopigmentation (Sitaram and Marks, 2012). Melanin production and deposition 

begins at the third melanosome stage, thanks to melanogenic enzymes delivered and 

packaged in transport clathrin-vesicles by adaptor protein complex (AP-1 and AP-3) 

and biogenesis of lysosome-related organelles complex (BLOC-1 and BLOC-3). 

Defects in these molecular machineries cause wrong deposition of melanin polymers 

in melanosomes, with many functional consequences potentially linked to human 

diseases. Melanogenic enzymes trafficking after exit from the trans-Golgi network 
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(TGN) to active melanosomes is a crucial step, which is regulated by some 

specialized small-GTPases. Tyrosinase family member transport is mediated by 

Rab32 and Rab38 (Wasmeier et al., 2006), in collaboration with the ubiquitous 

lysosomal machinery composed by BLOC-2, AP-3 and AP-1 (Bultema and Di 

Pietro, 2013). A further Rab connected to pigmentation is Rab27A, expressed in 

melanocytes and responsible for the melanosome motility, through its effector 

melanophilin (Wu et al., 2001; Wu et al., 2002). For their centrality in trafficking 

machinery, it has been supposed a role for other small GTPases such as Rab11 and 

Rab9 (Sitaram and Marks, 2012). However, solute carrier family (Slc) includes many 

genes potentially involved in pigmentation. For instance Slc45a2, implicated in 

oculocutaneous albinism type 4 (OCA4) and melanoma, regulates melanosome pH 

affecting tyrosinase activity (Bin et al., 2015): indeed, its expression is conserved in 

pigment cells of evolutionary distant animals like ascidians and zebrafish (Racioppi 

et al., 2014; Thisse and Thisse, 2004). Moreover, in human several SLC24 genes 

play a role in pigment cells (Schnetkamp, 2013). Highly conserved multisubunit 

complexes like ESCRTs and TRAPPs are considered noteworthy in melanogenesis 

regulation because they actively participate in mechanisms connected to vesicle 

formation and cargo trafficking, though the exact mechanisms remain to be 

elucidated (Sitaram and Marks, 2012).  
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Figure 1.3.  Gene families involved in melanosome biogenesis. Representation of gene 

families which are implicated in diverse steps of melanosome life (from Sitaram and Marks, 

2013). 

 

 

Hence, melanogenesis appears as key process for the proper functioning of pigment 

cells containing melanin with the intervention of several proteins. Moreover, 

melanosome biogenesis can be fundamental for the comprehension of mechanisms 

related to vesicle trafficking and intracellular transport, to understand which genes 

are involved and to discover new players in membrane trafficking. 

 

1.6 – Pigment cell development and function in vertebrates 

Pigment cells of vertebrates represent the best characterized in the animal kingdom. 

Recently, the term of vertebrate “pigment cell” has been applied not only to 

primarily pigmented cells possessing membrane-bound organelles (as melanosomes) 

with chromophoric substances or structures but also to their non-pigmented precursor 

cells and pathological derivatives (Schartl et al., 2015). This definition excludes cells 

characterized by secondary pigmentation that depends on the pigment uptake from 

bona fide pigment cells, as happens in keratinocytes or some macrophage lineages. 
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Other cells out from this classification are nervous cells accumulating waste 

pigments as neuromelanin or lipofuscin. In synthesis, considered as “pigmented” are 

those cells, pigment-containing, which are responsible for light absorbing to provide 

pigmentation visible to other organisms or ameliorate vision skills (Schartl et al. 

2015). As previously said, vertebrate pigment cells are neuroectodermal derivatives 

which are distinguished for their embryonic origins: the RPE and the pineal gland 

deriving from the optic cup of the developing forebrain while the neural crest (NC) 

pigment cells, forming skin melanocytes, inner ear melanocytes and other 

chromatophores (Quevedo and Fleischmann, 1980).  Notwithstanding pigment cell 

types present distinct timing processes and final destinations, and analyses from 

diverse model systems sheds light on conserved developmental modes amongst 

vertebrates. Teleosts, as zebrafish, present some experimental advantages which 

render them very interesting as model organisms, especially for the pigment cell 

development and pigmentation-related diseases. 

In the vertebrate eye, the cells of RPE descend from the multipotent optic 

neuroepithelium and form an ultra-specialized multifunctional epithelium. These 

cells are strictly connected to eye during embryo and adult phases, in fact RPE layer 

and neural retina represent a functional unit (Bharti et al., 2006). The RPE layer has 

several functions, spanning from light absorption and epithelial transport to 

phagocytosis of photoreceptor outer segment (POS) membranes (Straus et al., 2005). 

In zebrafish, the optic primordium consists of a flat wing constituted by a cellular 

bilayer which cavitates forming the optic cup (Li et al., 2000). The RPE cells 

originate from the medial layer and approximately at 16 hours post-fertilization (hpf) 

dorsalmost cells start to modify their shape from columnar to squamous and flat, 

coinciding with a dorso-ventral migration. At 24 hpf, all the RPE occupies the whole 
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outermost retina layer, while pigment granules are visible. During these transitions, 

mitf, tyrp and tyrosinase representatives are clearly expressed  (Li et al., 2000) . 

Neural crest cells are a vertebrate-novelty with a great evolutionary relevance 

(Shimeld and Holland, 2000). They are a cellular population deriving from neural 

tube that, from the boundary existing between neural plate and surface ectoderm, 

migrate ventrally and differentiate in distinct subpopulations of sensory, connective 

and pigment cell types. Neural crest-derived pigment cells migrate following a 

dorso-lateral pathway while the other subpopulations follow a medial pathway. 

Albeit some differences (Raible et al., 1992), the mechanisms governing NC cells 

development are conserved between teleosts and higher vertebrates. In zebrafish, 

neural crest induction is orchestrated during gastrulation by bmp2b/swirl pathway, 

mechanisms shared with other vertebrates (Nguyen et al., 1998). Moreover, zebrafish 

NC cells present the same vertebrate markers, as for instance pax3 and foxd3/fkd6 

(Seo et al., 1998; Odenthal and Nusslein-Volhard, 1998). The pigment cells are one 

of the best-known derivatives of neural crest because they are not central to viability, 

in fact non-lethal mutations led to study the developmental modes in zebrafish and 

other vertebrates. Melanophores (analogous to melanocytes) are the first cell type to 

appear during embryogenesis, starting at 24 hpf laterally on both the sides of the ear 

then expanding down the trunk. Soon after they are visible on the head dorsal side 

the xanthophores, whose yellow aspect is caused by pteridine accumulated in 

peculiar organelles called pterinosomes. After that, it begins the iridophores 

appearance in the tail and in two stripes over the yolk: these are reflecting and round 

cells that contain platelets with purine crystals (Kelsh et al., 1996; Lister, 2002). The 

final pattern of zebrafish larva is based on three melanophore lines alternated with 

iridophores while xanthophores remain positioned dorsally along all the embryo. 
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Ventrally to the yolk there is a layer formed melanophores and iridophores (Kelsh et 

al., 1996; Lister, 2002). Aside these cell types in common with tetrapods, teleosts as 

zebrafish possess also blue cyanophores and whitish leucophores whose embryonic 

origins are not documented. By contrast, their ultrastructural organization and shape 

suggested to enclose them to the NC-deriving pigment cells (Braasch et al., 2007). 

Interestingly, experiments conducted on medaka (Oryzias latipes) leucophores lead 

to consider them developmentally related to xanthophores (Kimura et al., 2014). 

Several studies on mutants have provided insights regarding the pigmentation 

scenario in teleosts, as shown by zebrafish larvae (Moreira and Deutsch, 2005). 

 

 

Figure 1.4. Zebrafish pigmentary cell diversity.  Nacre mutants (left) show areas with 

concentration of xanthophores surrounded by the white line, while zebrafish fms mutant 

(right) are rich of melanophores which form clusters (adapted from Moreira and Deutsch, 

2005). 

 

The well-known melanogenic enzymes tyr and tyrp2 are expressed specifically in 

melanoblasts (Figure 1.5), from early developmental stages (Kelsh et al., 2000; 

Camp and Lardelli, 2001). The xanthoblasts are characterized by mRNA presence of 

xanthine dehydrogenase (xdh), the last enzyme of pteridine synthesis (Parichy et al., 

2000) whereas pnp4a is the causal gene of medaka iridophore guanine (Kimura et al., 

2017). Other genes, as GTP cyclohydrolase I (gch) and Endothelin receptor b1 

(ednrb1) mark more than one pigment cell type precursor (Lister, 2002). Apart from 
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Bmp, also Wnt/ β-catenin signaling is very important for pigment cell development 

in zebrafish, as in higher vertebrates: in fact it has been suggested as responsible for 

the early pigment cell restriction fate of NC precursors by regulating directly Mitf 

transcription factor expression, via Tcf (Dorsky et al., 2000; Takeda et al., 2000). 

The SRY-containing transcription factors Sox9 and Sox10 are involved in early 

development of pigment cells, promoting their differentiation and survival (Silver et 

al., 2013).  

 

Figure 1.5.  Tyrp expression in zebrafish. While 25 hpf embryos have no melanin in 

posterior trunk, WISH using Tyrp mRNA shows strong expression in NC cells (A, B); 

transverse sections (C, D) hint the presence of these cells  (arrowheads) along the migratory 

pattern of NC cells  (adapted from Kelsh et al., 2000). 

 

 

The study of pigment cell development in teleosts like zebrafish and medaka has 

confirmed several data obtained from mammals but the analysis is more interesting 

because this group have evolved new cell types to face new challenges, probably for 

the adaptation to new ecological niches. With more than 32000 species, teleosts are 

the largest group in vertebrates showing a myriad of pigmentary pattern. 
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1.7 – Pigment cell development and role in amphioxus and ascidians 

In the chordate phylum, vertebrates co-exist with other two important subphyla, 

cephalochordates and urochordates, which can be instrumental to improve 

knowledge on pigment cell evolution. Considered as the closest living relative of the 

chordate ancestor, cephalochordates such as amphioxus, possess an unduplicated 

genome that encompasses all the main vertebrate gene families (Putnam et al., 2008). 

Among cephalochordates the more intensely studied models are the species 

belonging to the Branchiostoma genus, having a photoreceptive system constituted 

by Joseph cells, dorsal ocelli (Hesse cells), lamellar body and frontal eye (Lacalli, 

2004). The ciliated Row cells of frontal eye are similar to vertebrate eye 

photoreceptors (mainly Row1) whereas the adjacent pigment cell seem to be 

homologue to vertebrate RPE cells (Figure 1.6), as suggested by common expression 

profiles of genes involved in pigmentation (Vopalensky et al., 2012). Moreover, the 

primary pigmented spot of the amphioxus neural tube is marked by different genes 

belonging to the tyrosinase family (Yu et al., 2008).  

 

 

Figure 1.6. Photoreceptive system of amphioxus. This map describes the pigmented and 

photoreceptor cells of cephalochordates characterized by genes common to vertebrates  

(adapted from Vopalensky et al., 2012). 
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The Urochordata subphylum, subdivided into ascidians, appendicularians and 

thaliaceans is characterized by the presence of canonical features of the chordate 

bauplan like a notochord and a dorsal hollow nerve cord, during larval stageBy 

employing diverse phylogenetic urochordates have been described as the closest 

living relatives of vertebrates. However they showgreat morphological divergence 

that has been correlated  to fast rate of genome evolution (Delsuc et al., 2006). The 

members of the ascidian class, also named sea squirts, are solitary or colonial 

animals which spend the first part of life as swimming planktonic larvae and then 

attach to a substrate. After this, they undergo metamorphosis to become adult sessile 

filter feeders. The most common ascidian used in developmental biology,  is Ciona 

robusta, formerly known as Ciona intestinalis type A (Brunetti et al., 2015). With 

well-known embryogenesis it is suitable for gene expression studies, while a quite 

compact genome with regulatory regions short and near to coding sequences render 

C. robusta a good system for promoter analysys. Moreover, the experimental 

advantages (Satoh et al., 2003) are enhanced from the availability of genomic 

resources (Dehal et al., 2002). Together with the solitary ascidian Halocynthia 

roretzi, C. robusta represents the best source of information on pigment cell 

specification in ascidians. Given the extraordinary conservation of cleavage program 

in solitary ascidians, data extracted from these two species could be extended to 

other genera such as Phallusia and Molgula. Ascidian pigment cells are contained in 

the anterior sensory vesicle, a cavity located in the larval trunk, belonging to central 

nervous system (CNS) that in Ciona is constituted approximately by 335 cells (Nicol 

and Meinertzhagen 1991). Because sensory vesicle derives from neural plate rolling 

into neural tube during neurulation, and expresses marker genes of vertebrate CNS, it 

has been proposed as a homologue to the vertebrate prosencephalon and 
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mesencephalon (Wada et al., 1998). This structure is composed mainly by 

ependymal cells (Nicol and Meinertzhagen 1991) but harbors two sensory structures, 

the otolith and the ocellus, containing pigment cells (Dilly, 1969; Eakin and Kuda, 

1971). They are involved in perception of gravity and light stimuli, fundamental 

functions for ascidian larvae (Tsuda et al., 2003; Sakurainet al., 2004). According to 

molecular and functional similarities, diverse members of scientific community have 

hypothesized a common origin for ascidian sensory organs and eye of vertebrates 

(Kusakabe et al., 2001; Lamb et al., 2007). After the larval stage, pigment cells 

comprised in sensory organs undergo apoptosis and reabsorption between 

metamorphosis and adulthood. They are necessary for the first part of ascidians’ life, 

with central function in the proper swimming behavior of larvae: during the first 3-4 

hours after hatching larvae are not able to perceive the light and thus depend on 

gravity information from otolith which causes upward swimming. The beginning of 

downward swimming coincides with the perception of light stimuli by larvae (Tsuda 

et al., 2003): as in vertebrates, photoreceptor cells of ascidians are implicated in the 

light perception through membrane hyperpolarization (Gorman et al., 1971). Because 

ascidian adults are sessile, swimming behavior due to pigment cells is extremely 

important from an ecological perspective, so larvae can be diffused in the 

surrounding environment and exploit new territories, far from adult settling location. 

It is linked with the occupation of new niches allowing the large colonization of all 

the seas operated by these sessile species. Several studies have explored ascidian 

development, producing a deep knowledge about the destiny of every single 

blastomere. Experiments on H. roretzi show that pigment cells originate from the 

a4.2 blastomeres lineage  (Nishida, 1987). During gastrulation two descendants of 

the a4.2 blastomeres (a8.25 cells), become influenced, by the underneath A-line 
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blastomeres (Nishida, 1991) to pigment cell fate. At the late gastrula stage the a9.49 

cells, derivided from a8.25, are fate-restricted to pigment cell fate as shown by 

mechanical ablation experiments (Nishida and Satoh, 1989). a9.49 cell pair division  

give rice to  a10.97 and a10.98 pairs that divides againforming a11.193 (otolith and 

ocellus precursors) and a11.194 pairs . These four cells, at the neural tube closure, 

migrate and intercalate forming a single row, along the anterior-posterior axis 

(Figure 1.7). At this time the specification of the two pigmented cells occurs (a10.97) 

under the control of positional information driving the development of the anterior 

otolith and the posterior ocellus (Nishida and Satoh, 1989; Darras and Nishida, 

2001).  

Traditionally, ascidian embryogenesis has been considered as a canonical example of 

mosaic development, where embryonic territories have been decided from the 

zygotic stage through ooplasmic segregation of maternal determinants (Jeffery and 

Meier, 1984). Nevertheless, it has been shown the involvement of diverse inducing 

signal events due to cell-cell interaction (Kawaminani and Nishida, 1997; Kim and 

Nishida, 1999). FGF signaling plays a fundamental role during embryogenesis, such 

as cell proliferation, nervous system development and differentiation: for instance,  

FGF is central to the activation of tissue-regulatory genes in heart specification 

through final pathway effector, Ets1/2 transcription factor (Davidson et al., 2006).  

Although ascidians are known for deterministic development, their pigment cell 

lineage specification is governed by inductive signals (Kawaminani and Nishida, 

1997; Kim and Nishida, 1999). The formation of anterior neural tissue is governed 

by early inductive signals from anterior vegetal cells (A-line) (Lemaire et al., 2002). 

Coherent with data collected in vertebrates such as Xenopus and chick (Hongo et al., 

1999; Streit et al., 2000), neural induction in ascidians is influenced by fibroblast 
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growth factor (FGF) signaling (Hudson et al., 2003). In fact, morpholino-mediated 

knock down experiments have demonstrated the direct implication of endogenous 

Ffg9/16/20 in nervous system commitment, through MAP Kinase signaling and 

GATA and Ets transcription factors (Bertrand et al., 2003). The specific expression 

of Fgf8/17/18 and Fgf9/16/20 in six A-line cells of the neural plate row II 

surrounding pigment cell precursors (PCPs), together with inhibition and 

immunohistochemical experiments, indicate the FGF pathway as central to impose 

discrete fates of neural precursors in ascidians (Hudson et al., 2007). Given FGFs are 

implicated in the induction of ascidian and vertebrate mesoderm, it has been 

supposed that similar signals are unfolded differently by presumptive territories 

(Nishida, 2002). Thus, FGF signaling has been suggested to be involved in pigment 

cell determination of ascidians, with a role possibly conserved in vertebrate 

melanocytes (deOliveira et al., 1998). Belonging to a superfamily expanded during 

metazoan evolution (Popovici et al., 2005), FGF members are involved in processes 

linked to vertebrate development: for instance, some FGFs and related receptors 

(FGFr) play a fundamental role in retina formation (Yang, 2004). The presence of 

only of six FGFs and one receptor in the Ciona genome, (Satou et al., 2002) has 

encouraged the analysis of their role in tunicate ontogenesis. Several studies 

conducted in the lab where I did my thesis demonstrated that the FGF/MAPK 

pathway orchestrates pigment cell induction in C. robusta through Ets1/2, from 

gastrulation to neural tube closure (Squarzoni et al., 2011). Using a dominant 

negative form of the unique Ciona FGFr under control of the Tyrp1/2 regulatory 

region, larvae without pigment cells were constituted, whereas the constitutive active 

form of Ets1/2 produced overpigmented larvae. FGF via MAPK regulates 

transcription of TCF, a well-known Wnt effector, in the otolith and ocellus, in turn 
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the perturbation of TCF is able to disrupt the pigment cell program (Squarzoni et al., 

2011), similar to tcf-3 perturbation experiments in zebrafish neural crest cells 

(Dorsky et al., 1998). It has been elucidated the implication of both FGF and Wnt 

pathways in ascidian pigment cell specification (Squarzoni et al., 2011), In order to 

decipher the machinery influenced by FGF pathway in ascidians, a microarray 

experiment at two stages (neurula, tailbud) in two different conditions was 

conducted: down-regulation of FGF and hyper-activation of Ets1/2 (Racioppi et al., 

2014). From the microarray experiments several genes involved in anterior nervous 

system or pigment cell differentiation were isolated. Taken together, data showed 

that FGF cascade imposes pigment cell identity in neural territories (Racioppi et al., 

2014). Moreover, FGF influences the specific expression of many factors in pigment 

cell lineage with a slightly different localization in the lineage. Among the FGF-

dependent genes identified, there are the transporters Slc45a2 and Rab32/38, known 

for their role in melanosomal logistics (Newton et al., 2001; Bultema et al., 2012), 

and others (Doc2a, Bzrap, Piwi, Klhl21) that have never been associated to 

pigmentation. 

 

 

Figure 1.7. Pigment cell lineage during Ciona embryogenesis. The scheme resumes the 

embryonic origin of Ciona pigment cell precursors (PCPs) and FGF signaling involvement in 

their specification  (adapted from Racioppi et al., 2014). 



33 
 

CHAPTER 2 

 

2.1 – General aim of the thesis 

The transcriptomic approach carried out in the lab where I did my thesis work, 

generated a list of genes with different expression pattern. Starting from these data, 

my PhD project aimed to identify how the potential to give rise to pigmentation 

program is regulated in Ciona pigment cell lineage during development and to 

investigate the evolutionary scenario of gene families implicated in pigmentation 

dynamics (Rab, Klhl). We focused our analyses on chordates (Figure 2.1), combining 

comparative genomics with molecular and developmental biology techniques.  

 

Figure 2.1. Evolutionary relationships among chordates. The cladogram shows the 

phylogenetic positions of organisms employed in my thesis: the early-branching 

cephalochordates (Branchiostoma) are at the base of Olfactores the clade comprising 

tunicates, as Ciona, and vertebrates, as Danio rerio. (adapted from Delsuc et al., 2006). 

 

 
2.2 - Aim 1: Rab family evolution 

Given the involvement of several Rabs in trafficking events connected to 

pigmentation process in numerous animals, it has been decided to investigate the 

molecular evolution of entire Rab family in metazoans. Through phylogenetic, intron 

conservation and domain analyses I aimed to elucidate the Rab evolution towards 

eleven species, ranging from cnidarians to human, with a great attention to genomic 
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events occurred during chordate evolution. Nevertheless, understanding Rab 

molecular evolution could be relevant not only for the pigmentation dynamics but 

also for the understanding of Rab-dependent trafficking processes during metazoan 

evolution. Moreover, providing insights into a Rab family could be instrumental to 

shed light on human diseases related to these small GTPases.  

 

2.3 - Aim 2: Rab32/38 involvement in chordate pigmentation  

In light of its implication in pigmentation dynamics of several organisms (fly, 

ascidians, mouse) and in diseases as melanoma and albinisms, Rab32/38 subfamily 

has been targeted for a deep evo-devo study through a detailed evolutionary analysis 

regarding Rab32/38 genes in metazoans, with a focus on the expression of Rab32/38 

gene of Mediterranean amphioxus (B. lanceolatum) and Rab32 and Rab38 genes of 

zebrafish (Danio rerio). This study has the objective of understanding the possible 

pigmentary role of this subfamily in early-branching chordates as amphioxus and in 

multi-pigmented teleosts as zebrafish.  

 

2.4 - Aim 3: Klhl21, a new potential player in pigmentation  

In order to find new genes involved in ascidian pigment cell development, we aimed 

to investigate deeply the Klhl21 behaviour in Ciona development, a Kelch-like 

family member traditionally considered as a regulator of eukaryotic cytokinesis that 

in Ciona is down-regulated when FGF signaling is blocked. It is the first time that a 

Kelch-like gene seems to be implicated in pigmentation with a specific expression in 

sensory organs as otolith and ocellus: for this reason, we decided to study its 

promoter region and the combinatorial pattern of transcription factors which seem to 

work in two distinct regulatory modules. 
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CHAPTER 3 

 

Evolution of Rab family in metazoans: new insights from Chordata phylum 

 

3.1 - Background 

The setting-up of a complex endomembrane system (ES) has been doubtless a 

fundamental evolutionary step for the eukaryotic organisms, compared to Archea and 

Bacteria clades. Intracellular compartmentalization, i.e. the existence of membrane-

bound organelles such as the nucleus and Golgi, represents a distinguishing feature 

of the Eukarya domain (Cavalier-Smith, 2002). The presence of these structures is 

due to autogenous evolution, different for the endosymbiotic evolution of 

mitochondrion and plastids (Embley and Martin, 2006; Keeling, 2010). Despite the 

presence of many differences, compartments have followed a sort of Bauplan across 

evolution, composed mainly by endoplasmic reticulum (ER), Golgi apparatus, trans-

Golgi network (TGN) and nuclear envelope (Elias, 2010). The ES system is formed 

by an extremely high number of compartments with a variegated protein and lipid 

composition, necessary for specific import/export mechanisms of ions, 

macromolecules and particles. Eukaryotic organelles have been linked to a plethora 

of diseases and pathologies (Olkkonen and Ikonen, 2006).   

Cellular compartments need the contribution of a highly organized system of 

proteins regulating intracellular transportation, with many gene families involved. 

Among these, Rabs are considered as crucial players for communication inside 

eukaryotic cells in collaboration with coats, tethers and SNAREs (Cai et al., 2007; 

Sudhof and Rothman, 2009). Initially recognized as membrane traffic regulators in 

yeasts and then discovered in mammalian brain (Touchout et al., 1987), Rab (‘Ras-
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related in brain’) proteins form by far the largest and most diversified family inside 

the Ras superfamily (small G proteins) and are emerging as the main hallmarks of 

vesicle and organelle identity (Stenmark, 2009; Hutagalung and Novick, 2011).  

In eukaryotic cells, Rab proteins are attached to lipid bilayers through a long and 

flexible ultra-variable domain characterized by a prenylated C terminus, called 

hypervariable C-terminal domain (HVD). As evidenced by recent findings, it acts not 

only as pliable spacer but also as organellar determinant and positive regulator of 

membrane affinity (Li et al., 2014). Despite some differences, Rabs exert their role 

of cargo transporters through a continuous cycling between their GTP/GDP-bound 

states with the decisive provision of several accessory proteins. This molecular shift 

depends mainly on the P-loop domain (also called “G-domain”), a short and well-

known guanine binding motif present also in other Ras superfamily members and 

considered a “landmark” of Rab functioning that is harboured in a six-stranded β 

sheet (Park, 2013). Two other fundamental domains are Switch I and Switch II: in a 

three-dimensional structure they lie on the Rab surface and are central to proper 

conformational folding of Rabs in trafficking dynamics (Park, 2013). Many 

mutations have indicated the putative Switch as instrumental for the interplay 

between Rabs and their effectors (Stenmark and Olkkonen, 2001). Through extensive 

sequence-analysis, it has been unraveled the existence in and around Switch regions 

of five amino-acid stretches (RabF regions) probably implicated in Rab interactions 

with effectors (Moore et al., 1995). These proteins are able to work in their GTP-

form and need a complex pathway to be activated. After GTP hydrolysis operated by 

specific GTPase activating proteins (GAP), each Rab protein is extracted from its 

original lipid membrane through the intervention of carriers named GDP dissociation 

inhibitors (Lee at al., 2009; Barr and Lambright, 2010). At this point, the ultra-
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specialized GTP exchange factors (GEFs) activate Rabs in cohabitation with GAPs, 

in order to impose a precise intracellular position for each linked family member. 

This GTP-bound form represents an hub for recruiting all the effectors necessary to 

carry out a specific step of intracellular trafficking, such as tethering factors and 

motor proteins (Klopper et al., 2012). Concerning Rab connection to eukaryotic 

membranes, a post-translational modification of their terminal cysteine motif by Rab 

escort proteins (REPs) is necessary, specialized in Rab delivery to proper membranes 

together with geranylgeranyl transferases (Alexandrov et al., 1994; Anant et al., 

1998). By employing affinity chromatography and mass spectrometry on 

Drosophila, it has been shown the existence of a complex system of interactions for 

ten distinct Rabs: the list of effectors comprises motor linkers, tethering complexes, 

Rab regulators and proteins related with human pathologies (Gillingham et al., 

2014). In short, Rab proteins co-ordinate eukaryotic cellular trafficking together with 

a multitude of accessory proteins, resulting in a network involving all the cellular 

environments, far from being completely understood (Barr, 2013).  

Although they share many structural and functional elements with other Ras proteins, 

Rabs show unique characteristics rendering them a monophyletic grouping inside the 

Ras superfamily, closest to the putative family of Ran nuclear transporters (Colicelli, 

2004; Rojas et al., 2012). Rab family evolution and its contribution to trafficking 

dynamics have been considered as decisive events for the success of eukaryogenesis 

(Brighouse et al. 2010). The Rab toolkit exhibits an extremely variable number 

across the tree of life, with more than 60 members in Homo sapiens (Stenmark, 

2009): although linkage between Rab number and cellular function remains to be 

elucidated, a larger Rab complement could indicate an increase of trafficking 

mechanism complexity. In order to shed light on Rabs already present in the Last 
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Eukaryotic Common Ancestor (LECA), efforts have been made to investigate the 

bulk of Rab complement in unicellular eukaryotes. It has been hypothesized the 

LECA Rab toolkit encompasses 14 proteins, even if only 10 are phylogenetically 

supported (Pereira-Leal and Seabra, 2001; Pereira-Leal, 2008; Bright et al., 2010); 

nonetheless, several unicellular eukaryotes possess totally 20-30 Rabs (Saito-Nakano 

et al., 2005; Carlton et al., 2007; Bright et al., 2010). Using deeper phylogenetic 

methods, it has been possible to enlarge the ancient and complex family toolkit with 

the LECA comprising 20 or 23 Rabs (Klopper et al., 2012; Elias et al., 2012). Rabs 

belonging to the original LECA dataset probably are the result of duplicative events 

pre-dating eukaryotic diversification (Klopper et al., 2012) involving an original set 

of  five “core” Rabs (Rab1, Rab5, Rab6, Rab7, and Rab11) which could represent the 

origin of 5/6 groups or supergroups (Dunst et al., 2015). The ancient dynamism of 

Rab evolution is suggested by the presence of putative pre-LECA paralogue’s 

couples like Rab1/Rab8, Rab20/24, Rab32A/Rab32B (Elias et al., 2012). Coherently 

with these results, it has been shown the existence of a small Rab toolkit already in 

the Archea (Surkont and Pereira-Leal, 2016). Moreover, LECA Rabs have been 

categorized in six groups or supergroups depending on their cellular localization 

(Figure 3.1; Klopper et al., 2012). On the other hand, multicellular eukaryotes 

present multiple Rab members probably originated through different duplicative 

events leading to Metazoans considered as a hotspot for Rab diversification (Elias et 

al., 2012). Nevertheless, as suggested by toolkit discrepancies of distinct 

invertebrates (Nematostella vectensis, Caenhorabditis elegans, Drosophila 

melanogaster), the impact of gene gains and losses on Rab evolution has been strong 

with probable functional consequences (Gallegos et al., 2012; Elias et al., 2012). For 

instance, the role of secondary losses needs to be better investigated for their possible 
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connections with cell functioning (Albalat and Canestro, 2016): it could be a partial 

effect of particular structure loss across evolution (Klopper et al., 2012). Worthy of 

being analyzed from an evolutionary perspective, the Rab repertoire appears 

characterized by a strong variability in animals with a variable phylogenetic 

distribution for many subfamilies. The current Rab family results from a balance 

continuously influenced by the loss of ancient members and the addition of lineage-

specific paralogues, with a patchy pattern in different phyla (Elias et al., 2012). As 

well as metazoans, also in plants have been evidenced differences in terms of Rab 

complement but the evaluation is less supported because the scarcity of available 

plant genomes (Klopper et al., 2012). Inside Metazoans, a further hotspot in Rab 

diversification could be the origin of vertebrates, due to duplication events that 

occurred early during their evolution (Abi-Rached et al., 2001; Dehal and Boore, 

2005). To shed light on trafficking evolution, the Rab toolkit history has been 

compared with those of other gene families implicated in eukaryotic transportation 

dynamics such as transport protein particle (TRAPP) and SNARE. Rab family 

evolution appears much more animated by gains and losses, with a sort of 

“evolutionary calm” disclosed by other families of membrane players during 

evolution (Klopper et al., 2012).  
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Figure 3.1. Evolutionary history of putative LECA Rabs. This phylogeny 

encompasses Rabs attributed to Last Eukaryotic Common ancestor and divided in six 

supergroups depending on their putative cellular localization (from Klopper et al., 

2012). 

 

 

Notably, Rab orthologs in such evolutionary distant species as yeast, plants, insects 

and humans perform functions highly superimposable; this is coherent with a 

conservation of trafficking roles played by Rabs in eukaryotes. In H. sapiens, many 

Rab proteins are present in each tissue, and some are expressed in particular tissues, 

reflecting that Rabs participate to a myriad of trafficking processes (Zerial and 

McBride, 2001; Bock et al., 2001). Pigmentation represents an interesting field of 

study from ecological, biochemical and evolutionary viewpoints. Pigment cells of 

vertebrates are characterized by an intense vesicular trafficking, whose regulation 

needs the involvement of different protein families (Sitaram and Marks, 2012). The 
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most studied mechanism for pigment formation is melanogenesis, a conserved 

biosynthetic pathway where a plethora of proteins are involved, but the most 

important are tyrosinase family members as Tyr and Tyrp, considered markers for 

pigmentation (Esposito et al., 2012). This multi-reaction process needs a fine 

regulation and requires an intense transport of molecules, mainly for the formation of 

melanosomes: amongst a myriad of proteins, Rab32 and Rab38 exert a fundamental 

role in pigmentation because they transport tyrosinase family members between 

trans-Golgi network (TGN) and immature melanosomes (Wasmeier et al., 2006). In 

co-habitation with classical lysosomal proteins these Rabs, partially redundant 

functionally, are fundamental for melanocyte pigmentation (Bultema et al., 2012; 

Bultema and Di Pietro, 2013) as confirmed also by functional experiments conducted 

in ascidians (Racioppi et al., 2014). Rab9A, belonging to group III as Rab32/38 

genes, is indispensable for the recycling of cargos during melanosome biogenesis; it 

has been proposed a functioning scheme in concert with Rab32 and Rab38 (Mahanty 

et al., 2016). Indeed, Rab27A is implicated in the orchestration of melanosome 

distribution inside melanocytes, together with myosin Va (Wu et al., 2001; Wu et al., 

2002), in fact is considered as a key gene for the determination of human skin 

(Yoshida-Amano et al., 2012). Regarding melanosomes, the regulator of endocytosis 

Rab11b is fundamental for their membrane formation and transfer to keratinocytes 

(Tarafder et al., 2014); this step is regulated by filopodia, whose formation requires 

Rab17 protein (Beaumont et al., 2011). The incidence exerted by Rab family 

members on pigmentation mechanisms is demonstrated also by a number of cases in 

which has been reported a linking between certain Rabs and human pathologies 

associated to pigmentary defects. Griscelli syndrome, an autosomal recessive 

disorder causing partial albinism, is caused (in its immunological variant) by a 
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missense mutation in gene that encodes for Rab27A (Menasche et al., 2000). On the 

other hand, Rab38 mutation on chocolate mouse and ruby rats (Loftus et al., 2002; 

Oiso et al., 2004) is at the base of Hermansky-Pudlak syndrome (HPS), a human 

disease characterized by oculocutaneous albinism and lipofuscin accumulation (Wei, 

2006). Moreover, defects in Rab38 expression produces not completely functional 

RPE in eye of mouse (Lopes et al., 2007).  

The Rab family is thought as one of the most important players in the trafficking 

inside eukaryotic cell and understanding its evolutionary landscape could represent a 

fundamental aid to study multicellularity establishment. Probably because of their 

key role as traffic regulators, Rabs constitute vital players also for pigmentation 

dynamics and credible candidates for studying human diseases implicating pigment 

cells. These elements, together with irregular and unfocused studies available, 

prompted me to analyze in depth the Rab family using eleven species of metazoans, 

ranging from cnidarians to human. By employing phylogeny, synteny and intron 

analysis, I provide the most up-to-date and comprehensive study about the Rab 

evolutionary history in animals describing the toolkit and the mechanisms driving the 

evolution of this family: it represents an important platform for evolutionary 

biologists interested in transportation and pigmentary dynamics. This part of my Phd 

thesis has been carried out together with Dr Salvatore D’Aniello (Biology and 

Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples) and Prof. 

Ricard Albalat Rodriguez (Departament de Genètica, Microbiologia i Estadística, 

Universitat de Barcelona).  

 

 

 



43 
 

3.2 - Results 

3.2.1 - Rab phylogeny in Metazoans 

In order to gain insights in the evolutionary landscape of metazoan Rab family, we 

performed a thorough and detailed genome search starting from available databases 

and focused on the connection between Rab complement and eukaryotic membranes 

(Elias et al., 2012; Klopper et al., 2012). According to their strategic evolutionary 

positions, I selected eleven species for surveying this family in metazoans: the 

cnidarian starlet sea anemone Nematostella vectensis, the nematode Caenorhabditis 

elegans (Ecdysozoa), the segmented annelid worm Capitella teleta 

(Lophotrochozoa), the mollusk owl limpet Lottia gigantea (Lophotrochozoa), the 

acorn worm Saccoglossus kowalevskii and the purple sea urchin Strongylocentrotus 

purpuratus for the ambulacrarians, the early-branching Mediterranean amphioxus 

Branchiostoma lanceolatum (Putnam et al., 2008), the appendicularian Oikopleura 

dioica and the ascidian Ciona intestinalis from the fast-evolving Urochordata 

subphylum (Bernà and Alvarez-Valin, 2014), the anole lizard Anolis carolinensis and 

the primate Homo sapiens from vertebrates. To indicate species names I have used 

the first initial letters, i.e. Nematostella vectensis Rab2 is Nv_Rab2. This species 

catalogue has been employed to shed light on Rab diversification from early-

branching metazoan and invertebrate’s genomes, concentrating the analysis on 

chordate Rab toolkit evolution (totally five species). Rab proteins have been 

retrieved from public (NCBI, Ensembl, JGI) and private (European Amphioxus 

Genome Project) databases using human sequences as queries for Blast searches. 

Totally we obtained a dataset of 486 proteins consituting the most updated catalogue 

of bilaterian Rabs thus far. After discarding short and divergent sequences identified 

by analyzing the alignment, I constructed a phylogenetic tree with the Maximum 
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Likelihood (ML) method comprising 457 non-redundant Rabs (Figure 3.2), 

subdivided in 42 gene subfamilies. The majority of these are present from cnidarians 

to vertebrates supporting the hypothesis of a great Rab diversification occurred at the 

root of metazoans (Elias et al., 2012; Klopper et al., 2012). Interestingly, phylogeny 

demonstrates the existence of 38 Rab subfamilies pre-dating the rise of eu-metazoans 

with the remaining part formed by new members appeared in different times of 

animal evolution. Rab40 and RabX6 seem to be appeared before the split of 

bilaterians, while Rab46 and Rab12 represent deuterostome- and chordate-specific 

novelties, respectively. Moreover, this evolutionary survey robustly supports the 

orthology among the members belonging to each subfamily from N. vectensis to H. 

sapiens. It is noteworthy that urochordate Rabs often occupy more basal positions in 

the tree than expected from their phylogenetic relationships: a “long-branch 

attraction” artifact caused by the fast evolutionary rate characterizing tunicate 

genomes (Bernà and Alvarez-Valin, 2014). Besides, the topology of phylogenetic 

tree supports the existence in metazoans of 5-6 groups of Rabs as previously 

suggested (Klopper et al., 2012, Stenmark, 2012). I have employed a color code to 

distinguish among the groups: I (green, the most diversified), II (blue), III (red), IV 

(violet), V (orange), VI (yellow). Interestingly, Rab6 (Group V) includes also 

Rab34/36 subfamily, previously attributed to Group I (Klopper et al., 2012). The Rab 

family dimension is due to duplication events, which are particularly numerous in 

chordates and involve mainly certain subfamilies, as exemplified by Rab40. It could 

be interesting to investigate the impact of gene losses on Rab family: a phenomenon 

that is evident in organisms as O. dioica and C. elegans. Gene losses could be 

studied from a functional prespective because potentially connected to the absence of 

some specific trafficking step inside cell.  
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Figure 3.2. Phylogenetic reconstruction of metazoan Rab family. Maximum likelihood 

tree obtained using 457 proteins from eleven metazoan species, subdivided in three distinct 

groups represented with different colours: I (green) II (blue), III (red), IV (violet), V 

(orange), VI (yellow).  

 

In short, phylogenetic analysis confirms Rabs as a dynamic family reaching a major 

degree of modification in chordates, where a mixture of evolutionary events such as 

duplications and losses modelled heavily this family. The detailed genome’s search 

and the phylogenesis represent the most comprehensive survey concerning Rabs, in 

particular for the attribution of precise orthology to several genes from different 

metazoans. This phylogeny provides essential information to analyze evolutionary 

history of Rab family, representing an improvement of knowledge about that. It is 

focused not only on LECA proteins as past studies (Elias et al., 2012; Klopper et al., 
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2012) but it covers a large amount of Rabs from eleven animal species, with some 

never investigated. 

 

3.2.2 - Introns: an evolutionary signature for Rabs 

In order to gain more insights concerning Rab evolution, I performed a survey on the 

intron/exon structures of Rab subfamilies. Since splicing sites are affected by a slow 

gain/loss degree, they can be a fundamental tool for studying the evolution of genes 

(Irimia and Roy, 2008). For the first time, it is described in deep the intron code of 

entire Rab family from early-branching metazoans such as cnidarians to primates. 

Splicing site conservation has been evaluated using genomic information from 

available databases and the intron junctions have been mapped on protein alignment 

of distinct Rabs belonging to six Groups. Employing intron/exon structures, I 

designed a model comprising all the Rab subfamilies characterized by distinct 

classes of introns (Figure 3.3) that are  intra-group (blue), inter-group (red) and 

subfamily-specific (black) introns. This survey highlights an extraordinary 

conservation of Rab gene structure, in particular each subfamily retains specific 

intron positions across all metazoans analyzed supporting the existence of an intron 

code for the Rab family. All the bars shown in Fig. 3.3 represent a Rab with the 

outcome of all selected species, except O. dioica proteins excluded due to scarcity of 

available information about its genome. The unique gene not surveyed is the intron-

less Rab9, belonging to the group III (red in Fig. 3.2). Interestingly, the conserved 

splicing sites are subfamily-specific signatures coherent with the phylogenetic-based 

classification of chordate (and non-chordate) genes. Moreover, shared intron 

positions and phases represent a tool to depict the orthology among invertebrate and 

vertebrate genes supporting duplication events, as shown by several cases in Rab 
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family such as Rab34/36 with Rab34 and Rab36 or Rab26/37 with Rab26 and 

Rab37.  

 

Figure 3.3. Intron code of Rabs. The figure shows the splicing sites of all Rab subfamilies  

(long gray bars) in Metazoans, which present three typical functional domains (dark boxes). 

Intron/exon junction have been classified using different colors: intra-group (blue), inter-

group (red), member-specific (black). 

 

In general, all the members of each subfamily share a common intron code, spanning 

from cnidarians to human. Because intron gain/loss is a slow evolutionary 

phenomenon, introns may be used more reliably than protein alignments typical of 
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phylogenies to trace back the history of highly divergent genes. For instance, intron 

code has been used to clarify the orthology of RabX6, present only in mollusks and 

ambulacrarians, and excluded from the tree for their fast evolutionary rate. As 

suggested by previous explorations inside group III (Fig. 2.3; Coppola et al., 2016), 

the preservation of intron code among distinct subfamilies is a clear hallmark of an 

ancient common origin as happens in Group I for Rab8, Rab10 and Rab40 or in 

Group II for Rab5 and Rab22. The presence of many conserved inter-group introns, 

however, reinforced the idea of a complex gene structure for the ancestral eukaryotic 

Rab gene. Here we show the first map concerning intron code of Rab family, 

demonstrating as the intron/exon structure is a diagnostic tool for recognizing the 

members of each Rab subfamily, supporting strongly the phylogenetic analysis. 

Moreover, intron positions shared by members belonging to distinct groups suggest 

that “modern” Rabs derive from one or few ancestral molecules. 

 

3.2.3 - Duplications sculpted Metazoan Rab repertoire 

Phylogenetic analysis and intron code, taken together, allowed depiction of Rab 

repertoire evolution in the eleven species selected across metazoans. A model was 

designed describing Rab toolkit and the identity of all family members, with a 

comprehensive scheme of Rab evolution in animals (Figure 3.4). Starting from 

LECA Rab genes, all the subfamilies have been visualized in the surveyed organism 

with a black and white symbols used to show the dichotomy between presence and 

absence for a gene. Rab repertoire analysis evidences the great variability in terms of 

metazoan Rab number that becomes more dramatic in the chordate phylum. First, 

this survey provides an update about Rab complement of species with respect to past 

Rab evolutionary investigations (Gallegos et al., 2012; Elias et al., 2012; Klopper et 
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al., 2012): N. vectensis with 52, C. elegans with 32, L. gigantea with 41, S. 

purpuratus with 40, H. sapiens with 66 Rab family members. Besides, this 

schematisation introduces in the Rab evolutionary scenario the genomes of novel 

species as the annelid C. teleta (37), the acorn-worm S. kowalevskii (43), the 

amphioxus B. lanceolatum (45), the appendicularian O. dioica (30) and the reptile A. 

carolinensis (60). It illustrates duplications inside the Rab family in all the selected 

species, but mainly in anole lizard and human (vertebrates). However, the impact of 

gene losses is clear comparing the Rab complement size of cnidarians to nematodes 

and annelids or, similarly, the Rabs possessed by amphioxus to C. robusta and O. 

dioica, with the latter having the smallest Rab repertoire among the analyzed species. 

Tunicates show a dynamic Rab toolkit due to a combination of duplications and 

losses in comparison with originary amphioxus 41 subfamilies, with many 

differences between ascidians and larvaceans, even if some losses which could be 

due to low-quality of genomes. Given the impact of duplications on Rab family 

during metazoan evolution, I also performed a syntenic survey to shed light on the 

nature of these duplicative events in vertebrates and invertebrates (Catchen et al., 

2009). Together with phylogeny and intron code, this kind of approach is able to 

reconstruct unequivocally evolutionary history of Rabs from early-branching 

metazoans to vertebrates (Supplementary Table 3.1; Fig. 3.4). Regarding vertebrates, 

a synteny study on human chromosomes allowed to distinguish between extra-copies 

deriving from whole-genome duplications or WGDs (green in Figure 3.4) and gene 

duplications (blue in Fig. 3.4). Chromosomal conservation data indicate the presence 

of 40 WGD-originated Rabs in vertebrates  (mainly comprised in Group I), with 

seven of them absent in Anolis. The genes derived from whole-genome duplications 

are: Rab1A-Rab1B, Rab3B-Rab3C, Rab8A-Rab8B-Rab13, Rab19-Rab43, Rab26-
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Rab37, Rab27A-Rab27B, Rab33A-Rab33B, Rab39A-Rab39B and EFcab4A-

EFcab4B-Rab44 for the Group I; Rab5A-Rab5B-Rab5C and Rab22A-Rab22B for 

the Group II; Rab32-Rab38 for the Group III; Rab2A-Rab2B, Rab4A-Rab4B, 

Rab11A-Rab11B-Rab25 for the Group IV; Rab6A-Rab6B-Rab6C-Rab41 and 

Rab34-Rab36 for the Group V. Then, I recognized ten genes phylogenetically related 

but without common syntenic surrounding genes, probably they are arisen from local 

duplications occurred at the stem of vertebrate’s class, with only one not possessed 

by reptiles. All the syntenic relationships are listed in Suppl. Table 3.1.  

 

 

Figure 3.4. Rab repertoire in metazoans. Rab toolkit schematization of all metazoans 

present in this survey, respect to LECA genes (written in red). The species are indicated with 

initial letters of their name. All the genes are represented by circles (without color in case of 

absence). Using a color code, we evidenced distinct duplicative events. Subtle lines under 

paralogues indicate tandem-duplications (Rab5 in S. kowalevskii and Rab40 in H. sapiens).  
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Among these, three derive from tandem duplications: Rab3A-Rab3D (human Chr 

19) and Rab40A-Rab40AL of group I (human Chr X), Rab9A-Rab9B (human Chr 

X) of group III. The lack of introns in Rab40A and Rab40AL hints a 

retrotranscriptional origin for them; curiously, a genome search in mammals show 

that Rab40A and Rab40AL are present only in primates (yellow). Intriguingly, the 

original metazoan Rab toolkit of invertebrates has been affected by various specific 

duplications (orange) mainly in N. vectensis and O. dioica while amphioxus and owl 

limpet show general Rab stasis. In the hemichordates, it has been found a Rab5 

cluster formed by five members (Suppl. Table 3.1). Moreover, we found some 

examples of Rabs “resistant to duplications” across the evolution (Ran, Itf27). 

Here is reported a map about identity and origins of all metazoan Rabs, 

demonstrating a great impact of duplications in Rab complement sculpting, 

especially in chordates; moreover, this survey testifies also the relevance of gene 

losses in Rab family.  

 

3.2.4 -  Domain architecture: not only “Rabs” 

For collecting information about the evolution of Rab proteins, I also investigated 

their domain organization in metazoans (Figure 3.5). The majority of Rabs typically 

present three fundamental domains: a short motif fundamental to bind guanine 

nucleotides named the P-loop, and two stretches crucial for proper protein folding 

named Switch I and Switch II (Park, 2013). Interestingly, there are several 

exceptions in the “canonical” Rab domain architecture. Inside group III there is a 

subgroup of proteins characterized by a FALK stretch downstream of Switch I, 

composed by Rab32/38, Rab32LO and Rab7L1 subfamilies (Fig. 2.2; Coppola et al., 

2016). Placed in the same group from my phylogeny there is Ran (Rab-in-nucleus), 
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the unique member of Rab family known for its nuclear functions (Melchior et al., 

1993; Moore and Blobel, 1993) which is as single-copy gene across the evolution 

showing slightly diverse domain amino acid composition respect to other Rabs. 

Within the large group I there is Rab40, a bilaterian-specific protein with many 

duplicates in vertebrates (Fig. 3.2 and Fig. 3.3) whose peculiarity is the SOCS box at 

the C-terminus of protein. The SOCS (suppressor of cytokine signaling) box is a 50-

amino acid motif present in several proteins which confers to Rab40 a regulatory role 

in lipid droplets formation in Drosophila (Tan et al., 2013) and Varp proteasomal 

degradation in melanocytes (Yatsu et al., 2015). Moreover, inside the P-loop of 

Rab40 orthologues I detected remarkable amino acid variability, a further element 

rendering this subfamily attractive for evolutionary biologists. However, an 

interesting peculiarity is represented, within Group I, by a class of “giant” Rabs 

(approximately 700 amino acids) showing C-terminal canonical domains of Rabs (P-

Loop, Switch I, Switch II) and one/two EF-Hand motifs, which are calcium-binding 

elements widespread in eukaryotes (Kawasaki and Kretsinger, 1995), at the N-

terminal region. Because of the domain’s combination, I called these proteins “Rab 

chimeras” (Rasef, EFcab4/Rab44, EFcab4A, EFcab4B, Rab44, Rab46). The first 

atypical big GTPase to be found has been Rab45/RASEF, in the perinuclear area of 

HeLa cells (Shintani et al., 2007). It has been demonstrated the implication of this 

gene in several diseases, such as melanoma (Maat et al., 2008; Kaplon et al., 2014). 

Mammalian genomes encode for a couple of chimeras (CRACR2A and CRACR2B, 

here respectively renamed EFCAB4B and EFCAB4A) partially similar to each other. 

Their name derive from regulation of CRAC channels operated by CRACR2A in T 

cells (Srikanth et al., 2010), central in the presynaptic vesicle trafficking (Srikanth et 

al., 2016). Given the similarity in terms of domain architecture, all the large Rabs 
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could be implicated in calcium binding within intracellular signalling pathways, a 

novel function for GTPases (Srikanth et al., 2016; Srikanth et al., 2017). 

 

Figure 3.5. Domain organization of Rab family members. Here are classified all the 

metazoan Rabs, according to their domain combination. It has been established a colour code 

for all the protein motifs present in Rab family. 

 

To shed light on Rab chimeras evolution and classification, I performed a ML 

phylogenetic reconstruction focused on metazoans (Figure 3.6). The sequences have 

been retrieved from public databases using human RASEF and EFCAB4B 

(CRACR2A) as queries and, successively, aligned by ClustalX (Larkin et al., 2007). 

In light of their shortness or divergence, several sequences have been excluded from 

the dedicated tree, which comprises 29 Rab chimeras from the following species: C. 

elegans, C. teleta, the oyster Crassostrea gigas (mollusk), the trematode Schistosoma 

mansoni (plathelmyntes), the Brachiopod Lingula anatina, the Holocephalan 

Callorhinchus milii (cartilagineous fish), A. carolinensis, the goose Anser cygnoides 

(bird), the mouse Mus musculus (mammal) and H. sapiens. I did not find Rab 

chimeras in the available genomes of unicellular eukaryotes. Each protein present in 

the tree is flanked by a schematic domain organization: 1
st
 EF-Hand (orange 



54 
 

pentagon), 2
nd

 EF-Hand (red pentagon), Rab (blue bar). The tree topology shows the 

existence of two big and phylogenetically robust subfamilies named Rasef (orange 

box in Fig. 3.6A) and EFcab4/Rab44 (light blue box in Fig. 3.6A). While the first is 

formed by single-copy gene for invertebrates and vertebrates, the latter has a quite 

complex evolutionary scenario. Phylogenesis suggests that invertebrate 

EFcab4/Rab44 is the ancestor of vertebrate-specific EFcab4A (Cracr2B), EFcab4B 

(Cracr2B) and Rab44, originated in two different rounds of genome duplication 

(Abi-Rached et al., 2001; Dehal and Boore, 2005), as supported by comparison 

among four human genomic loci (Supplementary Table 3.2). Analyzing the domain 

architecture of each large GTPase has permitted to prepare a classification in 

accordance to EF-Hand presence/absence (Fig. 3.6B). My survey demonstrated 

invertebrate’s Rasef, EFcab4/Rab44 and Efcab4B have one whereas vertebrate’s 

Rasef and Efcab4A have two calcium-binding motifs. The presence in some 

invertebrate’s Rasefs of two EF-Hands (for instance L. anatina) supports the 

occurrence of several domain losses. The EF-hand presence/absence landscape could 

be parsimoniously explained with several loss events from an ancestor of all Rab 

chimeras clade characterized by two EF-Hands; genome search and alignments hint 

at the first EF-hand as that preferentially lost (orange pentagon). Surprisingly, 

Efcab4A of mammals and amphibians as Xenopus tropicalis (excluded from the 

phylogeny) lacks a C-terminal Rab domain. The orthology of these two genes with 

other vertebrate Efcab4A proteins has been confirmed using a synteny approach, 

evidencing a paralogon highly preserved in gnathostomes (Fig. 3.6C). Moreover, this 

class comprises a further member (Rab46) that probably is a deuterostome-specific 

duplicate, here absent for its fast-evolutionary rate (Fig 3.2). 
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Figure 3.6. Evolution of Rab chimeras. A) ML phylogenetic tree shows Rasef (orange) and 

Efcab4/Rab44 classes; close to each protein are drawn EF-Hands (pentagons) and Rab (blue 

bar) motifs. B) Schematization of domain architecture in invertebrate and vertebrate Rab 

chimeras. C) Paralogon conservation of Efcab4A genomic loci. 

 

My survey represents the first general and clear picture about Rab family domain 

organization in metazoan clade where is possible to find several exceptions, 

rendering this family extremely dynamic also from this perspective. Among these, 

Rab chimeras are the most fascinating for their complex evolutionary scenario 

(particularly in vertebrates) and for the possible functional implications due to the 

evolution of giant Rabs. 
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3.3 - Discussion 

3.3.1 - The Rab family: a complex evolutionary scenario 

Genome searches, phylogenetic tree analysis, intron code and synteny represented 

fundamental tools to investigate the evolution of the metazoan Rab family, the 

largest within Ras superfamily. Despite comprehension of Rab evolutionary history 

having been traditionally deemed instrumental for understanding eukaryotic 

evolution (Elias et al., 2012), here is reported the first comprehensive investigation 

on “animal” Rabs, under the hypothesis that a major complexity requires a more 

manifold trafficking machinery. In particular, I focused on Rab complement in 

chordates which can be considered as the most active “hotspot” for Rab variability 

inside metazoans. Phylogenetic reconstruction proved the existence of 42 Rab 

subfamilies in animals, with 36 already present in Nematostella vectensis (Fig. 3.1). 

The cnidarian Rab repertoire result is extremely interesting because it permits us to 

quantitate the increase in Rab number before metazoan split of 21 ancestral Rabs 

(Fig. 3.4, highlighted in red), as previously suggested (Klopper et al., 2012). The 

presence of two LECA genes, RabX1 and Rab32/38, in the demosponge 

Amphimedon queenslandica speaks in favor of their loss in the cnidarian ancestor. In 

light of this, the eu-metazoan Rab complement consisted of 38 subfamilies 

approximately conserved across animal evolution. To shed light on the mechanisms 

driving the evolution of Rab toolkit from LECA to animals, a challenging step will 

be to analyze Rabs across other basal animals as A. queenslandica (sponges), 

Mnemiopsis leidyi (ctenophorans) and Trichoplax adhaerens (placozoans). With its 

41 subfamily members clustering with vertebrates and ambulacrarians, amphioxus is 

the best stand-in to study the ancestral Rab repertoire at the stem of chordates: in 

fact, B. lanceolatum has conserved all the subfamilies, except the RabX6 (excluded 
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from phylogeny for its evolutionary divergence). Interestingly, this  Rab35-like gene 

has faced several losses as happens in chordates and my results indicate it as a 

bilaterian-novelty. Characterized by a complex story in vertebrates, also Rab40 arose 

before the split of bilaterians. With respect to the eu-metazoan subfamily set, the 

amphioxus set presents Rab46 and Rab12. The deuterostome-specific Rab46, lost in 

hemichordates and vertebrates, here is classified for the first time and belongs to the 

“Rab chimeras” class (not shown in Fig. 3.6A). Surprisingly, Rab12 represents the 

unique family member evolved by chordates and has been maintained in all 

vertebrates. Initially identified in rat testis (Iida et al., 2005), Rab12 regulates 

transferrin degradation therefore is fundamental for recycling endosomes to 

lysosomes (Matsui and Fukuda, 2011). It supports the specialization of chordate-

specific Rab12 to orchestrate innovative trafficking routes. Curiously, all the novel 

subfamilies appeared after metazoans split belong to Group I (green), by far the 

largest inside the Rab family, encompassing 23 well-supported distinct subfamilies 

(57 % of total): taking all into consideration, it represents the most ‘successful’ group 

from an evolutionary perspective, maybe for the relevance of regulated pathways 

inside intracellular trafficking. Using phylogeny it has been possible to establish 

parsimoniously the orthology of several Rabs, whose identity and name were hitherto 

unknown, uncertain or wrong. Apart from a more stringent classification of many 

proteins belonging to known models, constructing this tree has allowed me to 

identify the entire Rab family of key species such as annelid C. teleta, ambulacrarian 

S. kowalevskii, appendicularian O. dioica. Intriguingly, the selection only of 

metazoan species and the exclusion of unicellular eukaryotes could have facilitated 

tree definition and the orthology of subfamilies. Finally, the phylogenetic tree shows 

the Rab family as, characterized by several duplications and losses which have 
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modeled the starting Rab toolkit across metazoan evolution, mainly in chordates. 

Although Rab intron codes give little information supporting the presence of distinct 

groups, it represented a valid tool to shed light on the orthology of Rab subfamilies. 

Given intron positions are rarely modified over time, splicing site conservation is 

more reliable than phylogeny, which can be affected by divergent evolutionary rates, 

or low signal-to-noise ratios of sequences (Irimia and Roy, 2008). Next I reported the 

first attempt for deciphering the intron code of Rab GTPases family (Fig. 3.3). 

Intron/exon structure is conserved in all the analyzed species, with a general 

preservation from eu-metazoan ancestor to vertebrates. I recognized subfamily-

specific intron signatures retained (also in duplicates) during evolution, in spite of 

many protein modifications; this has been important to establishing chordate Rab 

orthology with other metazoan members. As suggested for the Rab32/38 subfamily 

(Coppola et al. 2016), the retention of intron positions traces back the evolutionary 

origins of vertebrate genes: for instance Rab34/36 with Rab34 and Rab36 and 

Rab26/37 with Rab26 and Rab37. Using this code will be instrumental to assess the 

orthology of Rabs from other species, in particular invertebrates. For instance, the 

conservation of the same intron has inferred the orthology among RabsX6 of L. 

gigantea, S. kowalevskii and S. purpuratus (not present in phylogeny). By contrast, 

inside groups there are subfamilies with common intron/exon structure: the most 

interesting and supported cases are Rab8, Rab10, Rab15 and Rab40 within Group I, 

Rab20, Rab21 and Rab24 inside Group II and Rab32/38, Rab32LO and Rab7L1 

inside group III, already supposed as a subgroup (Coppola et al., 2016). The shared 

intron code exhibited by non-orthologous genes unveils common history for distinct 

subfamilies suggesting the existence of ancient duplicative events before radiation of 

eu-metazoans. Then, some intron sites can be used as key phylogenetic markers 
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which postulate ancient common origin, inherited from an ancestral Rab or, more 

probably, from a set of “core” Rabs (Dunst et al., 2015). Moreover, also intron 

absence is a significant evolutionary information: the lacking of introns in all the 

Rab9 genes prompted me to consider it as an ancient paralogue retrotranscripted 

from Rab7. Collectively, intron site data are an essential component to comprehend 

the evolutionary events (gene duplications, genome duplications, gene losses) which 

carved the Rab family, especially during chordate diversification. Albeit the introns 

do not give clear bias for “group-specific” codes, it has been discovered a number of 

splicing sites conserved in members belonging to distinct groups. The presence of 

many inter-group introns, however, reinforced the idea of a complex gene structure 

for the ancestral eukaryotic Rab genes, which would have unevenly lost introns 

during evolution.  

Phylogenetic and intron/exon analysis permitted me to describe Rab complement in 

metazoans, with a particular attention on chordates. Adding synteny analysis, I 

deciphered the impact on duplications and losses on the Rab toolkit of chordates, 

with a plethora of vertebrate-specific members deriving from genome and local 

duplications. Surveying human chromosomes, it has been established clear 

relationship for 40 ohnologue (green) Rabs arisen at the stem of vertebrates (Abi-

Rached et al., 2001; Dehal and Boore, 2005). Therefore, chromosomal conservation 

indicates the existence of 17 Rab invertebrate ancestors which represent the major 

source of Rab number increase in vertebrates, such as Rab19/43 and Rab34/36. 

Besides, for ten genes (Rab3A, Rab3D, Rab17, Rab42, Rab40B, Rab40C, Rab7A, 

Rab7B, Rab9A, Rab9B) absence of synteny speaks in favour of local duplications 

that occurred before vertebrate’s split (blue), with two gene couples deriving from 

tandem duplications (Rab3A-Rab3D, Rab9A-Rab9B). Moreover, a tandem 
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duplication involves also two primate-specific genes, Rab40A and Rab40AL 

(yellow). The study of Rab40 demonstrates how unifying phylogeny, intron and 

synteny data can be helpful to understand the evolutionary history of such a complex 

lineage. The most parsimonious explanation is based on a local vertebrate 

duplication affecting Rab40B/C ancestor, with a successive retrotransposition before 

primate’s split generating Rab40A/AL, as suggested by intron absence in all the 

primate sequences surveyed. The retrotranscribed sequence duplicated again giving 

rise to tandem Rab40A-Rab40AL. Regarding vertebrate duplicates, anole lizard does 

not possess seven WGD-Rabs (Rab11B, Rab25, Rab13, Rab6C, Rab41, Rab34, 

Rab36) and one local duplicate (Rab42) and exhibits an additional Rab18. A survey 

in other reptilian genomes demonstrates that Rab13, Rab34 and Rab6C are lost in all 

the reptiles whereas the other absences could be related to specific loss events or to 

low quality of genomes; reptiles present a duplication involving the Rab18 lineage 

(Rab18A, Rab18B). It suggests to investigate discrepancies in Rab complement amid 

vertebrates (cyclostomes, sharks, amphibians, birds) which could be extremely 

interesting from a functional perspective, in terms of gain/loss of cellular trafficking 

capabilities. Because teleost-specific genome duplication (TSGD or 3R) involving 

“modern fishes” (Hoegg et al., 2004; Kuraku et al., 2009), the analysis of fish Rabs 

appears to be really challenging. Moreover, this survey on teleost should give 

insights on the effects on functionality driven by duplications, as suggested by 

developmental diversification occurred in Rab32/38 subfamily of zebrafish (Coppola 

et al., 2016). 

Interestingly, the vertebrate toolkit includes all the ancient subfamilies, except two, 

RabX1 and Rab32LO, whose function could result lost or attributed to other genes; 

for Rab32LO, the original role could be partially redundant with ancient paralogue 
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Rab32/38, specialized in pigmentation (Racioppi et al., 2014). Surprisingly, N. 

vectensis lacks Rab32/38 in place of Rab32LO evoking a common role in trafficking 

dynamics for these two genes, but is necessary to get information regarding 

Rab32LO. About Rab32/38, its presence in Oikopleura dioica results very interesting 

because speaks in favour of a function not necessarily related to pigmentation. This 

appendicularian does not show pigmentation, in fact we demonstrated it lacks 

tyrosinase family members (Racioppi et al., 2017). Given Rab32/38 subfamily is 

associated to pigmentation for its role in the transport of tyrosinases (Tyr, Tyrp), the 

Rab32/38 gene in O. dioica must bind some other cargo. Functional analysis in this 

model system could reveal other trafficking capabilities for Rab32/38 subfamily, not 

related to pigmentation (Omotezako et al., 2015). 

Concerning invertebrates, I recognized many specific duplicates in all the selected 

species and this testifies to a strong impact of duplications on the Rab family also 

outside vertebrates. The highest number of duplications has been found in cnidarian 

N. vectensis, with 9 (or more) genes duplicated resulting in a toolkit of 52 Rabs. 

Moreover, the S. kowalevskii genome, harbours the largest Rab cluster found in 

metazoans, constituted by Rab5 genes. Importantly, we must comprehend how 

invertebrate duplications have encouraged the acquisition of new traffic capabilities. 

The Rab repertoire highlights the existence of distinct opposing scenarios in 

chordates. With its 45 Rabs distributed in 41 subfamilies (close to ambulacrarian 

toolkits), amphioxus complement is the closest to chordate archetypal Rab dataset. 

Rab toolkit confirms the amphioxus proclivity to genomic stasis, in fact just three 

lineages are affected by duplications (Rab9, Rab11, Rab12). On the other hand, there 

are urochordates here represented by O. dioica and C. robusta with 30 and 37 Rabs, 

respectively, which can be considered as “Rab-losers”. Since the chordate ancestor 



62 
 

possessed a full-set of 41 subfamilies, I compared amphioxus and tunicate repertoires 

distinguishing between 6 urochordate- (Rab15, Rab20, Rab22, Rab24, Rab30, 

Rab40B/C) and 11 larvacean-specific Rab losses (Rab4, Rab7L1, Rab9, Rab21, 

Rab23, Rab26/37, Rab28, Rasef, EFcab4/Rab44, RabX1, Itf27) whose role needs to 

be investigated. Among these, urochordates lack totally three original LECA genes 

(Rab22, Rab24, Rab32LO) while larvaceans have lost also other 5 LECA (Rab4, 

Rab7L1, Rab21, Rab23, Rab28, Itf27). Furthermore, this scenario supports two 

different periods of loss, one at the base of urochordates and a further in the 

appendicularian ancestor. Interestingly, O. dioica has the smallest Rab repertoire 

(30) in metazoans by losing a plethora of genes: it should be understood the 

functional impact of these losses. By contrast, the “Rab-loser” tunicates also show 

many duplications: in Ciona there are two Rab3 while in Oikopleura are duplicated 

Rab4, Rab5, Rab6 and Rab35. This could be connected to different functional needs 

of different urochordate species. However, Oikopleura dioica has the smallest Rab 

complement amongst metazoans surveyed here and in past analyses (Elias et al., 

2012; Klopper et al., 2012): it represents probably the minimal set of Rabs 

necesessary for metazoan’s trafficking. 

Vertebrates have the largest and most diversified Rab toolkit in metazoans depending 

on whole-genome and specific duplications. In light of two WGD events and local 

duplications, the vertebrate ancestor had approximately 150 Rab members, a pattern 

severely modified by a myriad of gene losses demonstrating their strong impact also 

in vertebrates, even if they are qualitatively different because this massive loss 

concerns only recent duplicates. Nonetheless, the comparison between invertebrate 

chordates, lizard and human allowed me to observe dynamic variability inside 

vertebrate’s complement, with many losses found in anole lizard. Moreover, toolkit 
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analysis indicates the existence of several clade-specific losses: chordates have lost 

RabX6, Olfactores Rab32LO and RabX4, vertebrates Rab46 and RabX1, whose role 

in the cell trafficking remains to be elucidated. Although it is necessary to survey the 

repertoire from other vertebrates (in particular agnathans), current information 

prompts me to believe that the ancestral vertebrate Rab complement was made of 37 

subfamilies.  

Comparisons among selected metazoan species allowed me to recognize not only the 

toolkit structure but also the most active lineages. In fact, the balance between gains 

and losses of genes remains elusive but it is apparent that expansion involved mainly 

some Rab subfamilies from cnidarians to vertebrates, as happened for Rab5, Rab6 

and Rab11. The duplication in different models of the same subfamily alongside the 

evolution is a believable phylogenetic signal to indicate the relevance of that protein 

in transportation dynamics, as already suggested (Klopper et al., 2012). The 

unduplicated Rabs alongside evolution such as Ran and Itf27 could represent a case 

of study for their involvement in human diseases. It has been hypothesized that a 

major degree of Rab modeling across different phyla has been useful to modify 

intracellular traffic pathways: it is hard to duplicate tethering complexes and coats 

because they are formed by several independent proteins, while duplicating Rabs has 

represented an easier strategy to influence transportation dynamics (Klopper et al., 

2012). In summary, my data lead to consider family variations across metazoans as 

driven by functional trafficking modifications. Among analyzed genomes, chordates 

exhibit the most active and dynamic Rab evolutionary landscape that has been 

influenced by diverse genomic events. 
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3.3.2 - Domains: a new tale from Chimeras 

For the first time, we mapped the domain architectures of the entire Rab family 

across metazoans (Fig. 3.5), demonstrating that some particular trafficking steps 

depend on a partial change in “canonical” Rab domain organization. Three 

subfamilies belonging to group III (Rab32/38, Rab32LO, Rab7L1), possess an ultra-

conserved stretch (FALK) downstream Switch I (Coppola et al., 2016). It could be 

functionally related with transportation steps regulated by Rab32/38 subfamily 

members in pigmentation (Bultema and Di Pietro, 2013; Racioppi et al., 2014). 

Sharing FALK could indicate a common origin for these three subfamilies, possibly 

associated with partially redundant functionality in pigmentation dynamics. 

Moreover, it could be interesting to evaluate the preservation of similar ‘boxes’ in 

related subfamilies. With its role in nuclear import-export, Ran represents a 

peculiarity in the Rab family, in fact it translocates several proteins through the 

nuclear pore complex (NPC) (Schlenstedt, 1996). By overexpression of RanBP1 (a 

Ran effector) in tissue cultures or Xenopus laevis cycling eggs, Ran pathway 

importance has been clarified also in mitotic progression (Battistoni et al., 1997; 

Kalab et al., 1999). Ran is a LECA gene present in all the selected metazoans and 

shows a modified Rab domain that could be responsible for its function in the cell.  

Rab40 represents a bilaterian innovation of group I with a particularly active pattern 

in chordates, as exemplified by different gene gains and losses (Fig. 3.4). Proteins 

encoded by this gene are characterized by C-terminal SOCS box, formed by two 

blocks of well-conserved residues separated by 2 to 10 nonconserved amino-acids 

(Kamura et al., 1998). In Drosophila Rab40B/C regulates the lipid droplet formation 

(Tan et al., 2013) while in mammals its ortholog Rab40C is implicated in 

pigmentation dynamics, because it regulates the degradation of Varp (Rab32/38 
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effector) influencing Tyrp1 trafficking (Yatsu et al., 2015). A role has also been 

proposed in Wnt pathway regulation in amphibian gastrulation (Lee et al., 2007). 

Moreover, I discovered a high degree of variation inside the Rab40 P-Loop amongst 

metazoans (not only those used for my phylogeny) that could be linked to functional 

modifications. Given SOCS is known to be a suppressor motif and the diverse 

functions attributed, I hypothesize that Rab40 subfamily has been evolved and 

maintained for playing specific roles, slightly different from simple transportation. In 

light of this, the absence in tunicates could be linked with loss of Rab40 special 

functionality whereas the impact of duplications occurred in vertebrates should be 

investigated, with a particular focus on pigmentation mechanisms. 

Among non-canonical Rabs, a noteworthy discovery has been the class of giant Rabs 

for their structure, evolution and function; therefore, I conducted a deep in silico 

analysis to comprehend the evolutionary history of “chimeras”, so called because 

they seem a combination between Rabs and calcium-binding proteins (Fig. 3.6). 

Firstly, phylogeny supports the existence of two distinct subfamilies in metazoans, 

Rasef and EFcab/Rab44. A detailed genome search demonstrated the absence in 

unicellular eukaryotes as Capsaspora owcarzaki and Monosiga brevicollis of such 

arranged Rabs, while both Rasef and Efcab4/Rab44 are present in the demosponge A. 

queenslandica. This prompted me to time “chimeras” formation before Porifera split 

and to define Rasef and EFcab4/Rab44 as two animal-specific Rabs, evolved for 

particular functions central to multicellularity. This event could be associated to the 

presence of EF-Hand elements, present in many calcium-binding proteins and 

consisting of twelve residue loop between two α-helical domains which form a trap 

for a calcium ion (Kawasai and Kretsinger, 1995). In synthesis, all the Rab chimeras 
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could represent a “mixed” subgroup which are not only transporters as other Rabs, 

but also sensors for calcium ions. 

Evolutionary analyses have demonstrated the presence of two ancestral subfamilies 

in the animal ancestor (Rasef, EFcab4/Rab44), both with two EF-Hands and a Rab-

homologue domain. While Rasef has been maintained in one copy from sponges to 

primates, EFcab4/Rab44 lineage appears particularly dynamic, as reflected by four 

additional proteins generated during evolution. Phylogenesis and complement 

representation (Fig. 3.2; Fig. 3.4) show the existence of a novel subfamily (Rab46) 

deriving from a duplication event in the deuterostome ancestor, successively lost in 

hemichordates and vertebrates. Its exclusion from the phylogenetic analysis 

depended on its fast evolutionary rate, that, together with its absence in vertebrates, 

speak in favor of ultra-specialized function. Indeed, three other proteins (EFcab4, 

EFcab4B, Rab44) are vertebrate novelties arisen from two rounds of genome 

duplication, as supported by synteny conservation among human chromosomes 1, 6, 

11, 12. I found Rab chimeras (blue) clustering with tetraspanins (TSPAN, yellow), 

potassium channels (KCNQ, orange) and cyclin-dependent kinase inhibitors (CDKN, 

green), as supported by dedicated phylogenetic reconstructions. Interestingly, I 

showed that chromosome 1 should be the position of a ghost chimera, i.e. the fourth 

member generated from WGDs. Collectively, data indicated Rab chimeras as a 

functional subgroup of six genes  (Rasef, EFcab4/Rab44, EFcab4A, EFcab4B, 

Rab44, Rab46) comprised in three subfamilies (Rasef, EFcab/Rab44, Rab46), a 

diversification reflected by distinct domain architectures possibly linked to diverse 

roles in the cell. Organization of domains is diagnostic: Rasef (invertebrate), 

EFcab4/Rab44 and EFcab4B with one EF-hand, and Rasef (vertebrate), EFcab4B 

with two EF-hands. The presence of some exceptions to this classification and the 
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variable architecture characterizing Rab44 and Rab46 are consistent with specific 

losses of the first EF-Hand. Because of pairing EF-hands enables cooperative 

binding of Ca
2+

 ions, the lack of one EH-Hand could be driven by the requirement of 

calcium-binding tools in different animals. Interestingly, in avians as A. cygnoides 

only EFcab4A presents both calcium-binding elements: this scenario has to be 

investigated, since it could be related with functional differences among chimeras in 

this class. Besides, mammalian and amphibian EFcab4A orthologues do not include 

a Rab domain: these independent (but convergent) losses could be linked with some 

functional specialization or with function loss with respect to other gnathostomes, 

maybe transport capability that is the “classical” work done by Rabs: in this case, I 

can suppose a distribution of cellular skills to the rest of chimeras. 

Domain architecture is a further example of evolutionary dynamism inside Rabs, 

which are actually much more than simple cargo transporters. This report shows how 

Rab family, chiefly in metazoans, acquired novel domains to play new specialized 

roles. The Rab Chimeras represent the most diversified amongst atypical GTPases, 

representing an innovation of animals with a probable double role. The chimeras 

evolutionary scenario is made interesting by diverse genomic rearrangements (gene 

gain/loss, domain loss) which reach the highest degree of complexity in vertebrates. 
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CHAPTER 4 

 

Rab32/38 subfamily in pigmentation: insights from chordates 

  

4.1- Background 

The establishment of intracellular compartmentalization constituted a crucial step for 

the eukaryotic evolution and Rab family members, belonging to Ras superfamily, 

represent by far the main coordinators of vesicular trafficking existing among 

membrane-enclosed organelles (Diekmann et al., 2011). Rabs, the largest family 

inside small GTPases encompassing approximately 60 proteins in human (Stenmark, 

2009), have a complicated evolutionary history (Elias et al., 2012) with an extremely 

variable number in unicellular eukaryotes (Saito-Nakano et al., 2010) to multicellular 

organisms (Pereira-Leal and Seabra, 2001; Rutherford and Moore, 2002). Given the 

importance of the endomembrane system for pigment processes, different Rabs have 

been associated to pigmentation, in particular melonosome biogenesis (Sitaram and 

Marks, 2012). Amongst them, particularly relevant for pigmentation dynamics, are 

members of the Rab32/38 subfamily belonging to supergroup III strictly involved in 

the life of melanosomes (Wasmeier et al., 2006), which are LROs deputed to 

synthesize, store and transport melanin granules. With the support of effectors such 

as AP-3, AP-1 and BLOC-2, the mammalian Rab32 and Rab38 regulate the 

transportation of pigmentation markers Tyrosinase (Tyr) and Tyrosinase related 

protein 1 (Tyrp1) from trans-Golgi network to rising melanosomes, during step II-III 

of their biogenesis (Bultema et al., 2012). Interestingly, Rab32 and Rab38 are able to 

redirect the canonical lysosomal machinery composed principally of AP-3, AP-2 and 

BLOC-2, loading melanogenic enzymes into specialized vesicles which co-exist with 
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other cargoes connected to lysosomal functioning. It evokes a central role for Rab32 

and Rab38 in pigmentation, in fact they could represent factors specific of ultra-

specialized cells as melanocytes and eye pigment cells (Bultema and Di Pietro, 

2013). Moreover, it has been supposed a permanent physical interaction with 

vesicles by these two Rabs in order to increase their motility and fusion with 

maturing melanosomes. Conversely, the Tyrp2 transport conditions are not well-

known but probably it is involved Rab32 in concert with BLOC-3: in fact depletion 

of Rab32, and not Rab38, is responsible for Tyrp2 decrease in MNT-1 melanocytes. 

It suggests a specific role for Rab32 protein in melanocytes and a functional 

cooperation with Rab38 in melanosomal logistics using the pre-existing clathrin-

dependent typical of lysosomes (Bultema et al., 2012; Bultema and Di Pietro, 2013). 

Amongst regulators, in mouse melanocytes have been identified Rab9A and Rutbc1 

as mediators of Rab32/38 spatiotemporal regulation that is essential for a proper 

melanosomal trafficking (Marubashi et al., 2016). On the other hand, Varp (VPS9-

ankyrin-repeat-protein) represents a Rab32/38 effector specialized in Tyrp1 

trafficking (Tamura et al., 2009) whereas Myosin Vc seems to co-work in the proper 

transport of both Tyrosinase-related proteins (Bultema et al., 2014). Concerning the 

adaptor proteins, their recruitment to membranes is controlled by membrane lipids, 

cytoplasmic tails and ARF proteins, constituting another family of small GTPases 

(Owen et al., 2004).  

The implication of Rab32/38 subfamily members in pigmentation dynamics emerged 

from observations conducted on mice where a point autosomal recessive mutation 

inside P-loop domain of Rab38, arising spontaneously in some mice strains (Loftus 

et al., 2002). The Chocolate (cht) mutation in mice produces a phenotype 

characterized by an oculocutaneous albinism and hypopigmented color coat which 
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probably depends on the mistrafficking of tyrosinase family members operated by 

Rab38. Furthermore, Rab32 breakdown in cultured cht melanocytes causes strong 

hypopigmentation, showing combined effects for these two Rab proteins (Wasmeier 

et al., 2006). With the support of a 67 % amino acid identity, they are considered as a 

couple of paralogues (Wasmeier et al., 2006) deriving from the vertebrate whole 

genome duplication (WGD) occurred at the stem of Gnathostomata clade (Ohno, 

1993; Abi-Rached et al., 2002; Dehal and Boore, 2005). The centrality of this 

subfamily to pigmentation has also been shown by analyzing diseases: for instance, 

the impact of Rab38 mutation on ruby rats (Oiso et al., 2004) which present features 

such as hypopigmentation platelet storage pool deficiency linked with Hermansky-

Pudlak syndrome or HPS (Wei, 2006). It is a human pathology with different severe 

consequences such as oculocutaneous albinism, abnormal lipofuscin accumulation, 

and easiness of bleeding (Hermansky and Pudlak, 1959). Moreover, 

immunohistochemical experiments suggest an involvement for Rab38 in melanoma 

development (Zippelius et al., 2007). Inside vertebrates, many data corroborate the 

pivotal role attributed to Rab32/38 subfamily members in melanin production. 

According to cellular physiology data, the murine homologue of human RAB32 co-

localizes with the Tyr and Tyrp1 enzymes in melanocytes (Cohen-Solal et al., 2003) 

even if, Rab32 of Mus musculus seems to be not involved in  mithochondria 

functioning as registered in human (Alto et al., 2002). However, Rab38 is localized 

in the cells of rat lung (Osanai et al., 2001), in fact this protein is responsible for the 

size control of lung alveolar type II epithelial cells (Zhang et al., 2011). There are 

many examples of Rab32 and Rab38 implication in processes that are not 

pigmentation-related, suggesting other vesicular mechanisms regulated by the 

Rab32/38 members linked to distinct processes. Interestingly, strong Rab32 
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expression in melanophores, the skin pigmented cells of frog (Xenopus laevis) speaks 

in favor of its conserved role in pigment biogenesis (Park et al., 2007). This concept 

is enforced by data obtained from invertebrate model systems. In the fruit fly 

Drosophila melanogaster the phenotype called lightoid (ltd) is characterized by the 

depletion of eye pigmentation due to mutation of Rab-RP1, orthologue of Rab32 (Ma 

et al., 2004); it marks specifically the eye lysosomes and lipid droplets that enrich the 

adipose tissue, suggesting its involvement also in authophagy processes (Wang et al., 

2012). Besides, the formation of LROs present in the intestine cells of nematode 

Caenorhabditis elegans is governed by a Rab32 homologue, called GLO-1. 

Interestingly, it has been proposed a model for the gut granule biogenesis, with the 

direct involvement of GLO-3 protein that probably represent a guanine exchange 

factor (GEF) for GLO-1 (Delahaye et al., 2014). In the ascidian Ciona robusta, the 

closest living relative of vertebrates, it has been found  specific expression of the 

unique Rab32/38 gene during embryogenesis in four cells belonging to pigment cell 

lineage (Racioppi et al., 2014). Furthermore, functional investigations highlighted 

Rab32/38 importance for the development of otolith and ocellus pigment cells, acting 

as an “hub” for a complex network of genes influenced by FGF signaling (Racioppi 

et al., 2014).  

To shed light on the Rab32/38 subfamily behavior during evolution we conducted a 

deep phylogenetic analysis with a focus on the deuterostome clade. Moreover, in 

order to obtain insights regarding Rab32/38 in chordate development we selected 

two key species, the cephalochordate Branchiostoma lanceolatum and the teleost 

Danio rerio. For their unique ensemble of genomic and anatomical characteristics, 

the cephalochordates such as Mediterranean amphioxus are considered key model 

systems to study chordate evolution. Amphioxus species represent a key stand-in for 
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evolutionary investigations: it is at the root of the chordates and possess an 

unduplicated genome comprising instead representatives from almost all typical 

vertebrate gene families (Putnam et al., 2008). The analysis of Rab32/38 subfamily 

in amphioxus pigmentation can be particularly interesting given its complex 

photoreceptive system consisting of Joseph cells, lamellar body, dorsal ocelli (Hesse 

cells) and frontal eye (Lacalli, 2004). For the presence of cilia, the latter has been 

traditionally thought as a structure homologous to the retinal pigmented epithelium 

(RPE) of vertebrates. Frontal eye shares with vertebrate RPE not only the melanin 

content but also a common regulatory signature, due to the co-expression of 

transcription factors and opsins typical of vertebrates (Vopalensky et al., 2012). 

Moreover, amphioxus frontal eye simple projections may represent the ancestral 

condition successively evolved in the complex neural circuitry observed in 

vertebrates (Vopalensky et al., 2012). A further point consistent with common 

photoreceptive origins, is represented by the expression of tyrosinase family 

members in the neural tube region where is visible the first pigment spot (Yu et al., 

2008).  

Fishes have colonized all the aquatic ecological niches thanks to their incredible 

variety of morphological and anatomical adaptations, which become exceptional in 

more than 32000 known species of teleosts. They show the largest set of pigmentary 

patterns among vertebrates, patterns that are fundamental for disparate social and 

sexual behaviours, instrumental to their diffusion in distinct habitats like oceans, 

rivers and lakes. A plethora of habits like warning, camouflage and threatening of 

predators are based also on extraordinary teleost colour variability (Fujii, 1993). 

While mammals and birds possess solely black/brown melanocytes and amphibians 

and reptiles enriched their pigment cell spectrum with yellow/red 



73 
 

xantho/erythrophores and reflecting iridophopores, teleosts are characterized by a 

major number of pigment cell types with lineage-specific novelties such as whitish 

leucophores and blue cyanophores (Braasch et al., 2007). Moreover, it has been 

hypothesized the presence of red fluorescent cells in some coral reef fish species 

(Michiels et al., 2008). The exploitation of this excellent pigmentation system for the 

adaptation to different environmental conditions requires a fine regulation: an 

example is given by the α-melanophore-stimulating hormone (α-MSH) whose 

pituitary secretion is governed by neurotransmitters such as norepinephrine 

(Sugimoto, 2002). 

Apart from the polyploidization and rediploidization events which have affected 

vertebrate lineages and the whole-genome duplications (WGDs) occurred before 

gnathostomes split (Ohno, 1993; Abi-Rached et al., 2002; Dehal and Boore; Putnam 

et al., 2008), it is documented the existence of lineage-specific WGDs in different 

vertebrates (Otto, 2007). Teleosts have faced an extra-genome duplication providing 

genetic raw material for their explosion during the Mesozoic era (Jaillon et al., 2004; 

Taylor et al., 2001; Taylor et al., 2003). Inside actynopterigians, this phenomenon 

involved only this clade hence it has been defined “teleost-specific genome 

duplication” (TSGD), hypothesized as a driving force for teleost evolution (Hoegg et 

al., 2004; Kuraku et al., 2009), albeit the relation between the availability of new 

genetic material and evolutionary success is not totally clarified (Otto, 2007). TSGD 

has been connected to extraordinary difference in color patterning of teleost clade 

with an impact on pathways implicated in pigmentation (Mellgren and Johnson, 

2005). Concerning fundamental enzymes such as tyrosinase and GTP-cyclohydrolase 

I (GchI), the teleost toolkit appear to be increased in comparison with other 

vertebrates (Braasch et al., 2007) and the expansion in terms of genetic material 
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implicates also genes not directly connected to pigmentary mechanisms like those 

related to melanosome biogenesis (Braasch et al., 2009). These data support the idea 

of the strong relationship existing between the TSGD and pigmentation complexity 

in the teleost clade that could be at the base of subtle functional divergences (Braasch 

et al., 2007; Braasch et al., 2009). For instance, the expanded opsin complement of 

Pacific bluefin tuna could be instrumental to acquire new capabilities as perception 

of blue-green light in pelagic ocean (Nakamura et al., 2013). In summary, teleosts 

have a greater repertoire of “pigmentation genes” with respect to other vertebrates, 

probably due to the effects of TSGD and small-scale duplications, this caused several 

cases of sub-functionalization and neo-functionalization (Braasch et al., 2009). 

In this work, the first comprehensive study on the Rab32/38 subfamily evolution in 

metazoans is reported, with a special focus on deuterostomes. In addition, the role 

during development of entire Rab32/38 toolkit present in genomes of two chordates: 

Mediterranean amphioxus (B. lanceolatum) and zebrafish (D. rerio) has been 

investigated. The majority of results here shown has been published on BMC 

Evolutionary Biology in 2016 (Rab32 and Rab38 genes in chordate pigmentation: an 

evolutionary perspective). 

 

4.2 - Results 

4.2.1 - Molecular evolution of Rab32/38 subfamily  

In order to untangle the evolutionary history of Rab32/38 subfamily a survey was 

performed employing a manually selected database made of Rab proteins belonging 

to the whole of group III, according to classification recently proposed (Klopper et 

al., 2012), which are Rab32, Rab38, Rab7, Rab7L1, Rab9 and Rab23. Given the high 

degree of similarity characterizing all the small GTPases, the reconstruction did not 
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include short and uninformative sequences. The tree infers 247 amino acid sites and 

comprises 65 sequences from vertebrates (Petromyzon marinus, Callorinchus milii, 

Lepisosteus oculatus, Latimeria chalumnae, D. rerio, Xenopus tropicalis, Anolis 

carolinensis, Gallus gallus, Mus musculus, and Homo sapiens), urochordates (Ciona 

robusta), cephalochordates (B. lanceolatum), hemichordates (Saccoglossus 

kowalevskii) and echinoderms (Strongylocentrotus purpuratus); outside 

deuterostomes, we selected the mollusk Lottia gigantea and the polychaete Capitella 

teleta.  

 

Figure 4.1. Phylogenesis of Rab group III focused on Rab32/38 subfamily. Maximum 

likelihood tree showing the existence of three phylogenetically robust classes inside 

Rab32/38 subgroup which are Rab32/Rab38 (red), Rab32LO (yellow), Rab7L1 (blue) which 

share FALK stretch. 
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The phylogenetic reconstruction clearly demonstrates the existence of four highly 

supported protein classes with Rab7, Rab9, Rab23 (collapsed in Figure 4.1) and 

Rab32/38. The latter is a phylogenetically robust Rab32/38 subgroup comprising 

three subfamilies (Rab32/38, Rab32LO, Rab7L1). In particular, Rab7L1 proteins 

constitute a sister class of Rab32LO and Rab32/38 groupages. The Rab32LO, 

previously called Rab32B (Elias et al., 2012), was found to be present from analyzed 

protostomes to amphioxus and absent in the urochordates and vertebrates, which 

together form the clade named Olfactores (Delsuc et al., 2006): for this reason, here 

it has been called Rab32LO (Lost in Olfactores). It is encoded by a gene already 

present in unicellular eukaryotes like the choanoflagellate Capsaspora owcarzaki 

and the early-branching animals such as the demosponge Amphimedon 

queenslandica and the sea anemone Nematostella vectensis: this speaks in favor of a 

gene loss after the split of the Olfactores. In the Rab32/38 grouping three distinct 

proteins are recognizable, Rab32/38 (protostomes, non-vertebrate deuterostomes) 

Rab32 and Rab38 (vertebrates). Concerning selected model species, amphioxus 

presents a single copy of Rab32LO and of Rab32/38, while zebrafish possesses two 

Rab32 (Rab32a, Rab32b) and three Rab38 (Rab38a, Rab38b, Rab38c), distinct from 

other gnathostomes like H. sapiens with just RAB32 and RAB38. Surprisingly, 

Rab32b of zebrafish is characterized by a position not consistent with canonical “tree 

of life” maybe for the occurrence of very fast evolutionary rate. Unfortunately, the 

Maximum Likelihood (ML) phylogeny here shown was not able to shed light on the 

evolutionary relationships between Rab32 and Rab38 of vertebrates, therefore a new 

vertebrate-dedicated tree including only vertebrate sequences plus an outgroup 

represented by S. kowalevskii Rab32/38 was constructed (Figure 4.2). Albeit some 
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low bootstrap values, the tree topology infers a common origin for the two vertebrate 

genes.  

In synthesis, the survey regarding Rab32/38 genes and Rab group III highlights a 

very complex evolutionary history with the intervention of several events alongside 

tree of life, probably due to gene and genome duplications occurred mainly in 

vertebrates (WGDs), as shown by zebrafish extra-copy genes respect to other 

gnathostomes. 

 
 
Figure 4.2. Phylogenetic tree of vertebrate Rab32/38 subfamily. ML phylogenetic tree 

dedicated to Rab32 (violet) and Rab38 (magenta) of vertebrates, with Rab32/38 of 

Saccoglossus kowalevski employed as outgroup; respect to vertebrates used for Fig. 4.1 

survey, here has been added the amphibian Xenopus tropicalis.   
 

 

 

4.2.2 - Analysis of main domains of Rab32/38 subgroup members 

To comprehend the molecular changes occurred in the Rab32/38 subfamily, I aligned 

manually the members included in the phylogeny, focusing on three main domains 
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which allow Rab functioning, the guanine-binding motif (P-Loop), and Switch I and 

Switch II, crucial for the proper Rab conformational status (Park, 2013). Using the 

human RAB6A as reference (Park, 2013), I used a color code to evidence different 

domains: the green for P-Loop (20-27 aa), the turquoise for Switch I (38-49), the 

magenta for Switch II (69-81), while the changed residues are devoid of color 

(Figure 4.3). To have a more complete scenario about Rab32/38 protein 

conservation, I added to this survey the other human members of group III, the 

Rab7L1 present in the tree and one human representative for the remaining five 

groups. Concerning the Rab32/38, the degree of amino acid conservation is 

extremely high, spanning from protostomes to vertebrates. Though my alignment 

highlights the general conservation of G-domain core sequence alongside Rab 

evolution with the consensus GxxxxGKT(S), here it is demonstrated how the 2
nd

 

residue is diagnostic to discriminate between Rab32 (E, glutamic acid) and Rab38 

(D, aspartic acid) proteins. The Rab32/38 exhibited an exceptional conservation also 

for Switch I (consensus FSxxYxxTIGVD) and Switch II (consensus 

DIAGxERFGxMTR) with some conserved modifications specific for Rab32LO 

class, from polychaetes to amphioxus. The retained “new” amino acids as two 

Histidines in the Rab32LO Switch II domain enforces the concept of its existence as 

different class inside group III. It is noteworthy the numerous modifications of 

zebrafish Rab32b, consistently with its divergent position in the phylogenetic 

analysis. For the first time, I observed the presence of ultra-conserved quartet 

downstream to Switch I (FALK, yellow) common to Rab32/38, Rab32LO and 

Rab7L1 supporting the monophyletic origin for all these classes within supergroup 

III, coherently with phylogenetic data (Fig. 4.1). Interestingly, the members of 

Rab32/38 subfamily are exceptionally conserved in particular if we concentrate our 
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attention on deuterostome clade. I focused on molecular peculiarities of the subgroup 

useful for evolutionary and, maybe, functional analyses. 

 

 

Figure 4.3. Analysis of main functional domains of Rab32/38 subfamily. Here it is shown 

an analysis of three Rab domains from protostomes to vertebrates, hinting at an exceptional 

conservation of P-Loop (green), Switch I (turquoise) and Switch II (magenta). Using yellow, 

it has been evidenced a short ultra-conserved stretch (FALK) that is diagnostic for Rab32/38 

subgroup members. To distinguish it from the rest of family, it has been added a human 

member for each Rab group.  
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4.2.3 - Rab32/38 conserved gene structure 

With the aim to gain insights into the evolution of Rab32/38 subfamily members, I 

checked the splicing site conservation of genes belonging to this subfamily in 

distantly-related species. This type of information could be important for genome 

evolution investigations because the intron gain/loss is a rare and really slow 

phenomenon, if confronted with sequence protein modification that usually can 

affect phylogenetic reconstructions (Irimia and Roy, 2008). Using intron positions 

and phases represents a way for giving accuracy to evolutionary studies: it is an 

important instrument to evaluate common origin of genes, in order to surmount 

problems deriving from the signal-to-noise ratios of genomic and bioinformatics data 

(Irimia and Roy, 2008). For gene structure comparison, we selected genes from key 

species such as L. gigantea, B. floridae, C. robusta and H. sapiens whence came out 

a conservation of some splicing sites within subgroup genes (Rab32/38, Rab32LO, 

Rab7L1). In particular, observing the structure of invertebrate Rab32/38 genes and 

human Rab32 and Rab38 is clear the preservation of one intron in the Switch II 

domain: a possible evolutionary signature for the common origin for the whole 

protein class (Figure 4.4). Collectively, the analysis of intron/exon structures 

corroborates the hypotheses suggested by phylogeny and alignment on the evolution 

of vertebrate Rab32 and Rab38.  

 
 

Figure 4.4. Intron conservation inside Rab32/38 subfamily. Recostruction inferring the 

existence of a conserved intron (yellow) amongst Rab32/38, Rab32 and Rab38 genes 

retained after a vertebrate duplication. Switch I (partial) and Switch II domains are 

underlined. 
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4.2.4 - Rab32/38 conserved synteny in Gnathostomata 

For better understanding the evolution of Rab32/38 members, I searched the degree 

of conservation surrounding these genes in the available deuterostome genomes. It 

has been performed a detailed search in four invertebrate genomes (S. kowalevskii, S. 

purpuratus, B. floridae, C. robusta) and, amongst vertebrates, in lamprey P. marinus 

for the agnathans, in elephant shark C. milii and spotted gar L. oculatus as non-

teleost fish representatives (Venkatesh et al., 2014; Amores et al., 2011), D. rerio for 

teleosts, the lizard A. carolinensis in the Sauropsida clade, and H. sapiens and M. 

musculus as mammals. Concerning protostomes and non-vertebrate deuterostomes, 

there was no synteny in the Rab32/38 genomic locus from mollusks to tunicates 

while, limited to sea urchin and amphioxus scaffolds, there was a microsyntenic 

preservation involving Rab32LO and Tim9, a widespread transporter known for its 

role in mitochondria traffic of mammals (Muhlenbein et al., 2004). Moreover, the 

chromosomal organization of genes belonging to invertebrates and vertebrates was 

not conserved. On the other hand, the situation in gnathostomes was totally different: 

in fact, both Rab32 and Rab38 neighbouring genes, respectively, presented a very 

high syntenic degree from fishes to human (Figure 4.5). The unique lamprey gene 

included in our analysis did not show any synteny. Employing ML phylogenies has 

indicated the orthology in vertebrates of genes flanking Rab32/38 loci that belong to 

big families as Tab, Nox, Fzd and Stxbp (data not shown), apart the conservation in 

all the chromosomes of different single-copy genes. The conserved triplet formed by 

Rab38, Tyr and Grm5 was already registered in teleosts and human (Braasch et al., 

2007) but this survey represents undoubtedly an improvement of the knowledge 

about this genomic region of vertebrates. In fact, it covers more species 

encompassing the reptile anole lizard, the rodent house mouse and key 
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representatives of non-teleost fish which are the holocephalan C. milii and the gar L. 

oculatus, showing the preservation of chromosomal order in gnathostome clade.  

 

Figure 4.5. Paralogon conservation in gnathostome’s Rab32/38 subfamily. The Rab32 

(A) and Rab38 (B) loci harbour several conserved genes (grey boxes) across evolution; in 

blue boxes Rab genes we analyzed, in red boxes Rab38 genes that are physically linked to 

tyrosinase (green). The Rab32 is always linked to Grm1, while Rab38 is linked to Grm5. The 

scheme 3B
’ 

shows the functional relationship between Rab38 and Tyr during mammalian 

melanosome biogenesis (adapted from Bultema and Di Pietro, 2013). Genes represented 

above or below chromosomes (horizontal line) indicate their transcriptional orientation on 

positive or negative strand, respectively. 

 

Additionally, I unraveled the presence in all the surveyed vertebrates of a physical 

linkage between Rab32 and Grm1 genes, similar to the retained couple Rab38-Grm5. 

The Glutamate metabotropic receptors (Grm) belong to C family of G-protein-

coupled receptors (GPCRs) and are implicated in several processes and pathologies, 

in fact Grm1 is a melanoma oncogene (Namkoong et al., 2007; Shin et al., 2008) 

whereas Grm5 is involved in many diseases such as autism and schizophrenia 
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(Skafidas et al., 2014; Fatemi et al., 2013). These findings support the existence of an 

ancient chromosomal linkage composed by Rab32/38 and Grm1/5 genes in the 

ancestor of vertebrates, as suggested by a dedicated phylogenetic tree of Grm family 

where is clear the orthology between Grm1 and Grm5 vertebrate genes (Figure 4.6). 

Focusing on zebrafish loci, I noticed an interesting situation for Rab38 paralogues: 

there is more preservation in terms of gene number and organization around Rab38a 

than in the loci of Rab38b and Rab38c; coherently, a major conservation affects just 

one of two Rab38 paralogons of elephant shark and spotted gar (Fig. 4.5B). The 

same paralogon, curiously, harbors not only Rab38/38a genes but also the unique 

tyrosinase copy present in vertebrate genomes.  

 
 
Figure 4.6. Phylogeny of Grm family. ML phylogenetic tree evidences three related well-

supported classes inside Grm family: the two vertebrate-specific Grm1 (blue) and Grm5 

(pink) that derive from invertebrate ancestor Grm1/5 (violet). 



84 
 

 

 

Moreover, the tetrapod’s chromosomes show tandem-duplications of folate 

hydrolase 1 (Fohl1) and Coiled-coil domain containing protein (Ccdc): in particular 

the second one involves members of a large family whose function is completely 

obscure. In the Rab38 loci of mammals, I recognized a peculiar mass of specific 

receptors inserted between Fohl1 duplicates, probably originated by distinct repeated 

duplicative events in tandem. The mouse chromosome 7 presents a series of fifteen 

Vomeronasal 2 receptors (Vmn2r) belonging to a family whose members are central 

to mouse ultrasensitive chemodetection, a decisive skill for rodents (Leinders-Zufall 

et al., 2014). Nearby lie fourteen olfactory receptors (OR), which are comprised into 

one of the largest family in the mouse genome that have been linked to its 

exceptionally well-developed capability to discern odours (Godfrey et al., 2004). The 

orthologous region of human chromosome 11 is characterized by seven tripartite 

motif proteins (TRIM): associated to a myriad of mechanisms, their most studied role 

is the response to interferons during immunity (Carthagena et al., 2009). All the 

sequences employed for phylogenetics are listed in Supplementary Table 4.1. 

Syntenic data not inserted in Fig. 4.5 are shown in Supplementary Table 4.2. 

In synthesis, synteny data hint at very high degree of chromosomal conservation in 

Gnathostomata and are consistent with my supposition regarding a common 

evolutionary origin for Rab32 and Rab38 genes which probably have been originated 

through WGDs involving vertebrates.  

 

4.2.5 – Rab32/38 expression pattern in amphioxus and zebrafish 

For adding information to knowledge about the role during development of 

Rab32/38 genes in chordates, we studied the expression profile of subfamily 

members present in amphioxus and zebrafish genomes. The first step was to clone 
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Rab32/38 and Rab32LO of Mediterranean amphioxus and test their expression 

pattern during embryogenesis through whole mount in situ hybridization (WISH) 

using riboprobes on embryos at different developmental stages. Unfortunately, 

Rab32LO transcript was not detectable by WISH experiments and, it has been 

confirmed also by its extremely low expression levels came out from RT-PCR 

experiments (Supplementary Table 4.3). By contrast, the ortholog to Rab32/38 gene,   

expressed specifically in C. robusta pigment cells (Racioppi et al., 2014), is present 

along whole B. lanceolatum development in distinct territories (Figure 4.7). The 

presumptive notochord territories of the gastrula stage show Rab32/38 localization: a 

signal that becomes stronger in formed notochord during neurula stage and is present 

alongside the anterior part of the embryo, without marking the caudal region (Fig. 

4.7A, B, C). Additionally, transverse vibratome sections endorsed Rab32/38 

presence in amphioxus notochord (Fig. 4.7D). Indeed, in the pre-mouth larvae the 

signal in notochord is absent whereas is clearly marked a territory comprised in the 

pharynx region (Fig. 4.7E). The gene expression seems to be absent from amphioxus 

pigmented territories as dorsal ocelli or frontal eye (Fig. 4.7). Moreover, RT-PCR 

demonstrated high expression of Rab32/38, particularly at gastrula stage (Suppl. 

Table 4.3).   
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Figure 4.7. Expression pattern of Rab32/38 during amphioxus embryogenesis. The gene 

is present in notochord presumptive territories at gastrula stage (A, black arrow) persisting at 

the neurula, mainly in the rostral part (B-C, black arrow). D represents a vibratome section 

(15 μm) of the neurula specimen shown in B-C, at the level of the vertical dashed line. In 

pre-mouth larvae, there is only a positive signal in the pharynx region (E, arrowhead). 

 

Then, I applied the same approach to the Rab32 and Rab38 genes of zebrafish 

(Figure 4.8, 4.9), amplifying them in order to prepare riboprobes for WISH 

experiments. I was not able to amplify Rab32b gene starting from cDNA from 

several developmental stages and adult tissues such as eye and brain probably 

because its expression is very low or depends on peculiar physiological or 

environmental conditions. Rab32a transcript is present from early developmental 

stage of shield (6 hours post-fertilization, hpf) in the presumptive posterior axial 

mesoderm with a strong signal (Fig. 4.8A: as already described in the ZFIN database 

by Thisse et al., 2001). When embryo elongation occurs (tailbud stage, 8hpf), gene 

expression was detected in a region in the proximity of the animal pole constituting a 

longitudinal band in the dorsal midline, that represents the forming notochord and 
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comprises also the tail bud (Fig. 4.8B). In addition, 8hpf embryos show a strong 

signal in a structure located at the back of the yolk, named Kupffer’s vesicle (Fig. 

4.8B), a small epithelial sac belonging to phylotipic yolk extension (YE), which 

works as a transient embryonic “organ of asymmetry” regulating left-right 

development through a directional fluid flow (Virta and Cooper, 2011). During the 

segmentation process (24 hpf), Rab32a expression decreases in the notochord whilst 

becomes to be visible in the developing retinal pigmented epithelium (RPE) eye and 

in the neural crest-deriving melanoblasts which are migrating to their definitive 

position (Fig. 4.8C-F). At the long-pec stage (48 hpf), signal in melanoblasts results 

to be absent, persisting in the RPE and notochord, whereas it appears clearly in the 

swim bladder (Fig. 4.8G, H); this territory is marked up to 72 hpf , the protruding-

mouth larva stage (Fig. 4.8I, J). This structure is an ultra-specialized teleost gas-filled 

organ employed for important functions as buoyancy, sound perception and, in some 

lungfishes, this organ is evolved in a sort of tetrapod-like lung.  
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Figure 4.8. Expression pattern of zebrafish Rab32a during embryogenesis. The gene 

marks the posterior axial mesoderm (arrowhead) at 6 hpf (A), the developing notochord 

(white arrow) and Kupffer’s vesicle (arrowhead) at 8 hpf (B). At 24 hpf, it has been observed 

in RPE (white arrowhead), notochord and migrating melanoblasts (black arrows) (C-F). At 

48 hpf the signal persists in RPE and notochord (white arrows) (G-H) and appears in the 

swim bladder (G, white asterisk) up to 72 hpf (I-J, white asterisk). 

 

The in situ hybridization experiments allow to me localize each Rab38 during 

zebrafish embryogenesis (Fig. 4.9). Rab38a is present across the entire pharyngula 

embryo period, i.e. from 24 to 48 hours post-fertilization. Throughout segmentation, 

the embryos show a weak signal in RPE cells while migrating neural crest cells 

(probably melanoblasts) are strongly labeled and, a faint expression has been 

detected in the mid-ventral brain region. Successively, among pigmented territories 

only the RPE keeps a clear signal at 48 hpf (Fig. 4.9 A-D). The other two Rab38 

paralogues were not expressed in precursors of pigment cells. Rab38b was expressed 
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only in late embryogenesis: at 48 hpf close to pharyngeal arch and mark the natatory 

vesicle whereas at 72 hpf exclusively in the buoyancy organ (Fig. 4.9 E-H). Rab38c 

is characterized by a strong expression in the head region lasting from 6 to 72 hour 

post-fertilization (Fig. 4.9 I, J).  

 
 
Figure 4.9. Expression profile of zebrafish Rab38 genes during embryogenesis. Rab38a 

is present from 24 to 48 hpf stages, faintly in RPE and strongly in migrating neural crest 

cells (A-D); Rab38b is expressed in pharyngeal arches and natatory vesicle at 48 hpf stage 

with the latter persisting up to larva stage (E-H); Rab38c transcript has been observed with a 

signal in cephalic region (here shown at 24 hpf stage, I-J). 
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In short, from this study on the expression profile of Rab32/38 genes in amphioxus 

and zebrafish come out scenario characterized by the presence of them in different 

embryo territories: it can represent an occasion for numerous evolutionary 

considerations.  

 

4.3 - Discussion 

4.3.1 – Rab32/38: a complex evolutionary scenario 

Using different tools, we have contributed to the knowledge of Rab32/38 genes 

history of within the group III, considered as a population of Rabs specialized in 

lysosomal and late-endosomal trafficking (Klopper et al., 2012). The ML 

phylogenetic tree clarifies the evolution of Rab group III, indicating the presence of 

four phylogenetically robust classes, with the existence of one (here called only 

“Rab32/38”) composed by Rab32/38, Rab32LO and Rab7L1 subfamilies which 

shows a different molecular history respect Rab23, Rab7 and Rab9 protein classes. 

Moreover, this survey puts in order several nomenclature cases due to patchy 

nomenclature present in current literature (Elias et al., 2012; Klopper et al., 2012). 

Phylogenetic analysis highlights the common origin of invertebrate’s Rab32/38 and 

Rab32LO, already named Rab32A and Rab32B (Fig. 4.1). They are considered as 

fundamental genes for eukaryotic cell, in fact they represent an ancient couple of 

paralogues that emerged in the LECA ancestor where they were already connected 

with the improvement of post-Golgi trafficking (Elias et al., 2012). Particularly 

interesting is the case of Rab32LO protein, whose name derives from its 

evolutionary loss in all the Olfactores, the clade combining tunicates (larvaceans, 

appendicularians, ascidians) and vertebrates (Delsuc et al., 2006). This protein class 

has been identified in several species from unicellular eukaryotes to deuterostomes 
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(Elias et al., 2012) and, in particular, the genome search highlighted its presence in 

early-divergent animals like sponges (A. queenslandica), cnidarians (N. vectensis) 

and also other invertebrates. Curiously, in deuterostomes Rab32LO has been 

maintained only by sea urchin and by amphioxus, the unique chordate possessing 

this LECA gene; the reasons of this presence/absence should be investigated. In fact, 

WISH and RT-PCR experiments do not shed light on its developmental localization, 

leaving open questions about its functioning (Fig. 4.7, Suppl. Table 4.3). Describing 

its expression in other invertebrates would be very important, mainly if we consider 

its absence in all the Olfactores that could be related to the loss of peculiar biological 

functions alongside chordate evolution. However, phylogenetic reconstruction places 

definitively Rab7L1 (7-like-1) in the Rab32/38 subgroup. Sometimes wrongly named 

as Rab29 (Elias et al., 2012), an ancient group III member lost during metazoan 

evolution, Rab7L1 is a protein responsible for specific steps of post-Golgi 

transportation dynamics. In cohabitation with LRRK2 (Leucine-rich repeat kinase 2), 

it acts as a key regulator of retrograde trafficking for recycling different proteins on 

the route between lysosomes and Golgi apparatus in a process crucial for axonal 

morphology maintenance (Kuwahara et al., 2016). Besides, Rab7L1 is implicated in 

many human pathologies and it is thought to be a marker for Parkinson’s disease 

(MacLeod et al., 2013; Khaligh et al., 2017).  

To provide information about the evolution of Rab32/38 subgroup, the key Rab 

domains have been mapped, comparing them also with human representatives of 

members belonging to same group (Rab7, Rab9, Rab23). The most important result 

that emerges is represented by the presence of ultra-conserved FALK in each branch 

of the subgroup, enforcing the concept of a common origin for Rab32/38, Rab32LO 

and Rab7L1 genes. This stretch, located downstream of Switch I domain, has been 
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retained by all the members after the separation from Rab7, Rab9 and Rab23 

subfamilies. Then, its existence in other invertebrates sequences allows to  

hypothesize that FALK confers to these Rabs specific functional capabilities that 

should be understood (Fig. 4.1; Fig. 4.3).  

A further point is the presence in the functional domains of some key residues 

considered as “diagnostic” to recognize some proteins. For instance, two conserved 

Histidines (H) within Switch II functional domain are present in all the Rab32LO 

here shown (Fig. 2.3). Indeed, the alternation between glutamic acid (E) and aspartic 

acid (D) at the second element of P-Loop led to distinguish between Rab32 and 

Rab38 of vertebrates. The domain survey evidences the number of changes of 

zebrafish Rab32b that is consistent with its tree position, demonstrating its fast 

evolutionary rate. Interestingly, a preliminary genome search in many fish genomes 

has unraveled that Rab32b fast evolutionary rate characterizes the entire teleost 

clade, even if this gene has been retained in a restricted number of species; similarly, 

Rab7L1 is present only in few teleost species and is absent in D. rerio. On the other 

hand, the remaining classes (Rab32a, Rab38b, Rab38c) are present in all the teleosts 

surveyed (data not shown).   

Phylogeny and domain alignment partially solved the question about the origins of 

Rab32 and Rab38, probably due to heterogeneous evolutionary rate of the subfamily. 

Although a weak phylogenetic signal, the most parsimonious hypothesis emerged is 

that Rab32 and Rab38 separated at the root of vertebrates, by a whole-genome 

duplication event (Dehal and Boore, 2005). A manual evaluation of subfamily 

intron/exon structure supports this concept: comparing Rab32/38 of some 

invertebrates and human Rab32 and Rab38 is visible the presence of an ancestral 

“phase 1 intron” inside Switch II domain, evidence for of common origin for these 
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genes (Fig. 4.4). Moreover, investigating Rab7L1 and Rab32LO splicing site 

conservation, we identified other introns shared with Rab32/38, Rab32 and Rab38 

genes, suggesting the existence of a common intron code for the entire subgroup 

(Fig. 3.3)  

A further relevant element to evaluate subfamily evolution is the analysis of 

Rab32/38 loci alongside deuterostomes. I did not find any synteny between 

vertebrates and invertebrates chromosomes harbouring Rabs; indeed, there is a 

preserved gene couple formed by Rab32LO and the mithochondrial transporter Tim9 

that is visible in sea urchin and amphioxus (Supplementary Table 4.2). Apart proving 

definitely the homology among Rab32LO of invertebrates, the Rab32LO-Tim9 gene 

pair could represent an evolutionary signature of an ancient microsynteny possibly 

due to the existence of a coordinated transcription or of a putative genomic 

regulatory block (GRB) between them (Irimia et al., 2012). By contrast, I discovered 

exceptional syntenic conservation in gnathostomes for genes surrounding both 

Rab32 and Rab38, respectively (Fig. 4.5). Orthology among neighbouring genes has 

been shown using dedicated phylogenetic trees (data not shown). This paralogon’s 

preservation of such diverse genes evokes the presence of a specific genomic 

element which could act as enhancer in the vertebrates. The great conservation 

among vertebrates is emphasised by C.milii Rab38a and tetrapod Rab38 loci, 

confirming the extraordinary similarity between the Chondrichthyes and tetrapod 

genomes (Ravi et al., 2009). Nevertheless, the Rab38a locus of L. oculatus (chr 

LG16) and D. rerio (chr 15) totally lacks synteny on just one side indicating clearly a 

genomic rearrangement event in the Actinopterygyans, with the replacement of 

genes like Prss23, Eed, Ccd81 and Me3 on LG17 chromosome of spotted gar and 

their scrambling in zebrafish genome.  



94 
 

Interestingly, the presence in all the surveyed gnathostomes of two ultra-conserved 

couples, Rab32-Grm1 and Rab38-Grm5, speaks in favor of an ancestral duplication 

of a chromosomal region. The most parsimonious explanation consists of a parallel 

history for two ancestral genes Rab32/38 and Grm1/5 pre-dating the last common 

ancestor of jawed vertebrates, coherently with a whole-genome duplication in the 

clade (Dehal and Boore, 2005) which have formed two ohnologues for both the 

ancestors: a result corroborated by a phylogeny of the Grm genes (Fig. 4.6). This 

microsynteny conserved from elephant shark to mammals could reflect functional 

correlation in the cell, but this needs to be investigated. Synteny, together with 

phylogeny and intron organization, hints at 1R or 2R as large-scale duplicative 

events originating the ohnologues Rab32 and Rab38 found in all the vertebrates. 

More in depth, it is evident that duplication events have influenced the Rab32/38 

subfamily member number in zebrafish, with two Rabs32 and three Rabs38, 

probably impacting on the acquisition of new roles during development by these 

genes as suggested by WISH experiments. Compared to tetrapods, teleosts show 

more duplicates as consequence of TSGD (Taylor et al., 2001; Taylor et al., 2003; 

Hoegg et al., 2004; Kuraku et al., 2009) but this justifies the presence of just one 

additional Rab32 and Rab38: whereas three paralogues have been detected in 

zebrafish (Rab38a, Rab38b, Rab38c). The first and the third ones are present in the 

genomes of each analyzed fish, while Rab38b is possessed solely by teleosts. 

Interestingly, the presence in early-branching fishes (elephant shark, spotted gar), in 

coelacanth (Latimeria chalumnae) and amphibians (Xenopus tropicalis) of the 

Rab38c with conserved neighbouring genes (Tmem, Picalm) proposes questions 

about its origin. It represents a product of a gene duplication occurred at the stem of 

sarcopterygian lineage subsequently lost in “upper” vertebrates, otherwise, the result 
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of a genome duplication more ancient than TSGD, i.e. the 2R event. This concept is 

enforced also by the presence, on both spotted gar Rab38 spotted gar loci of Fohl1 

duplicates. Then, it has been established the rising of Rab32, Rab38 (1R) and Rab38 

(2R) and this suggests the existence, in the vertebrate ancestor, of a fourth Rab 

member originated during 2R event, now lost in vertebrate’s lineage. Moreover, in 

the same place of mammalian Rab38 genomic loci there are large insertions with 

diverse genes between human and mouse, it would be interesting to analyze this 

region in other mammals.  

Additionally, an evolutionary survey performed using Rab32/38 proteins belonging 

to several teleosts highlighted the retention of Rab32a, Rab38a, Rab38b and Rab38c 

in all the selected species, whereas Rab32b has been lost by several teleosts 

(Supplementary Table 4.4). This information helps to establish their WGD/TSGD-

origin because is diffused the assumption according to which occurs a maintenance 

of whole-genome duplicates in multicellular organisms while are easily lost genes 

produced through more local duplications (Putnam et al., 2008; Braasch et al., 2009)  

Here we showed for the first time the expression in developing pigment cells of the 

genes Rab32a and Rab38a, already hypothesized to be part of the “vertebrate 

pigmentation genes” list (Braasch et al., 2009). It is thought that duplications 

intervened at different levels (gene network, tissue, cell type) represent a platform for 

the origin of evolutionary novelties (West-Eberhard, 2003) and it has been suggested 

there is a tight relationship between vertebrate’s genomic duplications and their 

pigmentation genetic repertoire, with an increase of this connection in teleosts 

(Braasch et al., 2009). Therefore high rate of retention involving “pigmentation 

genes” after small-scale and extensive genome events is considered as one of the 

most influencing factors in the evolution of extraordinary variety of teleost’s body 
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coloration (Braasch et al., 2009). In fact, the big teleost repertoire of genes involved 

in pigmentation has been phylogenetically connected to “colour innovations” dating 

back in the teleost lineage, as in the case of leucophores (Braasch et al., 2008). These 

data fit perfectly on scenario already hypothesized (Braasch et al., 2009), because 

Rab32 and Rab38 belong to “melanosome biogenesis class” of genes involved in 

pigmentation and their duplicates follow the retention scheme observed in other 

teleost’s genes, for this grouping, the sixty percent. In particular, Rab32 and Rab38 

are encompassed in the “TSGD-Duplicated Teleost Pigmentation Genes”, which 

totally are 30 % more than those present in classical tetrapod models as mouse and 

chicken (Braasch et al., 2009). Interestingly, the Rab32/38 subfamily expansion is 

consistent with the duplication of several genes fundamental for pigmentation Mitf, 

Kitl and Tyrp, registered in teleosts (Braasch et al., 2007; Braasch et al., 2009). For 

instance, another “pigmentary expansion” has been described  in medaka (Oryzias 

latipes) opsins, proteins widespread in metazoans which are fundamental for vision 

(Matsumoto et al., 2006; Trezise and Collin, 2005). This survey about two Rabs 

implied in melanosome formation, supports the effects of TSGD and gene 

duplications on main pigmentation pathways active in the pigment cells (Braasch et 

al., 2007). Hence, it seems clear a decisive role in “pigmentation expansion” not only 

for “classical” genes (enzymes, transcription factors) but also those involved in 

trafficking phenomena as Rabs. Finally, my reconstruction pinpoints the Rab32 and 

Rab38 duplications in a complex scenario of genomic events through teleosts have 

implemented their pigmentary capabilities even if, the different embryonic 

localization of Rab38b and Rab38c prompted me to conjecture a 

neofunctionalization process.  
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In light of this, the ultra-conserved physical linkage existing between a couple of 

genes involved in pigmentary dynamics (Rab38 and tyrosinase) it is noteworthy (Fig. 

4.5B
I
). For melanogenesis, the delivery of tyrosinase family members (Tyr, Tyrp1, 

Tyrp2) is pivotal, i.e. their proper transportation to melanosomes during their 

maturation represents a mandatory step. The ohnologues Rab32 and Rab38 are 

considered as vital players in the Tyr and Tyrp transport to LROs by specialized 

vesicles, modifying the ubiquitous “classical” lysosomal machinery (Bultema and Di 

Pietro, 2013). Interestingly, Rab32 and Rab38 are partially redundant in terms of 

function, with the latter that seems primarily implicated in Tyr transport in 

melanocytes (Bultema et al., 2012). This, together with retained chromosomal 

proximity and the fact that zebrafish Rab38a is the unique Rab38 paralogue 

expressed in pigment cells, leads me to propose a model for which the genetic 

linkage is linked with the co-working of Rab38 and Tyrosinase in the pigment cells 

based on a common transcription during development. It means the possibility of 

bystander gene regulation (Cajiao  et al., 2004) in all gnathostomes with functional 

consequences related to pigmentation process: taking into consideration the hundreds 

of microsyntenies conserved in metazoans regarding unrelated genes (Irimia et al., 

2012), is not trivial the speculation of a bystander modality control of transportation 

concerning melanosome biogenesis pivotal players.  

 

4.3.2 – Rab32/38 subfamily expression: evolutionary implications 

These data can represent a tool for understanding the impact of evolutionary events 

as gene and genome duplications on the role of Rab32/38 subfamily members during 

development, with a focus on pigment cells. In mammals, the involvement of these 

genes in melanogenic dynamics is reflected by their expression profile, in fact Rab32 
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and Rab38 are expressed in mouse melanocytes (Cohen-Sohal et al., 2003; Osanai et 

al., 2005). By contrast, Rab32 is present also in platelets and mast cells and Rab38 in 

the epithelial cells of lung (Cohen-Sohal et al., 2003; Zhang et al., 2011). In D. rerio, 

we identified transcript localization in developing pigment cells for Rab32a and for 

Rab38a paralogues. Both are expressed in ocular RPE cells of the eye and in the skin 

melanocytes deriving from neural crest, even if they seem to mark distinct 

populations of migrating melanoblasts (Fig. 4.8, 4.9). Their presence in embryonic 

precursors of pigment cells is consistent with other vertebrates, as mouse and frog 

(Osanai et al., 2005; Park et al., 2007). Extending preliminary data  (Thisse et al., 

2001), we shed light on Rab32a expression in notochord from 6 to 48 hpf (Fig. 4.8) 

with a signal that probably represents a zebrafish peculiarity, inside vertebrates. In 

support of this, Rab32a together with H(+)-ATPase has been shown to be 

fundamental for the proper biogenesis of zebrafish notochord vacuoles described as 

ultra-specialized LROs (Ellis et al., 2013). During late embryogenesis this gene is 

present in swim bladder or natatory vesicle, an organ evolved by teleosts for 

buoyancy regulation and characterized by many differences across species. This kind 

of expression is very interesting, mainly taking into account that in lungfishes this 

organ has been modified probably to become similar to lungs of tetrapods (Torday 

and Rehan, 2004), where Rab32 expression is known (Cohen-Sohal et al., 2003).  As 

aforementioned, zebrafish shows highly diversified spatio-temporal scenario for 

Rab32 and Rab38s that is related to distinct genomic events that occurred during 

vertebrate evolution, particularly in the teleost clade. Three Rab38 paralogues are a 

good example of divergent expression profiles: while Rab38a is expressed chiefly in 

pigment cells, Rab38b marks at late developmental stages the pharyngeal arches and 

swim bladder and Rab38c in the head region from early embryogenesis (Fig. 4.9). 
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This represents an interesting case of functional differentiation driven by the 

formation of new paralogues through genome-wide changes. The presence of a sole 

member in pigmented territories mimics the pattern of other genes implicated in 

pigmentation dynamics, with the evolutionary specialization of a single 

representative for this kind of function (Braasch et al., 2009). Considering the whole-

genome events as TSGD as a source of new genetic equipment exploitable for 

evolution, my work places Rab32/38 subfamily expansion in a scenario of increased 

pigmentary capabilities in teleost (Braasch et al., 2007; Braasch et al., 2009). Rab38c 

appears very interesting because it represents a 2R-gene lost in terrestrial tetrapods 

whose expression is in the central nervous system. Surprisingly, here it is reported 

the probable ancient vertebrate expression that suggests an involvement in nervous 

system development. It would be interesting to shed light on the functional impact of 

this gene loss in mammals and what could have captured its function: for instance, 

related Rabs as 32 and 38. 

 It is possible to predict a sub-functionalization event for Rab38 paralogues (Force et 

al., 1999), with the subdivision of ancestral function among duplicates. For instance, 

the Rab38b expression in zebrafish pharyngeal arches can be compared to expression 

of Rab32/38 gene in amphioxus pharynx unveils a possible ancient function which 

tetrapods have lost (Fig. 4.9 E, F; Fig. 4.7). Surprisingly, amphioxus Rab32/38 is not 

expressed in precursors of pigment cells (Fig. 4.7), differently from its invertebrate 

orthologues of nematodes, flies and tunicates: this allows to hypothesize the loss of 

pigmentation function for amphioxus. Another Rab could do the pigment function in 

place of Rab32/38, maybe Rab32LO and Rab7L1 or other Rabs belonging to same 

group. Given its low expression level, Rab32LO is not a good candidate but 

expression data from other invertebrate’s Rab32LO could gain insights in its role. In 
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this way it will be possible to shed light on the functionality lost by Olfactores and 

on the amphioxus pigmentation dynamics. The conserved expression of Rab32/38 

genes in pigment cells of many invertebrate and vertebrate representatives indicates 

clearly a preservation of central role in melanogenesis. Collectively, functional 

experiments performed in protostomes and in the one of nearest living relatives of 

vertebrates, the ascidian C. robusta (Racioppi et al., 2014) and my data on zebrafish 

Rab32a and Rab38a evoke Rab32/38’s ancestral implication in melanogenic 

dynamics  retained in vertebrate’s ohnologues, with potential “deviations” due to 

genomic events in other ohnologues.  
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CHAPTER 5 

Cr-Klhl21: a new player in pigmentation from ascidian Ciona robusta 

5.1 - Background 

Pigmentation in animals depends on a plethora of pigment cell types and represents a 

fascinating theme to investigate. The majority of information regarding pigmented 

cells has been collected in vertebrates, partly driven by the relationship existing 

between melanogenic genes and human diseases (Goding, 2007). However, more 

recently some effort has been dedicated to study Rab family in protostomes and non-

vertebrate deuterostomes. As aforementioned, the most widespread pigment in 

animal kingdom is melanin and some invertebrates present melanized cells 

containing melanosomes, lysosome-related organelles (LROs) responsible for 

pigmentation dynamics, as shown by rudimentary melanosomes  observed in 

cuttlefish (Fiore et al., 2004). Although showing a highly divergent body plan, 

tunicates are the closest living vertebrate relatives and, therefore, the paraphyletic 

group of ascidians, such as Ciona, are powerful models (Delsuc et al., 2004). The sea 

squirt Ciona robusta is characterized by two melanin-containing sensory organs, the 

otolith and ocellus (Dilly, 1969; Eakin and Kuda, 1971). They are located in the 

sensory vesicle, a structure suggested by some authors to be homologue to the 

forebrain present in vertebrates (Moret et al., 2005; Dufour et al., 2006; Ikuta and 

Saiga, 2007). The otolith, sited in the anterior region of the sensory vesicle, is formed 

by a single specialized cell whose body is the statocyte, containing a large melanin 

granule. The statocyte is connected to the sensory vesicle ventral floor by a clenched 

stalk. The otolith body is connected to the sensory vesicle by two dendrites able to 

sense pigment granule movements through their deformation (Otsuki, 1991); these 
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features enable larvae to perceive gravity (Tsuda et al., 2003). Conversely, the 

ocellus is a more complex structure:  it is formed by three lens cells, about thirty 

photoreceptors and one cup-shaped melanized cell (Horie et al., 2005). The 

photoreceptor cells are localized in the right side of sensory vesicle, their axons cross 

the midline of the larval sensory cavity whereas photoreceptor external segments 

cross the entire pigmented cell (Horie et al., 2005). Three lens cells are present in the 

ocellus although their homology with vertebrate lens cells is not demonstrated 

(Shimeld et al., 2005). Despite the exact role of the melanized cell in the ocellus has 

not been well studied the pigment granules are possibly involved in two pivotal 

functions for larvae, i.e. light filtration and the protection of the posterior 

photoreceptors (Tsuda et al., 2003). Researchers have found many molecular 

similarities between vertebrates eyes and ascidians ocellus, with a high degree of 

conservation in terms of genetic machinery. For instance, the Rx gene, whose 

mutation in mouse produces total eye absence (Bailey et al., 2004), has a pivotal role 

for ocellus development and function in C. robusta (D’Aniello et al., 2006). Another 

example is given by the Pax6 gene, indispensable for pigment cell development both 

in tunicates and vertebrates (Callaerts et al., 1997). Moreover, mediators of 

vertebrate photo-transduction (Arshavsky, 2002; Blomhoff and Blomhoff, 2006), i.e. 

visual Opsins (G-protein coupled receptors) and visual Arrestins (opsin regulators), 

have been found to be expressed mainly in photoreceptors of ocellus. They show 

degree of sequence conservation with vertebrate counterparts (Kusakabe et al., 2001; 

Nakagawa et al., 2002; Nakashima et al., 2003). Regarding melanogenesis, the 

expression and regulation of tyrosinase family members during Ciona 

embryogenesis (Sato et al. 1997; Esposito et al., 2012) have been clarified, as well as 

their role in evolutionary loss of pigmentation in two distantly-related species of 
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Molgulids (Racioppi et al., 2017). The presence of six FGFs and only one FGF 

receptor in the Ciona genome (Satou et al., 2002) has encouraged the analysis of 

their role in tunicate ontogenesis. Recently, it has been elucidated the FGF role in the 

pigment cell determination of C. robusta (Squarzoni et al., 2011): its signaling 

governs pigment cell identity in the a9.49 lineage influencing the specific expression 

of some pigmentation markers and several factors never associated to pigmentation 

(Figure 5.1, Racioppi et al., 2014), as Cr-Klhl21.  

 

Figure 5.1. FGF-dependent candidate genes for pigmentation. Double whole-mount in situ 

hybridization experiments demonstrating co-localization of genes down-regulated by block of FGF 

(red) with Tyrp1/2a (green) in pigment cell lineage at tailbud stage (adapted from Racioppi et al., 

2014). 
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This member of Kelch-like family is strongly repressed when FGF is inhibited in 

pigment cell precursors and encodes a poorly studied protein. It belongs to a family 

of proteins whose function has been associated to protein-protein interaction and 

ubiquitination. Cr-Klhl21 belongs to a poorly studied family that in human 

encompasses 42 members, encoding proteins usually characterized by BTB/POZ 

domain, a BACK domain, and five to six Kelch motifs (Dhanoa et al., 2013). They 

belong to a family whose members facilitate protein-protein interactions and many of 

them are implicated in human pathologies such as cancer (Dhanoa et al., 2013). A 

subgroup of Kelch-like proteins involved in ubiquitination has been identified, as 

widely demonstrated for Keap1 (Klhl19) during oxidative stress (Ito et al., 1999). 

Employing a combination of phylogeny, expression profiles and mutational analysis 

I discovered a dynamic expression pattern for this gene in ocellus and otolith, 

directed by regulatory genetic machinery organized in modules. This survey opens 

new perspectives in the knowledge of Kelch family member and in the otolith 

determination in ascidians. 

5.2 - Results 

5.2.1 - Klhl21 molecular evolution 

In order to find new genes specific to Ciona robusta pigment cell precursors (PCPs), 

FGF microarray data have been explored in depth. Among genes down-regulated by 

FGF signaling, the Cr-Klhl21 transcript, belonging to Kelch-like family, results to be 

strongly down regulated in FGF block conditions and up regulated when Ets is 

constitutively activated. According to information present on Aniseed database, the 

transcript corresponds to the KH2012:KH.L84.23 gene model and its possible names 

are KLHL21, KLHL24, KLHL29. To assign it to a specific subfamily I performed a 

phylogenetic analysis of the Ciona predicted protein (590 aa) and using available 
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sequences of Klhl21, Klhl24, Klhl29 plus related Klhl6 and Klhl30 (Figure 5.2) from 

evolutionarily significant chordate genomes (Supplementary Table 5.1): amphioxus 

Branchiostoma floridae, ascidians Ciona robusta and Ciona savignyi, cartilagineous 

fish Callorhinchus milii, teleost fish Danio rerio, human Homo sapiens.  

  

Figure 5.2. Phylogenetic tree of some Kelch-like chordate subfamilies. The Maximum Likelihood 

reconstruction shows the existence of five well-supported subfamilies: in particular, it focuses on the 

Klhl21 class in chordates (pink box). 

 

The ML survey supports five distinct phylogenetically robust subfamilies (Klhl6, 

Klhl21, Klhl24, Klhl29, Klhl30) with Klhl21 connected to Klhl29 and Klhl30 

proteins. Phylogenesis suggests orthology between the Ciona gene of interest  and 

vertebrate Klhl21 genes (Fig. 5.2, pink box), with vertebrate Klhl29 and Klhl30 as 

extra-copy originated by duplicative events. For this reason, I named the protein 

present in amphioxus and ascidians Klhl21. The synteny analysis of human 

chomosomes (1, 2) harbouring Klhl21 and Klhl30 unveils the presence of common 

neighbouring genes, Espn and Hes, (Figure 5.3); this could trace back an ancient 

common origin for these two Klhl family member. 
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Figure 5.3. Synteny between Klhl genes in human. Schematic representation of human genomic loci 

(Chr 1, 2) harbouring Klhl genes (blue) included in phylogeny of Figure 4.2; on chromosomes 1 and 2 

are shown genes syntenic with Klhl family members, that are Espn (light red) and Hes (green). 

 

5.2.2 – Cr-Klhl21 expression pattern 

Given its phylogenetic position in chordates, Ciona may be useful to study Cr-

Klhl21 during embryogenesis. Whole-mount in situ hybridization experiments 

(WISH) using NBT-BCIP unravel the specific localization of Cr-Klhl21 in two of 

four cells corresponding to pigment cell precursors (PCPs) from initial to early 

tailbud stage (Fig. 5.4A-B). Starting from middle tailbud, the expression seems to be 

restricted just to one cell (Fig. 5.4C-D). In order to assess the identity of cells 

expressing Cr-Klhl21, a double fluorescent WISH at middle tailbud stage with well-

known melanogenic marker Cr-Tyrp1/2 was performed (Fig. 5.4E): the co-

localization between the two genes testifies Cr-Klhl21 presence only in the otolith 

precursor. The expression profile of this gene is interesting for its a clear localization 

in otolith and ocellus precursors, with differences during embryogenesis in terms of 

labeled pigment cells. 
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Figure 5.4. Klhl21 expression profile in Ciona robusta. A,B) The scheme demonstrates the Cr-

Klhl21 presence in two cells belonging to pigment cell lineage from initial to early tailbud stage; C,D)  

from middle tailbud the expression becomes restricted to one cell; E) Co-localization between Cr-

Klhl21 and Cr-Tyrp1/2a unveils that unique marked cell is the otolith precursor. 

 

To further comprehend the evolutionary developmental scenario of this subfamily, I 

cloned the zebfrafish Klhl21 gene for studying its expression during vertebrate 

embryogenesis (Figure 5.5). WISH experiments demonstrated its transcription from 

22 to 48 hours post-fertilization in the cephalic nervous system. The gene expression 

is absent from territories typically pigmented as retinal pigmented epithelium (RPE) 

or migrating melanoblast deriving from neural crest cell populations (Fig. 5.5), 

which are considered similar to ascidian pigment cells. Since ESTs reveal the 

presence of Zf-Klhl30 only in heart, I did not perform WISH experiments.  
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Figure 5.5. Klhl21 zebrafish expression pattern. The image shows the expression of Klhl21 from 22 

to 48 hours post fertilization (hpf)  in cephalic nervous system. 

 

For the first time, I have collected in two key chordate species data regarding 

expression of Klhl21 subfamily members: there is a clear difference between 

orthologues in sea squirt and zebrafish, in terms of expression pattern. In particular, 

the profile exhibited by Ciona is interesting because it is specific for pigmented cells 

with changes during embryogenesis. 

5.2.3 - Cr-Klhl21: the regulatory scenario  

In light of Cr-Klhl21 dynamic expression, understanding its regulation in pigment 

cells can give insights on the molecular network responsible for differentiation 

between otolith and ocellus. To find the putative regulatory region for Klhl21 

activation, I selected from a public ascidian database (Aniseed) a 949 bp fragment (-

1044 to -95 from the Transcription Start Site, TSS) highly conserved between 

genomic regions of C. robusta and C. savignyi (Figure 5.6A). This region has been 

PCR-amplified and cloned into the vector pSP72 upstream the beta Globin minimal 

promoter for driving the expression of GFP. The prepared construct (klA>GFP) has 

been electroporated in fertilized Ciona eggs and the GFP signal has been assessed 
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observing embryos from neurula to larva stage under fluorescent light microscopy. 

klA>GFP is able to recapitulate partially the endogenous expression  in larvae with a 

strong signal restricted to otolith, present in the majority of them (70 %, Fig. 5.6B). 

Because GFP is not visible in the stages prior to the larva, I performed WISH on 

embryos (from early to late tailbud) electroporated with klA>GFP using a GFP 

probe. From preliminary experiments, I found the examined region was 

transcriptionally active from middle tailbud in the otolith (Fig. 5.6C), suggesting that 

the absence of GFP fluorescence before the larval stage is due to a delay in the 

accumulation of GFP protein (Fig. 5.6B).  

 

Figure 5.6. Putative regulatory region of Cr-Klhl21. A) The figure evidences the genomic region 

(green box) cloned upstream GFP; B) transgenesis via electroporation (klA>GFP) causes GFP 

specific expression in otolith of larvae (70 %); C) WISH using GFP riboprobe on embryos 

electroporated with klA>GFP shows transcriptional activity at middle tailbud stage. 

 

To test the presence of potential transcription factor binding sites (TFBs) implicated 

in early activation, I enlarged the klA fragment by including the first intron 

sequence; unfortunately, the klA
I
 region (1634 bp) is characterized by strong ectopic 

GFP expression in the mesenchyme (Figure 5.7)  
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Figure 5.7. Ectopic expression driven by klA
I
 region. The figure evidences how klA

I
>GFP (1634 

bp) drives strong expression in the mesenchyme of C. robusta larva; this region comprises the first 

intron of  Cr-Klhl21 gene. 

 

Subsequently, I decided to define the putative regulatory region inside klA fragment, 

through a deletion analysis in accordance to genomic conservation with the sister 

species Ciona savignyi. All the smaller fragments have been cloned in the same 

vector containing GFP. The first step has consisted of cutting the klA (949 bp) in two 

shorter fragments characterized by high genomic conservation, named klB (382 bp, -

882 to -500) and klC (400 bp, -500 to – 95): klB>GFP is able to recapitulate 

klA>GFP expression (45 %), whereas klC>GFP does not drive expression in 

pigment cell precursors (Figure 5.8). It means that, despite a high degree of genomic 

conservation, no positive regulatory elements are present in the peaks near to TSS 

(klC).  
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Figure 5.8. Deletion analysis of putative promoter of Cr-Klhl21. The figure describes the genomic 

fragments cloned upstream GFP employed for identification of Cr-Klhl21 regulatory region. It has 

been used a color code to distinguish amongst distinct regions: positive with high penetrance (klA, 

klB; red), negative (klC, klD, klE; grey), positive with low penetrance (klF, klG; orange). The names 

and the corresponding percentage of regions are listed on the left and the right of the fragments, 

respectively. 

 

To narrow the region comprising putative enhancer elements responsible for Cr-

Klhl21 expression, I focused my attention on klB fragment subdividing it in  klD (-

882 to -606) and klE (-606 to -500). Cloned upstream GFP, both of them were not 

able to guide reporter expression in the otolith. To understand why klD and klE do 

not drive GFP expression, I selected two new fragments enlarging from klE region. I 

called these fragments klF (-650 to -500) and klG (-700 to -500) and electroporations 

showed they are able to drive GFP in otolith, albeit with low percentage, 10 % and 

22 %, respectively. All the chosen fragments have been tested four times; for each 

experiment, I have identified the positives observing a total of 100 embryos by using 

light fluorescence microscopy and I listed the results in a graph (Figure 5.9). 
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Results indicate klB (382 bp) as the shortest fragment capable to guide GFP 

expression in the otolith in a high percentage of animals, meaning it includes all the 

information necessary to activate transcriptional regulation of Cr-Klhl21. 

Figure 5.9. Statistics regarding Cr-Klhl21 delection analysis. The graph reports the percentage 

about the seven genomic fragments used to study regulation of Cr-Klhl21; each fragment has been 

cloned in a vector containing GFP and tested four times. Each experiment has been performed 

counting the percentage of GFP-expressing animals on a total of 100. 

 

In order to shed light on the basis of gene regulatory network for such specific 

expression, the klB fragment has been chosen for a bioinformatic analysis to find 

relevant transcription factor binding sites (TFBs), through MatInspector function of 

Genomatix software (Figure 5.10). Among a plethora of TFBs coming out from this 

in silico survey, according to high matrix similarity parameter and possible 

involvement in pigmentation dynamics, the most supported seem to be two Mitf, two 

Msx and one Dmrt sites; they have been selected for a mutational analysis (Figure 

5.11). All the fragments mutated have been tested via electroporation (using GFP) 

and embryos have been observed by light fluorescence microscopy.  
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Figure 5.10. Genomic sequence used for TFBs analysis. Here is shown the regulatory region (klB, 

382 bp) employed for Genomatix analysis and are highlighted potentially interesting binding sites: 

MITF (yellow), MSX (blue), DMRT (green). 

 

Family Matrix sim. Sequence 

Family 1 gttagaataTAATtgcatg 

V$DLXF 1 tcttgtcaCGTGaaaaa 

V$HIFF 1 cgtgaaaAACActcagg 

V$FKHD 0.995 gaataTAATtgcatgttataa 

V$CART 0.994 attaaACAAagaaacaacgtcac 

V$SORY 0.993 gcgcACTTata 

V$RUSH 0.993 ctatACTTtta 

V$RUSH 0.992 cacgTGGGaatca 

V$RBPF 0.992 attccCACGtgatgcga 

V$EBOX 0.990 atcccTGAGtgtttttcac 

V$NKXH 0.987 tttttCACGtgacaaga 

V$EBOX 0.986 ttttcACGTgacaag 

V$HESF 0.986 cgcatCACGtgggaatc 

V$EBOX 0.985 cttgtCACGtgaaaaac 

V$EBOX 0.985 gctgaaGCAAgcg 

V$BZIP 0.983 ATCAcgtgggaatca 

V$LTSM 0.98 taACATttgtg 

V$HOMF 0.977 ggcagaaagaaagcGAAAcgattta 

V$IRFF 0.975 cttgTCACgtgaaaa 

V$MITF 0.974 ttgtcaCGTGaaaaa 

V$HESF 0.973 tagaataTAATtgcatgtt 

V$HOMF 0.973 aacatgcaATTAtattcta 

V$RUSH 0.973 gtttttcaCGTGacaag 

V$HIFF 0.972 gcatcaCGTGggaat 

V$HESF 0.972 gtttctttgttTAATgact 

V$HOMF 0.972 cttgcgTGACgttgtttcttt 

V$HOMF 0.968 ctgttgcgaATTAactgat 

V$HBOX 0.967 gttgcgaatTAACtgattgtc 

V$MYBL 0.967 gattcccaCGTGatgcg 

V$HIFF 0.966 agtgccTAATttagtgagt 

V$HBOX 0.964 ttcccaCGTGatgcg 

V$HESF 0.964 cgaagtcaTTAAacaaa 

V$ABDB 0.962 ggatTATAaataacc 

O$PTBP 0.962 attacttacGTAAtagc 

V$PARF 0.961 ttttTCACgtgacaa 

V$BCDF 0.959 agctattacGTAAgtaa 

V$PARF 0.959 taaagttcttgCGTGacgttgtttc 

V$MITF 0.958 ttcccaCGTGatgcg 

GCGCACTTATAACATGCAATTATATTCTAACGTTTCTTCTTTCTGTGATCAGTTCGACTATACTTTTACATTTATTTCTC

AGTCCGTATAATACGAAGTGTACAGTGCCTAATTTAGTGAGTTAACATTTGTGCGTTTGGTCTGTTGCGAATTAACTGAT

TGTCAAGTTCTAAATCGTTTCGCTTTCTTTCTGCCCTGGTGCCTAGTCTTGTCACGTGAAAAACACTCAGGGATTATAAA

TAACCACCCACGATTACTTACGTAATAGCTGAAAATGATTCCCACGTGATGCGAAGTCATTAAACAAAGAAACAACGTCA

CGCAAGAACTTTACATGACTAGCTGAAGCAAGCGATGGATTTGTATGAGGTTACTAGAACGT 
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V$BRNF 0.958 tcgcatCACGtgggaat 

V$HIFF 0.954 tcTCAGtccgt 

O$INRE 0.953 gcaTCACgtgggaat 

V$SREB 0.948 gattaTAAAtaaccacc 

O$VTBP 0.948 agtcattaAACAaagaa 

V$FKHD 0.947 cagctattacGTAAgtaatcg 

V$CREB 0.946 gattacttacGTAAtagctga 

V$CREB 0.946 ttcgcatCACGtgggaatcat 

V$HAND 0.945 tataacatgcAATTatatt 

V$DLXF 0.943 ctaGTCTtgtc 

V$SMAD 0.941 gttaattcgCAACagaccaaa 

V$MYBL 0.940 gaTCAGttcga 

O$INRE 0.939 actgatcacAGAAagaaga 

V$STAT 0.936 tttagtgaGTTAacatt 

V$HNF1 0.935 tttgtATGAggttactagaac 

V$CREB 0.934 ttgtTTAAtgacttc 

V$NKX6 0.933 tgacaatcagTTAAttcgc 

V$DMRT 0.933 tactttTACAtttatt 

V$CEBP 0.933 acgtGGGAatcat 

V$IKRS 0.932 gttcttgcgTGACgttgtttc 

V$CREB 0.93 gattacttacgTAATagct 

V$BRNF 0.928 gcctaaTTTAgtgagttaaca 

V$ARID 0.927 agaaagcgAAACgatttag 

V$HOMF 0.927 atgTAAAgttcttgc 

V$PLZF 0.921 gctagtcatGTAAagtt 

V$PARF 0.92 ggattaTAAAtaaccac 

V$FKHD 0.92 ataaccaCCCAcgatta 

V$GLIF 0.918 gtggttaTTTAtaatcc 

V$HOXC 0.916 gtgccTAATttagtgag 

V$BCDF 0.914 aaCATGcaattatat 

V$OCT1 0.914 tcagTTAAttcgcaa 

V$NKX6 0.913 cgcaTCACgtgggaa 

V$MITF 0.912 gaaagaagAAACgttagaa 

V$HOMF 0.912 cttgacaatcaGTTAattcgcaa 

V$LHXF 0.909 tctaaATCGtttcgc 

V$HZIP 0.906 ttcgtATTAtacggactga 

V$BRNF 0.904 tcagggattatAAATaaccaccc 

V$MEF2 0.903 ttcgcatcACGTgggaatcat 

V$CREB 0.901 atttataatccCTGAgtgtttttcacgtg 

 

Figure 5.11. Predicted binding sites with MatInspector. The table resumes the characteristics of 

binding sites revealed from Genomatix with a matrix similarity > 0.900. Using the same colors of 

Figure 4.10, here are highlighted the sites selected for mutational survey. 

 

The microphthalmia-associated transcription factor (Mitf) or bLHLe32 is involved in 

many processes and, among them, it is fundamental for the expression of several key 

genes involved in pigmentation (Levy et al., 2006). Moreover, Mitf is implicated in 
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diseases associated with pigmentation in humans. To find co-localization between 

Cr-Klhl21 and Cr-Mitf (expressed in otolith and ocellus, Figure 5.12A), I carried out 

a double fluorescent WISH demonstrating their co-expression in otolith precursor at 

middle tailbud stage (Fig. 5.12B). Therefore, I have mutated the two Mitf sites 

(matrix similarity 0.975, 0.958) separately, changing the wild-type (wt) core 

sequence CGTG into CTCT. Each mutation caused almost an abolition of GFP 

signal (0-3 %) in larvae, suggesting a direct involvement for Mitf in transcriptional 

activation of Cr-Klhl21.  

 

Figure 5.12. Co-localization between Cr-Klhl21 and Cr-Mitf. A) Expression of Cr-Mitf in 

pigmented cells at middle tailbud stage; B) Co-expression of Cr-Klhl21 and Cr-Mitf in the otolith 

precursor at middle tailbud. 

 

Cr-Msxb is considered a marker of ascidian pigment cells up to early tailbud (Aniello 

et al., 1999) and a repressor in the ascidian nervous system (Roure and Darras, 2016; 

Esposito et al., 2017). As for Cr-Mitf , a double fluo-WISH has been used to study 

co-expression in pigmented cells of Cr-Klhl21 and Cr-Msxb or their presence in cells 

that are adjacent but in territories mutually exclusive. I found the presence of both 

the genes in the otolith precursor at middle tailbud stage (Figure 5.13A), with 

absence of co-localization at late-tailbud (Fig. 4.13B). Their co-expression has 

encouraged me to mutate each robust putative Msx site (matrix similarity 0.973, 
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0.968). Substituting wt ATTA with AGGA, I observed in both cases approximately a 

strong decrease of GFP-positive larvae (20-25 %) with respect to the wt construct 

(Figure 5.14). Interestingly, coupling both the mutations in the same construct gave a 

nearly total lack of signal and this supports a role as activator for Cr-msxb in the 

transcriptional regulation of Cr-Klhl21.  

 

Figure 5.13. Co-localization between Cr-Klhl21 and Cr-msxb. A) Co-Expression of Cr-Mitf in 

otolith precursor between two genes at middle tailbud stage; B) End of co-expression of Cr-Klhl21 

and Cr-msxb in the otolith precursor later in development. 

 

Regarding the regulation of Cr-Klhl21 through the Dmrt site, it is noteworthy that 

Cr-Dmrt1 is also expressed in C. robusta sensory vesicle (Imai et al., 2004) and, 

moreover, in Ciona savignyi is crucial for proper development of pigment cells 

(Tresser et al., 2010). Therefore, I have mutated its binding site  (matrix similarity = 

0.933) changing the wt TACA in TGTA and I have observed that Ciona larvae 

exhibit a strong decrease of GFP expression (20%) respect to klB region (45 %), 

suggesting an important role for Cr-Dmrt1 too, as shown in the scheme resuming the 

mutations performed on klB fragments (Fig. 5.14). 
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Figure 5.14. Statistics about Cr-Klhl21 mutational survey. The figure summarizes the results 

obtained from electroporations of mutated klB fragments (here shown in blue) in fertilized eggs. Each 

experiment has been carried out four times and evaluated by observing the positives on a total of 100 

animals. 

 

If we consider these data, they suggest a role as key activator for Cr-Mitf and co-

activators for Cr-msxb and Cr-Dmrt1 of Cr-Klhl21 gene in the pigment cell lineage. 

In summary, the transcriptional regulation of Cr-Klhl21 appears as particularly 

interesting to investigate, with the possible intervention of (at least) five TFBs for its 

late specific expression in the otolith. 

5.3 - Discussion 

5.3.1 - Cr-Klhl21: the first otolith marker 

Pigment cells are very important for larval behavior of ascidians because it can 

determine their ecological success, therefore it is relevant to understand which genes 

are decisive for pigment cell formation. It has been demonstrated that FGF pathway 

represents a key molecular inductor for proper development of pigment cells in 

Ciona (Squarzoni et al., 2011). Among FGF-dependent genes, new markers for the 
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pigment cell lineage have been found (Racioppi et al., 2014). Aside from well-

known melanogenic actors as Rab32/38 and Slc45a2, this kind of analysis has 

permitted to find potential new players in pigmentation as Bzrap, Piwi, Lrp4 and 

Doc2a. Interestingly, they exhibit an extremely variable expression in the pigment 

cell lineage leading to us to hypothesize the existence of a distinct transcriptional 

code for each cell deriving from the a9.49 pair of blastomeres (Racioppi et al., 2014). 

As an example, Tyr and Tyrps, typical melanogenic markers, are present in all cells 

of the PCP lineage including those that will not become pigmented (Sato et al. 1997; 

Esposito et al., 2012) as well as Rab32/38 (Racioppi et al., 2014), known as a 

transporter of tyrosinase family members (Bultema et al., 2012). None of the genes 

isolated in the screening exhibited specific expression in the otolith or ocellus. 

Finding genes specific of only one pigmented sensory organ could help to shed light 

on the molecular differences underlying their specification. My results unravel the 

first Kelch-like member expressed with a dynamic profile in the ascidian pigment 

cell precursors, and clarify the orthology of some Kelch-like genes.  

An ML phylogeny with selected Kelch-like members placed the Ciona gene at the 

base of Klhl21 and close to Klhl30 vertebrate genes (Fig 4.2), distantly related to 

Klhl6 and Klhl24, which are probably ancient paralogues arisen in the ancestor of 

Olfactores. Although a common evolutionary origin for Klhl21 and Klhl30 was 

already suggested (Dhanoa et al., 2013), synteny analysis permits to hypothesize that 

vertebrate Klhl21 and Klhl30 derive from an ancient duplication occurred alongside 

metazoan evolution. In fact the presence of Hes (crucial for Notch signaling) and 

Espn orthologues on both human genomic loci (Chr 1 and 2, respectively) evokes the 

existence of conserved chromosomal region. Moreover, because also Klhl29 

(maintained in all the analyzed vertebrates) lies on human chromosome 2, probably it 
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derives from a local-duplication at the base of vertebrates. Regarding ancient 

duplicates Klhl6 and Klhl24, their microsyntenic arrangement on human 

chromosome 3 could be linked to common regulation inside the cell (Fig. 4.3). This 

explanation about Klhl21 subfamily origins is the more parsimonious and suggest a 

massive loss of 1R, 2R and 3R (TSGD) duplicates (Abi-Rached et al., 2001; Dehal 

and Boore, 2005; Hoegg et al., 2004). Moreover, it could not easily explain the 

divergent expression observed in Ciona and Danio (Fig. 4.4; Fig. 4.6).   

Cr-Klhl21 is the only gene belonging to Kelch-like family to so far be studied in 

ascidians. Expressed specifically in PCPs, for the first time its presence is described 

in pigmented cells and/or sensory organs. Despite scarcity of experimental data, it 

has been hypothesized that KLHL21 is able to bind Cullin 3 regulating, through 

ubiquitylation, cytokinesis and cell migration (Maerki et al., 2009; Courtheoux et al., 

2016; Huang et al., 2017); moreover, KLHL21 is implicated in hepatocellular 

carcinoma (Shi et al., 2016). The expression pattern of Cr-Klhl21 appears extremely 

interesting and dynamic. Down-regulated by FGF blocking conditions, it starts to be 

expressed in otolith and ocellus precursors at the initial tailbud stage and becomes 

specific to the otolith precursor from the middle tailbud stage, disappearing from the 

ocellus. Then, Cr-Klhl21 is among the few genes discriminating between ascidian 

otolith and ocellus precursors together with βγ-crystallin, expressed in otolith of 

larvae (Shimeld et al., 2005). Interestingly, this Kelch-like member is the first gene 

distinguishing the otolith at middle tailbud stage (with shutdown in ocellus), 

differently from βγ-crystallin, which is able to mark the otolith only from larva 

stages. In light of its dynamic expression profile, Cr-Klhl21 could be important for 

studying pigment cell determination (Fig. 4.4) as a primary otolith marker. 

Regarding Cr-Klhl21 possible function, there is scarcity of information apart from 
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involvement of Kelch-like family members in protein-protein interactions linked to 

ubiquitination processes (Dhanoa et al., 2013). In vertebrates Klhl21 seems to be 

involved in cytokinesis regulation in HeLa cells (Maerki et al., 2009) and has been 

recognized as a candidate for hepatocellular carcinoma (Shi et al., 2016). Cr-Klhl21 

is not credible as mitotic regulator because PCPs do not divide at these stages. The 

ubiquitination of molecules typical of pigmentation could be a function to consider; a 

further possibility could be the involvement of ubiquitination in the regulation of 

genes necessary for otolith functioning. Alternatively, Cr-Klhl21 could mimic the 

function of a related protein present also in Ciona, Klhl24. This is involved in the 

replacement of intermediate filaments and its mutations are linked with human skin 

fragility (He et al., 2016; Has, 2017). It raises the possibility that Cr-Klhl21 plays a 

role in the regulation of otolith cytoskeletal system. 

Unfortunately, zebrafish genes related to Cr-Klhl21 seem to be not involved in 

pigmentary dynamics, in fact Zf-Klhl21 is present in unpigmented nervous territories 

(Fig. 4.5) while Zf-Klhl30 is present only in the heart (as assessed by ESTs). These 

data evoke a scenario based on functional and developmental diversification across 

chordate evolution, which could be explained parsimoniously through loss of 

function (and expression) in pigmented cells at the base of vertebrates. On the other 

hand, a further possibility is the acquisition of an ultra-specialized function in 

ascidian pigmentation: this could be understood by studying it in other systems 

belonging to urochordates as Halocynthia, Oikopleura and Molgula. Expression data 

from other invertebrates as amphioxus and vertebrates as lamprey are needed for 

making more robust hypotheses. 

In summary, Cr-Klhl21 represents a fundamental rawplug to study pigment cell 

specification in the ascidian clade. Its dynamic expression profile, which becomes 
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otolith-specific from mid tailbud, leads me to hypothesize a new role for this gene 

because probably it is not involved in mitosis. Interestingly, the diversification in 

terms of role in nervous system during evolution is supported by different territories 

marked in ascidians and teleosts. Collectively, it is important understanding more 

about the function of this gene during evolution, with a special focus on ascidian’s 

otolith. 

5.3.2 - Cr-Klhl21: an intricate regulatory code 

Cr-Klhl21 shows a dynamic expression profile, becoming restricted to the otolith 

from the middle tailbud stage (Fig. 4.4A), a pattern confirmed by a regulatory region 

active exclusively in the otolith from the middle tailbud stage (Fig. 4.6). After 

deletion analysis (Fig. 4.8; Fig. 4.9), I selected the klB region (382 bp, 45 % of GFP-

expressing larva) to identify possible regulators of Cr-Klhl21, finding three putative 

actors: Cr-Mitf, Cr-Msxb, Cr-Dmrt (Fig. 4.10; Fig. 4.11). Considered fundamental 

for pigmentation (Levy et al., 2006) and dependent on the FGF pathway, Cr-Mitf is 

present exclusively in pigment cells  and co-localizes with Cr-Klhl21 in the otolith at 

middle tailbud (Fig. 4.12). Moreover, the specific expression of Mitf orthologues in 

pigment cells of other models as amphioxus and zebrafish (Yu et al., 2008; Lister et 

al., 2000) and its implication in pigmentation-related diseases such as melanoma and 

Tietz syndrome (Leclerc et al., 2017; Cortés-González et al., 2017) render this 

transcription factor a strong candidate to comprehend how Cr-Klhl21 is regulated. 

Being a basic helix- loop-helix protein (bHLHe32), Cr-Mitf interacts with DNA 

through a leucine-zipper domain, with the presence of two near canonical E-boxes 

(CACGTG) which are separated by 66 nucleotides. In Ciona, each Mitf binding site 

mutation gave almost completely abolished the GFP otolith expression (2.5 %), 

suggesting that Mitf could work as dimer also in Ciona, and that is central to regulate 
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positively Cr-Klhl21. The Mitf gene is the master regulator of vertebrate 

pigmentation because it controls Tyr and Tyrps expression during commitment of 

pigment cells (Widlund and Fisher, 2003). However, have been reported many 

evidences about Mitf implication in regulating genes not directly connected to 

pigmentation, as Oa1. It demonstrated that factors involved in melanin production 

and melanosome formation are regulated similarly (Vetrini et al., 2004). My results 

suggest a possible activation from Cr-Mitf on Cr-Klhl21 promoter. Although the 

presence of a putative Mitf binding site on Klhl21 promoter seems to be 

fundamental, the endogenous expression probably depends also on other activators: 

the region called klE, containing mostly two E-boxes, is not able to drive GFP signal 

in otolith possibly because is devoid of other signals (Fig. 4.5). Larger regions of 

promoter, containing TFBs for Msx and Dmrt, klF and klG are, albeit weakly, 

capable to guide gene expression in the otolith. Interestingly, I can define klG (325 

bp) as the smaller region needed for Cr-Klhl21 activation. This concept is strongly 

supported by mutational analysis performed on Msx and Dmrt sites, present in klB. 

The mutation of each Msx site caused a net decrease (20-25 %) of Ciona tadpoles 

expressing GFP, while their simultaneous mutation produce a result similar to Mitf 

mutations (4 %). These experiments and its early co-expression with Cr-Klhl21 in 

pigment cells (Fig. 4.13), prompted me to consider Cr-Msxb as a fundamental co-

activator for Cr-Klhl21. This finding is newsworthy because Msx proteins 

traditionally act as transcriptional repressors, as shown also in Ciona robusta CNS 

(Roure and Darras, 2016; Esposito et al., 2017). It is known as an early marker of 

pigment cell lineage (Aniello et al., 1999) and possibly activated by Tcf (Russo et al., 

2004). Cr-Msxb (influenced by FGF) role as co-activator is consistent with some 

data from vertebrates however: in fact, the initiator of ovary meiosis Stra8 is 
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activated by Msx1 and Msx2 (Le Bouffant et al., 2011) while Atoh expression in 

mouse spinal cord depends on activation operated by Msx1 and Msx2 (Duval et al., 

2014). Curiously, I found that GFP-positive tadpoles diminish (20 %) when the 

unique site for Dmrt is mutated. Even if the members of this family have been 

classically associated to sex-specific traits (Kopp, 2012), Dmrt genes are connected 

with several aspects concerning vertebrate development (Hong et al., 2007). My 

results indicate doublesex/mab3 related-1 (Dmrt1) as positive regulator of Cr-Klhl21 

expression in the otolith, consistent with its presence in sensory vesicle (Imai et al., 

2004). Moreover, functional experiments have shown that Cr-Dmrt1 block causes 

the disruption of pigment cell development in sister species C. savignyi (Tresser et 

al., 2010). Ascidians possess a sole Dmrt copy and here is reported the first case of 

its implication in pigment cell development of chordates: this could represent a 

clade-specific innovation or a loss of function occurred in vertebrates. Comparing 

deletions and mutations, the expression of Cr-Klhl21 is very complex with the 

intervention of three factors characterized by a different degree of relevance, 

resulting in a combinatorial code for transcription. The essential role of Mitf needs to 

be enhanced by co-activators Cr-Msxb and Cr-Dmrt1, here showing innovative 

functions. Their involvement in Cr-Klhl21 activation is reflected by GFP expression 

obtained by using klF and klG with respect to the inactive klE fragment: the 

nucleotides comprised in these fragments correspond to the progressive inclusion of 

sites for Msx and Dmrt (concentrated in klD element). For this reason, I propose a 

cooperative model  (Figure 4.15) for Cr-Klhl21 expression with klE and klD thought 

of two distinct regulatory modules with quite diverse functions (both necessary), i.e. 

“regulatory” and “co-regulatory”.  
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Figure 5.15. Model for Cr-Klhl21 regulation. The figure summarizes the delection and 

mutational analyses performed to dissect promoter of Cr-Klhl21. Coloured ovals have been 

used to show studied TFBs: yellow (Mitf), blue (Msx), green (Dmrt). Red crosses indicate 

TFBs mutated on klB fragment. 

 

Moreover, here is hypothesized the first case of activation operated by Msx in 

ascidians, influenced by the FGF pathway. It could substitute the “classical” role 

played by Msx gene as repressor. Then, there is an intricate regulatory pattern under 

the control of FGF signaling which, in light of Cr-Klhl21 dynamic and unique 

expression profile, could be linked with otolith specification. Interestingly, it has 

been suggested that Wnt7/ β-catenin signaling has a key role in ocellus specification 

controlling a simple regulatory circuit (Wnt7→FoxD⊣Mitf) in which FoxD 

attenuates Mitf specifically in the ocellus precursor reducing its pigmentation 

(Abitua et al., 2012). This is coherent with Cr-Mitf expression that is stronger in 

otolith than ocellus (Fig. 4.11), and with the specific expression of Cr-FoxD in the 
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ocellus precursor (Abitua et al., 2012). Since Cr-Klhl21 is characterized by otolith-

specific expression from middle tailbud stage, it would be interesting to verify if 

FoxD transcription factor represses Cr-Klhl21 in the ocellus. Although the search on 

klB fragment did not identify significant TFBs for FoxD, deeper investigation 

unraveled two sites for possible FoxD interaction (with low matrix similarity), which 

could enhance the attenuation of Cr-Klhl21 expression in the ocellus. Further 

analyses will be needed to comprehend the involvement of FoxD in Cr-Klhl21 

regulation, as well as for Cr-Mitf (Abitua et al., 2012), in PCPs. 

In order to better understand this, it will be important discovering the function of Cr-

Klhl21 through the CRISPR/Cas9 system (Stolfi et al., 2014), even if, its expression 

and putative regulators lead to hypothesize a strong relationship to pigmentation. 

Because of the importance of pigmented sensory organs for proper tadpole behavior 

(Jiang et al., 2005), it could be relevant to shed light on mechanisms at the base of 

otolith specification. In synthesis, Cr-Klhl21 represents a new player in 

pigmentation, which depends on the lineage-specific regulatory network activated by 

FGF pathway through distinct activators (Mitf, Msxb, Dmrt1) interacting with diverse 

promoter regions. 
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CHAPTER 6 

 

 

GENERAL DISCUSSION 

 

Through this PhD thesis, it has been provided an example on how comparative 

genomics and developmental biology can produce significant results in the 

knowledge of a key process for animal life as pigmentation, straddling evolution and 

development. 

Here is provided the most comprehensive study of eu-metazoan, chordate and 

vertebrate Rab toolkit to date, the principal intracellular transporter family in 

metazoans, which can constitute a platform for people interested in evolutionary 

biology and in cellular trafficking. Phylogeny, intron code and synteny helped to 

decipher the orthology of 486 Rabs and to depict a very intricate evolutionary 

scenario. Given that a plethora of Rabs is implicated in pigmentation, my survey 

represents the base for investigating the role of cellular traffic in pigmentation 

dynamics. Moreover, the knowledge of Rabs from an evolutionary perspective can 

be instrumental because they are involved in a multitude of diseases, with many 

pigmentation-related pathologies such as melanoma and albinism. An example is 

given by Rab32/38 genes of two key chordate representatives, (amphioxus and 

zebrafish): in fact, also thanks to comparison with data in other model systems we 

evidenced a distribution of ancestral functions in chordates probably depending on 

genomic events. In teleosts this scenario is dramatically enhanced by genomic 

rearrangements, as shown by differences characterizing Rab32 and Rab38 paralogues 

in terms of distinct embryonic localization. The exceptional chromosomal 

conservation of gnathostome’s paralogons is one of the most important results from 

an evolutionary perspective. Apart from being fundamental for understanding WGD-

origin of vertebrate’s Rab32 and Rab38, the chromosomal linkage existing between 
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Rab32/38 and Grm1/5 evokes the presence of a bystander regulation alongside 

vertebrate evolution or the “trapping” of an ultra-conserved enhancer. These 

hypotheses should be tested by using functional studies, together with the physical 

linkage between tyrosinase (Tyr) and Rab38 that are curiously functionally 

correlated during melanosome formation. A further case of FGF-dependent gene is 

represented by Cr-Klhl21, the first transcript exclusive to the otolith from middle 

tailbud stage. Because the zebrafish orthologue is expressed in nervous territories 

other than pigmented cells such as RPE or migrating melanoblasts, I hypothesize a 

functional diversification across chordate evolution. Its sustained expression in the 

otolith, coupled with a complex regulatory logic based on distinct modules, strongly 

indicated this gene as a new fundamental player for pigment cell development in 

ascidians, with a lineage-specific gene regulatory network.  

In general, these data provided new information about the involvement of Rab and 

Klhl gene families in pigmentation, supporting new investigations regarding the 

members of these family also in other model systems, in order to elaborate a 

comprehensive evo-devo strategy for studying pigmentation dynamics in animals. 
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CHAPTER 7 

 

 

METHODS AND MATERIALS 

 

 

7.1 - Molecular evolution analyses 

7.1.1 - Genome Database Searches and phylogenetic analyses  

All the sequences used for the evolutionary analysis have been retrieved from 

the NCBI (https://www.ncbi.nlm.nih.gov) and Ensembl 

(http://www.ensembl.org/index.html) databases. Regarding analysis shown in 

Figure 3.2, protein sequences of vertebrate Homo sapiens Rab repertoire have 

been used as queries in BLASTp and tBLASTn searches in NCBI, Ensembl and 

Metazome genome databases of selected species. Orthologies of the Rab 

members have initially been assessed by reciprocal best blast hit (RBBH) 

approach and corroborated by phylogenetic analyses. Phylogenies have been 

based on ML inferences calculated with PhyML v3.0 and automatic selection 

mode of substitution model (Guindon et al., 2010) using protein alignments 

generated with MUSCLE (Edgar, 2004) and CLUSTALX (Larkin et al., 2007) 

programs and reviewed by hand to exclude too short or uninformative 

sequences. Only conserved parts of the proteins whose alignments were 

unambiguous among duplicates were included in the phylogenetic analysis, i.e. 

from codon D9 to G177 of human RAB1A. The Rab domains were mapped 

using ProSite (http://prosite.expasy.org) software (Sigrist et al., 2012) and 

drawed manually.   

Ciona robusta Rab32/38 it has been employed as query sequence for Blastp and 

tBlastn (Gertz et al., 2006) in invertebrate genomes (Chapter 4), and reciprocal 

blasts were carried out on each selected genome. The sequences used in 

https://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/index.html
http://prosite.expasy.org/
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evolutionary analyses of Chapter 4 are listed in Supplementary Table 4.1. The 

proteins have been aligned by ClustalW with default parameters (Thompson et 

al., 1994). The phylogenetic trees of Chapter 4 have been performed through 

Maximum Likelihood estimation (MLE) using MEGA7 with 1,000 replicates 

and the WAG+γ+I matrix (Kumar et al., 2016). The cladogram of evolutionary 

reconstructions have been obtained with Dendroscope (Huson and Scornavacca, 

2012). Moreover, also the trees represented in Figures 3.6 and 5.2 have been 

constructed following the same procedure. The main Rab domains have been 

identified according to Park 2013 and aligned manually; it has been employed a 

domain-specific color code (Fig. 4.2).  

 

7.1.2 - Intron survey   

The splicing site conservation shown in Figures 3.3 and 4.3 has been evaluated 

using public genomic resources (NCBI, Ensembl) and mapped manually on 

alignment. Regarding intron analysis of Chapter 3, Rabs are represented using 

horizontal grey bars with three fundamental Rab domains represented by darker 

boxes: P-loop, Switch I, Switch II (Fig. 4.3). It has been uniformed the diversity 

of Rab proteins length considering 200 amino acid residues that corresponds to 

human RAB1A and manually mapped the conserved exon/intron structure with a 

color code. My reconstruction encompasses all the species selected for the 

phylogeny except O. dioica because few genomic information are available: i.e 

each single intron drawn in Fig. 3.3, represents the outcome of all selected 

species.  
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7.1.3 – Synteny analysis 

The chromosomal conservation among Rab family metazoans (Chapter 3), it has 

been performed using synteny database of Oregon University 

(http://teleost.cs.uoregon.edu/synteny_db) (Catchen et al., 2009). Data shown in 

Figure 3.6 concerning Rab chimeras have been obtained by working manually 

on available genomic resources. 

The synteny among Rab genomic loci of Fig. 4.3 and Suppl. Fig. 4.5 has been 

studied by manually mapping the genes on the scaffolds/chromosomes using 

available public resources (Ensembl, NCBI, Genomicus).  

 

7.2 - Molecular biology approaches 

7.2.1 - RNA extraction 

For total RNA extraction, a mixture of amphioxus embryos from gastrula to 5 days-

old larvae and susequently pelleted with a light centrifugation (1500-3000 rpm for 2-

4 minutes); they have been kept at -20°C in Eurozol (EuroClone) until the RNA 

extraction. To obtain RNA from zebrafish embryos, a pool at the desired stage have 

been collected at -20°C in Eurozol (EuroClone) until the RNA extraction. 

In order to avoid RNAase contaminations it is necessary to operate in sterile 

conditions. The samples conserved in Eurozol, have been homogenized with a pestle. 

After adding 0.1 volume of chloroform, the solution has been mixed and centrifuged 

at 14.000 rpm at 4°C. The aqueous phase has been collected and precipitated 

overnight with the same volume of isopropanol. Once precipitated, the sample has 

been centrifuged (14000 rpm) at 4°C for 30 minutes. The pellet has been washed 

with 70% ethanol, centrifuged, air-dried and resuspended in DEPC water. The 

sample’s concentration has been measured with a “NanoDrop 1000” 

http://teleost.cs.uoregon.edu/synteny_db
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spectrophotometer (Thermo, USA) while RNA integrity was evaluated on a 1% 

agarose gel. The obtained RNA has been stored at -80°C until use. 

 

7.2.2 - cDNA preparation 

cDNA has been prepared by in vitro reverse transcription using 0.5-1 μg of total 

RNA, drivingthe synthesis of DNA strand complementary to the RNA template with 

an RNA polymerase. It has been used the SuperScript VILO cDNA Synthesis kit 

(Invitrogen, India). 20 μl of reaction has been carried out in a thermocycling 

following this setting program: 25°C for 10 minutes, 42°C for 60 minutes, 85°C for 5 

minutes. The cDNA has been mantained at -20°C until use. 

 

7.2.3 - genomic DNA preparation 

The spermduct has been cutted with a sharpen scalpel, to extract sperm from Ciona 

robusta adult specimens using a glass pipette. About 0.5 ml of fresh sperm has been 

mixed with 0.5 ml of RSB (10 mM NaCl, 10 mM Tris pH 7.5, 25mM EDTA pH 

8.0). Subsequently, a concentration of  0.5 µg/ µl Proteinase K and 20X SDS have 

been added and the sample has been incubated into a water-bath for 1 hour at 45°C. 

After adding 1 volume of phenol:chloroform:isoamylic alcohol (25:24:1), the sample 

has been mixed and centrifuged for 20 minutes at 14000 rpm. The surnatant 

(containing genomic DNA) has been precipitated with ethanol 100 % and 1/10 

volumes of ammonium acetate 2.5 M. After two washes with ethanol 80 %, genomic 

DNA has been dried at room temperature: then, I have diluted with 0.5 ml of sterile 

water; DNA quality has been assessed by gel electrophoresis. The sample has been 

stored at 4°C. 
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7.2.4 - Molecular cloning  

Zebrafish Rab32 and Rab38 genes were cloned using the prediction available in the 

NCBI database: Rab32a (BC066502), Rab38a (XM_001342839.2), Rab38b 

(XM_003199354.1), Rab38c (XM_685900.3) and Klhl21 (NM_207081.1), while for 

mediterranean amphioxus have been used predicted sequences from the database of 

Amphioxus Genome Project Consortium. Regarding zebrafish, I have found 

expressed sequence tags (ESTs) in several developmental stages and body structures 

except for Rab38c. The cDNA sequences have been amplified through Polymerase 

Chain Reaction (Promega) using these oligo nucleotide pairs: BlRab32/38-F  and 

BlRab32/38-R for amphioxus Rab32/38, BlRab32LO-F and BlRab32LO-R for 

amphioxus Rab32LO, DrRab32a-F and DrRab32a-R for zebrafish Rab32a, 

DrRab38a-F and DrRab38a-R for zebrafish Rab38a, DrRab38b-F and DrRab38b-R 

for zebrafish Rab38b, DrRab38c-F and DrRab38c-R for zebrafish Rab38c, 

DrKlhl21-F  and DrKlhl21-R for zebrafish Klhl21. The amplification cycles have 

been conducted by means of Thermal Cycler Perkin-Elmer-Cetus. The gene 

fragments have been cloned using the TOPO-TA II Cloning Kit (Invitrogen). 

Regarding Ciona robusta genes, they have been prelevated from plasmids present in 

gene collection release I: tyrp1/2a (GC31h05), Msxb (GC42h24), Mitf (GC28k08), 

Klhl21(GC17e22). For putative regulatory region analysis, seven fragments have 

been cloned: CRCRklA-F and FCRklA-R for klA, CRklB-F and CRklB-R for klB, 

CRklC-F and CRklC-R for klC, CRklD-F and CRklD-R for klD, CRklE-F and 

CRklE-R for klE, CRklF-F and CRklF-R for klF, CRklG-F and CRklG-R for klG. 

All the oligos used in this thesis are listed in Supplementary Table 6.1. 
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7.2.5 - Constructs preparation for transgenesis via electroporation 

Analytic and preparative plasmid DNA digestions have been performed using the 

appropriate restriction endonucleases in total volumes of 50 µl. The digestion 

reaction has been prepared as follows:  2,5 µg of DNA (GFP-SV40 vector and 

TOPO-TA vector in which Ciona genomi regions have been cloned; suitable 

restriction enzyme buffer (1/10. Roche; New England Biolabs; Amersham), XhoI 

and HindIII restriction enzymes (5 unites enzyme per 1 μg of DNA) and BSA (1/100, 

if required). Reaction has been performed at 37°C for three hours. To prevent self-

ligation, a convenient amount of double strand linearized DNA has been incubated 

with 1U of Calf Intestinalis Alkaline Phosphatase enzyme (CIAP; Roche) per 1 pmol 

5' ends of linearized DNA, in 1x CIP dephosphorylation buffer (Roche), at 37°C for 

30'.  

Each ligation reaction has been carried out in a final volume of 20 µl with a mix 

comprising 1x T4 Ligase buffer (50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM 

dithiothreitol, 1 mM ATP, pH 7.5) and 1U of T4 DNA Ligase (New England 

Biolabs). The proportion of plasmid vector and insert DNA was tipically kept 1:3, 

and the total amount of DNA was kept within 50-100 ng. The reaction mix has been 

incubated at 16 °C overnight. The ligation products have been stored at 4°C.  

 

7.2.6 - Isolation of plasmid DNA from Escherichia coli 

Escherichia coli colonies have been picked from the plates and grown overnight at 

37 °C by shaking in 4 ml of Luria-Bertani (LB) medium with 0,1 mg/ml of 

ampicillin. Mini-prep or Maxi-prep plasmide DNA isolations have been performed 

according to the protocols supplied of GenElute™ Plasmid Miniprep Kit (Sigma, 

USA) and GenElute™ Plasmid Maxiprep Kit (Sigma, USA). The eluted DNA has 
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been measured at the “NanoDrop 1000” spectrophotometer (Thermo, USA) as 

assorbance at 260 nm. For reducing the number of colonies to perform purification, 

PCR colony screening has been used to detect positive colonies. The colonies have 

been individually picked with a sterile plastic tip and dissolved into 12,5 µl of PCR 

reaction mix. M13 forward and M13 reverse primers corresponding to the insert 

sequence have been used for the amplification. 

 

7.2.7 - DNA sequencing 

Correct cloning was confirmed by sequencing of both DNA strands. It has been 

performed at the Molecular Biology Service of SZN employing Automated Capillary 

Electrophoresis Sequencer 3730 DNA Analyzer (Applied Biosystems, USA) with a 

BigDye® Terminator v3.1 Cycle Sequencing Kit (Life Technologies).  

 

7.2.8 - Bacterial transformation and growth 

The transformation of vectors with DNA of interest has been performed by 

electroporation in E. coli cells provided by the Molecular Biology Service of 

SZN and stored at -80°C. The cells have gently defrosted on ice for 10 minutes, 

and 40 μl are mixed with 4 μl of dialyzed vector, then the mix is transferred into 

electro-cuvette. The electric shock has been done by employing a “Bio-Rad 

Gene Pulser” with a constant voltage of 1.7 V. The transformed cells have been 

placed in 1 ml of Luria Bertani (LB) medium shaking at 270 rpm at 37 °C for 1 

hour, then the cells have been plated on LB solid medium (NaCl 10g/l, tryptone 

10 g/l, yeast extract 5 g/l, agar 15 g/l) (in volume of 200 and 600μl) in the 

presence of ampicillin (50 μg/ml) to which the plasmids are resistant. IPTG and 
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X-gal (4 μl + 40μl respectively) have added to perform the blue-white screening 

technique and grown overnight at 37°C. 

 

7.2.9 - Site-directed mutagenesis 

To perform diverse site-directed mutations in the putative regulatory region of Cr-

Klhl21 gene, it has been used The QuikChange II Site-Directed Mutagenesis Kit 

(Agilent Technologies) directly on the construct to mutate (klB>GFP). The primers 

contain the desired mutation for annealing to the same sequence on opposite strands 

of the plasmid; the mutagenic primers have to be between 25 and 45 base pairs, with 

a melting temperature (Tm) of ≥78°C (longer oligos can increase the secondary 

structure formation, affecting efficiency of mutagenesis reaction). The most common 

formula for calculating melting temperature is: Tm =81.5+0.41(%GC)−(675/N)−% 

mismatch, where N is the primer length. The primers should have a minimum GC 

content of 40% and the selected mutation (deletion or insertion) should stay in the 

middle of the primer with ~10–15 bases of correct sequence on both sides 

(mutagenic oligos are listed in Suppl. Table 5.1). In a final volume of 50 μl, have 

been added 125 ng of both oligos and 1 μl of PfuUltra HF DNA polymerase (2.5 

U/μl). Using thermal cycler, it has been employed this set of parameters, 30 seconds 

at 95°C followed by 16 cycles with 30 seconds at 95°C, 1 minute at 55°C, 

1minute/kb of plasmid length (for instance, a plasmid of 3 kb needs 3 minutes). 

Immediately, the reaction mix must be placed on ice for 3 minutes, reaching ≥37°C. 

At this temperature, is performed a digestion with  1 μl of the Dpn I restriction 

enzyme (10 U/μl) at 37°C for one hour.  

Then, it has been carried out chemical transformation using XL1-Blue 

Supercompetent Cells adding 1 μl of digestion product to 50 μl of cells. The reaction 
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has been incubated on ice for 30 minutes, 45 seconds at 42°C and placed on ice for 2 

minutes. The transformation reaction has been mixed with 500 μl of LB medium and 

shaked at 37°C for one hour (225 rpm); subsequently, bacteria cells have been plated 

on LB solid medium with ampicillin, IPTG and X-gal (4 μl + 40μl respectively) have 

beenadded for the blue-white screening technique and grown overnight at 37°C.  

 

7.2.10 - Riboprobe preparation 

The DNA for riboprobe synthesis has been targeted by using M13fw and M13rev 

oligos, which are present in TOPO constructs. One μg of purified DNA has been 

used for in vitro transcription of the DIG- and FLUO labeled riboprobes, using SP6 

and T7 RNA polymerases (Roche). The incubation consisted of two hours at 37°C 

with RNAse Inhibitor (Roche) and Transcription Buffer (Roche). The reaction has 

been blocked by using 0.25 M EDTA then the ribonucleic probes have been purified 

using 4 M lithium chloride (LiCl) transcripts. After adding cooled ethanol 100 %, 

they have been kept overnight at -20°C. Riboprobes have been washed with cooled 

ethanol 70 % and DEPC water; finally it has been added formammide and they have 

been stored at −80 °C until use.  

7.2.11 - Quantitative real-time PCR (q PCR) 

The expression of amphioxus mRNAs analyzed (Rab32/38, Rab32LO) has been 

studied through quantitative real time PCR (qPCR). Optimal cDNA concentration to 

use has been decided empirically, with serial dilutions. The qPCR has been 

performed in triplicate with a ViiATM 7 Real-Time PCR System (Applied 

Biosystems) in a 384-multi-well plate and each reaction has been carried out in a 

final volume of 10 μl with 0.7 pmol/μl of each primer, 5 μl of SYBR Green mix 

containing ROX (Applied Biosystems) and 1 μl of diluted cDNA. The parameters 
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selected for thermal cycling were: 95°C for 15 s, 40 cycles at 60°C for 1 min 

followed by a denaturation step from 60°C to 95°C with a continuous detection at 

0.015°C/sec increment for 15 min to demonstrate the presence of a single product. 

The results have been analysed with the ViiA™ 7 Software and exported into 

Microsoft Excel for further analysis. Quantification results have been expressed in 

terms of cycle threshold (Ct). The Ct values were averaged for each triplicate. The 

ribosomal protein L32 (RPL32) gene was the endogenous control for the 

experiments. Differences between the mean RPL32 Ct value and those of the 

reference gene have been calculated as ΔCtgene = Ctgene - Ctreference. Relative 

expression has been analysed as 2-ΔCt.  

 

7.3 - Animal handling  

 

7.3.1 - Branchiostoma lanceolatum  

Adult amphioxus specimens (Branchiostoma lanceolatum) were collected from the 

Gulf of Naples (Italy) (40°48'33'' N - 14°12'55'' E) from a location that is not 

privately owned or protected. All procedures were in compliance with current 

available regulation for the experimental use of live animals in Italy. The animals 

were caught dragging on the soft bottom and collecting 5-10 cm of sand, with the 

support of the SZN vessel "Vettoria". After collecting sand at the depth of 5-12 

meters, it was sifted on boat with a net characterized by a 1.25mm mesh (Fig.). 

Animal care is entrusted to “Aquaculture of Marine Organisms” facility at 

Zoological Station Anthon Dohrn of Naples. Animals were mantained in open 

circulating system reproducing natural thermal and ligh  t conditions with continuous 

aeration and filtrated sea water. During the gonad maturation (April to July) 

temperature is maintained at 17°C, lower than the natural one, to avoid the natural 

emission of sperm and eggs in the tank. Animals were fed daily with a mix of three 
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unicellular microalgae: Dunaliella tertiolecta, Isochrysis galbana and Tetraselmis 

suecica. Gonads development starts in winter and arrives to maturation between 

spring and summer. In order to avoid the natural emission of sperm and eggs, the 

animals were mantaine at 17°C. Artificial spawning has been induced applying a 

heat shock to ripe animals. Animals with visible mature gonads were placed in a 

water bath settled at 5-6 degree of temperature higher respecto to the culturing 

system  and the day after the animals have been divided one by one in glass beakers 

containing 100 ml filtered sea water for blocking uncontrolled fertilization. To obtain 

a spontaneous gonads release at the sunset, similar to natural spawning, the animals 

have been exposed to 36 hours temperature stress. Then, the adults are removed from 

beakers, the sperm from several males is mixed to increase the fertilization 

percentage and retained on ice. 200-300 eggs have been subdivided into petri dishes 

with scratched bottom because could attach there. Eggs have been fertilized with 

some drops of sperm mix. After approximately 10 minutes the percentage of 

fertilized eggs was checked by the elevation of the fertilization membrane. If less 

than 65% of fertilization, a further drop of sperm has been added. Subsequently, 

embryos have been rinsed two times using fresh sea water (FSW) so they can grow 

up to desired developmental stage in petri dishes at 18°C. Animals have been fixed at 

diverse developmental stages with 4 % paraformaldehyde (PFA) in MOPS overnight 

at 4 °C, and then stored at −20 °C in 70 % ethanol. 

 

7.3.2 – Ciona robusta  

C.robusta is a hermaphroditic broadcast spawner, present in Mediterranean Sea and 

in worldwide temperate costs. The animals used for experiments of this thesis, were 

fished by the crew of the SZN vessel “Vettoria” in the southern Italy, usually close to 
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Taranto in Puglia. At SZN, animals spent at least a week in an open circulating 

seawater tank at a temperature close to wild-type conditions to acclimate them. 

Animals were fed daily with Spirulina platensis. Animals care follows “Aquaculture 

of Marine Organisms” facility at Zoological Station Anthon Dohrn of Naples. The 

spawning period lasts from autumn to spring and to get gametes in laboratory, it is 

mandatory to sacrifice the animals. Using scalpel, tunic and muscles have been taken 

without damaging the gonaducts to do not cause premature mixing of. Sperm and 

eggs have been collected and kept separately until the fertilization that was carried 

out in 6cm petri dishes on agarose bottom.  

 

7.3.3 – Danio rerio  

Danio rerio  

Wild-type AB zebrafish were mantained in a re-circulating water system at 28°C, on 

a 14 hours light/10 hours dark cycle. Embryos were staged in accordance to Kimmel 

et al. (1995) and all handling and breading protocols were performed in accordance 

to the GUIDELINES published in the Zebrafish Book (Nüsslein-Volhard and Dahm, 

2012). The embryos up to 4 dpf have been obtained from natural spawning of wild-

type animals and fixed overnight in 4 % PFA in PBS at 4 °C, then washed three 

times in PBS and stored at −20 °C in methanol. The protocols for handling of 

zebrafish and experiments involving not feeding larvae were approved by the ethical 

committee of the Stazione Zoologica Anton Dohrn of Napoli, Italy (Animal Welfare 

Body). 

 

 

 

 

 

 



140 
 

7.4 - Developmental biology approaches 

 
7.4.1 - Whole-mount in situ hybridization  

Branchiostoma lanceolatum 

Whole-mount in situ hybridization (WISH) experiments in amphioxus have been 

performed following the protocol described in Irimia et al. (2010). Fixed embryos 

have re-hydrated digestion and rinsed in a phos- phate buffered saline solution 

containing Tween20 0.1 % (PBT). After that, it has been performed a treatment with 

Proteinase K (5 μg/ml) to facilitate the riboprobe penetration and the reaction has 

been blocked by washing with a solution of 2 mg/ml glycine in PBT. The embryos 

have been refixed in PBT containing 4 % PFA for 1 h at RT and then rinsed in 0.1 M 

triethanolamine with acetic anhydride to bleach the natural pigments of the embryos. 

After several washes in PBT, it has been carried out overnight hybridization at 65 °C 

in DEPC water hybridization buffer (50 % deionized formamide; 100 μg/ ml 

Heparin; 5× SSC; 0.1 % Tween20; 5 mM EDTA; 1× Denhardt’s 1 mg/ml; 50 mg/ml 

yeast RNA). The day after embryos have been washed in HB and in solution 

containing HB plus decreasing concentrations of SSC. Embryos have been incubated 

overnight at 4°C with anti-DIG-AP (Roche) diluted 1:1000. After antibody 

incubation, embryos have been stained in BM Purple (Roche) at room temperature. 

Once reached desired signal expression, embryos have been washed in PBS and 

fixed for 1 h in 4 % PFA in PBT; they have been stored in glycerol/PBT (80-20 %). 

Embryo image capturing has been performed employing a Zeiss Axio Imager M1. 

Ciona robusta 

Embryos for single and double fluorescent WISH have been fixed at the different 

developmental stages for 2 h in 4% MEM-PFA (4% paraformaldehyde, 0.1 M MOPS 

pH 7.4, 0.5 M NaCl, 1 mM EGTA, 2 mM MgSO4, 0.05% Tween 20), then rinsed in 



141 
 

PBS and stored in 75% ethanol at -20 °C. Embryos have been treated with 2% H2O2 

dissolved in methanol for 30 min at room temperature, and then washed in PBT.  

They have been hybridized overnight at 60°C using hybridization buffer (HB) in 

DEPC water (50 % Formammide; 100 μg/ml Heparin; 1.3X SSC; 0.2 % Tween20; 5 

mM EDTA pH 8,0; 50 μg/ml Yeast RNA). After two steps in HB, embryos have 

been washed with solutions with increasing concentrations of SSC. Then, embryos 

have been washed in PBT, equilibrated in TNT (100 mM Tris pH 7.5, 150 mM 

NaCl, 0.1% Tween 20) and blocked in TNB (0.5% Roche blocking reagent in 100 

mM Tris pH 7.5, 150 mM NaCl) for 1–2 h. Anti-FLUO-POD and anti-DIG-POD 

(Roche) antibodies have diluted 1:1000 in TNB and the incubation has been carried 

out overnight at 4 °C. Embryos have been washed extensively in TNT. Concerning 

tyramide signal amplification, Cy3- and Cy5-coupled TSA Plus reagent (Perkin 

Elmer) has been diluted 1:400 in amplification buuffer and added to embryos for 5–

10 min at room temperature. For 4,6- diamidino-2-phenylindole staining, DAPI 

(Sigma) has been dissolved 1:10000 in PBT, and embryos have been incubated 

overnight at 4 °C, subsequently washed three times in PBT. Finally, embryos have 

been stored in PBT at 4°C (Christiaen et al., 2009). Embryo imaging has been carried 

out using a Zeiss Axio Imager M1 and a Zeiss LSM 510 META confocal 

microscope.  

Danio rerio 

In zebrafish, whole-mount in situ hybridization (WISH) has been performed 

following Thisse and Thisse protocol (2008). After rehydration steps, embryos have 

been permeabilized employing Proteinase K (10 μg/ml), and the reaction has been 

stopped through fast washes in PBT. The embryos have been refixed in 4 % PFA in 

PBT for 1 h at RT and rinsed with PBT many times. They have been hybridized 
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overnight at 65 °C in hybridization buffer (HB) in DEPC water (50 % Formammide; 

100 μg/ml Heparin; 1.3X SSC; 0.2 % Tween20; 5 mM EDTA pH 8,0; 50 μg/ml 

Yeast RNA; 0.5 % CHAPS). The day after embryos have been washed in HB and in 

solution containing HB plus decreasing concentrations of SSC. After fast washes in 

maleic acid buffer (MAB) in DEPC water, embryos have been incubated overnight at 

4°C with anti-DIG-AP (Roche) diluted 1:400. After antibody incubation, embryos 

have been rinsed many times in MAB plus Tween 0,1 % and, subsequently, it has 

been been performed the coloration using BM-Purple (Roche) at room temperature. 

Embryos with desired signal have been washed several times with PBT and, to 

obtain a stronger signal visualization, put in methanol overnight at 4°C. After that, 

they have been stored in glycerol/PBT (70-30 %). Embryo image capturing has been 

performed with a Zeiss Axio Imager M1. 

 

7.4.2 - C. robusta electroporation 

Ripe oocytes and sperm have been collected and stored separately until in vitro 

fertilization. Chorion and follicular cells have been eliminated chemically by using a 

pH 10 solution of Thioglycolic acid (1%) and Proteinase E (0.05%) in Millipore-

filtered sea water (MFSW). Embryos have been shaken with a glass pipette for 7-8 

minutes and washed many times with fresh MSFW. Then, have been fertilized the 

eggs and subsequently washed three times in MFSW transferred in a solution with 

0.77 M Mannitol and the DNA necessary for electroporation (usually 50–80 mg of 

each plasmid) (Christiaen et al., 2009). The electroporation experiments have been 

carried out in Bio-Rad Gene Pulser 0.4 cm cuvettes, employing Gene Pulser II (Bio-

Rad) (Christiaen et al., 2009); each experiment has been performed at least three 
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times. Embryos were staged according to the developmental timeline established in 

Hotta et al. 2007. For embryo imaging it has been used a Zeiss Axio Imager M1.  
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APPENDIX 

Supplementary Table 3.1.  List of different kinds of duplication occurred inside Rab Family. 
 
 

Chr = human chromosomes  
 
Ohnologues: 
 

- Rab1A(chr2)-Rab1B(chr11) 
- Rab2A(chr8)-Rab2B(chr14) 
- Rab3A/D(chr19)-Rab3B(chr1)-Rab3C(chr5) 
- Rab4A(chr1)-Rab4B(chr19) 
- Rab5A(chr3)-Rab5B(chr12)-Rab5C(chr17) 
- Rab6A(chr11)-Rab6B(chr3)-Rab6C(chr2)-Rab41(chrX) 
- Rab8A(chr19)-Rab8B(chr15)-Rab13(chr1) 
- Rab11(chr15)-Rab11B(chr19)-Rab25(chr1) 
- Rab19(chr7)-Rab43(chr3) 
- Rab22A(chr20)-Rab22B(chr18) 
- Rab26(chr16)-Rab37(chr17) 
- Rab27A(chr15)-Rab27B(chr18) 
- Rab32(chr6)-Rab38(chr11) 
- Rab33A(chrX)-Rab33B(chr4) 
- Rab34(chr17)-Rab36(chr22) 
- Rab39A(chr11)-Rab39B(chrX) 
- EFcab4A(chr11)-EFcab4B(chr12)-Rab44(chr6) 

 
Vertebrate tandem-duplicates: 
 

- Rab3A-Rab3D    (chr19) 
- Rab9A-Rab9B    (chrX) 
- Rab40A-Rab40AL (chrX, primate-specific duplication) 

 
Vertebrate gene duplicates: 
  

- Rab7A  (chr3) 
- Rab7B  (chr1) 
- Rab17  (chr2) 
- Rab21  (chr12) 
- Rab40B (chr17) 
- Rab40C (chr16) 
- Rab42  (chr1) 

 
Reptile-specific duplicates: 
 

- Rab18a (chr5) 
- Rab18b (chr6) 

Hemichordates tandem-duplicates: 
 

- Rab5a, Rab5b, Rab5c, Rab5d, Rab5e (NW_003141315.1) 
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Supplementary Table 3.2. This figure shows conservation amongst genomic loci harbouring 

EFcab4/Rab44 subfamily members (blue). Syntenic genes belong to TSPAN (yellow), CDKN (green), 

KCNQ (orange); human chromosome 1 represents the site of fourth member of this subfamily and on 

the chromosome 11 there is a cluster of mucin (MUC, violet). Under the genes are drawn arrows 

symbolizing the transcription direction. 

 

 

 
 

Supplementary Table 4.1. Table containing proteins used for all the evolutionary analyses of 

Chapter 4. 

 

Species 
Protein 
Name 

Accession Number  Database  

Capitella capitella Rab23 ELT90055.1 NCBI 

  Rab7 ELU11591.1 NCBI 

  Rab9 ELU08962.1 NCBI 

  Rab7L1 ELT94920.1 NCBI 

  Rab32/38 ELU06149 NCBI 

  Rab32LO ELT98053 NCBI 

Lottia gigantea Rab23 LotgiP103096 Ensembl 

  Rab7 LotgiP223383 Ensembl 

  Rab32/38 LotgiP171871 Ensembl 

  Rab32LO LotgiP96617 Ensembl 

Saccoglossus kowalevskii Rab23 XP_002732916.1 NCBI 

  Rab7 XP_006820804.1 NCBI 

  Rab9 XP_002737937.1 NCBI 

  Rab7L1 XP_006825119.1 NCBI 

  Rab32/38 XP_002733795.1 NCBI 

Strongylocentrotus 
purpuratus Rab23 XP_003729499.1 

NCBI 

  Rab7 NP_001116983.1 NCBI 

  Rab9 XP_791345.3 NCBI 

  Rab7L1 XP_786497.2  NCBI 

  Rab32/38 XP_782400.2  NCBI 

  Rab32LO XP_003731406.1  NCBI 

Ciona intestinalis Rab23 XP_002121180.1 NCBI 
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  Rab7 XP_002128753.1 NCBI 

  Rab9 XP_002131619.1 NCBI 

  Rab7L1 XP_002122178.2 NCBI 

  Rab32/38 XP_002130668.1 NCBI 

Petromyzon marinus Rab32/38 ENSPMAP00000000405 Ensembl 

Danio rerio Rab23 ENSDARP00000002531 Ensembl 

  Rab9a ENSDARP00000136173 Ensembl 

  Rab9b ENSDARP00000140695 Ensembl 

  Rab7a AAI55203 NCBI 

  Rab32a AAH66502 NCBI 

  Rab32b XP_001340450.2 NCBI 

  Rab38a XP_001342875.2  NCBI 

  Rab38b XP_003199402 NCBI 

  Rab38c XP_690992 NCBI 

Latimeria chalumnae Rab32 ENSLACP00000023562 Ensembl 

  Rab38a ENSLACP00000000658 Ensembl 

  Rab38c ENSLACP00000012385 Ensembl 

Callorinchus milii Rab32 SINCAMP00000023543 Ensembl 

  Rab38a SINCAMP00000022146 Ensembl 

  Rab38c SINCAMP00000019284 Ensembl 

Lepisosteus oculatus Rab32 ENSLOCP00000019896 Ensembl 

  Rab38a ENSLOCP00000019896.2 Ensembl 

  Rab38c ENSLOCP00000019896.3 Ensembl 

Anolis carolinensis Rab23 ENSLOCP00000019896.4 NCBI 

  Rab9A ENSLOCP00000019896.5 NCBI 

  Rab9B ENSLOCP00000019896.6 NCBI 

  Rab7 ENSLOCP00000019896.7 NCBI 

  Rab7L1 ENSLOCP00000019896.8 NCBI 

  Rab32 ENSLOCP00000019896.9 NCBI 

  Rab38 ENSLOCP00000019896.10 NCBI 

Xenopus tropicalis Rab32 ENSLOCP00000019896.11 NCBI 

  Rab38 ENSLOCP00000019896.12 NCBI 

Gallus gallus Rab32 ENSLOCP00000019896.13 Ensembl 

  Rab38 ENSLOCP00000019896.14 Ensembl 

Mus musculus Rab32 ENSLOCP00000019896.15 NCBI 

  Rab38 ENSLOCP00000019896.16 NCBI 

Homo sapiens RAB23 ENSLOCP00000019896.17 Ensembl 

  RAB7A ENSLOCP00000019896.18 Ensembl 

  RAB9A ENSLOCP00000019896.19 Ensembl 

  RAB9B ENSLOCP00000019896.20 Ensembl 

  RAB7L1 ENSLOCP00000019896.21 NCBI 

  RAB32 ENSLOCP00000019896.22 NCBI 

  RAB38 ENSLOCP00000019896.23 NCBI 

Capitella teleta Grm1/5 ENSLOCP00000019896.24 NCBI 

Lottia gigantea Grm1/5 ENSLOCP00000019896.25 Ensembl 
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Saccoglossus kowalevskii Grm1/5 ENSLOCP00000019896.26 NCBI 

Branchiostoma floridae Grm1/5 ENSLOCP00000019896.27 NCBI 

Callorinchus milii Grm1 ENSLOCP00000019896.28 NCBI 

  Grm2 ENSLOCP00000019896.29 NCBI 

  Grm3 ENSLOCP00000019896.30 NCBI 

  Grm4 ENSLOCP00000019896.31 NCBI 

  Grm5 ENSLOCP00000019896.32 NCBI 

  Grm7 ENSLOCP00000019896.33 NCBI 

  Grm8 ENSLOCP00000019896.34 NCBI 

Lepisosteus oculatus Grm1 ENSLOCP00000019896.35 Ensembl 

  Grm2 ENSLOCP00000019896.36 Ensembl 

  Grm3 ENSLOCP00000019896.37 Ensembl 

  Grm4 ENSLOCP00000019896.38 Ensembl 

  Grm5 ENSLOCP00000019896.39 Ensembl 

  Grm6 ENSLOCP00000019896.40 Ensembl 

  Grm7 ENSLOCP00000019896.41 Ensembl 

  Grm8 ENSLOCP00000019896.42 Ensembl 

Danio rerio Grm1a ENSLOCP00000019896.43 Ensembl 

  Grm1b ENSLOCP00000019896.44 Ensembl 

  Grm2a ENSLOCP00000019896.45 Ensembl 

  Grm2b ENSLOCP00000019896.46 Ensembl 

  Grm3 ENSLOCP00000019896.47 Ensembl 

  Grm4 ENSLOCP00000019896.48 Ensembl 

  Grm5a ENSLOCP00000019896.49 Ensembl 

  Grm5b ENSLOCP00000019896.50 Ensembl 

  Grm6a ENSLOCP00000019896.51 Ensembl 

  Grm6b ENSLOCP00000019896.52 Ensembl 

  Grm8a ENSLOCP00000019896.53 Ensembl 

  Grm8b ENSLOCP00000019896.54 Ensembl 

Homo sapiens GRM1 ENSLOCP00000019896.55 Ensembl 

  GRM2 ENSLOCP00000019896.56 Ensembl 

  GRM3 ENSLOCP00000019896.57 Ensembl 

  GRM4 ENSLOCP00000019896.58 Ensembl 

  GRM5 ENSLOCP00000019896.59 Ensembl 

  GRM6 ENSLOCP00000019896.60 Ensembl 

  GRM7 ENSLOCP00000019896.61 Ensembl 

  GRM8 ENSLOCP00000019896.62 Ensembl 

Callorinchus milii Fzd1 ENSLOCP00000019896.63 NCBI 

  Fzd2 ENSLOCP00000019896.64 NCBI 

  Fzd3 ENSLOCP00000019896.65 NCBI 

  Fzd4 ENSLOCP00000019896.66 NCBI 

  Fzd5 ENSLOCP00000019896.67 NCBI 

  Fzd6 ENSLOCP00000019896.68 NCBI 

  Fzd7 ENSLOCP00000019896.69 NCBI 

  Fzd8 ENSLOCP00000019896.70 NCBI 
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  Fzd9 ENSLOCP00000019896.71 NCBI 

  Fzd10 ENSLOCP00000019896.72 NCBI 

Lepisosteus oculatus Fzd1 ENSLOCP00000019896.73 NCBI 

  Fzd2 ENSLOCP00000019896.74 NCBI 

  Fzd3 ENSLOCP00000019896.75 NCBI 

  Fzd4 ENSLOCP00000019896.76 NCBI 

  Fzd5 ENSLOCP00000019896.77 NCBI 

  Fzd6 ENSLOCP00000019896.78 NCBI 

  Fzd7 ENSLOCP00000019896.79 NCBI 

  Fzd8 ENSLOCP00000019896.80 NCBI 

  Fzd9 ENSLOCP00000019896.81 NCBI 

  Fzd10 ENSLOCP00000019896.82 NCBI 

Homo sapiens FZD1 ENSLOCP00000019896.83 NCBI 

  FZD2 ENSLOCP00000019896.84 NCBI 

  FZD3 ENSLOCP00000019896.85 NCBI 

  FZD4 ENSLOCP00000019896.86 NCBI 

  FZD5 ENSLOCP00000019896.87 NCBI 

  FZD6 ENSLOCP00000019896.88 NCBI 

  FZD7 ENSLOCP00000019896.89 NCBI 

  FZD8 ENSLOCP00000019896.90 NCBI 

  FZD9 ENSLOCP00000019896.91 NCBI 

  FZD10 ENSLOCP00000019896.92 NCBI 

Callorhincus milii Fat1 ENSLOCP00000019896.93 NCBI 

  Fat2 ENSLOCP00000019896.94 NCBI 

  Fat3 ENSLOCP00000019896.95 NCBI 

  Fat4 ENSLOCP00000019896.96 NCBI 

  Fat4like ENSLOCP00000019896.97 NCBI 

Lepisosteus oculatus Fat1 ENSLOCP00000019896.98 NCBI 

  Fat2 ENSLOCP00000019896.99 NCBI 

  Fat3 ENSLOCP00000019896.100 NCBI 

  Fat4 ENSLOCP00000019896.101 NCBI 

Danio rerio Fat1a ENSLOCP00000019896.102 Ensembl 

  Fat1b ENSLOCP00000019896.103 Ensembl 

  Fat2 ENSLOCP00000019896.104 Ensembl 

  Fat3 ENSLOCP00000019896.105 Ensembl 

  Fat4 ENSLOCP00000019896.106 Ensembl 

Homo sapiens FAT1 ENSLOCP00000019896.107 Ensembl 

  FAT2 ENSLOCP00000019896.108 Ensembl 

  FAT3 ENSLOCP00000019896.109 Ensembl 

  FAT4 ENSLOCP00000019896.110 Ensembl 

Mus musculus Fat1 ENSLOCP00000019896.111 NCBI 

  Fat2 ENSLOCP00000019896.112 NCBI 

  Fat3 ENSLOCP00000019896.113 NCBI 

  Fat4 ENSLOCP00000019896.114 NCBI 

Callorhincus milii Nox1 ENSLOCP00000019896.115 NCBI 
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  Nox3 ENSLOCP00000019896.116 NCBI 

  Nox4 ENSLOCP00000019896.117 NCBI 

  Nox5 ENSLOCP00000019896.118 NCBI 

Lepisosteus oculatus Nox1 ENSLOCP00000019896.119 Ensembl 

  Nox3 ENSLOCP00000019896.120 Ensembl 

  Nox4 ENSLOCP00000019896.121 Ensembl 

  Nox5 ENSLOCP00000019896.122 Ensembl 

Homo sapiens NOX1 ENSLOCP00000019896.123 NCBI 

  NOX3 ENSLOCP00000019896.124 NCBI 

  NOX4 ENSLOCP00000019896.125 NCBI 

  NOX5 ENSLOCP00000019896.126 NCBI 

Mus musculus Nox1 ENSLOCP00000019896.127 NCBI 

  Nox3 ENSLOCP00000019896.128 NCBI 

  Nox4 ENSLOCP00000019896.129 NCBI 

Callorhincus milii Tab1 ENSLOCP00000019896.130 NCBI 

  Tab2 ENSLOCP00000019896.131 NCBI 

  Tab3 ENSLOCP00000019896.132 NCBI 

Lepisosteus oculatus Tab2 ENSLOCP00000019896.133 Ensembl 

  Tab3 ENSLOCP00000019896.134 Ensembl 

Danio rerio Tab1 ENSLOCP00000019896.135 Ensembl 

  Tab2 ENSLOCP00000019896.136 Ensembl 

  Tab3 ENSLOCP00000019896.137 Ensembl 

Homo sapiens TAB1 ENSLOCP00000019896.138 NCBI 

  TAB2 ENSLOCP00000019896.139 NCBI 

  TAB3 ENSLOCP00000019896.140 NCBI 

Mus musculus Tab1 ENSLOCP00000019896.141 NCBI 

  Tab2 ENSLOCP00000019896.142 NCBI 

  Tab3 ENSLOCP00000019896.143 NCBI 

Callorinchus milii Stxbp1 ENSLOCP00000019896.144 NCBI 

  Stxbp2 ENSLOCP00000019896.145 NCBI 

  Stxbp3 ENSLOCP00000019896.146 NCBI 

  Stxbp4 ENSLOCP00000019896.147 NCBI 

  Stxbp5 ENSLOCP00000019896.148 NCBI 

  Stxbp5L ENSLOCP00000019896.149 NCBI 

  Stxbp6 ENSLOCP00000019896.150 NCBI 

Lepisosteus oculatus Stxbp1 ENSLOCP00000019896.151 Ensembl 

  Stxbp2 ENSLOCP00000019896.152 Ensembl 

  Stxbp3 ENSLOCP00000019896.153 Ensembl 

  Stxbp4 ENSLOCP00000019896.154 Ensembl 

  Stxbp5a ENSLOCP00000019896.155 Ensembl 

  Stxbp5L ENSLOCP00000019896.156 Ensembl 

  Stxbp6 ENSLOCP00000019896.157 Ensembl 

Danio rerio Stxbp1a ENSLOCP00000019896.158 Ensembl 

  Stxbp1b ENSLOCP00000019896.159 Ensembl 

  Stxbp2 ENSLOCP00000019896.160 Ensembl 
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  Stxbp3 ENSLOCP00000019896.161 Ensembl 

  Stxbp4 ENSLOCP00000019896.162 Ensembl 

  Stxbp5a ENSLOCP00000019896.163 Ensembl 

  Stxbp5b ENSLOCP00000019896.164 Ensembl 

  Stxbp5L ENSLOCP00000019896.165 Ensembl 

  Stxbp6 ENSLOCP00000019896.166 Ensembl 

  Stxbp6L ENSLOCP00000019896.167 Ensembl 

Homo sapiens STXBP1 ENSLOCP00000019896.168 Ensembl 

  STXBP2 ENSLOCP00000019896.169 Ensembl 

  STXBP3 ENSLOCP00000019896.170 Ensembl 

  STXBP4 ENSLOCP00000019896.171 Ensembl 

  STXBP5 ENSLOCP00000019896.172 Ensembl 

  STXBP5L ENSLOCP00000019896.173 Ensembl 

  STXBP6 ENSLOCP00000019896.174 Ensembl 

Mus musculus Stxbp1 ENSLOCP00000019896.175 Ensembl 

  Stxbp2 ENSLOCP00000019896.176 Ensembl 

  Stxbp3a ENSLOCP00000019896.177 Ensembl 

  Stxbp3b ENSLOCP00000019896.178 Ensembl 

  Stxbp4 ENSLOCP00000019896.179 Ensembl 

  Stxbp5 ENSLOCP00000019896.180 Ensembl 

  Stxbp5L ENSLOCP00000019896.181 Ensembl 
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Supplementary Table 4.2. A) The scheme represents insertions on Rab38 locus of human 

chromosome 11 (TRIMs, light blue) and f mouse chromosome 7 (OR, orange; Vmn2r, light blue). B) 

Conserved microsynteny of Rab32LO (blue) and Tim9 (grey) between sea urchin and amphioxus. 

 

 

 
 
 
 

 

 

 

 

Supplementary Table 4.3. Here are shown expression levels obtained from RT-PCR experiments 

conducted on Branchiostoma lanceolatum Rab32/38 (blue) and Rab32LO (yellow) genes. As control, 

it has been used Rpl32 (Fw: GGCTTCAAGAAATTCCTCGTC, Rev: 

GATGAGTTTCCTCTTGCGTGA) 
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Supplementary Table 4.4. Alignment of main Rab domains of Rab32/38 members in teleosts, 

similarly to Figure 4.3.  
 

Petromyzon marinus            Rab32    GELGVGKT FSHGYRATIGVDFALK DIAGQERFGNMTR 

Callorhinchus milii           Rab32    GELGVGKT FSQNYRATIGVDFALK DIAGQERFGNMTR 

Leucoraja erinacea            Rab32    GDLGVGKT FSQNYRATIGVDFALK DIAGQERFGNMTR 

Lepisosteus oculatus          Rab32    GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

Danio rerio                   Rab32a   GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

                              Rab32b   GDHKVGKS FYEELKTSIGVDFSMK DIAGQERVRGLNR 

Xiphophorus maculatus         Rab32    GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

Tetraodon nigroviridis        Rab32    GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

                              Rab32b   GDLGVGKS FVEKYKASIGVDFALK DIAGQERFRKMSR 

Takifugu rubripes             Rab32    GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

Gasterosteus aculeatus        Rab32a   GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

                              Rab32b   GDVGVGKS FNETYKASIGVDFALK DIGGQERFRKMSR          

Maylandia zebra               Rab32a   GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

                              Rab32b   GDLGVGKS FDETYKASIGVDFALK DIGGQERFKNMSR 

Oreochromis niloticus         Rab32a   GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

                              Rab32b   GDLGVGKS FDETYKASIGVDFALK DIGGQERVKNMSR 

Nothobranchius furzeri        Rab32a   GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

Gadus morhua                  Rab32a   GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

Oryzias latipes               Rab32a   GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

Salmo salar                   Rab32a   GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

                              Rab32b   GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

                              Rab32c   GERGVGKT FKEEYKASIGVDFALK DIAGQERFGNMTR 

Stegastes partitus            Rab32a   GDVKVGKS FDENYKGTIGIDFTLK DIAGQDRFCNMSR 

Latimeria chalumnae           Rab32    GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

Homo sapiens                  RAB32    GELGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

 

 

Callorhinchus milii           Rab38a   GDLGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38c   GDLGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

Leucoraja erinacea            Rab38    GDLGVGKT FSQHYRATIGVDFALK DIAGQERFGNMTR 

Lepisosteus oculatus          Rab38b   GDLGVGKT YSPNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38c   GDLGVGKT FSQHYRATIGVDFALK DIAGQERYGNMTR 

Danio rerio                   Rab38a   GDLGVGKT FSPNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38b   GDLGVGKT YSTNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38c   GDLGVGKT FSQHYRATIGVDFALK DIAGQERYGNMTR 

Xiphophorus maculatus         Rab38a   GDLGVGKT FSPNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38b   GDLGVGKT FSSNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38c   GDLGVGKT FSQHYRTTIGVDFALK DIAGQERYGNMTR 

Tetraodon nigroviridis        Rab38a   GDLGVGKT FSPNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38b   GDLGVGKT YSNNYRATIGVDFAMK DIAGQERFGNMTR 

                              Rab38c   GDLGVGKT FSQHYRATIGVDFALR DIAGQERYGHMTR 

Takifigu rubripes             Rab38a   GDLGVGKT FSPNYRATIGVDFALK DIAGQERFGNMTR        

                              Rab38b   GDLGVGKT YSNNYRATIGVDFALK DIAGQERFGNMTR     

                              Rab38c   GDIGVGKT FSQHYRATIGVDFALK DIAEGQRYGNMTR 

Gasterosteus aculeatus        Rab38a   GDLGVGKT FSPNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38b   GDLGVGKT YSTNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38c   GDLGVGKT FSQHYRATIGVDFALK DIAGQERYGNMTR 

Maylandia zebra               Rab38a   GDLGVGKT FSPNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38b   GDLGVGKT YSTNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38c   GDLGVGKT FSQHYRATIGVDFALK DIAGQERYGNMTR 

Oreochromis niloticus         Rab38a   GDLGVGKT FSPNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38b   GDLGVGKT YSTNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38c   GDLGVGKT FSQHYRATIGVDFALK DIAGQERYGNMTR 

Notobranchius furzeri         Rab38a   GDLGVGKT FSPNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38b   GDLGVGKT YSSNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38c   GDIGVGKT FSQHYRTTIGVDFALK DIAGQERYGNMTR 

Gadus morhua                  Rab38a   GDLGVGKT FSPNYRATIGVDFALK DIAGQERFGNMTR         

                              Rab38b   GDLGVGKT YSANYRATIGVDFALK DIAGQERFGNMTR    

                              Rab38c   GDLGVGKT FSQHYQATIGVDFALK DIAGQERYGNMTR  

Oryzias latipes               Rab38a   GDLGVGKT FSPNYRATIGVDFALK DIAGQERFGNMTR                               

                              Rab38b   GDLGVGKT YSTNYRATIGVDFALK DIAGQERFGNMTR                                                                            

                              Rab38c   GDLGVGKT FSQHYRATIGVDFVLK DIAGQERYGNMTR  

Salmo salar                   Rab38a   GDLGVGKT FSPNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38b   GDLGVGKT YSTNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38c   GDLGVGKT FSQHYRATIGVDFALK DIAGQERYGNMTR 

                              Rab38d   GDLGVGKT FSQHYRATIGVDFALK DIAGQERYGNMTR 

                              Rab38e   GDLGVGKT FSQHYRATIGVDFALK DIAGQERYGNMTR        

Astyanax mexicanus            Rab38a   GDLGVGKS FSPNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38b   GDLGVGKT YSTNYRATIGVDFALK DIAGQERFGNMTR 

                              Rab38c   GDLGVGKT FSQHYRATIGVDFALK DIAGQERYGNMTR 

Latimeria chalumnae           Rab38a   GDLGVGKT FSPHYRATIGVDFALK DIAGQERFGNMTR                        

g                             Rab38c   GEIGVGKT FYHHYRATIGVDFALK DIAGQERFGNMTR              

Homo sapiens                  RAB38    GDLGVGKT FSPHYRATIGVDFALK DIAGQERFGNMTR    
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Supplementary Table 5.1.  Table comprising proteins used for phylogenetic tree of Figure 4.2. 

 

Species Protein Name Accession Number Database 

Branchiostoma floridae Klhl21 XP_002602326.1 NCBI 

  Klhl6/24 XP_0026o5784.1 NCBI 

Ciona robusta Klhl21 XP_002128060.2 NCBI 

  Klhl6 XP_018670466.1 NCBI 

  Klhl24 XP_002129210.1 NCBI 

Ciona savignyi Klhl21 ENSCSAVP00000018227.1 Ensembl 

  Klhl6 ENSCSAVP00000007741.1 Ensembl 

  Klhl24 ENSCSAVP00000009638.1 Ensembl 

Callorhinchus milii Klhl21 XP_007900314.1 NCBI 

  Klhl6 XP_007903332.1 NCBI 

  Klhl24 XP_007903188.1 NCBI 

  Klhl29 XP_007895224.1 NCBI 

  Klhl30 XP_007905024.1 NCBI 

Latimeria chalumnae Klhl21 ENSLACP00000017967.2 Ensembl 

  Klhl6 ENSLACP00000019231.2 Ensembl 

  Klhl24 ENSLACP00000019062.2 Ensembl 

  Klhl30 ENSLACP00000012967.2 Ensembl 

Danio rerio Klhl21 NP_001307336.1 NCBI 

  Klhl6 NP_001005316.2 NCBI 

  Klhl24a NP_001070808.1 NCBI 

  Klhl24b NP_956734.1 NCBI 

  Klhl29a XP_009291058.1 NCBI 

  Klhl29b XP_003200801.2 NCBI 

  Klhl30 XP_688150.4 NCBI 

Homo sapiens KLHL21 NP_055666.2 NCBI 

  KLHL6 AAL35594.1 NCBI 

  KLHL24 NP_060114.2 NCBI 

  KLHL29 NP_443152.1 NCBI 

  KLHL30 NP_980984.3 NCBI 
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Supplementary Table 7.1. Oligonucleotides employed in thesis. 

 

Species 
Oligo 
Name Sequence 

Danio rerio DrRab32a-F GTTGCACAGAGTTGCCAAAA 

  DrRab32a-R GTGTCTGTCAACCCCTGGAT 

  DrRab38a-F TGGGGAAAACCAGCATTATC 

  DrRab38a-R TGCTGCGGTGAAATAGTGTC 

  DrRab38b-F CATGACGCGGGTTTATTACA 

  DrRab38b-R TGGGTCCTTATCGGTGACTT 

  DrRab38c-F GCATCTGTTCAAAGTTCTGG 

  DrRab38c-R TGACTTGGAACACGTCATGC 

  DrRabKlhl21-F CGCTGGTCACTTCTCAACAG 

  DrRabKlhl21-R TCGCTGAAAATCTAAGTCACCT 

Branchiostoma lanceolatum Bl-Rab32/38-F CACAAACCTCACACCTTCCA 

  Bl-Rab32/38-R TGGTTCATCTGTGCTCGTTC 

  Bl-Rab32LO-F TCGGACAGCAGAAACAACAC 

  Bl-Rab32LO-R CTGCTCAGCTTCAGGATGTG 

Ciona robusta CRklA-F CCTAAGGTGATCTCACAACG 

  CRklA-R GGTTAAGTATACCATTACCG 

  CRklB-F GCGCACTTATAACATGCAAT 

  CRklB-R ACGTTCTAGTAACCTCATAC 

  CRklC-F GTATGAGGTTACTAGAACGT 

  CRklC-R GGTTAAGTATACCATTACCG 

  CRklD-F GACAGTCGTGATCTAGTCTT 

  CRklD-R GGCAGAAAGAAAGCGAAACG 

  CRklE-F TTTCTTTCTGCCCTGGTGCCTA 

  CRklE-R GTAGGCTATGTGCCATAAATTG 

  CRklF-F ACATTTGTGCGTTTGGTCTG 

  CRklF-R ACGTTCTAGTAACCTCATAC 

  CRklG-F CTTCTTTCTGTGATCAGTTC 

  CRklG-R ACGTTCTAGTAACCTCATAC 

  mutMITF1-F CCCTGGTGCCTAGTCTTGTCACTCTAAAAACACTCAGGGATTATAAATAACC 

  mutMITF1-R GGTTATTTATAATCCCTGAGTGTTTTTAGAGTGACAAGACTAGGCACCAGGG 

  mutMITF2-F GCTGAAAATGATTCCCACTCTATGCGAAGTCATTAAACAAAGAAACAACG 

  mutMITF2-R CGTTGTTTCTTTGTTTAATGACTTCGCATAGAGTGGGAATCATTTTCAGC 

  mutMSX1-F GCGCACTTATAACATGCAAGCATATTCTAACGTTTCTTC 

  mutMSX1-R GAAGAAACGTTAGAATATGCTTGCATGTTATAAGTGCGC 

  mutMSX2-F GTGCGTTTGGTCTGTTGCGAAGGAACTGATTGTCAAGTTCTAAATCG 

  mutMSX2-R CGATTTAGAACTTGACAATCAGTTCCTTCGCAACAGACCAAACGCAC 

  mutDMRT-F GTGATCAGTTCGACTATACTTTGGCATTTATTTCTCAGTCCG 

  mutDMRT-R CGGACTGAGAAATAAATGCCAAAGTATAGTCGAACTGATCAC 

 
 



155 
 

BIBLIOGRAPHY 

 

Abi-Rached L, Gilles A, Shiina T, Pontarotti P, Inoko H. Evidence of en bloc duplication in 

vertebrate genomes. Nat Genet. 2002;31(1):100–5. 

Abitua PB, Wagner E, Navarrete IA, Levine M. Identification of a rudimentary neural crest 

in a non-vertebrate chordate. Nature. 2012 Dec 6;492(7427):104-7. doi: 

10.1038/nature11589.  

Albalat R, Cañestro C. Evolution by gene loss. Nat Rev Genet. 2016 Jul;17(7):379-91. doi: 

10.1038/nrg.2016.39. 

 

Alexandrov K, Horiuchi H, Steele-Mortimer O, Seabra MC, Zerial M. Rab escort protein-1 

is a multifunctional protein that accompanies newly prenylated rab proteins to their target 

membranes. EMBO J. 1994 Nov 15;13(22):5262-73. 

Alto NM, Soderling J, Scott JD. Rab32 is an A-kinase anchoring protein and participates in 

mitochondrial dynamics. J Cell Biol. 2002 Aug 19;158(4):659-68. Epub 2002 Aug 19. 

 

Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH. Genome evolution and 

meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost 

genome duplication. Genetics. 2011;188(4): 799–808. 

 

Anant JS, Desnoyers L, Machius M, Demeler B, Hansen JC, Westover KD, Deisenhofer J, 

Seabra MC. Mechanism of Rab geranylgeranylation: formation of the catalytic ternary 

complex. Biochemistry. 1998 Sep 8;37(36):12559-68. 

Aniello F, Locascio A, Villani MG, Di Gregorio A, Fucci L, Branno M. Identification and 

developmental expression of Ci-msxb: a novel homologue of Drosophila msh gene in Ciona 

intestinalis. Mech Dev. 1999 Oct;88(1):123-6. 

Arshavsky VY. Rhodopsin phosphorylation: from terminating single photon responses to 

photoreceptor dark adaptation. Trends Neurosci. 2002 Mar;25(3):124-6. 

 

Bagnara JT. Comparative anatomy and physiology of pigment cells in nonmammalian 

tissues. In: Nordlund JJ, Boissy RE, Hearing VJ, King RA, Ortonne JP, editor. The 

Pigmentary System: Physiology and Pathophysiology 1998. New York: Oxford University 

Press; pp. 9–40 

 

Barr FA. Review series: Rab GTPases and membrane identity: causal or inconsequential? J 

Cell Biol. 2013 Jul 22;202(2):191-9. doi: 10.1083/jcb.201306010. 

 

Barr FA, Lambright DG. Rab GEFs and GAPs. Curr Opin Cell Biol. 2010 Aug;22(4):461-

70. doi: 10.1016/j.ceb.2010.04.007. 

 

Battistoni A, Guarguaglini G, Degrassi F, Pittoggi C, Palena A, Di Matteo G, Pisano C, 

Cundari E, Lavia P. Deregulatedexpression of the RanBP1 gene alterscellcycleprogression in 

murine fibroblasts. J Cell Sci. 1997 110, 2345-2357. 

Beaumont KA, Hamilton NA, Moores MT, Brown DL, Ohbayashi N, Cairncross O, Cook 

AL, Smith AG, Misaki R, Fukuda M, Taguchi T, Sturm RA, Stow JL. The recycling 



156 
 

endosome protein Rab17 regulates melanocytic filopodia formation and melanosome 

trafficking. Traffic. 2011 May;12(5):627-43. doi: 10.1111/j.1600-0854.2011.01172.x. Epub 

2011 Feb 25.Bennett DC, Lamoreux ML. The color loci of mice—A genetic century. 

Pigment Cell Res. 2003; 16:333–344. 

 

Berná L, Alvarez-Valin F. Evolutionary genomics of fast evolving tunicates. Genome Biol 

Evol. 2014 Jul 8;6(7):1724-38. doi: 10.1093/gbe/evu122. 

 

Bertrand V, Hudson C, Caillol D, Popovici C, Lemaire P. Neural tissue in ascidian embryos 

is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription 

factors. Cell. 2003 Nov 26;115(5):615-27. 

 

Bharti K, Nguyen MT, Skuntz S, Bertuzzi S, Arnheiter H. The other pigment cell: 

specification and development of the pigmented epithelium of the vertebrate eye. Pigment 

Cell Res. 2006 Oct;19(5):380-94. 

 

Bin BH, Bhin J, Yang SH, Shin M, Nam YJ, Choi DH, Shin DW, Lee AY, Hwang D, Cho 

EG, Lee TR..Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal 

pH and Influences Tyrosinase Activity. PLoS One 2015 Jun 9;10(6):e0129273. 

 

Bock JB, Matern HT, Peden AA, Scheller RH. A genomic perspective on membrane 

compartment organization. Nature. 2001 Feb 15;409(6822):839-41. 

Borovanský J, Wiley I. Melanins and Melanosomes Biosynthesis, Biogenesis, Physiological, 

and Pathological Functions John Wiley Distributor 2011: Weinheim, Baden-Wurttemberg, 

Germany.. 

 

Braasch I, Schartl M, Volff JN. Evolution of pigment synthesis pathways by gene and 

genome duplication in fish. BMC Evol Biol. 2007; 7:74. 

 

Braasch I, Volff JN, Schartl M.. The evolution of teleost pigmentation and the fish-specific 

genome duplication. J Fish Biol. 2008; 73:1891–1918. 

 

Braasch I, Brunet F, Volff JN, Schartl M.Pigmentation pathway evolution after whole-

genome duplication in fish. Genome Biol Evol. 2009; Nov 25;1:479-93. 

 

Brighouse A, Dacks JB, Field MC. Rab protein evolution and the history of the eukaryotic 

endomembrane system. Cell Mol Life Sci. 2010 Oct;67(20):3449-65. doi: 10.1007/s00018-

010-0436-1.  

 

Bright, LJ, Kambesis N, Nelson SB, Jeong B, Turkewitz AP. Comprehensive analysis 

reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in 

Tetrahymena thermophila. PLoS Genet. 2010 6, e1001155. 

Brunetti R, Gissi C, Pennati R, Caicci F, Gasparini F, Manni L: Morphological evidence that 

the molecularly determined Ciona intestinalis type A and type B are different species: Ciona 

robusta and Ciona intestinalis. J Zool Syst Evol Res. 2015, 53(3):186-193 

 

Bultema JJ, Ambrosio AL, Burek CL, Di Pietro SM. BLOC-2, AP-3, and AP-1 proteins 

function in concert with Rab38 and Rab32 proteins to mediate protein trafficking to 

lysosome-related organelles. J Biol Chem. 2012; 287(23):19550–63. 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Bharti%20K%5BAuthor%5D&cauthor=true&cauthor_uid=16965267
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nguyen%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=16965267
https://www.ncbi.nlm.nih.gov/pubmed/?term=Skuntz%20S%5BAuthor%5D&cauthor=true&cauthor_uid=16965267
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bertuzzi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=16965267
https://www.ncbi.nlm.nih.gov/pubmed/?term=Arnheiter%20H%5BAuthor%5D&cauthor=true&cauthor_uid=16965267
https://www.ncbi.nlm.nih.gov/pubmed/?term=bharti+vertebrate+eye+2006
https://www.ncbi.nlm.nih.gov/pubmed/?term=bharti+vertebrate+eye+2006
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bin%20BH%5BAuthor%5D&cauthor=true&cauthor_uid=26057890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bhin%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26057890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20SH%5BAuthor%5D&cauthor=true&cauthor_uid=26057890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shin%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26057890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nam%20YJ%5BAuthor%5D&cauthor=true&cauthor_uid=26057890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Choi%20DH%5BAuthor%5D&cauthor=true&cauthor_uid=26057890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shin%20DW%5BAuthor%5D&cauthor=true&cauthor_uid=26057890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20AY%5BAuthor%5D&cauthor=true&cauthor_uid=26057890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hwang%20D%5BAuthor%5D&cauthor=true&cauthor_uid=26057890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cho%20EG%5BAuthor%5D&cauthor=true&cauthor_uid=26057890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cho%20EG%5BAuthor%5D&cauthor=true&cauthor_uid=26057890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20TR%5BAuthor%5D&cauthor=true&cauthor_uid=26057890
https://www.ncbi.nlm.nih.gov/pubmed/26057890


157 
 

Bultema JJ, Di Pietro SM. Cell type-specific Rab32 and Rab38 cooperate with the 

ubiquitous lysosome biogenesis machinery to synthesize specialized lysosome-related 

organelles. Small GTPases. 2013 Jan-Mar;4(1):16-21. doi: 10.4161/sgtp.22349.  

 

Bultema JJ, Boyle JA, Malenke PB, Martin FE, Dell'Angelica EC, Cheney RE, Di Pietro 

SM. Myosin vc interacts with Rab32 and Rab38 proteins and works in the biogenesis and 

secretion of melanosomes. J Biol Chem. 2014 Nov 28;289(48):33513-28. doi: 

10.1074/jbc.M114.578948. Epub 2014 Oct 16. 

 

Bustamante J, Bredeston L, Malanga G, Mordoh J. Role of melanin as a scavenger of active 

oxygen species. Pigment Cell Res. 1993,  6(5): 348-53. 

 

Cai H, Reinisch K and Ferro-Novick S. (2007). Coats, tethers, Rabs, and SNAREs work 

together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12, 671-682. 

Cajiao I, Zhang A, Yoo EJ, Cooke NE, Liebhaber SA. Bystander gene activation by a locus 

control region.EMBO J. 2004, Oct 1;23(19):3854-63. Epub 2004 Sep 9. 

 

Callaerts P, Halder G, Gehring WJ. PAX-6 in development and evolution. Annu Rev 

Neurosci. 1997;20:483-532. 

 

Camp E, Lardelli M. Tyrosinase gene expression in zebrafish embryos. Dev Genes Evol. 

2001 Mar;211(3):150-3. 

 

Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, 

Alsmark UC, Besteiro S. et al. (2007). Draft genome sequence of the sexually transmitted 

pathogen Trichomonas vaginalis. Science 315, 207-212. 

 

Carthagena L, Bergamaschi A, Luna JM, David A, Uchil PD, Margottin-Goguet F, et al. 

Human TRIM gene expression in response to interferons. PLoS One. 2009; 4(3), e4894. 

 

Catchen JM, Conery JS, Postlethwait JH. Automated identification of conserved synteny 

after whole-genome duplication. Genome Res. 2009 Aug;19(8):1497-505. doi: 

10.1101/gr.090480.108. Epub 2009 May 22. 

 

Cavalier-Smith T. (2002). The phagotrophic origin of eukaryotes and phylogenetic 

classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297-354. 

Chen L, Hu J, Yun Y, Wang T. Rab36 regulates the spatial distribution of late endosomes 

and lysosomes through a similar mechanism to Rab34. Mol Membr Biol. 2010 Jan;27(1):23-

30. doi: 10.3109/09687680903417470. 

Claus H, Decker H. Bacterial tyrosinases. Syst Appl Microbiol. 2006 Jan;29(1):3-14.  

 

Cohen-Solal KA, Sood R, Marin Y, Crespo-Carbone SM, Sinsimer D, Martino JJ, et al. 

Identification and characterization of mouse Rab32 by mRNA and protein expression 

analysis. Biochim Biophys Acta. 2003;1651(1-2):68–75. 

 

Coppola U, Annona G, D’Aniello S, Ristoratore F. Rab32 and Rab38 genes in chordate 

pigmentation: an evolutionary perspective. BMC Evol Biol 2016 DOI: 10.1186/s12862-016-

0596-1. 



158 
 

 Cortés-González V, Zenteno JC, Guzmán-Sánchez M, Giordano-Herrera V, Guadarrama-

Vallejo D, Ruíz-Quintero N, Villanueva-Mendoza C. Tietz/Waardenburg type 2A syndrome 

associated with posterior microphthalmos in two unrelated patients with novel MITF gene 

mutations. Am J Med Genet A. 2016 Dec;170(12):3294-3297. 

Courtheoux T, Enchev RI, Lampert F, Gerez J, Beck J, Picotti P, Sumara I, Peter M. Cortical 

dynamics during cell motility are regulated by CRL3(KLHL21) E3 ubiquitin ligase. Nat 

Commun. 2016 Sep 19;7:12810. doi: 10.1038/ncomms12810. 

Christiaen, L., Wagner, E., Shi, W. & Levine, M. Isolation of sea squirt (Ciona) gametes, 

fertilization, dechorionation, and development. Cold Spring Harb. Protoc. 2009. 

doi:10.1101/pdb.prot5344. 

 

Christiaen, L., Wagner, E., Shi, W. & Levine, M. Electroporation of transgenic DNAs in 

thesea squirt Ciona. Cold Spring Harb. Protoc. 2009. doi:10.1101/pdb.prot5345.   
 

Christiaen, L., Wagner, E., Shi, W. & Levine, M. Whole-mount in situ hybridization on sea 

squirt (Ciona intestinalis) embryos. Cold Spring Harb. Protoc. 2009. 

doi:10.1101/pdb.prot5348. 

 

Colicelli J. Human RAS superfamily proteins and related GTPases. Sci STKE. 2004 Sep 

7;2004(250). 

 

Darras S, Nishida H. The BMP signaling pathway is required together with the FGF pathway 

for notochord induction in the ascidian embryo. Development. 2001 Jul;128(14):2629-38. 

 

Davidson B, Shi W, Beh J, Christiaen L, Levine M. FGF signaling delineates the cardiac 

progenitor field in the simple chordate, Ciona intestinalis. Genes Dev. 2006 Oct 

1;20(19):2728-38. 

 

Dehal, P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di 

Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, et al. The draft genome of 

Ciona intestinalis: insight into chordate and vertebrate origins. Science 2000; 298, 2157–

2167. 

 

Delahaye JL, Foster OK, Vine A, Saxton DS, Curtin TP, Somhegyi H, Salesky R, Hermann 

GJ. Caenorhabditis elegans HOPS and CCZ-1 mediate trafficking to lysosome-related 

organelles independently of RAB-7 and SAND-1. Mol Biol Cell. 2014 Apr;25(7):1073-96. 

doi: 10.1091/mbc.E13-09-0521. 

 

Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. 

PLoS Biol. 2005;3(10), e314. 

 

del Marmol V, Beermann F. Tyrosinase and related proteins in mammalian pigmentation. 

FEBS Lett. 1996, 381, 165-168. 

 

Delsuc F, Brinkmann H, Chourrout D, Philippe H. Tunicates and not cephalochordates are 

the closest living relatives of vertebrates. Nature  2006; 439(7079):965–8. 

 

Dhanoa BS, Cogliati T,  Satish AG, Bruford EA, Friedman JS. Update on the Kelch-like 

(KLHL) gene family. Human Genomics 2013, 7:13  



159 
 

Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal JB. 

Thousands of rab GTPases for the cell biologist. PLoS Comput Biol. 2011; 7(10), e1002217. 

 

Dilly PN. Studies on the receptors in Ciona intestinalis. 3. A second type of photoreceptor in 

the tadpole larva of Ciona intestinalis. Z Zellforsch Mikrosk Anat. 1969; 96(1):63-5. 

 

D'Mello SA, Finlay GJ, Baguley BC, Askarian-Amiri ME. Signaling Pathways in 

Melanogenesis. Int J Mol Sci. 2016  15;17 (7). 

 

Dorsky RI, Moon RT, Raible DW. (1998). Control of neural crest cell fate by the Wnt 

signalling pathway. Nature 1998; 396, 370-373. 

 

Dufour HD, Chettouh Z, Deyts C, de Rosa R, Goridis C, Joly JS, Brunet JF. Precraniate 

origin of cranial motoneurons. Proc Natl Acad Sci USA. 2006 Jun 6;103(23):8727-32.  

Dunst S, Kazimiers T, von Zadow F, Jambor H, Sagner A, Brankatschk B, Mahmoud A, 

Spannl S, Tomancak P, Eaton S, Brankatschk M. Endogenously tagged rab proteins: a 

resource to study membrane trafficking in Drosophila. Dev Cell. 2015 May 4;33(3):351-65. 

doi: 10.1016/j.devcel.2015.03.022. 

Duval N, Daubas P, Bourcier de Carbon C, St Cloment C, Tinevez JY, Lopes M, Ribes V, 

Robert B. Msx1 and Msx2 act as essential activators of Atoh1 expression in the murine 

spinal cord. Development. 2014 Apr;141(8):1726-36. 

Eakin RM, Kuda A. Ultrastructure of sensory receptors in Ascidian tadpoles. Z Zellforsch 

Mikrosk Anat. 1971;112(3):287-312. 

 

Edelman A.M., Blumenthal D.K., Krebs E.G. Protein serine threonine kinases. Annu. Rev. 

Biochem. 1987; 56:567–613.  

 

Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space 

complexity. BMC Bioinformatics. 2004 Aug 19;5:113. 

 

Eisenman HC and Casadevall A. Synthesis and assembly of fungal melanin. Appl Microbiol 

Biotechnol. 2012; 93(3), 931–940. 

 

Elias, M. (2010). Patterns and processes in the evolution of the eukaryotic endomembrane 

system. Mol. Membr. Biol. 27, 469-489. 

 

Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB. Sculpting the 

endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell 

Sci. 2012;125(Pt 10):2500–8. 

 

Ellis K, Bagwell J, Bagnat M. Notochord vacuoles are lysosome-related organelles that 

function in axis and spine morphogenesis. J Cell Biol. 2013;200(5):667–79. 

 

Embley TM and Martin W.. Eukaryotic evolution, changes and challenges. Nature 2006; 

440, 623-630. 

Esteves FF, Springhorn A, Kague E, Taylor E, Pyrowolakis G, Fisher S, Bier E.BMPs 

regulate msx gene expression in the dorsal neuroectoderm of Drosophila and vertebrates by 

distinct mechanisms. PLoS Genet. 2014 Sep 11;10(9):e1004625. doi:  

https://www.ncbi.nlm.nih.gov/pubmed/?term=D%27Mello%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=27428965
https://www.ncbi.nlm.nih.gov/pubmed/?term=Finlay%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=27428965
https://www.ncbi.nlm.nih.gov/pubmed/?term=Baguley%20BC%5BAuthor%5D&cauthor=true&cauthor_uid=27428965
https://www.ncbi.nlm.nih.gov/pubmed/?term=Askarian-Amiri%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=27428965
https://www.ncbi.nlm.nih.gov/pubmed/27428965


160 
 

Esposito R, D’Aniello S, Squarzoni P, Pezzotti MR, Ristoratore F, Spagnuolo A. New 

insights into the evolution of metazoan tyrosinase gene family. PLoS One (2012) 7(4), 

e35731 

 

Esposito R, Yasuo H, Sirour C, Palladino A, Spagnuolo A, Hudson C. Patterning of brain 

precursors in ascidian embryos. Development. 2017 Jan 15;144(2):258-264. doi: 

10.1242/dev.142307. Epub 2016 Dec 19. 

 

Fatemi SH, Folsom TD, Rooney RJ, Thuras PD. mRNA and protein expression for novel 

GABAA receptors theta and rho2 are altered in schizophrenia and mood disorders; relevance 

to FMRP-mGluR5 signaling pathway. Transl Psychiatry. 2013;3, e271. 

 

Fedorow H, Tribl F, Halliday G, Gerlach M, Riederer P, Double KL. Neuromelanin in 

human dopamine neurons: comparison with peripheral melanins and relevance to 

Parkinson's disease. Prog Neurobiol 2005; 75(2):109-24. 

 

Fiore G, Poli A, Di Cosmo A, d'Ischia M, Palumbo A. Dopamine in the ink defence system 

of Sepia officinalis: biosynthesis, vesicular compartmentation in mature ink gland cells, 

nitric oxide (NO)/cGMP-induced depletion and fate in secreted ink. Biochem J. 2004; 

15;378(Pt 3):785-91 

 

Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate 

genes by complementary, degenerative mutations. Genetics. 1999 Apr;151(4):1531-45. 

Goding CR. Melanocytes: the new Black. Int J Biochem Cell Biol. 2007, 39(2): 275-9. 

Fujii R. Coloration and chromatophores. In: Evans DH, editor. The Physiology of Fishes. 

Boca Raton, Florida: CRC Press; 1993. pp. 535–562. 

 

Gallegos ME, Balakrishnan S, Chandramouli P, Arora S, Azameera A et al. The C. elegans 

rab family: identification, classification and toolkit construction. PLoS One. 

2012;7(11):e49387. doi: 10.1371/journal.pone.0049387.  

 

Gertz EM, Yu YK, Agarwala R, Schaffer AA, Altschul SF. Composition-based statistics and 

translated nucleotide searches: improving the TBLASTN  module of BLAST. BMC Biol. 

2006; 4:41.  

 

Gillbro JM, Olsson MJ. The melanogenesis and mechanisms of skin-lightening agents--

existing and new approaches. Int J Cosmet Sci. 2011 Jun;33(3):210-21. doi: 10.1111/j.1468-

2494.2010.00616.x.  

 

Gillingham AK, Sinka R, Torres IL, Lilley KS, Munro S. Toward a comprehensive map of 

the effectors of rab GTPases. Dev Cell. 2014 Nov 10;31(3):358-73. doi: 

10.1016/j.devcel.2014.10.007.  

 

Godfrey PA, Malnic B, Buck LB. The mouse olfactory receptor gene family. Proc Natl Acad 

Sci USA. 2004;101(7):2156–61.  

 

Goding CR. Melanocytes: the new Black. Int J Biochem Cell Biol. 2007 39(2): 275-9. 

 

Gorman AL, McReynolds JS, Barnes SN. Photoreceptors in primitive chordates: fine 

structure, hyperpolarizing receptor potentials, and evolution. Science. 1971 Jun 

4;172(3987):1052-4. 

 

https://www.ncbi.nlm.nih.gov/pubmed/15784302
https://www.ncbi.nlm.nih.gov/pubmed/15784302
https://www.ncbi.nlm.nih.gov/pubmed/15784302
https://www.ncbi.nlm.nih.gov/pubmed/14670074
https://www.ncbi.nlm.nih.gov/pubmed/14670074
https://www.ncbi.nlm.nih.gov/pubmed/14670074
https://www.ncbi.nlm.nih.gov/pubmed/17095283


161 
 

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms 

and methods to estimate maximum-likelihood phylogenies: assessing the performance of 

PhyML 3.0. Syst Biol. 2010 May;59(3):307-21. doi: 10.1093/sysbio/syq010.  

 

Has C. The "Kelch" Surprise: KLHL24, a New Player in the Pathogenesis of Skin Fragility. 

J Invest Dermatol. 2017 Jun;137(6):1211-1212. doi: 10.1016/j.jid.2017.02.011. 

He Y, Maier K, Leppert J, Hausser I, Schwieger-Briel A, Weibel L, Theiler M, Kiritsi D, 

Busch H4, Boerries M, Hannula-Jouppi K, Heikkilä H, Tasanen K, Castiglia D, Zambruno 

G, Has C. Monoallelic Mutations in the Translation Initiation Codon of KLHL24 Cause Skin 

Fragility. Am J Hum Genet. 2016 Dec 1;99(6):1395-1404. doi: 10.1016/j.ajhg.2016.11.005. 

Epub 2016 Nov 23. 

Hermansky F, Pudlak P. Albinism associated with hemorrhagic diathesis and unusual 

pigmented reticular cells in the bone marrow: report of two cases with histochemical studies. 

Blood. 1959;14(2):162–9.  

 

Hoegg S, Brinkmann H, Taylor JS, Meyer A. Phylogenetic timing of the fish-specific 

genome duplication correlates with the diversification of teleost fish. J Mol Evol. 

2004;59(2):190–203. 

 

Hong CS, Park BY, Saint-Jeannet JP. The function of Dmrt genes in vertebrate development: 

it is not just about sex. Dev Biol. 2007 Oct 1;310(1):1-9. Epub 2007 Aug 3. 

Hongo I, Kengaku M, Okamoto H. FGF signaling and the anterior neural induction in 

Xenopus. Dev Biol. 1999 Dec 15;216(2):561-81.  

Hotta, K. et al. A web-based interactive developmental table for the ascidian Ciona 

intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to 

hatching larva. Dev. Dyn. 2007; 236, 1790–1805. 

 

Horie T, Orii H, Nakagawa M. Structure of ocellus photoreceptors in the ascidian Ciona 

intestinalis larva as revealed by an anti-arrestin antibody. J Neurobiol. 2005 Dec;65(3):241-

50 

 

Huang G, Kaufman AJ, Xu K, Manova K, Singh B. SCCRO neddylates Cul3 to selectively 

promote midbody localization and activity of Cul3KLHL21 during abscission. J Biol Chem. 

2017 Jun 15. pii: jbc.M117.778530. doi: 10.1074/jbc.M117.778530 

Hudson C, Lemaire P. Induction of anterior neural fates in the ascidian Ciona intestinalis. 

Mech Dev. 2001 Feb;100(2):189-203. 

 

Hudson C, Darras S, Caillol D, Yasuo H, Lemaire P. A conserved role for the MEK 

signalling pathway in neural tissue specification and posteriorisation in the invertebrate 

chordate, the ascidian Ciona intestinalis. Development 2003 Jan;130(1):147-59. 

 

Hudson C, Lotito S, Yasuo H. Sequential and combinatorial inputs from Nodal, 

Delta2/Notch and FGF/MEK/ERK signalling pathways establish a grid-like organisation of 

distinct cell identities in the ascidian neural plate. Development. 2007 Oct;134(19):3527-37. 

Epub 2007 Aug 29. 

 

Huet D,  Blisnick T, Perrot S, Bastin P. The GTPase IFT27 is involved in both anterograde 

and retrograde intraflagellar transport. eLife. 2014; 3: e02419. doi:  10.7554/eLife.02419 



162 
 

 

Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees 

and networks. Syst Biol. 2012; 61(6):1061–7.   
 

Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. 

Physiol Rev. 2011 Jan;91(1):119-49. doi: 10.1152/physrev.00059.2009. 

Iida H, Noda M, Kaneko T, Doiguchi M, Mōri T. Identification of rab12 as a vesicle-

associated small GTPase highly expressed in Sertoli cells of rat testis. Mol Reprod Dev. 

2005 Jun;71(2):178-85. 

Ikuta T, Saiga H. Dynamic change in the expression of developmental genes in the ascidian 

central nervous system: revisit to the tripartite model and the origin of the midbrain-

hindbrain boundary region. Dev Biol 312, 2007, 7631-643 doi:S0012-1606(07)01425-X . 

Imai KS, Hino K, Yagi K, Satoh N, Satou Y. Gene expression profiles of transcription 

factors and signaling molecules in the ascidian embryo: towards a comprehensive 

understanding of gene networks. Development. 2004 Aug;131(16):4047-58. Epub 2004 Jul 

21. 

Irimia M, Roy SW. Evolutionary convergence on highly-conserved 3' intron structures in 

intron-poor eukaryotes and insights into the ancestral eukaryotic genome. PLoS Genet. 2008 

Aug 8;4(8):e1000148. doi: 10.1371/journal.pgen.1000148. 

 

Irimia M, Pineiro C, Maeso I, Gomez-Skarmeta JL, Casares F, Garcia-Fernandez J. 

Conserved developmental expression of Fezf in chordates and Drosophila and the origin of 

the Zona Limitans Intrathalamica (ZLI) brain organizer. Evodevo. 2010;1(1):7.   
 

Irimia M, Tena JJ, Alexis MS, Fernandez-Miñan A, Maeso I, Bogdanovic O, de la Calle-

Mustienes E, Roy SW, Gómez-Skarmeta JL, Fraser HB. Extensive conservation of ancient 

microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 2012 

Dec;22(12):2356-67. doi: 10.1101/gr.139725.112. Epub 2012 Jun 21. 
 
Ito S, Wakamatsu K. Chemistry of mixed melanogenesis--pivotal roles of dopaquinone. 

Photochem Photobiol. 2008; 84(3):582-92.  

 

Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keap1 

represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to 

the amino-terminal Neh2 domain. Genes Dev. 1999 Jan 1;13(1):76-86. 

Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, et al. Genome 

duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-

karyotype. Nature. 2004;431(7011):946–57. 

 

Jeffery WR, Meier S. Ooplasmic segregation of the myoplasmic actin network in stratified 

ascidian eggs. Wilehm Roux Arch Dev Biol. 1984 Jul;193(4):257-262. doi: 

10.1007/BF01260348. 

 

Jensen VL, Carter S, Sanders AA, Li C, Kennedy J, Timbers TA, Cai J, Scheidel N, 

Kennedy BN, Morin RD, Leroux MR, Blacque OE. Whole-Organism Developmental 

Expression Profiling Identifies RAB-28 as a Novel Ciliary GTPase Associated with the 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ito%20S%5BAuthor%5D&cauthor=true&cauthor_uid=18435614
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wakamatsu%20K%5BAuthor%5D&cauthor=true&cauthor_uid=18435614
https://www.ncbi.nlm.nih.gov/pubmed/18435614


163 
 

BBSome and Intraflagellar Transport. PLoS Genet. 2016 Dec 8;12(12):e1006469. doi: 

10.1371/journal.pgen.1006469. 

 

Jiang D, Tresser JW, Horie T, Tsuda M, Smith WC. Pigmentation in the sensory organs of 

the ascidian larva is essential for normal behavior. J Exp Biol. 2005 Feb;208(Pt 3):433-8. 

 

Kalab P, Pu RT, Dasso. The Ran GTPase regulates mitotic spindle assembly. Curr. Biol. 

1999. 9, 481-484. 

 

Kamura T, Sato S, Haque D, Liu L, Kaelin WG Jr, Conaway RC, Conaway JW. The Elongin 

BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, 

ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 1998 Dec 15;12(24):3872-81. 

 

Kanie T, Abbott KL, Mooney NA, Plowey ED, Demeter J, Jackson PK.The CEP19-RABL2 

GTPase Complex Binds IFT-B to Initiate Intraflagellar Transport at the Ciliary Base. Dev 

Cell. 2017 Jul 10;42(1):22-36.e12. doi: 10.1016/j.devcel.2017.05.016. 

 

Kaplon J, Hömig-Hölzel C, Gao L, Meissl K, Verdegaal EM, van der Burg SH, van Doorn 

R, Peeper DS. Near-genomewide RNAi screening for regulators of BRAF(V600E) -induced 

senescence identifies RASEF, a gene epigenetically silenced in melanoma. Pigment Cell 

Melanoma Res. 2014 Jul;27(4):640-52. doi: 10.1111/pcmr.12248. Epub 2014 May 14. 

 

Kawaminani S, Nishida H. Induction of trunk lateral cells, the blood cell precursors, during 

ascidian embryogenesis. Dev Biol. 1997 Jan 1;181(1):14-20. 

 

Kawasaki H, Kretsinger RH. Calcium-binding proteins 1: EF-hands. Protein Profile. 

1995;2(4):297-490. 

 
Keeling, PJ. (2010). The endosymbiotic origin, diversification and fate of plastids. Philos. 

Trans. R. Soc. Lond. B Biol. Sci. 365, 729-748. 

Kelsh RN, Brand M, Jiang YJ, Heisenberg CP, Lin S, Haffter P, Odenthal J, Mullins 

MC, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Kane DA, Warga 

RM, Beuchle D, Vogelsang L, Nüsslein-Volhard C. Zebrafish pigmentation mutations and 

the processes of neural crest development. Development  1996, Dec;123:369-89. 

 

Kelsh RN, Schmid B, Eisen JS. Genetic analysis of melanophore development in zebrafish 

embryos. Dev Biol. 2000; Sep 15;225(2):277-93. 

 

Khaligh A, Goudarzian M, Moslem A, Mehrtash A, Jamshidi J, Darvish H, Emamalizadeh 

B. RAB7L1 promoter polymorphism and risk of Parkinson's disease; a case-control study. 

Neurol Res. 2017 May;39(5):468-471. doi: 10.1080/01616412.2017.1297558. Epub 2017 

Feb 28. 

 

Kim GJ, Nishida H. Suppression of muscle fate by cellular interaction is required for 

mesenchyme formation during ascidian embryogenesis. Dev Biol. 1999 Oct 1;214(1):9-22. 

 

Kimura T, Nagao Y, Hashimoto H, Yamamoto-Shiraishi Y, Yamamoto S, Yabe T, Takada 

S, Kinoshita M, Kuroiwa A, Naruse K. Leucophores are similar to xanthophores in their 

specification and differentiation processes in medaka. Proc Natl Acad Sci USA 2014 May 

20; 111(20):7343-8. doi: 10.1073/pnas.1311254111.. 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Kelsh%20RN%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Brand%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Jiang%20YJ%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Heisenberg%20CP%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lin%20S%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Haffter%20P%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Odenthal%20J%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mullins%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mullins%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=van%20Eeden%20FJ%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Furutani-Seiki%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Granato%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hammerschmidt%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kane%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Warga%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Warga%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Beuchle%20D%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=Vogelsang%20L%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/?term=N%C3%BCsslein-Volhard%20C%5BAuthor%5D&cauthor=true&cauthor_uid=9007256
https://www.ncbi.nlm.nih.gov/pubmed/9007256


164 
 

Kimura T, Takehana Y, Naruse K. pnp4a Is the Causal Gene of the Medaka Iridophore 

Mutant guanineless. G3 (Bethesda). 2017 Apr 3;7(4):1357-1363. doi: 

10.1534/g3.117.040675. 

 

Kopp A. Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet. 

2012 Apr;28(4):175-84. doi: 10.1016/j.tig.2012.02.002. Epub 2012 Mar 14. 

Klopper TH, Kienle N, Fasshauer D, Munro S. Untangling the evolution of Rab G proteins: 

implications of a comprehensive genomic analysis. BMC Biol. 2012;10:71. 

 

Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis 

Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016 Jul;33(7):1870-4. 

doi:10.1093/molbev/msw054. Epub 2016 Mar 22. 

Kuraku S, Meyer A. The evolution and maintenance of Hox gene clusters in vertebrates and 

the teleost-specific genome duplication. Int J Dev Biol. 2009;53(5-6):765–73. 

 

Kusakabe T, Kusakabe R, Kawakami I, Satou Y, Satoh N, Tsuda M. Ci-opsin1, a vertebrate-

type opsin gene, expressed in the larval ocellus of the ascidian Ciona intestinalis. FEBS Lett. 

2001 Sep 28;506(1):69-72. 

 

Kuwahara T, Inoue K, D'Agati VD, Fujimoto T, Eguchi T, Saha S, Wolozin B, Iwatsubo T, 

Abeliovich A. LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome 

integrity in diverse cellular contexts. Sci Rep. 2016 Jul 18;6:29945. doi: 10.1038/srep29945. 

 

Lacalli TC. Sensory systems in amphioxus: a window on the ancestral chordate condition. 

Brain Behav Evol. 2004;64(3):148–62 

 

Lamb TD, Collin SP, Pugh EN Jr. Evolution of the vertebrate eye: opsins, photoreceptors, 

retina and eye cup. Nat Rev Neurosci. 2007 Dec;8(12):960-76. 

 
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin 

F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and 

Clustal X version 2.0. Bioinformatics. 2007 Nov 1;23(21):2947-8. Epub 2007 Sep 10. 

 

Le Bouffant R, Souquet B, Duval N, Duquenne C, Hervé R, Frydman N, Robert B, Habert 

R,  Livera G. Msx1 and Msx2 promote meiosis initiation. Development 2011 138: 5393-

5402. 

 

Leclerc J, Ballotti R, Bertolotto C. Pathways from senescence to melanoma: focus on MITF 

sumoylation. Oncogene. 2017 Aug 21. doi: 10.1038/onc.2017.292. 

Leinders-Zufall T, Ishii T, Chamero P, Hendrix P, Oboti L, Schmid A, et al. A family of 

nonclassical class I MHC genes contributes to ultrasensitive chemodetection by mouse 

vomeronasal sensory neurons. J Neurosci. 2014;34(15):5121–33.  

 

Lee RH, Iioka H, Ohashi M, Iemura S, Natsume T, Kinoshita N. XRab40 and XCullin5 form 

a ubiquitin ligase complex essential for the noncanonical Wnt pathway. EMBO J. 2007 Aug 

8;26(15):3592-606.  

 

Lee MT, Mishra A, Lambright DG. Structural mechanisms for regulation of membrane 

traffic by rab GTPases. Traffic. 2009 Oct;10(10):1377-89. doi: 10.1111/j.1600-

0854.2009.00942.x 

 



165 
 

Levy C., Khaled M., Fisher D.E. MITF: Master regulator of melanocyte development and 

melanoma oncogene. Trends Mol. Med. 2006 12:406–414.  

 

Li Z, Joseph NM, Easter SS Jr. The morphogenesis of the zebrafish eye, including a fate map 

of the optic vesicle. Dev Dyn. 2000; 218:175–188 

 

Li F, Yi L, Zhao L, Itzen A, Goody RS, Wu Y. The role of the hypervariable C-terminal 

domain in Rab GTPases membrane targeting Proc Natl Acad Sci U S A. 2014 Feb 18; 

111(7): 2572–2577. Published online 2014 Feb 3. doi: 

10.1073/pnas.1313655111Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. 

Nature 2007, 22;445(7130):843-50.  

 

Lister JA, Robertson CP, Lepage T, Johnson SL, Raible DW. nacre encodes a zebrafish 

microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. 

Development. 1999 Sep;126(17):3757-67. 

Lister JA. Development of pigment cells in the zebrafish embryo. Microsc Res Tech. 2002 

Sep 15;58(6):435-41. 

 

Lopes, V. S., Wasmeier, C., Seabra, M. C. & Futter, C. E. Melanosome maturation defect in 

Rab38-deficient retinal pigment epithelium results in instability of immature melanosomes 

during transient melanogenesis. Mol. Biol. Cell. 2007, 18, 3914–3927.  

Loftus SK, Larson DM, Baxter LL, Antonellis A, Chen Y, Wu X, Jiang Y, Bittner M, 

Hammer JA 3rd, Pavan WJ. Mutation of melanosome protein RAB38 in chocolate mice. 

Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4471-6.  

Loftus SK, Larson DM, Baxter LL, Antonellis A, Chen Y, Wu X, et al. Mutation of 

melanosome protein RAB38 in chocolate mice. Proc Natl Acad Sci U S A. 2002; 

99(7):4471–6.  

 

Ma J, Plesken H, Treisman JE, Edelman-Novemsky I, Ren M. Lightoid and Claret: a rab 

GTPase and its putative guanine nucleotide exchange factor in biogenesis of Drosophila eye 

pigment granules. Proc Natl Acad Sci USA. 2004;101(32):11652–7. 

 

Maat W, Beiboer SH, Jager MJ, Luyten GP, Gruis NA, van der Velden PA. Invest 

Ophthalmol Vis Sci. 2008 Apr;49(4):1291-8. doi: 10.1167/iovs.07-1135. Epigenetic 

regulation identifies RASEF as a tumor-suppressor gene in uveal melanoma. 

 

 

MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig 

LS, Clark LN, Small SA, Abeliovich A. RAB7L1 interacts with LRRK2 to modify 

intraneuronal protein sorting and Parkinson's disease risk. Neuron. 2013 Feb 6;77(3):425-39. 

doi: 10.1016/j.neuron.2012.11.033 

 

Maerki S, Olma MH, Staubli T, Steigemann P, Gerlich DW, Quadroni M, Sumara I, Peter 

M. The Cul3-KLHL21 E3 ubiquitin ligase targets aurora B to midzone microtubules in 

anaphase and is required for cytokinesis. J Cell Biol. 2009 Dec 14;187(6):791-800.  

 

https://www.ncbi.nlm.nih.gov/pubmed/17314970


166 
 

Mahanty S, Ravichandran K, Chitirala P, Prabha J, Jani RA, Setty SR. Rab9A is required for 

delivery of cargo from recycling endosomes to melanosomes. Pigment Cell Melanoma Res. 

2016 Jan;29(1):43-59. doi: 10.1111/pcmr.12434. 

 

Marks MS and Seabra MC. The melanosome: membrane dynamics in black and white. Nat 

Rev Mol Cell Biol. 2001; 2, 738-748. 

 

Marubashi S, Shimada H, Fukuda M, Ohbayashi N. RUTBC1 Functions as a GTPase-

activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in 

Melanocytes. J Biol Chem. 2016 Jan 15;291(3):1427-40. doi: 10.1074/jbc.M115.684043.  

 

Matsui T, Fukuda M. Small GTPase Rab12 regulates transferrin receptor degradation: 

Implications for a novel membrane trafficking pathway from recycling endosomes to 

lysosomes. Cell Logist. 2011 Jul;1(4):155-158.  

 

Melchior F, Paschal B, Evans J, Gerace J. Inhibition of nuclear protein import by non 

hydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an 

essential transport factor. J. Cell. Biol. 1993; 123, 1649-1659. 

Mellgren EM, Johnson SL. 2005.kitb, a second zebrafish ortholog of mouseKit. Dev Genes 

Evol. 215:470–477. 

 

Ménasché G, Pastural E, Feldmann J, Certain S, Ersoy F, Dupuis S, Wulffraat N, Bianchi D, 

Fischer A, Le Deist F, de Saint Basile G. Mutations in RAB27A cause Griscelli syndrome 

associated with haemophagocytic syndrome. Nat Genet. 2000 Jun;25(2):173-6. 

Meredith P and Riesz J. Radiative relaxation quantum yields for synthetic eumelanin. 

Photochem Photobiol. 2004; 79(2): 211-6. 

 

Meredith P and Sarna T. The physical and chemical properties of eumelanin. Pigment Cell 

Res. 2006; 19, 572-594. 

 

Michiels NK, et al. 2008. Red fluorescence in reef fish: a novel signalling mechanism? BMC 

Ecol. 8:16. 

Moore MS, Blobel G. The GTP-binding protein Ran/TC4 is required for protein import into 

the nucleus. Nature. 1993; 365, 661-663. 

Moore I, Schell J, Palme K. Subclass-specific sequence motifs identified in Rab GTPases. 

Trends Biochem Sci. 1995 Jan; 20(1):10-2. 

Moreira J, Deutsch A. Pigment pattern formation in zebrafish during late larval stages: a 

model based on local interactions. Dev Dyn. 2005 Jan;232(1):33-42. 

Moret F, Christiaen L, Deyts C, Blin M, Vernier P, Joly JS. Regulatory gene expressions in 

the ascidian ventral sensory vesicle: evolutionary relationships with the vertebrate 

hypothalamus. Dev Biol. 2005 Jan 15;277(2):567-79. 

Muhlenbein N, Hofmann S, Rothbauer U, Bauer MF. Organization and function of the small 

Tim complexes acting along the import pathway ofmetabolite carriers into mammalian 

mitochondria. J Biol Chem. 2004; 279(14):13540–6. 

 



167 
 

Nakagawa M, Orii H, Yoshida N, Jojima E, Horie T, Yoshida R, Haga T, Tsuda M. Ascidian 

arrestin (Ci-arr), the origin of the visual and nonvisual arrestins of vertebrate. Eur J 

Biochem. 2002 Nov;269(21):5112-8. 

 

Nakamura Y, Mori K, Saitoh K, Oshima K, Mekuchi M, Sugaya T, Shigenobu Y, Ojima N, 

Muta S, Fujiwara A, Yasuike M, Oohara I, Hirakawa H, Chowdhury VS, Kobayashi T,  

Nakajima K, Sano M, Wada T, Tashiro K, Ikeo K, Hattori M, Kuhara S, Gojobori T, Inouye 

K. Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific 

bluefin tuna. Proc Natl Acad Sci USA 2013 Jul 2;110(27):11061-6.  

 

Nakashima Y, Kusakabe T, Kusakabe R, Terakita A, Shichida Y, Tsuda M. J Origin of the 

vertebrate visual cycle: genes encoding retinal photoisomerase and two putative visual cycle 

proteins are expressed in whole brain of a primitive chordate. Comp Neurol. 2003 May 

26;460(2):180-90. 

 

Namkoong J, Shin SS, Lee HJ, Marin YE, Wall BA, Goydos JS, et al. Metabotropic 

glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res. 

2007;67(5):2298–305. 

 

Nappi AJ, Christensen BM. Melanogenesis and associated cytotoxic reactions: applications 

to insect innate immunity. Insect Biochem Mol Biol. 2005, 35(5):443-59. 

 

Nguyen VH, Schmid B, Trout J, Connors SA, Ekker M, Mullins MC. Ventral and lateral 

regions of the zebrafish gastrula, including the neural crest progenitors, are established by a 

bmp2b/swirl pathway of genes. Dev Biol. 1998Jul 1;199(1):93-110.  

Nicol D, Meinertzhagen IA. Cell counts and maps in the larval central nervous system of the 

ascidian Ciona intestinalis (L.). J Comp Neurol. 1991 Jul 22;309(4):415-29. 

Nilsson Skold H, Aspengren S, Wallin M. Rapid color change in fish and amphibians- 

function, regulation, and emerging applications. Pigment Cell Melanoma Res. 2013; 

26(1):29–38.  

 

Newton JM, Cohen-Barak O, Hagiwara N, Gardner JM, Davisson MT, King RA, Brilliant 

MH. Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new 

form of oculocutaneous albinism, OCA4. Am J Hum Genet. 2001 Nov;69(5):981-8. Epub 

2001 Sep 26. 

Nishida H. Patterning the marginal zone of early ascidian embryos: localized maternal 

mRNA and inductive interactions. Bioessays. 2002 Jul;24(7):613-24. 

Nishida H. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer 

enzyme. III. Up to the tissue restricted stage. Dev Biol. 1987 Jun;121(2):526-41. 

 

Nishida H, Satoh N. Determination and regulation in the pigment cell lineage of the ascidian 

embryo. Dev Biol. 1989 Apr;132(2):355-67. 

 

Nordlund JJ, Boissy RE, Hearing VJ, King RA, and Ortonne JP. The Pigmentary System. 

Physiology and Pathophysiology 1998. New York: Oxford Univ. Press. pp. 151–158. 

 



168 
 

Odenthal J, Nüsslein-Volhard C. Fork head domain genes in zebrafish. Dev Genes Evol. 

1998 Jul;208(5):245-58. 

Ohno S. Patterns in genome evolution. Curr Opin Genet Dev. 1993; 3(6):911–4. 

 

Oiso N, Riddle SR, Serikawa T, Kuramoto T, Spritz RA. The rat Ruby ( R) locus is Rab38: 

identical mutations in Fawn-hooded and Tester-Moriyama rats derived from an ancestral 

Long Evans rat sub-strain.. 2004;15(4):307–14. 

 

Olkkonen VM, Ikonen E. When intracellular logistics fails--genetic defects in membrane 

trafficking. J Cell Sci. 2006 Dec 15;119(Pt 24):5031-45. 

 

Omotezako T, Onuma T, Nishida H.DNA interference: DNA-induced gene silencing in the 

appendicularian Oikopleura dioica. Proc Biol Sci. 2015 May 22;282(1807):20150435. doi: 

10.1098/rspb.2015.0435. 

 

Osanai K, Iguchi M, Takahashi K, Nambu Y, Sakuma T, Toga H, Ohya N, Shimizu H, 

Fisher JH, Voelker DR. Expression and localization of a novel Rab small G protein (Rab38) 

in the rat lung. Am J Pathol. 2001 May;158(5):1665-75. 

 

Osanai K, Takahashi K, Nakamura K, Takahashi M, Ishigaki M, Sakuma T, et al. Expression 

and characterization of Rab38, a new member of the Rab small G protein family. Biol Chem. 

2005;386(2):143–53 

 

Otsuki H. Sensory organs in the cerebral vesicle of the Ascidian larva, Aplidium sp.: an 

SEM study. Zoological Science 1991, 8 pp. 235–242. 

 

Owen DJ, Collins BM, Evans PR. Adaptors for clathrin coats: structure and function. Annu 

Rev Cell Dev Biol 2004; 20:153-91; PMID:15473838.Otto SP. 2007. The evolutionary 

consequences of polyploidy. Cell. 131:452–462. 

 

Palumbo A, Solano F, Misuraca G, Aroca P, Garcia Borron JC, Lozano JA, Prota G. 

Comparative action of dopachrome tautomerase and metal ions on the rearrangement of 

dopachrome. Biochim Biophys Acta (1991) 1115, 1-5. 

 

Panzella L, Micillo R, Bentley WE, Napolitano A, Payne GF. Reverse Engineering Applied 

to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism. 

Sci Rep (2015) 16; 5:18447.  

 

Parichy DM, Ransom DG, Paw B, Zon LI, Johnson SL. An orthologue of the kit-related 

gene fms is required for development of neural crest-derived xanthophores and a 

subpopulation of adult melanocytes in the zebrafish, Danio rerio. Development. (2000) 

Jul;127(14):3031-44.  
 
Park M, Serpinskaya AS, Papalopulu N, Gelfand VI. Rab32 regulates melanosome transport 

in Xenopus melanophores by protein kinase a recruitment. Curr Biol. 2007;17(23):2030–4. 

 

Park HH. Structural basis of membrane trafficking by Rab family small G protein. Int J Mol 

Sci. 2013 Apr 25;14(5):8912-23. doi: 10.3390/ijms14058912 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Panzella%20L%5BAuthor%5D&cauthor=true&cauthor_uid=26669666
https://www.ncbi.nlm.nih.gov/pubmed/?term=Micillo%20R%5BAuthor%5D&cauthor=true&cauthor_uid=26669666
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bentley%20WE%5BAuthor%5D&cauthor=true&cauthor_uid=26669666
https://www.ncbi.nlm.nih.gov/pubmed/?term=Napolitano%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26669666
https://www.ncbi.nlm.nih.gov/pubmed/?term=Payne%20GF%5BAuthor%5D&cauthor=true&cauthor_uid=26669666
https://www.ncbi.nlm.nih.gov/pubmed/26669666


169 
 

Pereira-Leal JB, Seabra MC. Evolution of the Rab family of small GTP-binding proteins. J 

Mol Biol. 2001;313(4):889–901. 

 

Pereira-Leal JB. (2008). The Ypt/Rab family and the evolution of trafficking in fungi. 

Traffic 9, 27-38. 

Plonka PM, Grabacka M. Melanin synthesis in microorganisms-biotechnological and 

medical aspects. Acta Biochim Pol (2006) 53, 429-443. 

 

Popovici C, Roubin R, Coulier F, Birnbaum D. An evolutionary history of the FGF 

superfamily. Bioessays. 2005 Aug;27(8):849-57. 

 

Press CMcL, Evensen Ø. The morphology of the immune system in teleost fishes. Fish & 

Shellfish Immunology 1999 9, 309–318. 

 

Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, et al. The 

amphioxus genome and the evolution of the chordate karyotype. Nature. 

2008;453(7198):1064–71. 

 

Quevedo WC, Fleischmann RD. Developmental biology of mammalian melanocytes. J. 

Invest. Dermatol. 1980 75, 116–120. 

 

Racioppi C, Kamal AK, Razy-Krajka F, Gambardella G, Zanetti L, di Bernardo D, Sanges 

R, Christiaen LA, Ristoratore F. Fibroblast growth factor signalling controls nervous system 

patterning and pigment cell formation in Ciona intestinalis. Nat Commun. 2014 Sep 

5;5:4830. doi: 10.1038/ncomms5830. 

 

Racioppi C, Valoroso MC, Coppola U, Lowe EK, Brown CT, Swalla BJ, Christiaen L, Stolfi 

A, Ristoratore F. Evolutionary loss of melanogenesis in the tunicate Molgula occulta. 

Evodevo. 2017 Jul 18;8:11. doi: 10.1186/s13227-017-0074-x. eCollection 2017. 

 

Raible DW, Wood A, Hodsdon W, Henion PD, Weston JA, Eisen JS. Segregation and early 

dispersal of neural crest cells in the embryonic zebrafish. Dev Dyn. 1992 Sep;195(1):29-42. 

 

Ravi V, Lam K, Tay BH, Tay A, Brenner S, Venkatesh B. Elephant shark (Callorhinchus 

milii) provides insights into the evolution of Hox gene clusters in gnathostomes. Proc Natl 

Acad Sci U S A. 2009;106(38):16327–32. 

 

Riley PA. Materia melanica: further dark thoughts. Pigment Cell Res  1992; 5, 101-106. 

 

Riley PA. Melanin. Int J Biochem Cell Biol  (1997) 29, 1235-1239. 

 

Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary 

tree and role of conserved amino acids. J Cell Biol. 2012 Jan 23;196(2):189-201.  

 

Robinson ML. An essential role for FGF receptor signaling in lens development. Semin Cell 

Dev Biol. 2006 Dec;17(6):726-40. Epub 2006 Oct 27. 

 

Roure A, Darras S. Msxb is a core component of the genetic circuitry specifying the dorsal 

and ventral neurogenic midlines in the ascidian embryo. Dev Biol. 2016 Jan 1;409(1):277-

87. doi: 10.1016/j.ydbio.2015.11.009.  

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Racioppi%20C%5BAuthor%5D&cauthor=true&cauthor_uid=28729899
https://www.ncbi.nlm.nih.gov/pubmed/?term=Valoroso%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=28729899
https://www.ncbi.nlm.nih.gov/pubmed/?term=Coppola%20U%5BAuthor%5D&cauthor=true&cauthor_uid=28729899
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lowe%20EK%5BAuthor%5D&cauthor=true&cauthor_uid=28729899
https://www.ncbi.nlm.nih.gov/pubmed/?term=Brown%20CT%5BAuthor%5D&cauthor=true&cauthor_uid=28729899
https://www.ncbi.nlm.nih.gov/pubmed/?term=Swalla%20BJ%5BAuthor%5D&cauthor=true&cauthor_uid=28729899
https://www.ncbi.nlm.nih.gov/pubmed/?term=Christiaen%20L%5BAuthor%5D&cauthor=true&cauthor_uid=28729899
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stolfi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28729899
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stolfi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28729899
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ristoratore%20F%5BAuthor%5D&cauthor=true&cauthor_uid=28729899
https://www.ncbi.nlm.nih.gov/pubmed/28729899


170 
 

Russo MT, Donizetti A, Locascio A, D'Aniello S, Amoroso A, Aniello F, Fucci L, Branno 

M. Regulatory elements controlling Ci-msxb tissue-specific expression during Ciona 

intestinalis embryonic development. Dev Biol. 2004 Mar 15;267(2):517-28. 

 

Rutherford S, Moore I. The Arabidopsis Rab GTPase family: another enigma variation. Curr 

Opin Plant Biol. 2002;5(6):518–28. 

 

Sakurai D, Goda M, Kohmura Y, Horie T, Iwamoto H, Ohtsuki H, Tsuda M. The role of 

pigment cells in the brain of ascidian larva. J Comp Neurol. 2004 12;475(1):70-82. 

 

Saito-Nakano Y, Nakahara T, Nakano K, Nozaki T, Numata O. Marked amplification and 

diversification of products of ras genes from rat brain, Rab GTPases, in the ciliates 

Tetrahymena thermophila and Paramecium tetraurelia. J Eukaryot Microbiol. 

2010;57(5):389–99. 

 

Sato S, Masuya H, Numakunai T, Satoh N, Ikeo K, Gojobori T, Tamura K, Ide H, Takeuchi 

T, Yamamoto H.Ascidian tyrosinase gene: its unique structure and expression in the 

developing brain. Dev Dyn. 1997 Mar;208(3):363-74. 

 

Satoh N, Satou Y, Davidson B, Levine M.. Ciona intestinalis: an emerging model for whole-

genome analyses. Trends Genet. 2003, 19, 376–381. 

 

Satou Y, Imai KS, Satoh N. Fgf genes in the basal chordate Ciona intestinalis. Dev Genes 

Evol. 2002 Oct;212(9):432-8. Epub 2002 Sep 5. 

 

Schartl M, Larue L, Goda M, Bosenberg MW, Hashimoto H, Kelsh RN. What is a vertebrate 

pigment cell? Pigment Cell Melanoma Res. 2014 Jan; 29(1):8-14. 

 

Schlenstedt G. Protein import into the nucleus. FEBS Lett. 1996 Jun 24;389(1):75-9.  

Schnetkamp PP. The SLC24 gene family of Na⁺/Ca²⁺-K⁺ exchangers: from sight and smell 

to memory consolidation and skin pigmentation. Mol Aspects Med. 2013 Apr-Jun;34(2-

3):455-64.  

 

Seo HC, Saetre BO, Håvik B, Ellingsen S, Fjose A. The zebrafish Pax3 and Pax7 

homologues are highly conserved, encode multiple isoforms and show dynamic segment-like 

expression in the developing brain. Mech Dev. (1998) Jan;70(1-2):49-63. 

 

Shi L, Zhang W, Zou F, Mei L, Wu G, Teng Y. KLHL21, a novel gene that contributes to 

the progression of hepatocellular carcinoma. BMC Cancer. 2016 Oct 21;16(1):815. 

 

Shintani M, Tada M, Kobayashi T, Kajiho H, Kontani K, Katada T. Characterization of 

Rab45/RASEF containing EF-hand domain and a coiled-coil motif as a self-associating 

GTPase. Biochem Biophys Res Commun. 2007 Jun 8;357(3):661-7.  

Shimeld SM, Holland PW. Vertebrate innovations. Proc Natl Acad Sci USA 2000 Apr 

25;97(9):4449-52. 

 

Shimeld SM, Purkiss AG, Dirks RP, Bateman OA, Slingsby C, Lubsen NH. Urochordate 

betagamma-crystallin and the evolutionary origin of the vertebrate eye lens. Curr Biol. 2005 

Sep 20;15(18):1684-9. 

 



171 
 

Shin SS, Namkoong J, Wall BA, Gleason R, Lee HJ, Chen S. Oncogenic activities of 

metabotropic glutamate receptor 1 (Grm1) in melanocyte transformation. Pigment Cell 

Melanoma Res. 2008;21(3):368–78. 

 

Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios 

I. News and continuing developments at PROSITE. Nucleic Acids Res. 2012; doi: 

10.1093/nar/gks1067. 

 

Silver DL, Hou L, Pavan WJ. The genetic Regulation of Pigment Cell Development. Austin 

(TX): Landes Bioscience; 2000-2013. 

 

Sitaram A, Marks MS. Mechanisms of protein delivery to melanosomes in pigment cells. 

Physiology (Bethesda). 2012 Apr;27(2):85-99. 

 

Skafidas E, Testa R, Zantomio D, Chana G, Everall IP, Pantelis C. Predicting the diagnosis 

of autism spectrum disorder using gene pathway analysis. Mol Psychiatry. 2014;19(4):504–

10. 

 

Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin Pigmentation in Mammalian 

Skin and Its Hormonal Regulation. Physiol Rev. 2004; 84: 1155–1228. 

 

Squarzoni P, Parveen F, Zanetti L, Ristoratore F, Spagnuolo A. FGF/MAPK/Ets signaling 

renders pigment cell precursors competent to respond to Wnt signal by directly controlling 

Ci-Tcf transcription. Development. 2011 Apr;138(7):1421-32. doi: 10.1242/dev.057323. 

 

Srikanth S, Jung HJ, Kim KD, Souda P, Whitelegge J, Gwack Y.A novel EF-hand protein, 

CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell 

Biol. 2010 May;12(5):436-46. doi: 10.1038/ncb2045. 

Srikanth S, Kim KD, Gao Y, Woo JS, Ghosh S, Calmettes G, Paz A, Abramson J, Jiang M, 

Gwack Y. A large Rab GTPase encoded by CRACR2A is a component of subsynaptic 

vesicles that transmit T cell activation signals. Sci Signal. 2016 Mar 22;9(420):ra31. doi: 

10.1126/scisignal.aac9171. 

Srikanth S, Woo JS, Gwack Y. A large Rab GTPase family in a small GTPase world. Small 

GTPases. 2017 Jan 2;8(1):43-48. doi: 10.1080/21541248.2016.1192921. Steel KP, Barkway 

C. Another role for melanocytes: their importance for normal stria vascularis development in 

the mammalian inner ear. Development 1989 107(3):453-63. 

Steingrímsson E. The basic helix-loop-helix leucine zipper transcription factor Mitf is 

conserved inDrosophila and functions in eye development. Genetics. 2004 May;167(1):233-

41. 

Stenmark H, Olkkonen VM. The Rab GTPase family. Genome Biol. 2001;2(5) 

 

Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol.  

2009;10(8):513–25.  

 

Stenmark H. The Rabs: a family at the root of metazoan evolution. BMC Biol. 2012 Aug 

8;10:68. doi: 10.1186/1741-7007-10-68. 

 

Stolfi A, Gandhi S, Salek F, Christiaen L. Tissue-specific genome editing in Ciona embryos 

by CRISPR/Cas9. Development. 2014 Nov;141(21):4115-20. 



172 
 

 

Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005,   85:845–81 

 

Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD. Initiation of neural induction by 

FGF signalling before gastrulation. Nature. 2000 Jul 6;406(6791):74-8. 

 

Sudhof TC, Rothman JE. (2009). Membrane fusion: grappling with SNARE and SM 

proteins. Science 323, 474-477. 

Sugimoto M. Morphological color changes in fish: regulation of pigment cell density and 

morphology. Microsc Res Tech. 2002;58(6):496–503. 

 

Sulaimon SS, Kitchell BE. The biology of melanocytes. Vet Dermatol. 2003, 4(2):57-65.  

Surkont J, Pereira-Leal JB. Are There Rab GTPases in Archaea?  Mol Biol Evol. 2016 

Jul;33(7):1833-42. doi: 10.1093/molbev/msw061. 

Takeda K, Yasumoto K, Takada R, Takada S, Watanabe K, Udono T, Saito H, Takahashi K, 

Shibahara S. Induction of melanocyte-specific microphthalmia-associated transcription 

factor by Wnt-3a. J Biol Chem. 2000 May 12;275(19):14013-6. 

 

Tamura K, Ohbayashi N, Maruta Y, Kanno E, Itoh T, Fukuda M. Varp is a novel Rab32/38-

binding protein that regulates Tyrp1 trafficking in melanocytes. Mol Biol Cell. 2009 

Jun;20(12):2900-8. doi: 10.1091/mbc.E08-12-1161. Epub 2009 Apr 29. 

 

Tan R, Wang W, Wang S, Wang Z, Sun L, et al. Small GTPase Rab40c Associates with 

Lipid Droplets and Modulates the Biogenesis of Lipid Droplets. PLoS ONE (2013) 8(4): 

e63213. doi:10.1371/journal.pone.0063213. 

 

Tarafder AK, Bolasco G, Correia MS, Pereira FJ, Iannone L, Hume AN, Kirkpatrick N, 

Picardo M, Torrisi MR, Rodrigues IP, Ramalho JS, Futter CE, Barral DC, Seabra MC. 

Rab11b mediates melanin transfer between donor melanocytes and acceptor keratinocytes 

via coupled exo/endocytosis. J Invest Dermatol. 2014 Apr;134(4):1056-66. doi: 

10.1038/jid.2013.432. Epub 2013 Oct 18. 

 

Taylor JS, Van de Peer Y, Braasch I, Meyer A. Comparative genomics provides evidence for 

an ancient genome duplication event in fish. Philos Trans R Soc Lond B Biol Sci. 

2001;356(1414):1661–79 

 

Taylor JS, Braasch I, Frickey T, Meyer A,Van de Peer Y. Genome duplication, a trait shared 

by 22000 species of ray-finned fish. Genome Res. 2003;13(3):382–90. 

 

Thisse B, Pflumio S, Fürthauer M, Loppin B, Heyer V, Degrave A, et al. Expression of the 

zebrafish genome during embryogenesis (NIH R01RR15402). ZFIN Direct Data Submission 

(http://zfinorg). 2001 

 

Thisse B, Thisse C. Fast Release Clones: A High Throughput Expression Analysis. ZFIN 

Direct Data Submission 2004 (http://zfin.org). 

http://zfin.org/


173 
 

Touchot N, Chardin P, Tavitian A. Four additional members of the ras gene superfamily 

isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat 

brain library. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8210-4. 

 

Vetrini F, Auricchio A, Du J, Angeletti B, Fisher DE, Ballabio A, Marigo V. The 

microphthalmia transcription factor (Mitf) controls expression of the ocular albinism type 1 

gene: link between melanin synthesis and melanosome biogenesis. Mol Cell Biol. 2004 

Aug;24(15):6550-9. 

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of 

progressive multiple sequence alignment through sequence weighting, position-specific gap 
penalties and weight matrix choice. Nucleic Acids Res. 1994; 22(22):4673–80.  

Torday JS, Rehan VK. Deconvoluting lung evolution using functional/comparative 

genomics. Am J Respir Cell Mol Biol. 2004;31(1):8–12. 

Tresser J, Chiba S, Veeman M, El-Nachef D, Newman-Smith E, Horie T, Tsuda M, Smith 

WC. doublesex/mab3 related-1 (dmrt1) is essential for development of anterior neural plate 

derivatives in Ciona. Development. 2010 Jul;137(13):2197-203. doi: 10.1242/dev.045302 

Trezise AE, Collin SP. Opsins: evolution in waiting. Curr Biol 2005, 15:R794-6.  

Matsumoto Y, Fukamachi S, Mitani H, Kawamura S. Functional characterization of visual 

opsin repertoire in Medaka (Oryzias latipes). Gene 2006, 371:268-78. 

Tsuda M, Sakurai D, Goda M. Direct evidence for the role of pigment cells in the brain of 

ascidian larvae by laser ablation. J Exp Biol. 2003,  206(Pt 8):1409–17. 

Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB, et al. Elephant shark 

genome provides unique insights into gnathostome evolution. Nature. 2014;505(7482):174–

9. 

 

Virta VC, Cooper MS. Structural components and morphogenetic mechanics of the zebrafish 

yolk extension, a developmental module. J Exp Zool B Mol Dev Evol. 2011;316(1):76–92 

 

Vopalensky P, Pergner J, Liegertova M, Benito-Gutierrez E, Arendt D, Kozmik Z. 

Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the 

retina and pigment cells of the vertebrate eye. Proc Natl Acad Sci USA 2012, 

109(38):15383–8. 

 

Wada H, Saiga H, Satoh N, Holland PW. Tripartite organization of the ancestral chordate 

brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. 

Development. 1998 Mar;125(6):1113-22. 

 

Wang C, Liu Z, Huang X. Rab32 is important for autophagy and lipid storage in Drosophila. 

PLoS One. 2012;7(2), e32086. 

 

Wasmeier C, Romao M, Plowright L, Bennett DC, Raposo G, Seabra MC. Rab38 and Rab32 

control post-Golgi trafficking of melanogenic enzymes. J Cell Biol. 2006;175(2):271–81. 

 

Wei ML. Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle 

function. Pigment Cell Res. 2006;19(1):19–42. 

Widlund HR, Fisher DE. Microphthalamia-associated transcription factor: a critical regulator 

of pigment cell development and survival. Oncogene. 2003 May 19;22(20):3035-41. 



174 
 

West-Eberhard MJ. 2003. Developmental plasticity and evolution. New York: Oxford 

University Press.  

 

Wittkopp PJ, True JR, Carroll SB. Reciprocal functions of the Drosophila yellow and ebony 

proteins in the development and evolution of pigment patterns. Development 2002 129, 

1849-1858 

 

Wasmeier C, Romao M, Plowright L, Bennett DC, Raposo G, Seabra MC. Rab38 and Rab32 

control post-Golgi trafficking of melanogenic enzymes. J Cell Biol. 2006 175(2):271–81. 

 

Wu X, Rao K, Bowers MB, Copeland NG, Jenkins NA, Hammer JA. Rab27a enables 

myosin Va-dependent melanosome capture by recruiting the myosin to the organelle. J Cell 

Sci. 2001, 114: 1091–1100. 

 

Wu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, Copeland NG, Jenkins NA, 

Hammer JA 3rd. Identification of an organelle receptor for myosin-Va. Nature Cell Biol. 

2002, 4: 271–278. 

 

Yajima I, Endo K, Sato S, Toyoda R, Wada H, Shibahara S, Numakunai T, Ikeo K, Gojobori 

T, Goding CR, Yamamoto H. Cloning and functional analysis of ascidian Mitf in vivo: 

insights into the origin of vertebrate pigment cells. Mech Dev. 2003 Dec;120(12):1489-504. 

 

Yang XJ. Roles of cell-extrinsic growth factors in vertebrate eye pattern formation and 

retinogenesis. Semin Cell Dev Biol. 2004 Feb;15(1):91-103.  

 

Yasumoto K., Yokoyama K., Shibata K., Tomita Y., Shibahara S. Microphthalmia-

associated transcription factor as a regulator for melanocyte-specific transcription of the 

human tyrosinase gene. Mol. Cell. Biol. 1994;14:8058–8070.  

 

Yatsu A, Shimada H, Ohbayashi N, Fukuda M. Rab40C is a novel Varp-binding protein that 

promotes proteasomal degradation of Varp in melanocytes. Biol Open. (2015) Mar 15; 4(3): 

267–275. 

Yoshida-Amano Y, Hachiya A, Ohuchi A, Kobinger GP, Kitahara T, Takema Y, Fukuda M. 

Essential role of RAB27A in determining constitutive human skin color. PLoS One. 

2012;7(7):e41160. doi: 10.1371/journal.pone.0041160.  

 
Yu JK, Meulemans D, McKeown SJ, Bronner-Fraser M. Insights from the amphioxus 

genome on the origin of vertebrate neural crest. Genome Res. 2008 Jul;18(7):1127-32. doi: 

10.1101/gr.076208.108.  

 

Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001 

Feb;2(2):107-17. 

 

Zhang L, Yu K, Robert KW, DeBolt KM, Hong N, Tao JQ, Fukuda M, Fisher AB, Huang S. 

Rab38 targets to lamellar bodies and normalizes their sizes in lung alveolar type II epithelial 

cells. Am J Physiol Lung Cell Mol Physiol. 2011 Oct;301(4):L461-77. doi: 

10.1152/ajplung.00056.2011.  

 

Zippelius A, Gati A, Bartnick T, Walton S, Odermatt B, Jaeger E, Dummer R, Urosevic M, 

Filonenko V, Osanai K, Moch H, Chen YT, Old LJ, Knuth A, Jaeger D. Melanocyte 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Yu%20JK%5BAuthor%5D&cauthor=true&cauthor_uid=18562679
https://www.ncbi.nlm.nih.gov/pubmed/?term=Meulemans%20D%5BAuthor%5D&cauthor=true&cauthor_uid=18562679
https://www.ncbi.nlm.nih.gov/pubmed/?term=McKeown%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=18562679
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bronner-Fraser%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18562679


175 
 

differentiation antigen RAB38/NY-MEL-1 induces frequent antibody responses exclusively 

in melanoma patients. Cancer Immunol Immunother. 2007 Feb;56(2):249-58.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



176 
 

LIST OF PUBLICATIONS 

 

Coppola U, Annona G, D’Aniello S, Ristoratore F. (2016) Rab32 and Rab38 genes in 

chordate pigmentation: an evolutionary perspective. BMC Evol Biol DOI: 10.1186/s12862-

016-0596-1  

 

Tammaro S, Simoniello P, Ristoratore F, Coppola U, Scudiero R, Motta CM (2016) 

Expression of caspase 3 in ovarian follicle cells of the lizard Podarcis sicula. Cell Tissue 

Res. 2017 Feb;367(2):397-404. doi: 10.1007/s00441-016-2506-7 

 

Racioppi C, Valoroso MC, Coppola U, Lowe EK, Brown CT, Swalla BJ, Christiaen L, Stolfi 

A, Ristoratore F. Evolutionary loss of melanogenesis in the tunicate Molgula occulta. 

Evodevo. 2017 Jul 18;8:11. doi: 10.1186/s13227-017-0074-x.  

 

Coppola U, Nittoli V, Sepe RM, D'Agostino Y, De Felice E, Palladino A, Vassalli QA, 

Locascio A, Ristoratore F, Spagnuolo A, D'Aniello S, Sordino P. A comprehensive analysis 

of neurotrophins and neurotrophin tyrosine kinase receptors expression during development 

of zebrafish. Journal of Comparative Neurology 2018 DOI: 10.1002/cne.24391 (first equal 

author) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


