
ARTICLE

Received 4 Aug 2014 | Accepted 29 Apr 2015 | Published 9 Jun 2015

Diffusion on networked systems is a question
of time or structure
Jean-Charles Delvenne1, Renaud Lambiotte2 & Luis E.C. Rocha2,3

Network science investigates the architecture of complex systems to understand their

functional and dynamical properties. Structural patterns such as communities shape diffusive

processes on networks. However, these results hold under the strong assumption that

networks are static entities where temporal aspects can be neglected. Here we propose

a generalized formalism for linear dynamics on complex networks, able to incorporate

statistical properties of the timings at which events occur. We show that the diffusion

dynamics is affected by the network community structure and by the temporal properties

of waiting times between events. We identify the main mechanism—network structure,

burstiness or fat tails of waiting times—determining the relaxation times of stochastic

processes on temporal networks, in the absence of temporal–structure correlations. We

identify situations when fine-scale structure can be discarded from the description of

the dynamics or, conversely, when a fully detailed model is required due to temporal

heterogeneities.
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T
he relation between network structure and dynamics has
attracted the attention of researchers from different
disciplines over the years1–5. These works are rooted in

the observation that in contexts as diverse as the Internet, society
and biology, networks tend to possess complex patterns of
connectivity, with a significant level of heterogeneity4. In
addition, a broad range of real-world dynamical processes, from
information to virus spreading, is akin to diffusion. If the effect of
structure, such as communities or degree heterogeneity, on
diffusive processes is now well known6,7, the impact of the
temporal properties of individual nodes is poorly understood1,8.
Yet, empirical evidence indicates that real-world networked
systems are often characterized by complex temporal patterns
of activity, including a fat-tailed distribution of times9–16,
correlations between events17,18 and non-stationarity19–21. This
is in remarkable contrast to a vast majority of mathematical
models, which assume homogeneous interaction dynamics on
networks1,2,22,23. In this work, we focus on the impact of structure
and the waiting-time distribution on dynamics, and set aside any
other temporal properties. This subject has triggered intense
theoretical work in recent years, for example, in relation to
anomalous diffusion, but predominantly on lattice-like,
annealed24 and random structures20,23,25–28. These limitations
leave a fundamental question open, with important applications
for the modelling of temporal networks: what are the effects of
complex patterns, simultaneously in time and in structure, on the
approach to equilibrium of diffusion processes?

To comprehend the interplay between temporal and structural
patterns, we focus on a broad class of linear multi-agent systems
describing N interacting nodes, defined by

Dx ¼ Lx ð1Þ
where xi, the ith component of x, represents the observed state of
node i. The N�N real matrix L encodes the mutual influences in
the network, with non-zero entries indicating the presence of a
link. D is either d/dt, the delay Dxi(t)¼ xi(tþ 1), or any other
causal operator acting linearly on the trajectory of each entry
xi(t). This equation couples network structure (represented by L)
and time evolution (represented by D) by describing a
system where every node i has a state xi(t)¼ Fui(t), where
ui(t)¼

P
j Lijxj(t) represents the input, or influence of the

neighbouring states on node i. The operator F is the so-called
transfer function29,30, defined as the inverse of D (see Methods).

A classic example is heat diffusion on networks, where every
node has a temperature xi evolving according to the Fourier Law

m
dx
dt
¼ Lx; ð2Þ

where m is the characteristic time of the dynamics and L is a
Laplacian of the network. The same set of equations can
represent, possibly up to a change of variables, a basic model
for the evolution of people’s opinions31, robots’ positions in the
physical space30,32, approach to synchronization33,34 or the
dynamics of a continuous-time random walker35—our main
example from now. In any case, the dynamical properties of the
system are described by the spectral properties of the coupling
matrix. The constraints imposed by the conservation of
probability imply that the Laplacian dynamics is characterized
by a stationary state, associated to the dominant eigenvector of L,
which we will assume to be unique, as is the case in a large class of
systems, for example, strongly connected networks. A key
quantity is thus the second dominant eigenvalue, also called the
spectral gap6, which provides us with the relaxation time to
stationarity, usually called mixing time36 for stochastic diffusion
processes. The spectral gap determines the speed of convergence
to the stationary state and measures the effective size of the

system in terms of dynamics. The spectral gap is also related to
important structural and dynamical properties of the system,
such as the existence of bottlenecks and communities in the
underlying network7,30.

In this study, we generalize the concept of spectral gap and of
mixing time to random processes with general causal operator D,
and focus in detail on operators with long-term memory,
naturally emerging in diffusion with bursty dynamics. After
showing connections between the theory of random walks and
that of multi-agents systems, we identify the temporal and
structural mechanisms driving the asymptotic dynamics of the
system and provide examples when each mechanism prevails. By
doing so, we show that the form of the temporal operator D may
either slow down or accelerate mixing as compared with the
differential operator equation (2). The results are further
exploited to assess the possibility of coarse-graining the dynamics
based on the network community structure and tested using
numerical simulations on synthetic temporal networks calibrated
with empirical data.

Results
Random walks with arbitrary waiting times. The generalized
dynamics of the random walker, illustrated in Fig. 1a, is defined as
follows. A walker arriving at a node i jumps towards a neigh-
bouring node within a time interval [Dt,Dtþ d] with probability
r(Dt)d (for small d). In line with a standard discrete-time random
walk process, the jump is directed towards a neighbour j with
probability Pij. The probability density function r(Dt) is called the
waiting- time distribution of the walker. At each hop, the waiting
time Dt is reset to zero and consecutive waiting times are inde-
pendent. The evolution of probability of the presence of a sto-
chastic process in each state is ruled by the so-called master
equation, or Kolmogorov forward equation, well known for this
family of generalized walks24,37,38. We prefer to adopt here the
equivalent, dual, viewpoint of Kolmogorov backward equation39,
which belongs to the class of processes defined by equation (1)
and can be analysed using the toolbox typical to multi-agent
systems30,32, such as the transfer function formalism and
eigenmode decomposition.
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Figure 1 | Diffusion on temporal networks. (a) A random walk process can

be illustrated by a letter (or banknote and so on) being randomly passed

from neighbour to neighbour on a social network. Temporal patterns of

waiting times between arrival and departure of the letter may be

homogeneous (for instance, discrete or exponentially distributed times) or

heterogeneous (for instance, bursts). (b) The relaxation time measures the

characteristic time to reach equilibrium from any starting condition. (c) The

competition between structure and temporal patterns regulates the

relaxation time, or mixing time, of stochastic processes.
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We assign a fixed real-valued observable xobs,i to every node i
and consider the value observed at time t by a walker starting
initially from node j. This value is a random variable, with an
expected value denoted by xj(t), taking initial value xj(0)¼ xobs,j.
The random walk is ergodic and mixing on a strongly connected
aperiodic network (aperiodicity is only required for the discrete
time, when r(Dt) is a Dirac distribution). In this case, x(t)
describes a consensus dynamics, meaning that the individual
values asymptotically converge to one another, xi(N)¼ xj(N). If
we choose the observable xobs,j¼ 0 at all nodes j, except l at node
k, then xi(t) is precisely the probability for the random walker
starting at i to be found at k at time t. Therefore, the Kolmogorov
backward equation, a consensus dynamics, embeds in particular
the evolution of the probability of the presence on nodes.

The walker, assumed to have just hopped at time zero and
finding itself at node i (another origin of time would not change
the asymptotic decay times, of main interest in this work), hops
again at time Dt with probability density r(Dt) and moves
towards a neighbour j with probability Pij. The expected value
observed by the walker at time t is xobs,i if it is still waiting for its
first hop (toDt) and otherwise

P
j Pijxj(t�Dt), by induction on

the number of hops. Therefore, we obtain the vector equation

x tð Þ ¼ xobs

Z1

t

r Dtð ÞdDtþ
Z t

0

Px t�Dtð Þr Dtð ÞdDt; ð3Þ

with the discrete transition matrix P of entries Pij. The
convolution in time in the last term calls for a Laplace transform

x sð Þ ¼
Z1

0

x tð Þe� stdt: ð4Þ

For simplicity, we use the same notations for functions in the
time and in the Laplace domain, only distinguished by their
variable, namely t or Dt for time and s for Laplace. This is justified
as time and Laplace domain representations encode the same
single physical object, for example, a probability or an observable.
The same holds for operator D, thought of as acting in the time
domain (for instance D¼ d/dt) or the Laplace domain (D¼ s)
according to the context.

The Laplace transform r(s) is the moment generating function
of the waiting-time distribution r(Dt), as it encodes the moment
in its Taylor series rðsÞ ¼ 1� msþ m2þs2ð Þs2

2 � � � �, where m is
the expected waiting time (first moment), s2 is the variance and
m2þs2 is the second moment. Using the fact that convolution
(respectively, integration from 0 to t) in the time domain
corresponds to the usual product (respectively, division by s) in
the Laplace domain40, equation (3) reduces to

x sð Þ ¼ 1� r sð Þ
s

xobsþ r sð ÞPx sð Þ; ð5Þ

or equivalently

1
rðsÞ � 1

� �
x sð Þ ¼ 1

rðsÞ � 1

� �
1
s

x t ¼ 0ð Þþ Lx sð Þ; ð6Þ

where we have made the dependence on the initial condition
explicit by using the relation xobs¼ x(t¼ 0) and where L¼ P–I
denotes the (normalized) Laplacian of the network. This is an
instance of equation (1), which shows that an input–output
relationship is often best expressed in the Laplace domain
rather than in the temporal domain. In this case, the
transfer function F(s) is defined by the algebraic relation
F� 1(s)¼ 1/r(s)� 1¼D(s), up to the initial condition term,
implicit in equation (1). See Methods for a derivation of
equation (1) in a more general context.

From temporal networks to random walks. Diffusive processes
often take place on temporal networks where individuals initiate
from time-to-time short-lived contacts with their neighbours. A
random walker can represent, for example, a letter or a banknote
passing from hand to hand through first contact initiated by the
current node. The formalism described above focuses on the
statistical properties of the waiting times of a walker on a
node15,25, and not of the inter-contact times (the times between
two subsequent contacts from a given node to another), as often
considered in the literature20,27,28,41–43. To illustrate this
difference, let us consider an idealized scenario, where the
network looks locally similar to a directed tree, to avoid indirect
correlations due to cycles44, where the inter-contact time t
between two contacts initiated by the same node is characterized
by the same probability distribution rcontact(t), and where
activations on different edges are an independent random
process. The corresponding waiting-time distribution r(Dt) for
the random walker can be determined from rcontact

45,46.
For example, the classic inspection paradox, or bus paradox,

observes that the waiting time has a mean

m ¼ 1=2mcontact 1þs2
contact

�
m2

contact

� �
ð7Þ

which can be much higher than the average inter-contact time
mcontact in case of bursts. This fact has been used in the literature
to deduce that burst contact statistics slowdown diffusion in a
complex network43. Nevertheless, it should not be confounded
with the results presented in this paper, which will focus on the
statistical properties of the waiting-time distribution and identify,
among others, that its variance plays a significant role on the
asymptotic behaviour of the walker. In the above scenario, the
variance of r(Dt) depends on the third moment of the inter-
contact time distribution rcontact(t) and is associated to a
mechanism distinct from that of the bus paradox (equation (7)).

Eigenmodes for heterogeneous temporal operators. Equation (1)
typically takes the form of an integro-differential equation.
However, it simplifies into the differential equation (2) in the case
of a memoryless random walker. Memoryless refers to the case
when the probability of hopping between Dt and Dtþ d, knowing
that the walker has waited at least Dt, is independent of
Dt. This leads to an exponential waiting-time distribution45

r(Dt)¼ e�Dt/m/m, in other words an unconditional probability
e�Dt/md/m of jumping between Dt and Dtþ d, for small d and for
mean waiting time m. In that case, we find D(s)¼ 1/r(s)� 1¼ms
in the Laplace domain, indeed recovering equation (2) in the
time domain. The differential equation can then be analysed
by changing the variables x to a linear combination of
the eigenvectors vk of the Laplacian L, of eigenvalues
l0¼ 04l1,l2,...,lN� 1Z� 2 as follows30:

x tð Þ ¼
X

k

zk tð Þvk: ð8Þ

For simplicity we have supposed that the underlying network is
undirected, connected and, in case of a discrete-time random
walk, non-bipartite. Thus, the eigenvalues are real and the
stationary state is uniquely defined6. Every zk(t), solution of
Dzk(t)¼ lkzk(t), is called an eigenfunction of the operator D and
here takes the form of a decaying exponential. The problem is thus
solved by decoupling structural and temporal variables, first by
identifying structural eigenvectors (vk), and then how they evolve
in time (zk(t)). The resulting fundamental solutions zk(t)vk for
equation (1) are called modes, or eigenmodes, of the system.

A similar analysis can be performed in the Laplace domain in
the case of an arbitrary waiting-time distribution r(Dt), and thus
when equation (1) has an arbitrary temporal operator D. In that
case, the elementary solutions zk(t), associated to zk(s), need not
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be exponential functions and are obtained as solutions of
equation (6), where the Laplacian is reduced to its eigenvalue lk

zkðsÞ ¼
1

1� lk
1=rðsÞ� 1

zkðt ¼ 0Þ
s

; ð9Þ

As before, any trajectory of the system can be expressed as a
linear superposition of some or all the N modes.

Characteristic decay times of eigenmodes. Despite their non-
exponential nature, a broad class of eigenfunctions defined by
equation (9) still have a characteristic time tk describing the
asymptotic decay of zk(t) to equilibrium as e� t=tk (Fig. 1b). We
find that the decay time can be accurately estimated by per-
forming a small s expansion in the Laplace domain (see Methods
for the derivation and range of validity):

tk � m lkj j� 1þb
� �

; ð10Þ
where

b ¼ s2�m2

2m2
ð11Þ

is a measure of the burstiness of the temporal process based on
the first and second moments of its distribution. Burstiness b
equals to zero for a Poisson process (memoryless waiting times,
r(Dt)¼ e�Dt/m/m) and ranges from� 1/2 (if r(Dt) is a Dirac
distribution) to arbitrarily large positive values (for highly bursty
activity). This expression emerges naturally from the dynamical
process and can be viewed as a measure of burstiness, equivalent
to the commonly used burstiness measure47.

The estimate provided by equation (10) can be further
tightened whenever the distribution r(Dt) of waiting times
contains a fat tail, possibly softened by an exponential tail. The
archetypical example is a power law with soft cutoff,
rðDtÞ / ðDtþAÞ� ge�Dt=ttail , a frequent model in human
dynamics supported by empirical evidence9,14,41. More
generally, rðDtÞ / r0ðDtÞe�Dt=ttail , where r0 is a fat tailed
distribution, that is, decreasing subexponentially. The non-
analytic point created in r(s) by the fat tail leads to an
additional term in the characteristic time (see Methods)

tk � max m lkj j� 1þb
� �

; ttail
� �

: ð12Þ
which can be approximated as follows, if |lk|� 1 and b have
different orders of magnitude

tk � max m lkj j� 1; mb; ttail
� �

: ð13Þ

Mixing times and dominating mechanisms. Of particular
importance is the slowest non-stationary mode (k¼ 1), or mixing
mode, the characteristic decay time of which represents the
worst-case relaxation time of any initial condition to stationarity.
We call this time the mixing time of the process, in generalization
of the classic memoryless case, where it is given by tmix ¼ mE� 1,
determined by the so-called spectral gap E ¼ � l140 (refs 6,36).
This quantity is related to the presence of bottlenecks (that is,
weak connections between groups of highly connected nodes,
a.k.a. network communities) in the network (via Cheeger’s
inequality48,49). It is approximated as

tmix � max mE� 1; mb; ttail
� �

: ð14Þ
This expression shows that the asymptotic dynamics of each
mode is determined by the competition between three factors: a
structural factor mE� 1ð Þ associated to the spectral properties of
the Laplacian of the underlying network and two temporal factors
associated to the shape of the waiting-time distribution, namely
its burstiness (mb) and its exponential tail (ttail). The slowest

(largest) of these factors dominates the asymptotic dynamics
(Fig. 1c).

We emphasize that the burstiness and the fat tail effects are
not necessarily related46. For instance, a power law
r(Dt)p(Dtþ 1)� 3 restricted to times DtrT (sharp cutoff), is
arbitrarily bursty but has no tail at all (ttail¼ 0) for large but finite
T. On the other hand, the delayed power law r(Dt)p(Dt�T)� 4

restricted to times DtZTþ 1 has a fat tail (it decreases
subexponentially, ttail¼N) but low burstiness b for large T, as
the mean time m increases without bound and the variance
remains constant. In the latter case, as for all pure power laws,
r(Dt)BDt� g for large Dt, the mixing time tmix, as ttail, is actually
infinite, reflecting that mixing or relaxation to stationarity occurs
only with subexponential convergence. In general, the properties
of the tail of the distribution depend on the high-order moments
of the distribution and not only on the first two moments as
captured in the coefficient of burstiness.

In Fig. 2, we study the mechanism dominating the mixing time
in toy synthetic temporal networks with different waiting-time
distributions. Not surprisingly, structure is the driving mechan-
ism when waiting times are narrowly distributed around a mean
value, as in the case of Dirac (discrete time, Fig. 2c) and Erlang
distributions (resembling a discrete-time distribution with small
fluctuations, Fig. 2d). For those, the slowdown factor
Y ¼ tmix= mE� 1ð Þ, comparing the exact mixing time (computed
with equation (18) in Methods), with what it would be with
memoryless waiting times mE� 1ð Þ, takes value in [0.6,1]. This
indicates a limited speed up of the mixing due to negative
burstiness, bo0, whereas the structure plays a major role through
E traversing orders of magnitude.

On the other hand, competition between structure and time
appears in scenarios of high temporal heterogeneity. For example,
only strong communities are able to dominate power-law waiting
times (Fig. 2e,f). The effect of structure on the mixing times is
otherwise removed as burstiness (Fig. 2e) or tail (Fig. 2f) becomes
the leading mechanism, scaling the mixing times up to 14-fold in
the shown configurations. The transitions between the different
mechanisms for a range of power-law configurations are
presented in Supplementary Fig. 1 and Supplementary Note 1.

Model reduction. The use of coarse-graining through time-scale
separation, which is the separate treatment of fast and slow
dynamics that coexist inside a system, is crucial to reduce the
complexity of systems made of a large number of interacting
entities50–52. This procedure is well known for differential
equations such as equation (2). In this case, it consists in
neglecting fast decaying modes, for example, with decay time less
than a certain threshold ttresh—an approximation invalid for early
times but acceptable for times significantly larger than ttresh. Only
the dominant modes, thus fewer variables, are left in the reduced
model. Decreasing the threshold time, one produces a full
hierarchy of increasingly more accurate models, but also with
increasingly more variables. Reduced models have a clear
interpretation from the structural point of view, as fast modes
typically correspond to the fast convergence of the probabilities of
the presence on nodes to a quasi-equilibrium within a network
community. This process is followed by a slow equilibration of
the population of random walkers trapped in each community to
a global equilibrium52–54. Each new reduced variable can
therefore be interpreted as the slow-varying probability of the
presence in each community, as if it had been collapsed into a
single node. The hierarchy of increasingly more accurate and
complex reduced models corresponds in this structural picture to
a hierarchy of increasingly finer partitions into communities.
Given that the decay times of the different modes in equation (2)
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correspond to the Laplacian eigenvalues, the k-community
partition is unsurprisingly found to be encoded into the k
dominant Laplacian eigenvectors, in a way that is decoded by
spectral clustering algorithms55,56.

This methodology can be extended to a more general temporal
operators D, where the successive decay times now depend on
the Laplacian eigenvalues and the temporal characteristics
following equation (13). However, the effect of temporality may

have non-trivial consequences, as it may limit the number of
reduced models. As an extreme scenario, let us consider a
complex network in which the transient dynamics is dominated
by the fat tail of the waiting-time distribution, such that all
transient modes decay for large times as e� t=ttail . Following
equation (8), the approach to stationarity is described by the
superposition of modes, all of the form fkðtÞe� t=ttail vk, for various
functions fk(t) that decay more slowly than exponentially, as for
example fkðtÞ / t� gk . Among those, any mode can only become
negligible with respect to another after a very long time. For all
practical purposes, the system exhibits an inherently complex
dynamics with no timescale separation, as the fine-scale structure
(the finest being at the level of a single node) and the large-scale
network communities have equal or similar impact on the
random walk dynamics. As a consequence, only two reduced
models are available, one in which all N modes are considered
and another described solely by the stationary state.

In general, only the Laplacian eigenvalues smaller in magnitude
than m/ttail determine corresponding decay times. Just similar to
that in classical memoryless case, they generate a hierarchy of
timescales and reduced models corresponding to multiple levels
of community structures. For instance, if five eigenvalues are
smaller than m/ttail, thus 0¼ l04l14?4l44� m/ttail, then
there is a reduced diffusion model capturing the movement of the
random walker between five aggregated nodes. The mixing,
internal to each community and decaying as e� t=ttail , is considered
instantaneous at large-enough timescales. Coarser aggregation,
for example, based on two communities and two eigenvalues l0,
l1, may be relevant, although valid only at even larger times.
However, aggregation based on any finer partitioning (other than
into one-node communities) has the same accuracy as the five-
community model and thus little practical value as a reduced
model. The degeneracy of characteristic decay times therefore
limits the number of useful reduced models. This implies that a
decomposition into communities is not necessarily associated to a
timescale separation, or a reduced model, of the dynamics. For
this reason, only models incorporating 1–5 or N-dominating
modes are adequate for this particular example. This smaller
choice of reduced models has ambivalent consequences. It limits
the set of resolutions at which to describe the dynamics, but also
provides a natural level for community structure (an open
problem in multi-scale community detection57–61), defined as the
finest partitioning yielding a reduced model for the system.

Numerical analysis. Equation (14) shows that the mixing time
depends in first approximation only on the mean, variance and tail
of the waiting-time distribution, whereas other properties of the
distribution are irrelevant. With numerical simulations, we validate
this approximation and provide some quantitative intuition on the
competition between the three factors regulating the mixing. We
construct synthetic temporal networks respecting our assumptions,
for example, stationarity or the absence of correlations and cali-
brate them with the static structure and the inter-contact time
distribution observed on a number of empirical data sets. The
empirical networks used for calibration correspond to face-to-face
interactions between visitors in a museum (SPM), between con-
ference attendees (SPC)13 and between hospital staff (SPH)16;
email communication within a university (EMA)10; sexual contacts
between sex workers and their clients (SEX)14; and communication
between members of a dating site (POK)12 (see Methods). On
these networks, we observe the waiting-time distribution and the
spectral gap, which allows to compute both the exact mixing time,
with equation (18) in Methods, and its approximation in
equation (14). The results, reported in Table 1, show a good
agreement, except for SPC, as analysed later in this section.
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Except for SEX42 and POK data sets, in the other cases the
temporal heterogeneity substantially increases the mixing times
(see slowdown factor Y in Table 1). Table 2 shows that in these
networks the dominant factor regulating the mixing time depends
on the characteristics of the system. Fat tails of the waiting-time
distribution drive the relaxation for the cases of face-to-face
contacts (SPM, SPC and SPH). However, the structure is the
leading mechanism behind the networks corresponding to other
situations of human communication (EMA, SEX and POK).

If communities are completely removed by randomizing the
network structure, the link sparsity of SEX and POK networks
guarantees that structure remains dominating, as the sparsity
results in the inevitable creation of bottlenecks for diffusion even
in a random network. On the other hand, in the EMA network,

which has a relatively dense connected structure, the absence of
communities leads to temporal dominance (Table 2). Finally,
when the contact times are uniformly distributed, we recover the
well-known result that network structure, with or without
communities (Table 2), is the main factor regulating the
convergence to stationarity.

As the raw empirical temporal networks do not necessarily
abide by our simplifying assumptions, one cannot validate our
theoretical derivations, for example, by estimating the mixing
time directly from simulations on empirical data. Indeed the
periodic rythms or correlations between successive jumps or
other temporal patterns may induce effects not captured by our
formula, as discussed in Supplementary Table 1 and
Supplementary Note 3.

Empirical data are collected during a finite time span T, leaving
the choice between a model for r(Dt) that is limited to T (sharp
cutoff) or extrapolated to infinite times with a tail decay (soft
cutoff). The latter may occur, for instance, if we have theoretical
or practical reasons to prefer a fat-tail-based model (for instance
power law) with exponential cutoff for r(Dt). This choice is of
little impact on the results, provided a sufficient observation
time T (Supplementary Note 2). When temporal patterns
trump structure, we have a self consistency condition
tmix � m E� 1þbð Þ � ttail (Table 2) for SPM and SPH,
expressing that both models lead to similar mixing times, albeit
through the different mechanisms of either burstiness (sharp) or
fat tail (soft). For SPC, self-consistency is not attained. This
happens possibly because the observation time of B2 days is not
sufficiently large to dilute the irregularity on the observed inter-
contact time distribution (thus, in the simulated waiting times)
induced by the inactivity during night periods. Consequently, this
makes the tail difficult to measure, as it has not clearly emerged
from a still transient behaviour, and a significant mismatch is
observed between exact and approximate mixing (Table 2).

We evaluate the possible sizes of reduced models for the data as
follows. As the eigenvalues lk of the Laplacian range between
0 and � 2, the number of modes with structurally determined
decay times (�m/ttailolkr0) can be roughly evaluated to
Nm/2ttail on an N-node network, if eigenvalues are evenly spaced.
A similar reasoning holds whenever burstiness dominates the tail
effect. This analysis reveals three different scenarios in the
structure-dominated data sets considered above: (i) SEX benefits
from a full hierarchy of reduced models, as m/2ttail41. (ii) The
dynamics on EMA can be approximated with just three modes,
associated to three network communities, as 0¼ l04l14l24�
m/ttail4l34y, while a more detailed description, unless at the
node level, would not gain any significant accuracy as further
modes are all degenerate with the same decay time m/ttail.
(iii) POK exhibits a practically full hierarchy of reduced models,
as around one third of its modes are determined by structure,
m/2ttail¼ 0.33; therefore, the finest reduced model is at a
few-node community level. This spectral analysis is comforted
by applying a multiscale community detection algorithm to
the empirical networks, which finds a partition into three
communities dominated by fat-tail effects for EMA, but not for
POK or SEX (Fig. 3).

Discussion
We have presented a unified mathematical framework to calculate
the relaxation time to equilibrium in a wide variety of stochastic
processes on networked temporal systems. Our formalism is able
to refer to arbitrary linear multi-agent complex systems, including
linearizations of non-linear dynamical models such as Kuramoto
oscillators or non-Laplacian diffusion dynamics such as Suscep-
tible-Infected-Recovered epidemics, as detailed in Methods. It is

Table 1 | Exact versus approximate mixing times.

SPM SPC SPH EMA SEX POK

Y 1.77 1.81 1.54 1.19 1.02 1.02
Exact mixing 54 205 671 718 7,887 29,347
Approximate Mixing 61 313 664 603 7,741 28,685
Relative Difference (%) 13.0 52.7 � 1.0 � 16 � 1.9 � 2.3

EMA, email communication within a university; SEX, sexual contacts between sex workers and
their clients; POK, communication between members of a dating site; SPC, face-to-face
interactions between conference attendees; SPH, face-to-face interactions between hospital
staff; SPM, face-to-face interactions between visitors in a museum.
The table shows that for six configurations of temporal networks, the slowdown factor
Y ¼ tmix= mE� 1

� �
, that is the ratio of the exact mixing time, calculated from equation (18) using

the simulated waiting-time distribution, to the mixing time we would have for the exponential
case (Poisson process, with same mean). The results indicate strong (SPM, SPC and SPH),
medium (EMA) and weak (SEX and POK) slowdown (Y41). The approximate mixing time,
computed with equation (14), shows a good agreement with the exact value.

Table 2 | Dominating mechanisms on temporal networks.
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EMA, email communication within a university; SEX, sexual contacts between sex workers and
their clients; POK, communication between members of a dating site; SPC, face-to-face
interactions between conference attendees; SPH, face-to-face interactions between hospital
staff; SPM, face-to-face interactions between visitors in a museum.
Here, a shows the regulating potential of each mechanism according to equation (14), either
structure mE� 1

� �
, burstiness (mb), or tail (ttail), for the synthetic networks based on the

empirical network structures and on the waiting times obtained by simulating a random walk on
these structures. Either structure (brown) or tail (yellow) dominates the mixing time, also when
structure or contact times are randomized independently (b–d).
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also possible to accommodate non-uniformity of parameters as
nodes are not identical in real systems. Our results are
particularly relevant to improve the understanding of temporal
networks, by highlighting the important interplay between
structure and the temporal statistics of the network. Our
formalism is different from previous studies of random walks
on temporal networks that focus on homogeneous temporal
patterns23 or do not account for the competition between
structure and time15. We emphasize that questions related to
ordering, not timing of events, such as the number of hops before
stationarity or the succession of nodes most probably traversed by
the walker, depend on the structure alone and not of hops timing
statistics. Moreover, key mechanisms have been left aside in our
modelling approach, such as the non-stationarity or periodicity of
most empirical networks19–21 and the existence of correlations
between edge activations, and therefore preferred pathways of
diffusion17,18,41. Important future work includes their
incorporation in our mathematical framework and the
identification of dominant mechanisms in empirical data.

We have shown that in the absence of some temporal
correlations, the characteristic times of the dynamics are
dominated either by temporal or by structural heterogeneities,
as those observed in real-life systems. The competing factors are
not only observed in different classes of networks modelled from
empirical data but also at different hierarchical levels of the same
network represented by its different scales of community

structure. We have also identified two contrasting metrics of
the statistics of waiting times, burstiness and fat tails. We have
shown that they regulate the dynamics on the network in
different ways. In systems where temporal patterns are the
dominating factor, the reduced models obtained by aggregation of
communities as commonly used in practice are not necessarily
relevant, as small-scale details are impenetrably intertwined with
large-scale structure to form a complex global dynamics. In
general, the temporal characteristics impose the natural descrip-
tion levels of the dynamics. Altogether, our results suggest the
need for a critical assessment of a complexity/accuracy trade-off
when modelling network dynamics. In some classes of real-world
systems, the burden of increased model complexity may not
compensate the incremental gain in knowledge, whereas other
systems require the fine network structure as a key ingredient to
any realistic modelling.

Methods
Overview. We provide a description of multi-agent linear dynamics, detail the
derivation of approximation (12) and its range of validity, illustrate the generality
of the framework beyond random walks and describe the empirical data and
numerical implementations. In the Supplementary Information, we discuss on
power laws and cut offs (Supplementary Note 1 and Supplementary Fig. 1), the
evaluation of waiting-time distributions in empirical data (Supplementary Note 2)
and the adequacy of our theoretical framework in empirical networks with cor-
relations and non-stationarity (Supplementary Note 3).

Linear multi-agent systems. We derive equation (1) for general linear-networked
systems, or multi-agent systems30, with an illustration on consensus dynamics.
Every node i is modelled by a linear agent whose internal state is initially zero, and
that converts an input signal ui with an operator Fi—the so-called transfer
function—into a state signal xi¼ Fiui. Here, ui represents a time trajectory ui(t) or
its Laplace transform ui(s), and similarly for the state trajectory xi. The transfer
function Fi is an operator mapping input trajectories ui to state trajectories xi,
which is requested to be linear, causal (if ui(t)¼ 0 for all toT, then the same holds
for xi(t)) and time invariant (shifting ui(t) in time results in shifting xi(t)). Under
those conditions, this operator takes the form xi(s)¼ Fi(s)ui(s), a simple product of
functions, in the Laplace domain.

When using Laplace transforms, it is customary to use time domain trajectories
that are zero for negative times. We account for the state initial condition xi(0)¼ xi,0

with another input term vi that can be, for example, an impulse exciting the rest
state to any desired initial condition at time zero. The agent dynamics therefore
writes xi(s)¼ Fi(s)(ui(s)þ vi(s)). For instance if Fi is the integration operator in
the time domain, xiðtÞ ¼ xi;0 þ

R t
0 uiðt0Þdt0 from the initial value at time 0, or

in other terms xiðtÞ ¼
R t

0 uiðt0Þ þ xi;0dðtÞt0dt0 (for the Dirac impulse d(t)), then in
the Laplace domain we find xi(s)¼ 1/s(ui(s)þ xi,0); in this case, the Laplace domain
operator is the multiplication by 1/s and vi is a Dirac impulse in the time domain, a
constant in the Laplace domain that encodes the initial condition. One can as well
invert the transfer operator, Di ¼ F � 1

i , and write dxi/dt¼ ui(t)þ xi,0d(t) or
sxi(s)¼ ui(s)þ xi,0; here, the Dirac impulse is seen as arising from differentiating the
discontinuous step of the state from rest to initial condition xi,0.

Connecting agents such that the input ui(t) of agent i is a weighted sum of other
agents’ states,

P
j Lijxj(t) leads to a global dynamics dx/dt¼ Lxþ x0d(t), or

equivalently sx(s)¼ Lx(s)þ x0, where L is the matrix of entries Lij, x is the vector of
states xi and x0 is the vector of initial conditions xi,0. When L is a Laplacian (rows
summing to zero, non-negative off-diagonal weights), this is a simple consensus
system where agents (for instance, robots or individuals) change their state (for
instance, position, opinion modelled as a real number) towards an average of their
neighbours’ states. With arbitrary interconnection weights and arbitrary transfer
functions, one similarly obtains

Dx ¼ Lxþ v ð15Þ
where D is the diagonal matrix of transfer functions F � 1

i (D reduces to a scalar in
case of identical agents Fi¼ Fj) and v the vector of initial condition input vi. The
case when L remains Laplacian, but D is arbitrary, describes general, higher-order
consensus systems where the agents converge to equal values on a strongly
connected network through arbitrarily complicated internal dynamics, for example,
modelling realistic robots or vehicles. For example, vehicles of mass m driven by a
force and friction will obey m€xþ a _x ¼ Lx. An abuse of notation allows to drop
implicitly the initial condition and write simply dx/dt¼ Lx and more generally
equation (1), Dx¼ Lx, instead of equation (15) above. Discrete-time systems are
recovered with a discrete-derivative operator Dx(t)¼ x(tþ 1)� x(t).

Exact and approximate characteristic times for random walkers. We derive the
approximate characteristic times (equation (12)) of decaying modes associated to a
general random walk. The dominant mode associated to l0¼ 0 is the stationary
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Figure 3 | Global mixing time versus mixing times in communities.

(a) Although the mixing time of diffusion on a network may be defined by

the community structure, diffusion in the communities themselves may be

regulated by structural or temporal patterns. (b) The original network

constructed from an empirical data set is divided into communities with a

multi-resolution community detection algorithm, for different values of the

resolution parameter (see Methods). For each partition, we identify the

fraction of communities with more than 10 nodes (y axis), where either

structure or tail dominates (according to equation (14)), and plot against

the number of communities detected at each partition (x axis). This

confirms our spectral analysis, which predicts a compact description of the

diffusion dynamics on EMA into three modes describing a probability flow

between three communities, each dominated by fat-tailed waiting times.

Also in agreement with the spectral viewpoint, this is not the case for SEX

or POK, unless at the level of a few-node communities.
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distribution, unique for an ergodic random walk. The relaxation time to the sta-
tionary distribution, generalizing the well-known mixing time of Markov chain
theory36, is the characteristic time of the slowest decaying mode after the stationary
mode, usually associated to l1, as we suppose here. An example of a case when l1 is
not associated to the mixing mode, but rather lN, is the discrete random walk,
where the distribution is a Dirac distribution at m, with zero variance, and the
network is bipartite or close to bipartite.

The characteristic decay time of a time-domain function f ðtÞ � e� t=tdecay can
be found in the Laplace domain, as f(s) is defined and analytic over all s of real part
larger than � 1/tdecay, but undefined or non-analytic in at least one point s of real
part� 1/tdecay. For example, the Laplace transform of e� t=tdecay is 1/(1þ tdecay s),
with pole at s¼ � 1/tdecay, and the Laplace transform of ðtþ 1Þ� ge� t=tdecay for
g41 is defined, but is non-analytic at s¼ � 1/tdecay.

The eigenfunction zk(t) associated to lk is the solution of
D(s)zk(s)¼ lkzk(s)þD(s)zk(t¼ 0)/s, derived in the text as equation (6), with
D(s)¼ 1/r(s)� 1 and L replaced with lk. The decay time of zk(t) is found if we find
the right-most non-analytic point of

zkðsÞ ¼
1

DðsÞ� lk

DðsÞ
s

zkðt ¼ 0Þ; ð16Þ

derived in the main text as equation (9). Note that for lka0, the singularity in s¼ 0
is only apparent as D(s)¼ms� (s2� m2)s2/2þy This expression is non-analytic
in s in exactly two circumstances: (i) D(s) is non-meromorphic in s, meaning that it
cannot be defined analytically in a punctured neighbourhood of s (a neighbourhood
of s� s) or (ii) D(s)¼ lk.

Case (i) happens when r(s) is non-meromorphic in s. A typical example is when
rðDtÞ / r0ðDtÞe�Dt=ttail , where r0(t) is a fat-tailed distribution, in other words
decreases more slowly than any exponential, leading to a non-meromorphic
transfer function—a rare occurrence in standard systems theory. The non-analytic
point is precisely s¼ � 1/ttail.

Case (ii) commands to solve the equation

rðsÞ ¼ 1= 1þ lkð Þ; ð17Þ
whose solution sk enters the expression for the exact characteristic decay time,
combining the two cases:

tk ¼ max � 1=sk; ttailð Þ; ð18Þ
which can be approximated from an expansion of r(s). It is noteworthy that
r(s)¼ 1� msþ (m2þs2)s2/2�? is also called the moment-generating function,
whose successive derivatives around s¼ 0 are the moments of the distribution, up
to sign. We consider the Padé (that is, rational) approximation:

rðsÞ � 2mþ s2 � m2ð Þs
2mþ s2 þ m2ð Þs ; ð19Þ

equivalent for small s to a second-order Taylor approximation in terms of accuracy.
This approximates the transfer function D� 1(s)¼ F(s)¼r(s)/(1� r(s)) as

FðsÞ � 1
ms
þb; ð20Þ

where the adimensional term b ¼ s2 �m2

2m2 takes its minimum value at � 1/2 for the
discrete-time random walk, zero for a memoryless process and arbitrary large
values for highly heterogeneous distributions. It is therefore a suitable measure of
the burstiness of the process41,47. Such a transfer function is called Proportional-
Integral, a common class in systems theory29. The equation D(s)¼ lk is
approximately solved by 1/skEm(|lk|� 1þ b). A possible non-analytic point at
s¼ � 1/ttail caps the characteristic decay time of eigenfunction k to

tk � max m lkj j� 1 þ b
� �

; ttail
� �

: ð12Þ

If lk
� 1 and b are of different orders of magnitude, one may further approximate as

tk � max m lkj j� 1 þmb
� �

; ttail
� �

: ð13Þ

in which the influence of the fat tail, the structure and the burstiness are decoupled.
The mixing time is associated with l1. Figure 4 shows that typically half of the
modes have structurally determined decay times, namely those with positive 1þ lk,
if eigenvalues are uniformly spaced between 0 and � 2, in apparent contradiction
with the back of the envelope calculation Nm/2ttail proposed in the main text, which
can reach N. This is a consequence of the progressive degradation of the Padé
approximation for larger s (larger eigenvalues).

Even for small eigenvalues, for example, for l1 ¼ � E, the approximation
(equation (12)), thus also equation (14), has a limited range of validity. The
underlying Padé approximation (equation (19)) is valid for small-enough s, while
for large-enough s the exact solution is ttail. The small s behaviour is captured by
the first and second moments, and the large s behaviour, in other terms the tail ttail,
determines the growth of high-order moments. This double approximation based
on high and low moments may explain why the approximation is successful on
diverse data sets (see Fig. 3a). However, it is likely to fail precisely when the
intermediate moments (third, fourth and so on), not covered by the
approximation, dominate the behaviour of the moment generating function r(s).
This occurs for instance in the case of a power law of exponent 43 with sharp
cutoff at a large time: although the first and second moment remain bounded and

the tail is absent, the intermediate moments grow without bound with the cutoff
time. However, such distributions are rarely used as models for real-life data. On
the other hand, numerical experiments showed excellent accuracy for a wide range
of power laws with soft cutoff.

Beyond random walks. Random walks are many times formally identical to the
asymptotic behaviour of non-linear dynamical models and also serve as a prototype
for a wider class of dynamics that includes epidemic spreading. For example,
power networks may be modelled as a network of second-order Kuramoto
oscillators33 whose state in every node is a phase (an angle) yi influenced by its
neighbours

I€yiþ a _yi ¼ oþ
X

j

Lijsin yj � yi
� �

; ð21Þ

where I is the inertia, a the friction and o describes the natural frequency of the
oscillation. In this construction, we assume identical parameters for each node.
After the change of variables fi¼ yi�ot/a, the linearization around the
synchronized equilibrium (fi¼fj is constant for all times) is written

ID€fiþ aD _fi ¼
X

j

LijDfj; ð22Þ

which is formally identical to a consensus equation structured by the Laplacian L33.
Hence, it supports the same formalism as random walks, after the operator D is
changed accordingly. The linear dynamics associated to the asymptotic behaviour
is often a crucial first step in understanding the non-linear dynamics of the
network at some time scale.

Another class of dynamical systems where our results apply are linear dynamics
given by equation (1), but where the interaction matrix L does not have a Laplacian
structure and where the dominant eigenmode is not necessarily stationary. This is
the case, for instance, for epidemic processes where infected individuals diffuse on
a meta-population network, where nodes are large populations (cities and so on),
and the individuals may either reproduce (by contamination of a healthy
individual) or die (or recover). One classic model for this process is a multi-type
branching process. This is akin to a random walk whose number of walkers is not
preserved in time, as random events are not limited to hops but also death or split.
This kind of model also emerges as the linearization of classic compartmental
epidemic models such as Susceptible-Infected or Susceptible-Infected-Recovered62.
The waiting time between two consecutive events may also be described by an
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Figure 4 | The exact and approximate characteristic times of a

waiting-time probability distribution. Computation of the characteristic

time of the distribution rðsÞ / r0ðtÞe� t=ttail (blue curve) with a fat-tailed r0

and a non-analytic point at s¼ � 1/ttail. The exact characteristic decay

times tk are found from the eigenvalues and the blue curve, following

equation (18). In this example, only three modes, including the stationary,

are influenced by the structure of the network, whereas the other modes

collapse to a single decay time ttail. The dynamics can thus be

approximated by three modes, typically describing aggregate probability

flows between three network communities. The approximate solution

equation (12) follows the red curve, constructed from the Padé approximant

rapprox, see equation (19). As eigenvalues lk change from 0 to � 2, the

values 1/(1þ lk) can take any real value 41 or o� 1.
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arbitrary distribution r(Dt). The expected number of walkers in time may again be
described by an equation Dx¼ Lx, where D depends on r in the same way as
before, but now L is no more a Laplacian and in particular may have negative and
positive eigenvalues. If the epidemics is supercritical, then the system is unstable.
This implies the existence of unstable eigenmodes (lk40) where the number of
walkers grow exponentially as et=tk , with tk now approximated by m � l� 1

k � b
� �

.
In this case, the fat tail of the waiting-time distribution does not play any role for
the unstable eigenmodes. From this formula, we see that although the decay of
stable eigenmodes tends to slow down due to burstiness and possibly fat tail, the
unstable eigenmodes are boosted by burstiness. As a consequence, it leads in all
eigenmodes to a long-term increase of the infected population due to the temporal
heterogeneity.

Numerical analysis. We use six data sets of empirical networks: SPM, SPC13 and
SPH16; EMA10; SEX14; and POK12 (see Table 3).

The synthetic networks used in Fig. 2 are formed by 1,000 nodes and 10,000
links equally divided into two groups, initially disconnected (rewiring probability
equal to zero). Within each group, pairs of nodes are formed between uniformly
chosen nodes. A fraction of links are rewired to weaken communities. Rewiring
consists of uniformly choosing two pairs of nodes and swapping the pairs. Rewiring
probability equal to 1 removes any significant community structure from the
network. Communities refer to groups of nodes with more connections between
themselves than with nodes at other groups. The spectral gap is calculated for each
network configuration. The exemplified waiting-time distribution are
r(Dt)¼ exp(�Dt/m)/m with m¼ 1 (exponential); ¼ 1.0 (discrete); pDtk� 1

exp(� kDt/m) with k¼ 3 and m¼ 3 (Erlang law); pDt� g with g¼ 2 and cutoff at
T¼ 1,000 (power law with sharp cutoff); pDt� gexp(�Dt/ttail) with g¼ 3 and
ttail¼ 20 (power law with soft cutoff).

The synthetic temporal networks used in Table 2 and Fig. 3 are constructed by
using the unweighted version of the empirical networks as underlying fixed
structures. The randomized networks used in Table 2 are obtained by uniformly
selecting two pairs of nodes of the original network and then swapping the
respective contacts. In the dynamic network, a node and its links alternate between
inactive and active states. To fit this synthetic temporal network to our theoretical
assumptions, we assume that all links of a node are activated simultaneously, the
system is time invariant (no daily or weekly cycles), exhibits no temporal
correlations between successive jumps and node-activation times are sampled from
the same distribution of interactivation times (node homogeneity). The active state
of a node and its links lasts for one time step dt, and then the node and links return
to the inactive state. The distribution of interactivation times (a.k.a. inter-contact
times) corresponding to the original times is obtained by pooling the times between
two subsequent activations of the same node, in other words two consecutive
contacts established between the node and its neighbourhood, as observed in the
empirical networks20,42. The randomized times in Table 2 correspond to activation
times sampled from exponential distributions with the same mean as the
corresponding empirical cases. To obtain the waiting-time estimates presented in
Table 2, we simulate a random walk in these synthetic networks. A random walker
starts in a randomly chosen node. As time goes by, a walker remains in the node
until its new activation and then hops to a uniformly chosen neighbour. The
waiting time is thus the time elapsed between the arrival and departure of the
walker in a node. We simulate a single random walker and let it hop 300,000 times,
starting at 10 uniformly chosen nodes; hence, we collect a total of 3 million points
for the statistics of waiting times. Besides that, for each starting configuration we
discard the initial 5,000 hops to remove the stochastic transient. The waiting-time
distribution observed in the simulations provides us with estimates of tmix, m, s2

and ttail. The mixing time tmix is estimated from the distribution expressed
in the Laplace domain through equation (18) (for k¼ 1, the mixing mode). This
equation is exact, as the synthetic data has been constructed so as to satisfy the
conditions of validity under which it is proved. One could also estimate the mixing
time from the convergence of random trajectories starting in a definite node
towards stationarity; however, this exercise is computationally demanding. The
exponential tail decay time ttail is estimated using least-square fitting by a line in a
lin-log plot of the second half of the waiting-time distribution data, thus between
Tmax/2 and Tmax, where Tmax is the largest observed waiting time. Indeed, an
exponential decay translates into a straight line in a lin-log plot, the slope of which
determines the decay time. The choice of the interval [Tmax/2, Tmax] to perform a
linear fit is steered by the want for a simple criterion uniform across data sets. This
may be inappropriate for data sets where the observation time forces a cutoff on the
data sets before the tail decay has had time to emerge, for instance in SPC, where a
more careful definition of tail, for example, on a smaller interval, may be more
adequate.

Let us interpret some elementary observations that can be made on Table 2.
From (a) to (b), ttail is only approximately preserved, because it is recomputed from
the simulated waiting-time distribution on a different network, thus a slightly
different distribution, even though the inter-contact times are sampled from the
same distribution in both panels. In (c) and (d), the inter-contact time distribution
is memoryless (exponential), thus identical to the waiting-time distribution
regardless of the network, and ttail coincides with m. From (a) to (c), the quantity
mE� 1 drops sharply, although E is clearly preserved as the network is unaltered. The
reason is that although the mean inter-contact time is preserved by construction,

the mean waiting time also depends on the variance of the inter-contact times, in
virtue of the bus paradox, and this variance is clearly strongly affected by the time
randomization. The drop in mE� 1 from (b) to (d) is associated to the same
mechanism.

To identify the community structure of the empirical networks in Fig. 3, we use
the partition stability method54 using a freely available implementation63. The
method uses a simple diffusion process such that different communities are
detected at different time scales according to the potential of the communities to
trap the diffusion at the given time scale. Optimal communities have been derived
for values of the resolution parameter decreasing from 102,101.95,101.9,101.85,y,
with increasingly fine partitions. After identifying the relevant communities, we
discard the inter-community links and calculate the spectral gap of each individual
community of at least ten nodes.
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