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Sampling of temporal networks: Methods and biases
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Temporal networks have been increasingly used to model a diversity of systems that evolve in time; for
example, human contact structures over which dynamic processes such as epidemics take place. A fundamental
aspect of real-life networks is that they are sampled within temporal and spatial frames. Furthermore, one might
wish to subsample networks to reduce their size for better visualization or to perform computationally intensive
simulations. The sampling method may affect the network structure and thus caution is necessary to generalize
results based on samples. In this paper, we study four sampling strategies applied to a variety of real-life temporal
networks. We quantify the biases generated by each sampling strategy on a number of relevant statistics such as
link activity, temporal paths and epidemic spread. We find that some biases are common in a variety of networks
and statistics, but one strategy, uniform sampling of nodes, shows improved performance in most scenarios. Given
the particularities of temporal network data and the variety of network structures, we recommend that the choice
of sampling methods be problem oriented to minimize the potential biases for the specific research questions
on hand. Our results help researchers to better design network data collection protocols and to understand the
limitations of sampled temporal network data.
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I. INTRODUCTION

Networks have been used to model the interactions and
interdependencies between the parts of a system [1]. Social
and sexual contacts, flights between airports, email and phone
communication, or gene regulatory networks are just a few
examples of systems that can be conveniently mapped into
networks [1,2]. When modeling real systems as networks,
researchers sample data by extracting the relevant information
within a given temporal and spatial frame [3], trace-routing or
snowballing from one or multiple sources [4,5], or simply by
collecting all network-related information of a specific system,
for example, email exchanges within a university or social
interactions on a web community [2,6]. Sampling network
data involves at least four main decisions: the choice of (i) the
total observation, or sampling, time (e.g., 1 day or 1 year);
(ii) which nodes and (iii) links will be observed (e.g., all or a
fraction); and (iv) the temporal resolution, i.e., the time interval
in which data are recorded. If the temporal resolution is smaller
than the total observation time, then several interaction events
between the same pair of nodes may be recorded and filtering
strategies may be used to remove weak links [7].

Network modeling may involve the traditional framework
of static networks or extensions such as temporal networks [8].
In temporal networks, nodes and links are active at given times
in contrast to static networks where nodes and links remain ac-
tive during the whole period. Temporal networks thus describe
more realistically the temporal paths through which informa-
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tion (e.g., through email communication [9]), infections (e.g.,
over sexual contacts [10]), or resources (e.g., via flights [11])
can propagate or flow. In this temporal perspective, the order
and frequency of node and link activations directly affect the
dynamics of simulated epidemics [12–17] and information
spread [18–21], mixing properties of random walks [16,22–
24], and synchronization [25–27] on networks. Although some
level of recording error is acceptable, accurate labeling of the
interaction events is important to study, for example, simulated
infections on real-life temporal networks [28,29].

Another challenge that comes with the study of real-life
temporal networks is the amount of generated data since all
timings of link activation are stored. This is in contrast to
static networks in which activation events are aggregated and
multiple activations of the same link are then represented as
single weights [30], saving computer memory. The memory
cost is particularly problematic when handling big data or
when designing studies to collect social interactions using
electronic devices such as radio-frequency identification tags
[31,32] and mobile phones [33]. In both cases, researchers aim
to collect as much relevant data as possible while optimizing
resources. Furthermore, several algorithms used to extract
information or to simulate dynamic processes on networks
struggle to deal with large temporal networks, becoming
computationally intractable [34–38]. Facing these challenges,
the natural question that emerges is what data should be
collected and used in network studies.

The four sampling decisions mentioned above are
more critical for the study of temporal networks than for
static networks. These decisions are, however, mostly case
dependent, meaning that in particular contexts, one or another
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factor may weight more, or less, when designing the sampling
protocol. For example, the total observation time might
affect birth and death statistics of nodes and links and add
artificial cutoffs to interevent times since interaction events
might be truncated. Similarly, the temporal resolution acts
like a filter since only temporal patterns of node and link
activity at time scales above the resolution are observable.
A typical example is to use a resolution of 1 day to collect
data on email communication; this choice would miss the rich
dynamic communication patterns happening within a day.
The sampling of nodes and links are expected to have at least
the same effect as on static networks [5,6] with the aggravated
consequence that missing nodes and links would also affect
the temporal patterns of the neighboring nodes.

When sampling temporal network data, one wishes to
collect as much information as possible such that both short-
and long-term temporal patterns can be observed [39]. Yet
the amount of information should be manageable by existing
algorithms. In this paper, we study the impact of four sampling
design decisions, or strategies, on key temporal network
variables applied to various categories of real-life temporal
networks. In particular, we will study how the choice of the
observation time, the temporal resolution, and the number of
sampled nodes and events affect the statistics of the lifetime
and burstiness of links, the number and length of temporal
paths between nodes, and the number of secondary infections
and outbreak size of simulated epidemics. The choice of
statistics and data sets is not exhaustive and indeed several
other options are possible. We focus on statistics that are
typically used to characterize temporal activity, paths, and
spreading processes and on data sets that are relevant to
study human dynamics, particularly epidemic and information
spread, in different contexts.

II. MATERIALS AND METHODS

A. Temporal networks

For a given time period T , a temporal network of size N is
defined as a set of nodes i connected by a set E of links (i,j ), in
which events occur at times t [8]. M represents the sum of the
number of events in each link for all links. The temporal resolu-
tion δ characterizes the size of the time interval (or snapshot)
in which the network data are collected; therefore, an event
occurring at time t actually means that the event occurred in the
time interval [t,t + δ). The statistics of the sampled networks
will be represented by the subscript s, for example, Ns and Ms

represent the number of nodes and of events, respectively.

B. Network data

We will use six network data sets corresponding to different
contexts in which temporal networks are relevant. We have
chosen networks with different topological and temporal
structures. The first data set corresponds to sexual contacts
between sex-workers and their clients (SEX) [14,40]; the
second is about online communication between users of a
web-community related to movies (FOR) [41]; the third is
about email communication within a university (EMA) [9];
the fourth is about online communication between students
in an online social network (COL) [42]; the fifth is about

TABLE I. Summary statistics of the original temporal networks.
Number of nodes (N ), number of events (M), temporal resolution
(δ), and observation time (T ).

N M δ T

SEX 11 416 33 508 1 d 1000 d
FOR 7084 625 435 1 d 3142 d
EMA 3186 234 412 1 h 1959 h
COL 1899 37 178 1 h 4649 h
HSC 310 47 338 20 s 32 360 s
GAL 204 6709 20 s 29 000 s

face-to-face proximity contacts (�1.5 m) between high-school
students (HSC) [43]; the sixth is also about proximity contacts
but between visitors of a museum exposition (GAL) [44] (see
Table I). Links are undirected and only a single event may
occur in a time window [t,t + δ) for a given link, i.e., events
are unweighted.

C. Sampling methods

Sampling consists in making a number of observations or
selecting a set of individuals to estimate properties of the
target population. In the context of networks, sampling means
selecting a number of nodes and links of a system within
temporal and spatial frames to build the network of interest.
In this paper, we will take network data sets available in the
literature as reference populations. We will then study the
consequences, on the network structures and on dynamics
on the networks, of applying different sampling strategies on
these populations. Effectively, we will subsample the original
empirical network and then discuss the biased estimates of
each sample, that is, the difference in the estimates given
by the sampled and the original networks. This subsampling
approach is widely used in statistics (see, e.g., subsampling
bootstrap [45]) and other disciplines (see, e.g., Refs. [5,6]).

We will study the effect of four sampling strategies (Fig. 1):
(i) to reduce the observation time Ts , where Ts � T and [0,Ts]
is the sampling time in which the network data are collected
(strategy TS); (ii) to uniformly select a fraction Ns/N of
nodes of the original network and thus all events between
the sampled nodes (strategy NS); (iii) to uniformly select a
fraction Ms/M of events of the original network and thus all
nodes connected by these events (strategy ES)—note that this
protocol is used, instead of selecting links (and consequently
all events associated to that particular link), because of higher
flexibility and because one can design “on-line sampling,” that
is, collect events as they happen in time; and (iv) to reduce
the resolution by setting δs a multiple of δ of the original
network (strategy RS). Note that repeated same-link events in
the interval [t,t + δs) are merged into a single event.

D. Validation measures

To compare the effects of the four sampling strategies, we
will estimate six measures, or statistics, on each sample s of the
original networks. For strategies NS and ES, we will present
average values calculated over five random network samples.
Two measures are related to the timings of events, two to the
temporal paths and two to the dynamics on the network. These
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FIG. 1. All panels show a timeline representation of a temporal
network where one horizontal line represents a node and there is a
vertical line connecting two nodes if they interact at a particular time
(i.e., an event). Sampled nodes and sampled events are highlighted for
each strategy. In (a), we obtain a new temporal network by truncating
the observation time to Ts . In this example Ts = 3, and therefore all
nodes and events in 1 � t � 3 are collected. In (b), we uniformly
choose nodes in 1 � t � T . In this example, nodes B, C, and E are
sampled, and therefore only the events between these particular nodes
are collected. In (c), we uniformly choose events in 1 � t � T . In
this example, the events (A,B) at t = 2, (B,D) at t = 3, and (A,B) at
t = 6 are sampled. In (d), we coarse-grain the temporal network in
the interval 1 � t � T by letting an event represent the presence of
at least one event at that link during δs . In this example, we change
the resolution from δ = 1 to δs = 2, and therefore we only record
interaction events at times 1, 3, and 5, and events are merged if they
repeat [e.g., original events at t = 1 and t = 2 at link (A,B) become
a single event at t = 1].

measures do not fully characterize time-evolving networks; we
choose, however, well-established and well-known measures
that are of relevance to study epidemic spread and information
flow on evolving networks.

The first measure is the burstiness Bs of the link activity
[46]. This measure is widely used to characterize temporal
patterns on temporal networks. The burstiness depends on
the mean m and standard deviation σ of the distribution of
same-link interevent times (the interevent time is the time
between two subsequent same-link activations) and measures
the deviation of the link activity from a Poisson process.
Considering the distribution of interevent times of all links
collected together, the burstiness is given by

Bs = σ − m

σ + m
. (1)

The second measure is related to the lifetime Lij (or
persistence [47]) of links, that is, the time between the first

event, tfirst
ij , and last event, t last

ij , on the link (i,j ). The link
lifetime can be used as a proxy for the real lifetime of contacts
[48]. We measure the average lifetime Ls over all Ks links
in which Lij > 0 (i.e., there are at least two events in the
link) to summarize the lifetime of the links in the sampled
network, i.e.,

Ls = 1

Ks

∑
(i,j )∈Es,Lij >0

(
t last
ij − tfirst

ij

)
. (2)

The third and fourth measures are related to temporal
paths. Temporal paths are particularly relevant in the context
of temporal networks because they combine topological and
temporal information. They emphasize the role of the timings
of events in the connectivity of a node. For example, two nodes
may be topologically close (e.g., directly connected by a link)
but one may need to wait a long time for this link to be active
(i.e., for an interaction event to happen). On the other hand, a
more topologically distant pair of nodes (e.g., two links away)
may be reached quickly if the interaction events are temporally
close. We assume here that, within a time step, a node can only
be reached by another node through a direct link. For example,
there are no paths connecting nodes A and C if the events (A,B)
and (B,C) occur at the same time. An alternative assumption
could define a path between A and C in this example [49].

The third measure is the reachability ratio fs [50]. It is the
fraction of pairs of nodes that have at least one temporal path
between them and is defined by

fs = 1

Ns(Ns − 1)

Ns∑
i,j=1

1(τij ), (3)

where

1(τij ) =
{

1 if τij exists,

0 otherwise.

It can happen that τij is finite, whereas τji is infinite or vice
versa.

The fourth measure is related to the time distance between
nodes in the network [34,50,51]. The time distance τij is here
defined as the time necessary to reach node j from the first
appearance (i.e., birth) of node i through the shortest temporal
path connecting i and j . If there is no path between nodes i

and j , then we set τij → ∞ [51]. We then set

θs = 1

Ns(Ns − 1)

Ns∑
i,j=1

1

τij

(4)

to summarize τij over the links. Note that τij → ∞ contributes
zero to the sum in Eq. (3) and that both the shortest path from
i to j and that from j to i appear in Eq. (3) because τij is
not equal to τji in general. This measure is normalized by
Ns(Ns − 1), which gives the total number of possible paths
between any two pairs of nodes if all links occur at the same
time [49].

For the fifth and sixth measures, we model a susceptible-
infected-recovered (SIR) epidemics on the temporal network.
In the SIR model, a node can be susceptible (S), infected (I),
or recovered (R). Infected nodes can infect susceptible nodes
with probability β and recover with probability μ in a time
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step. For strategy RS, to account for the change in the
resolution δs (and, consequently, in the contact rate), we
rescale the parameters to β/δs and μ/δs . Rescaling these
parameters effectively conserves the contact rate because we
assume the events are unweighted; without the rescaling, the
infection and recovery probabilities would be overestimated
for δs > δ. We start by infecting a single node and leaving
all others susceptible. Under the so-called individual-based
approximation [37], the dynamics of the probability that node
i is infected at time t is given by

Si(t) =Si(t − 1)
∏

j∈Ns i (t)

φj (t), (5)

Ii(t) = Ii(t−1) + Si(t − 1)

⎡
⎣1−

∏
j∈Ns i (t)

φj (t)

⎤
⎦−μIi(t − 1),

(6)

Ri(t) =1 − Si(t) − Ii(t), (7)

where Ns i(t) is the set of neighbors of node i at time t , φj (t) =
1 − (1 − μ)βIj (t − 1) if there is an event between nodes i and
j at time t , and φj (t) = 1 otherwise.

We then measure the average number of secondary infec-
tions Reff

s and the average final outbreak size �s caused by a
single infected node at time 0 for each sampled network [37].
Reff

s is thought to indicate the propensity of an outbreak to
become pandemic [52]. The value of �s is not linearly related
to Reff

s although a larger �s is expected for larger Reff
s [53].

Under the individual-based approximation, we obtain

Reff
s = 1

Ns

Ns∑
i=1

⎡
⎣ Ts∑

t=1

[1 − φi(t)]
∑

j∈Ns i (t)

Sj (t − 1)

⎤
⎦ (8)

and

�s = 1

Ns

Ns∑
i=1

[Ii(Ts) + Ri(Ts)]. (9)

III. RESULTS

A. Network size

Different sampling strategies have a different impact on
the number of nodes and events in the sampled networks
[Figs. 2(a) and 2(b)]. Reducing the temporal resolution δs

(strategy RS) has no effect on the number of nodes (Ns) but
monotonically decreases the number of events (Ms). This
happens because some events repeat at subsequent times.
If there is little repetition, reducing the temporal resolution
will only slightly decrease the number of events. In the SEX
network (δ = 1 day), for example, setting δs = 63 days only
reduces the number of events by 8.87% [Figs. 2(a) and 2(c)].
This is the reason for the short dashed curve in Fig. 2(a).
In contrast, setting δs = 55 h in the EMA network (δ = 1 h)
reduces the number of events by about 40% [Figs. 2(b) and
2(c)]. The high turnover of nodes (i.e., shorter lifetimes in
comparison to the observation time in the original network)
in the SEX network explains why the number of nodes falls
more substantially in this case than in the EMA network if

FIG. 2. The fraction of nodes (Ns/N ) and events (Ms/M) after
sampling the original networks using each of the sampling strategies
for the (a) SEX and (b) EMA networks. In (c), we show the fraction of
events (Ms/M) for a given temporal resolution (δs). In (d), we show
the fraction of events (Ms/M) for a given observation time (Ts).
Vertical bars for strategies NS and ES correspond to the standard
deviation that is only visible if larger than the thickness of the curves.

we reduce Ts (strategy TS). For example, a reduction of about
43% in Ts results in about 37% less nodes in the SEX network
[Fig. 2(a)]. For the EMA network, however, the reduction of
48% in Ts implies on only 9.8% less nodes [Fig. 2(b)]. The
same reduction in Ts by half results in approximately half the
events in both cases [Fig. 2(d)].

The uniform sampling of events (strategy ES) has less
impact on the number of nodes than the uniform sampling
of nodes (strategy NS) if we control for the number of events
[Figs. 2(a) and 2(b)]. This happens because a node typically
has more than one event with the same or with different
neighbors. In strategy ES, highly connected nodes are selected
often (proportionally to the number of events [54]) and thus
sampled nodes might repeat, decreasing the final number of
nodes in the sample. In strategy NS, on the other hand, the
selection of nodes brings all their events (to other sampled
nodes), implying that fewer nodes are selected (in comparison
to strategy ES) for the same number of events.

In the following analyses, we will present the results for
COL, FOR, HSC, and GAL using two configurations (A and
B) for each strategy. Each configuration corresponds to a fixed
number of events Ms . Ms was based on an arbitrarily chosen
resolution. That is, we set a resolution δs and took the number
of events of this sample as reference to be used in the other
sampling strategies. For the COL data set, A corresponds to
a fraction of 62% (δs = 48 h) and B to a fraction of 77%
(δs = 12 h) of the events of the original network. For the FOR
data set, we have, respectively, 56% (δs = 24 h) and 74%
(δs = 6 hours), for HSC, 54% (δs = 60 s) and 68% (δs = 40 s),
and for the GAL data set, we have 57% (δs = 60 s) and 70%
(δs = 40 s).
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FIG. 3. The burstiness (Bs) of link activity (events) after sampling
the original network using each of the sampling strategies for the (a)
SEX and (b) EMA networks. The estimation of Bs for the COL, FOR,
HSC, and GAL networks with configurations (c) A and (d) B (see
Sec. III A). Dashed horizontal lines correspond to the results for the
original networks. Vertical bars for strategies NS and ES correspond
to the standard deviation that is only visible if larger than the thickness
of the curves.

B. Timings of events

We have found that uniformly sampling nodes (strategy
NS) seems to be the best strategy to conserve the burstiness.
The value of Bs is robust in both SEX and EMA data sets even
when only half of the events are sampled [Figs. 3(a) and 3(b)].
The fact that the number of sampled nodes (by strategy NS)
has little impact on the estimation of the burstiness suggests
that all nodes follow similar interevent times distributions [i.e.,
a few nodes are sufficient for an accurate estimation, Figs. 2(a)
and 2(b)]. On the other hand, increasing δs (strategy RS) has a
significant negative effect on Bs . The resolution affects the dis-
tribution of interevent times since increasing δs filters out short
interevent times and reduces the long interevent times, making
the signal move towards more regularity (with larger mean and
standard deviation). Strategies ES and TS also generate biases,
which are considerably smaller than biases given by strategy
RS. For different reasons, strategies ES and TS also affect
the distribution of interevent times but to a lesser extent than
strategy RS. Strategy ES misses a few events and thus increases
the average (and standard deviation of the) interevent times.
In contrast, strategy TS skips events that could generate long
interevent times since the observation time is truncated and
thus generates smaller means and standard deviations. Similar
results are observed for the other data sets [Figs. 3(c) and 3(d)].

Strategies NS and ES generally give good estimations of the
average lifetime of links Ls for all data sets [Figs. 4(a)–4(d)].
The uniform sampling of events or nodes decreases the lifetime
of some links but also sometimes does not sample any event of
a particular link (i.e., some links and nodes may not be sampled

FIG. 4. The average lifetime (Ls) of links after sampling the
original network using each of the sampling strategies for the (a) SEX
and (b) EMA networks. The estimation of Ls for the COL (×102 h),
FOR (×102 d), HSC (×104 s), and GAL (×103 s) networks with
configurations (c) A and (d) B. Dashed horizontal lines correspond
to the results for the original networks. Vertical bars for strategies NS
and ES correspond to the standard deviation.

at all). The smaller Ks possibly compensates the decrease in
the lifetimes such that the average Ls is little affected. Strategy
TS introduces cutoffs on the lifetimes of both links and nodes
since sampling is limited within the observation time [0,Ts].
Consequently, the lifetime is underestimated. The case of GAL
is special because visitors explore the museum in groups at al-
located times, meaning that links form and disappear before Ts

[Figs. 4(c) and 4(d)]. Finally, strategy RS tends to overestimate
Ls because increasing δs is equivalent to rounding down the
times of births and deaths. The rounding down leads to an
overall increase in the lifetime of links and a decrease in Ks

since links with a single event are not included in the average.

C. Temporal paths

The reachability, fs , changes substantially for the SEX
and HSC networks but not as much for the other networks
[Figs. 5(a)–5(d)]. For example, in the original SEX network
about 34% of the pairs of nodes were reachable in contrast to
about 94% in the EMA original network. After sampling, only
strategy RS decreases fs in the EMA network. However, the
difference with the original value is small, e.g., 6.4% in the
sampled EMA network containing about 50% of the original
events. This is considerably less than in the case of the SEX
network that shows a difference of 55.9% to the original value
for the same strategy RS [Figs. 5(a) and 5(b)]. The generally
observed low biases generated by strategies NS and ES result
from the redundancy of paths, i.e., the fact that there are
multiple paths connecting the same pairs of nodes at distinct
times. The absence of some events thus has little impact on
fs . The same redundancy is also observed for example in the
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FIG. 5. The fraction of temporal paths (fs) after sampling the
original network using each of the sampling strategies for the (a)
SEX and (b) EMA networks. The estimation of fs for the COL, FOR,
HSC, and GAL networks with configurations (c) A and (d) B. Dashed
horizontal lines correspond to the results for the original networks.
Vertical bars for strategies NS and ES correspond to the standard
deviation.

SEX network but at a lesser extent, possibly because of the
relatively smaller density of events in the SEX network in
comparison to the EMA network (see Table I). Furthermore,
the low observed biases of strategy TS (for most data sets)
indicate that the number of existing shortest paths decreases at
the same rate as the number of potential paths [Ns(Ns − 1)],
for smaller Ts . The biases observed for SEX and HSC data sets,
on the other hand, thus indicate that the new sampled nodes
(introduced in the sample for increasing Ts) do not result in the
same number of new paths as the number of potential paths
that could exist (i.e., fs decreases with increasing Ts).

Figures 6(a)–6(d) shows that the statistics of the duration of
the temporal paths between nodes, θs , changes for EMA, COL,
FOR, and GAL for strategy TS. For the SEX and HSC data
sets, this strategy generates very low biases. Although several
shortest temporal paths are formed before Ts , some only exist
if we increase Ts . Therefore, if we truncate the data to Ts , then
the summation term in θs may decrease. But since nodes are
also removed (i.e., lower Ns), the overall value of θs increases.
For the SEX and HSC data sets, the decrease in the summation
term is equivalent to the decrease in the number of potential
shortest paths [Ns(Ns − 1)]. On the other hand, strategy RS
results in considerably different values for the SEX, EMA,
COL, and FOR data sets. Strategy RS generates larger biases
than the other strategies because higher δs rounds down the
timings of events, collapsing many links to the same time
interval and thus removing several temporal paths between
nodes, that in turn results in smaller θs . Remember that in our
definition, only directly connected nodes have a temporal path
within the same time step. For the other two strategies (NS
and ES), uniform sampling of nodes or events increases, on

FIG. 6. The average of the inverse of the temporal distance (θs)
between any pair of nodes after sampling the original network using
each of the sampling strategies for the (a) SEX and (b) EMA networks.
The estimation of θs for the COL (×102 h), FOR (×102 d), HSC
(×103 s), and GAL (×103 s) networks with configurations (c) A

and (d) B. Dashed horizontal lines correspond to the results for the
original networks. Vertical bars for strategies NS and ES correspond
to the standard deviation.

average, the temporal distances between nodes. The higher θs

given by strategy NS, in comparison to strategy ES, is possibly
a result of a smaller Ns obtained by strategy NS in comparison
to the Ns obtained by strategy ES (see Fig. 2 for the SEX and
EMA data sets). The relatively smaller biases in the EMA data
set in comparison to the SEX data set are likely a result of
higher redundancy of paths in the EMA network, as discussed
in the previous paragraph.

D. Epidemic variables

We set β = 0.5 and μ = 0.001 to simulate a stochastic
epidemic process. These values were chosen because they
generate relatively large epidemic outbreaks in all original
networks, and thus facilitate the understanding and discussion
of the mechanisms regulating the epidemic process.

We first look at the average number of secondary infections,
Reff

s . Strategy TS results in a relatively small increase in Reff
s for

most data sets, whereas strategies NS and ES result in a small
decrease for all data sets [Figs. 7(a)–7(d)]. The estimations of
Reff

s given by the sampled networks indicate that the systems
remain above the epidemic threshold of Reff

s = 1 for this
particular set of parameters and that an epidemic outbreak will
likely occur. Since the value of Reff

s also indicates how difficult
is to avoid an epidemic outbreak, the estimations given by the
sampled networks generally suggest that an outbreak might be
easier to control than indicated by the original network (i.e.,
Reff

s is closer to one in the sampled networks). The results
for strategy RS are substantially far from the value given by
the original network for the SEX, EMA, and COL data sets
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FIG. 7. The average number of secondary infections (Reff
s ) after

sampling the original network using each of the sampling strategies
for the (a) SEX and (b) EMA networks. The estimation of Reff

s for
the COL, FOR, HSC, and GAL networks with configurations (c) A

and (d) B. Dashed horizontal lines correspond to the results for the
original networks. Vertical bars for strategies NS and ES correspond
to the standard deviation.

but not for the FOR, HSC, and GAL data sets. The low biases
produced by strategies NS and ES across the different data sets
are explained by the fact that the infection process is temporally
finite. Many events do not actually contribute to the spread
of the infection given the stochastic nature of the process,
i.e., the absence of randomly selected interaction events has
a relatively little importance to avoid infection events. The
negative effect of the absence of interaction events is lower
for the EMA network in which events repeat more often than
in the SEX network. Therefore, the same neighbor has more
chances of being infected in subsequent times in EMA than
in the SEX network. This is related to the results observed
for θs (Fig. 5) and fs (Fig. 6), where a substantial absence of
events generated small biases for most networks. Strategy TS
also performs well because of the finite time of the infection
period that makes most infection events occur before Ts . If the
infection period is long (small μ) or the infection probability
is small, the biases given by strategy TS are expected to be
larger. Since the number of nodes is smaller in comparison to
the original networks, Reff

s becomes slightly overestimated by
strategy TS. On the other hand, strategy RS generates large
biases. Increasing δs alters the infection potential through
a particular event and extends the infection period because
of the rescaling of the infection and recovery probabilities,
respectively. For example, in the SEX data set, if δs = 7 days,
then the effective infection probability is βs = β/7 ∼ 0.07;
this infection probability is too low. Combined with the fact
that the number of events (of a single node to different
neighbors) at a given time step does not increase much for
increasing δs , very few neighbors may be infected by an
infectious node [Fig. 7(a)]. In the EMA network, on the other

FIG. 8. The average outbreak size (�s) after sampling the original
network using each of the sampling strategies for the (a) SEX and (b)
EMA networks. The estimation of �s for the COL, FOR, HSC, and
GAL networks with configurations (c) A and (d) B. Dashed horizontal
lines correspond to the results for the original networks. Vertical bars
for strategies NS and ES correspond to the standard deviation.

hand, there will be more events (connecting different nodes) at
a single time step and thus there is a higher chance of infecting
some neighbors. See also Fig. 2(c) for the correspondence
between Ms/M and δs for the SEX and EMA data sets.

Figures 8(a)–8(d) shows that the final outbreak size, �s , is
close to zero for strategy RS applied to the SEX network, to the
EMA network when approximately 65% (or less) of the events
are sampled, and to the COL network. For the other three
sampling strategies, �s is similar between the sampled and
original networks for most data sets but increasingly different
for smaller samples in the case of the SEX network. This is
again explained by the fact that events repeat over time (less
often in the SEX network). This repetition of events creates
redundancies of temporal paths. In the absence of several
events (by any of these three strategies), various potential
infection routes remain between the nodes, and the epidemic
may still grow. The biases should increase for smaller infection
probabilities since an infection event will be less likely through
a particular interaction event.

IV. CONCLUSIONS

Our analyses indicate that generally both measures related
to link activity are little affected by uniform sampling of
nodes. This strategy also had very good performance for
estimation of the statistics of temporal paths and epidemics
for all network data sets but the sexual contacts data set.
These results likely explain the high performance of recently
proposed methods to reconstruct temporal networks [55,56].
That is, the temporal patterns extracted from a small sample of
the temporal network are sufficient to generate larger temporal
networks with realistic temporal properties. However, more
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research is necessary to validate these methods on diverse
types of networks. Uniform sampling of events have also
performed well for most statistics on most data sets. Although
less efficient than uniform sampling of nodes, sampling of
events may be an option when continuously collecting network
data. For example, for a given number of nodes, at each time
step a fraction of links may be selected and stored as time
evolves (“on-line sampling”). This procedure is expected to
produce better samples than truncating the observation time.
In fact, truncating the observation time produced mixed results.
For some networks, this sampling strategy did not affect much
the statistics but for some other data sets, relatively high
biases are observed (e.g., for lifetime and for the temporal
distance). Although performing well in some cases, the
poorest performance was obtained when varying the temporal
resolution. In some networks, there are many repetitions of
events. Therefore, merging the events on the same link by
reducing the temporal resolution implies small changes in the
temporal network structure. On the other hand, if there are few
repetitions of events, then the network might look substantially
different at each temporal resolution, consequently affecting
the statistics. Using a different methodology, previous research
suggests that for a set of epidemiological parameters a high
temporal resolution might not be necessary to study simulated
epidemics in some systems [15]. However, to different extents,
the temporal resolution seems to affect the dynamics of
consensus and random walks in some systems [22,26]. The
statistics used in our study are extensive but do not capture all

the patterns observed in temporal networks. Recent research
has pointed out, for example, the importance of the correlations
in the ordering of events and how such correlations affect path-
based centrality measures in time-evolving networks [57].
Methods based on Markov chains and high-order networks
have been also proposed to capture multiple length scales
simultaneously and to identify the optimal number of layers in
those evolving networks [58].

In general, we have identified differences in the magnitude
of the biases on various statistics and real-life networks. Given
our results, we advice to avoid reducing much the temporal
resolution but instead, if possible, we recommend uniform
sampling of nodes to conserve several of the properties of tem-
poral networks. Given the complexity of temporal structures
and particularities of data sets, there is, however, no guarantee
that temporal-structural patterns will be conserved. The choice
of a sampling strategy thus depends on which network property
one wishes to study and should be considered for the specific
problem, context, and goals of the research. In general, there is
room for sampling design. In practice, it is likely to combine all
proposed sampling strategies in a data collection project. It is
difficult to predict the consequences of combining them since
positive bias by one strategy may compensate negative bias
by another strategy or biases may simply add up or multiply.
Nevertheless, our study of the effects of separately applying
each sampling strategy will likely improve data collection by
helping researchers to make informed decisions and question
the limitations of their own data sets.
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