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Abstract—Various dynamic reliability methods have been 
developed during the last several decades, such as Monte Carlo 
(MC) simulation, Dynamic Event Tree (DET) and Monte Carlo 
Dynamic Event Tree (MCDET) methods, to name a few. This 
paper benchmarks these particular methods by applying them 
to a classic level control dynamic system and to a realistic 
Emergency and Standby Power System (ESPS). The analysis is 
done with respect to different component aging dynamics and 
transition rate state dependences. Efficiency and 
computational cost are evaluated. The results show that: (1) 
the dynamic methods indeed are capable of capturing the 
effects of the dynamics in the process; (2) DET can model the 
possible accidental sequences, but at a large computational cost; 
(3) accurate modelling of sequences with low probabilities of 
occurrence can be achieved by the MCDET method. 

Keywords-Monte Carlo simulation; dynamic event tree; 
Monte Carlo dynamic event tree; dynamics reliability. 

I. INTRODUCTION 
Probabilistic Safety Assessment (PSA) is performed by 

regulatory bodies to check the compliance of nuclear power 
plant design with regulatory requirements, and by industry 
for the identification of key vulnerabilities, so that the impact 
of operational changes on the operating plants can be 
informed by risk quantification [1-3]. 

Traditional PSA methods are, for example, Fault Trees 
(FTs) and Event Trees (ETs), that describe each accident 
sequence as a combination of success and failure events, 
accounting for the contribution of each component. Such 
PSA tools are currently widely used, but some limitations are 
acknowledged: the conservative assumptions that are made 
for the sake of PSA modelling simplification may lead to 
conservative results that, however, still do not assure 
coverage of the uncertainty therein (e.g. because of 
imprecise description of component aging and maintenance, 
binary modelling of components behavior, i.e., only 
faulty/safe states are considered, and neglecting dynamics of 
the system, i.e., the effect of order and timing of failure 
events on the accident progression) [2, 4]. 

To overcome some of these the limitations, dynamic 
reliability methods have been developed [5], such as 
Dynamic Event Tree (DET) [6, 7], the Continuous 
Cell-to-Cell-Mapping Technique (CCCMT) [8], Monte 
Carlo (MC) simulation [9], Markov/CCMT [10], Monte 
Carlo Dynamic Event Tree (MCDET) [11, 12]. The methods 
of MC, DET and MCDET are the most popular ones.  

This paper analyzes critically these latter methods by 
applying them to a classic level control dynamic system of 
literature [13-15] and to a realistic Emergency and Standby 
Power System (ESPS) [16, 17] drawing some conclusions on 
their strengths (i.e., accuracy) and weaknesses (i.e., 
computational demand and model complexity) for practical 
application. 

The paper is organized as follows. The methods of MC, 
DET, MCDET are briefly recalled in Section 2. Section 3 
presents and discusses the results of the application of the 
methods to the level control dynamic system. The ESPS 
results are presented in Section 4. Finally, conclusions are 
given in Section 5. 

II. THE DYNAMIC RELIABILITY METHODS CONSIDERED 

A. Monte Carlo  
Monte Carlo (MC) simulation is a method that allows 

sampling the events that occur in an accident sequence from 
given probability distributions. For this, the MC simulation 
has two loops. The outer loop is iterated a number N of times 
equal to the number N of sequences to be simulated. This 
loop also allows for sampling values of process variables 
affected by epistemic uncertainty [13]. The inner loop allows 
sampling values of variables affected by aleatory uncertainty 
and simulates the occurrence of events along the sequence, 
up to the Mission Time ெܶ [13]. A flowchart of the inner 
loop of a MC simulation is shown in Fig. 1.  

Statistics of the N sequences simulated by MC, like the 
Failure Frequency (FF), Mean Time To Failure (MTTF), 
Mean Time To Repair (MTTF), Sensitivity Indexes (SI) can 
be estimated. 

B. Dynamic Event Tree 
A Dynamic Event Tree (DET) has a similar structure to 

its static counterpart, i.e. the ET, except that, in DET analysis, 
time is explicitly modelled so that the dynamic evolution of 
accidental sequences is modelled in a phenomenologically 
consistent manner [18]. A DET starts from an Initiating 
Event (IE) on the time axis and simulates the possible 
sequences which can develop from this IE, by branching at 
time points of the source branch of the tree. This allows for a 
wider and faster exploration of the failure domain of the 
system by simultaneously accounting for more than one 
sequence of events (contrary to what is done by MC 
simulation). There are two key issues to be addressed in 
DET construction: the selection of branching and stopping 
rules. The following rules are usually used in DET 
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construction: (1) new branches are originated at discrete time 
points if the probability of the system to stay in the original 
state (i.e. to continue on the source branch) is smaller than a 
pre-defined branching probability threshold; (2) only one 
component can fail at each branching node; (3) when the 
generated branch probability is smaller than a pre-defined 
value, the generated branch is truncated and, thus, neglected 
in the following analysis. A flowchart of DET is shown in 
Fig. 2. 

Sample the initial values of 
the variables  and set t = 0

Sample the system  
transition time t

t > Tm ?

Sample the transition of 
the system state

NO

End

YES

t = tj
NO

YES

 
Figure 1. The flowchart of the inner loop of MC simulation 

End

 t = t + t 

t > Tm ?

Set the IE and set t = 0 

Does  branch j satisfy the 
selected branching rules? 

Spoon new branches from branch 
j according to the selected 

branching rules 

YES

YES

NO

NO

 
Figure 2. The flowchart of DET 

C. Monte Carlo Dynamic Event Tree  
Monte Carlo Dynamic Event Tree (MCDET) is a method 

that combines MC sampling and DET [19]. It is aimed at 
achieving an even more realistic modelling of system 

dynamics in the framework of probabilistic safety analyses. 
In MCDET models, continuous and random uncertainties are 
handled by MC simulation, while discrete and random 
uncertainties are treated by DET [11]. Like MC simulation, 
MCDET has two loops. The outer loop is iterated a number 
N of times equal to the number N of DETs to be simulated. 
In the inner loop, each DET starts from an IE and branches at 
time points along time t, up to the Mission Time ெܶ, that are 
sampled according to the MC simulation. As in MC 
simulation, epistemic uncertainties can also be considered by 
sampling from their probability distributions in the outer 
loop. A flowchart of the inner loop of a MCDET is shown in 
Fig. 3. 

Sample the initial values of 
the variables and set t=0

Sample the system state 
transition time tj by MC 
for each  j-sequence of the 

DET

t > Tm ?

Develope the  sequence j 
of the DET 

NO

End

YES

 t = t + t t = tj

YES

NO

 
Figure 3. The flowchart of the inner loop of MCDET 

III. CASE STUDY 1: THE LEVEL CONTROL DYNAMIC 
SYSTEM 

A. Description of the System 
The system consists of two pumps and one valve that 

function so as to keep the fluid level of the tank within the 
interval [6, 8] m by a control system, as shown in Fig. 3. The 
scope is to keep the tank filled at a constant level h equal to 7 
m, by injecting and discharging water at a rate Q equal to 0.6 
m/h for pump 1 and the valve, respectively. In normal 
condition, pump 2 is in standby mode. In case the fluid 
exceeds any of the two thresholds of 6 m or 8 m, the 
components states are changed by the control system as 
shown in Table I, where the rules to keep the level under 
control are listed. If some components are failed, some 
transitions might not be allowed and the control of the level 
might be lost, because the fluid might reach either “dry-out” 
level of 4 m or “over-flow” level of 10 m. All the 
components can work in 4 possible states: safe-on and 
safe-off (i.e., normal condition), and stuck-on and stuck-off 
(i.e., failed condition). Different kinds of transition rates can 
be considered for describing the probabilities of transitions 
of these components among the possible states: constant and 
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independent on the system state (Table II) or increasing with 
time and dependent on the system state (Table III). These 
assumptions lead to considering different probabilistic 
models: static reliability methods in the former case, 
dynamic methods (MC, DET and MCDET) in the latter 
cases.  

10 m

8 m

6 m

4 m

Pump 1 Pump 2

Valve

 
Figure 4. Diagram of the level control dynamic system 

TABLE I. CONTROL RULES OF THE LEVEL CONTROL DYNAMIC SYSTEM 

 Pump 1 Pump 2 Valve  
Fuild level > 8 m Off  Off  On  
Fuild level < 6 m On On  Off  

TABLE II. FAILURE RATES FOR THE STATIC PSA ANALYSIS 

  ࢌࢌ࢕ࣅ  ࢔࢕ࣅ 

Pump 1 4.566 e-3 4.566 e-3 

Pump 2 5.714 e-3 5.714 e-3 

Valve 3.125 e-3 3.125 e-3 

B. Static PSA Analysis  
The failure rate λ of each component of the system is 

considered to be constant and independent on the system 
state, λ = ߣ௢௡ = ߣ௢௙௙  (See (Table II). Moreover, the 
probability that a component fails stuck-on/ stuck-off before 
time t is assumed equal to: 

(ݐ)௦௧௨௖௞ି௢௡݌  = (ݐ)௦௧௨௖௞ି௢௙௙݌  = ଵ
ଶ [1 −  (1)  [(ݐߣ−)݌ݔ݁

The reliability of each component at time t is assumed 
equal to: 

(ݐ)ܴ =  (2)                  (ݐߣ−)݌ݔ݁ 

The probability of the top event (“over-flow” and 
“dry-out”), under the rare event approximation, equals to: 

(ݐ)ܨ =  ∑ ∏ ௫್ ఢாೝ(ݐ)௕ݍ
௠
௥ୀଵ              (3) 

where: 
m is the number of Minimal Cut Sets (MCSs) causing 

the top event (“over-flow” and “dry-out”); 
௥ܧ  is the rth MCS causing the top event; 
 ;௥ܧ ௕ is the bth basic event in the rth MCSݔ
 is the probability of occurrence of the basic (ݐ)௕ݍ

event ݔ௕ before time t. 
Table III lists the m = 6 MCSs for the “over-flow” and 

“dry-out” top events. The probabilities of the top events to 
occur within ௠ܶ  = 30 h are 0.0110 and 0.000226 
respectively, and 0.4080 and 0.0836 for ௠ܶ = 500 h. The 
plots of F(t) are shown in Fig. 5.  

TABLE III. MINIMAL CUT SETS OF THE FAILURE OF THE LEVEL CONTROL 
DYNAMIC SYSTEM [15] 

Top event Minimal Cut Sets (MCSs) 

“over-flow” 
(5 MCSs) 

Pump1ୱ୲୳ୡ୩ ୭୬, Pump2ୱ୲୳ୡ୩ ୭୤୤, Valveୱ୲୳ୡ୩ ୭୤୤ 
Pump1ୱ୲୳ୡ୩ ୭୤୤ Pump2ୱ୲୳ୡ୩ ୭୬, Valveୱ୲୳ୡ୩ ୭୤୤ 

Pump1ୱୟ୤ୣ, Pump2ୱ୲୳ୡ୩ ୭୬, Valveୱ୲୳ୡ୩ ୭୤୤ 
Pump1ୱ୲୳ୡ୩ ୭୬, Pump2ୱୟ୤ୣ, Valveୱ୲୳ୡ୩ ୭୤୤ 

Pump1ୱ୲୳ୡ୩ ୭୬, Pump2ୱ୲୳ୡ୩ ୭୬ 
“dry-out” 
(1 MCS) Pump1ୱ୲୳ୡ୩ ୭୤୤, Pump2ୱ୲୳ୡ୩ ୭୤୤,  Valveୱ୲୳ୡ୩ ୭୬ 

 

 
Figure 5. Cumulative Distribution Function (CDF) for the top events 

“over-flow” and “dry-out” 

C. Dynamic PSA Analysis 
The demand of reality in modeling the behavior of 

components and systems calls for transition rates that 
account for aging (i.e., they increase with time) and that 
depend on the system state. For the impact of aging on the 
transition rates, we assume the following linear form [20]: 

(ݐ)ߣ = ଴ߣ  +  (4)                ݐ݇

where: 
 ,is the transition rate at time t (ݐ)ߣ
 ଴  is the design transition rate, (i.e. the valueߣ 

at time t = 0), 
k    is the aging factor  

The transition rates dependences on the system state are 
given in Table IV. 

Under these circumstances, we adopt dynamic methods 
for reliability modelling. To benchmark the different 
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methods and compare with the static method of section 3.2, 
four different cases are considered: 
1) no aging and no transition rates dependence on the 

system state  
2) slow aging and no transition rates dependence on the 

system state 
3) fast aging and no transition rates dependence on the 

system state 
4) no aging and transition rates dependence on the system 

state 
Control rules of the level control dynamic system listed 

in Table I hold for all the four above mentioned cases. For 
each case, MC, DET and MCDET models are constructed 

for ௠ܶ = 30 h. The time step Δt considered is set equal to 
0.1 h for MC and MCDET, whereas for the DET model, is 
set equal to 0.66 h. The DET branching probability threshold 
and truncation probability threshold, aimed at reducing the 
branching explosion, are set equal to 0.999 and 1 × 10ିଽ 
(i.e., branches with lower probability are neglected), 
respectively.  

All the dynamic models have been run on a single node 
of the super-computing center of the University of Science 
and Technology of China (USTC) (Intel Xeon E5620, 4 
CPU, 2.4GHz, 16GB) 

TABLE IV. TRANSITION RATES THAT DEPEND ON THE SYSTEM STATE 

 ࢔࢕ି࢑ࢉ࢛࢚࢙→ ࢔࢕ିࢋࢌࢇ࢙ࣅ ࢌࢌ࢕ି࢑ࢉ࢛࢚࢙→ ࢔࢕ିࢋࢌࢇ࢙ࣅ ࢔࢕ି࢑ࢉ࢛࢚࢙→ ࢌࢌ࢕ିࢋࢌࢇ࢙ࣅ ࢌࢌ࢕ି࢑ࢉ࢛࢚࢙→ ࢌࢌ࢕ିࢋࢌࢇ࢙ࣅ 

Pump 1 4.566 e-1 4.566 e-2 4.566 e-3 4.566 e-3 

Pump 2 5.714 e-3 5.714 e-3 5.714 e-1 5.714 e-2 

Valve  3.125 e-1 3.125 e-2 3.125 e-3 3.125 e-3 

 
D. Results and Discussions 

In Fig. 6, the plots of F(t) obtained with the static PSA 
analysis of Section 3.2 (continuous line) are compared with 
those of the dynamic PSA analysis of Section 3.3 (crosses, 
left and right triangles for DET, MC and MCDET, 
respectively), for the case of no aging and no transition rates 
dependence on the system state. It can be seen that the static 
PSA model overestimates both failure modes with respect to 
the dynamic models, at any time. This is mainly due to the 
assumption made with the static modelling, for which the 
system fails as soon as any of its MCS occurs; however, the 
real dynamics of the system does not imply the sudden 
system failure when a MCS occurs. For example if one 
pump fails stuck-on and the valve stuck-off at any time t, the 
system exceeds the level thresholds only several hours later 
due to the actual discharging/injecting rate Q of the pumps 
and valve, that is, instead, neglected in the static PSA model. 

On one hand, such assumption in static PSA causes the 
probabilities of the top events to be greater than the actual 
ones. On the other hand, the capability of dynamic 

probabilistic methods to properly account for the dynamics 
into the quantification become evident. 

Focusing on the dynamic methods, Fig. 6 (right) shows 
that the estimate provided by the MCDET is smoother than 
that provided by the MC simulation, because the former (by 
exploring simultaneously more than one branch of the 
possible developing scenarios) allows collecting more 
evidence of system failure than the latter with the same 
computational effort (as we shall see in what follows). 

The capability of dynamic methods to catch the aging 
effects is shown in Fig. 7 and Fig. 8 for ௠ܶ= 30 h and ௠ܶ= 
500 h, respectively. It can be seen that, at the early stage of 
the system life, the impact of the components aging on the 
result is negligible (crosses, left and right triangles are almost 
overlapped), because the change of the transition rates 
caused by the aging factors is limited (see Eq (4)). On the 
other hand, as long as the system degrades, the aging effect 
is predominant and the transition rates values increase, and 
the impact becomes considerable already after 100 hours for 
k = 1e-5 (left triangles). 

 

 
Figure 6. Cumulative Probability Distribution for “over-flow” (left) and “dry-out” (right) with ௠ܶ= 30 h and N = 100000, for the case of no aging and no 

transition rates dependence on the system state 
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Figure 7. Cumulative Probability Distribution for “over-flow” (left) and “dry-out” (right) with ௠ܶ= 30 h and N = 100000, for the case of aging and no 

transition rates dependence on the system state 

 
Figure 8. Cumulative Probability Distribution for “over-flow” (left) and “dry-out” (right) with ௠ܶ= 500 h and N = 10000, for the case of aging and no 

transition rates dependence on the system state 

The capability of dynamic methods to catch the 
dependence of the components transition rates on the system 
state (Table III and case 4) is shown in Fig. 9 and Fig. 10. It 
can be seen that the probability of the system failure in the 
early stage is much larger than the ones shown in Fig. 6, 
especially for the probabilities of “dry-out”. It is worthy to 
note that as long as time increases, the “over-flow” and 

“dry-out” probabilities reach the estimated values of Fig. 6 at 
about 370 h and 470 h, respectively. This is due to the fact 
that the considered level control system is a non-coherent 
system. Although transition rates increase with respect to the 
base case of no aging and no dependence on the system state, 
the number of component contributions that lead the system 
into any of the two top failure modes decreases. 

 
Figure 9. Cumulative Probability Distribution for “over-flow” (left) and “dry-out” (right) with ௠ܶ= 30 h and N = 100000, for the case of no aging and 

transition rates dependence on the system state 
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Figure 10. Cumulative Probability Distribution for “over-flow” (left) and “dry-out” (right) with ௠ܶ= 500 h and N = 10000, for the case of no aging and 

transition rates dependence on the system state 

TABLE V. COMPUTATIONAL EFFICIENCY FOR DET, MC AND MCDET MODELS 

Case Model Number of 
Cycles, N 

Computational 
cost [s] 

Number of 
“over-flow” 

Number of  
“dry-out” 

Expected time to 
“over-flow” [s] 

Expected time 
to “dry-out” [s] 

Case 1 

DET ( ௠ܶ=30 h) - 16004 157784 52914 - - 

MC ( ௠ܶ=30 h) 300000 656272 2643 36 248 18229 

MCDET ( ௠ܶ=30 h) 100000 219123 3496 124 63 1767 

MC ( ௠ܶ=500) 10000 30668 3996 826 7.67 37.13 

MCDET ( ௠ܶ=500) 3000 14606 6851 1977 2.13 7.39 

Case 2 

DET ( ௠ܶ=30 h) - 9669 157784 52914 - - 

MC ( ௠ܶ=30 h) 300000 638364 2494 39 256 16368 

MCDET ( ௠ܶ=30 h) 100000 241849 3479 100 70 2419 

MC ( ௠ܶ=500) 10000 21322 4124 790 5.17 26.99 

MCDET ( ௠ܶ=500) 3000 14410 6892 1999 2.09 7.21 

Case 3 

DET ( ௠ܶ=30 h) - 9524 157784 52914 - - 

MC ( ௠ܶ=30 h) 300000 657328 2701 39 243 16855 

MCDET ( ௠ܶ=30 h) 100000 246248 3707 131 66 1880 

MC ( ௠ܶ=500) 10000 34685 4745 1099 7.31 31.56 

MCDET ( ௠ܶ=500) 3000 16208 8414 2697 1.93 6.01 

Case 4 

DET ( ௠ܶ=30 h) - 8523 127482 45554 - - 

MC ( ௠ܶ=30 h) 300000 308595 3729 929 83 332 

MCDET ( ௠ܶ=30 h) 20000 33189 10795 3333 3.07 9.99 

MC ( ௠ܶ=500) 30000 71527 11014 2024 6.49 29.75 

MCDET ( ௠ܶ=500) 10000 42566 2956 9856 1.51 4.59 

 
Although dynamic methods (MC, DET and MCDET) 

have shown superior capabilities with respect to static PSA 
methods, the computational cost may be large. The 
computational cost, indeed, depends on the length of the 
discrete time step that is simulated, the length of the mission 

time ௠ܶ  to be simulated, the branching probability 
thresholds that is set (only for DET) and the selected number 
of repeated sampling cycles N (only for MC and MCDET). 
Fig. 11 shows the computational costs of the MC, DET and 
MCDET models for the base case of no aging and no 

87



 

transition rates dependence on the system state as a function 
of ௠ܶ . The computational cost of DET model increases 
exponentially as the ௠ܶ increases, while the computational 
costs of MC and MCDET models increase approximately 
linearly with ௠ܶ. So DET model is only applicable when a 
limited ௠ܶ is foreseen to be modelled. For long ௠ܶ, MC 
and MCDET models seem more appropriate than DET.  

A more detailed analysis and comparison among DET, 
MC and MCDET is presented in Table V, that lists the 
computational efficiency of the selected dynamic methods 
when applied to the four cases 1), 2), 3) and 4) illustrated in 
section 3.3. For the purpose of comparison, we define 
computational efficiency as the capability of a method to 
collect evidences of system failure (i.e., number of 
“over-flow” and “dry-out”) with a given computational effort 
(i.e., number of MC cycles (N), computational cost [s], 
expected time to “over-flow” [s] and to “dry-out” [s]). The 
results show that the MCDET method is much more 
effective to collect the evidences of “over-flow” and “dry-out” 
than MC simulation at same ௠ܶ, because the sequences with 
low probability of occurrence are not discarded. For example, 
when no aging and no dependence of the transition rates on 
the system state (case 1) is simulated and ௠ܶ is equal to 30 
h, the expected times for simulating one “over-flow” with 
MC and MCDET are 248 s and 63 s, respectively, and the 
expected times to “dry-out” are 18229 s and 1767 s, 
respectively. 

 
 Computational cost of DET, MC and MCDET as a function of 

the mission time ௠ܶ 

IV. CASE STUDY 2: THE EMERGENCY AND STANDBY POWER 
SYSTEM (ESPS)  

A. Description of the System 
Emergency and standby power systems (ESPS) are 

designed to provide a plant alternative source of power when 
the normal source of power, the Utility Input Power (UIP), 
fails. A sketch of the system is shown in Fig. 12 [16, 17]. 
The power is normally supplied by the UIP while two 
generators (G1 and G2) are kept in cold standby mode, with 
probability of failure on demand ݌௦  equal to 0.015. A 
synchronized bypass and a static transfer switch (STS) 
protect the critical load in the event of inverter failure. If 

voltage is lost at the Critical Load Bus (CLB), STS 
reestablishes voltage in less than one-quarter of a cycle. If 
the power fails at bus A, the battery can supply the power for 
4 h.  

G1

G2

Utility Input Power (UIP)

Bus AATS

Synchronised Bypass

Critical Load Bus (CLB)

Battery
Generator 1

Generator 2 Uninterruptible Power Supply (UPS)

Utility-generator Subsystem  
Figure 12. Diagram of Emergency and Standby Power Systems 

Table VI shows the reliability data for all the components 
of the ESPS system that are considered repairable. It is 
important to notice that only one generator can be taken out 
for maintenance and that if a generator fails while another is 
on maintenance, the maintenance on the second generator 
would be accelerated by a factor of α, setting α = 2 in this 
case. The fault tree for the top event “power loss at the 
Critical Load Bus (CLB)” is shown in Fig. 13. 

TABLE VI. RELIABILITY DATA FOR VARIOUS COMPONENTS OF THE ESPS 
SYSTEM 

Equipment/Supply λ (f/y) R (h/f) 
Utility Input Power 0.53700 5.66 
Generator (G1/G2) (per hour of use) 0.00536 478.00 
Inverter 1.25400 107.00 
Rectifier 0.03800 39.00 
Automatic Transfer Switch (ATS) 0.00600 5.00 
Static Transfer Switch (STS) 0.08760 24.00 
Battery 0.03130 24.00 
Equipment Maintenance Frequency (/y) Duration (h) 
Generator (G1/G2) 1.00 10.00 
Uninterruptible Power Supply (UPS) 1.00 4.00 

 

 
Figure 13. Fault tree of “power loss at the Critical Load Bus (CLB)” 

The reliability analysis of the ESPS system is made by 
the MC method, the Markov method and minimal cut set 
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method, respectively in reference [16] and [17]. In this work, 
we benchmark the results with those that we obtain with MC 
and MCDET models. 

B. Dynamic PSA Analysis 
MC and MCDET models are built for the reliability 

analysis of the ESPS system. These would allow considering 
the dependencies between components (i.e., accidental 
maintenance on generators, when at least one of the two is 
out of order). The time discretization considered for the 
simulation is set equal to 0.1 h. The only difference between 
the two models is that only one sequence of events can be 
simulated with one cycle of MC model, whereas for MCDET, 
that same sequence of event may branch out into several 
branches at the selected branching nodes of the DET. Two 
models are run on the single node of the super-computing 
center of USTC (Intel Xeon E5620, 4 CPU, 2.4GHz, 16GB). 

C. Results and Discussions 
MC and MCDET models are used to compute the 

reliability parameters for the ESPS (listed in Table VII) to be 
compared with those obtained with Markov methods [17]: 

frequency ( ௣݂ ) and duration ( ௣ݎ ) of failure of the 
utility-generator subsystem, frequency ( ஺݂) and duration (ݎ஺) 
of power loss at bus A, and frequency ( ஼݂௅஻) and duration 
 of power loss at CLB estimated confidence intervals (஼௅஻ݎ)
(i.e., estimated values ± standard deviation) are all bounding 
the values calculated in [17], confirming the capability of 
MC and MCDET of effectively modelling the system 
dynamics. 

The computational efficiency in capturing the evidence 
of failure for each developed dynamic model is shown in 
Table VIII. The same conclusion of Section 3.4 can be 
drawn from this case study: the MCDET method is more 
effective to collect evidences of failure with respect to MC 
simulation. For example, the MC model with 50000 cycles 
models cut-set E1 three times whereas cut-set E2 is modelled 
zero times within mission time ௠ܶ = 1 y, while the MCDET 
model, with the same number of cycles and ௠ܶ, models 
cut-set E1 42 times and cut-set E2 only 2 times. The 
probability distributions of duration of power loss at the CLB 
obtained by the two dynamic models are displayed in Fig. 
14. 

TABLE VII. RELIABILITY PARAMETERS OBTAINED FROM MC AND MCDET MODELS 

 Estimated 
value in [17] 

MC (50000 cycles) MCDET 50000 cycles) 

Estimated 
value 

Confidence interval  
[Estimated value ± 
standard deviation] 

Estimated 
value 

Confidence interval 
 [Estimated value ± 
standard deviation] 

௣݂ 0.00157 0.00184 [0.00152, 0.00216] 0.00184 [0.00158, 0.00211] 

 ௣ 5.4532 5.5152 [4.5038, 6.5266] 5.5072 [5.3368, 5.6776]ݎ

஺݂ 0.00757 0.00798 [0.00733, 0.00863] 0.00781 [0.00718, 0.00843] 

 ஺ 5.0938 5.0005 [4.9656, 5.0354] 5.3407 [5.1873, 5.4941]ݎ

஼݂௅஻ 0.00523 0.00540 [0.00486, 0.00594] 0.00593 [0.00537, 0.00648] 

 ஼௅஻ 9.648 11.5402 [10.3767, 12.7037] 9.4789 [9.1177, 9.8402]ݎ

TABLE VIII. STATISTICS OF COMPUTATIONAL EFFICIENCIES OF CAPTURING THE EVIDENCE OF FAILURE FOR EACH MODEL 

Events 
MC (50000 cycles) MCDET (50000 cycles) 

Number of 
evidences 

Expected time for 
capturing an evidence 

Number of 
evidences 

Expected time for 
capturing an evidence 

Failure of utility-generator subsystem 102 747 2770 73 

Failure of ATS 307 248 550 370 

Failure of power supply over 4 h 47 1587 1330 153 

Failure of ATS over 4 h 141 540 261 780 

Cut-set E1 3 25392 42 4845 

Cut-set E2 0 - 2 101739 

Cut-set E3 78 977 161 1264 

Power loss at CLB 276 276 1796 113 
 

V. CONCLUSION  
This paper analyzes dynamic methods for PSA by 

application to two systems. The methods considered (MC, 
DET and MCDET) are shown to overcome the classic PSA 

methods (FT/ET), for systems where dynamic factors like 
aging and dependence among components play a significant 
role. They, indeed, allow accounting for the variation of 
failure rates depending on system state, and the order and 
timing of failure events along an accidental scenario. As a 
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matter of fact, as shown with respect to the level control 
system and ESPS system case studies, dynamic methods are 
more flexible to incorporate various effects of the dynamics 
of the process, compared with static PSA methods. A 
comparison of the dynamic PSA methods implemented 
shows that the computational costs of the DET method are 
large when long mission times are to be simulated, and that 
MCDET is more effective to simulate failure sequences of 
events than MC method with the same computational effort.   

Figure 14. Probability distributions of duration of power loss at the CLB
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