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Abstract 
This paper investigates the aggregation of rankings based on component Importance Measures (IMs) 

to provide the decision maker with a guidance for design or maintenance decisions. In particular, 

ranking aggregation algorithms of literature are considered, a procedure for ensuring that the 

aggregated ranking is compliant with the Condorcet criterion of majority principle is presented, and 

two original ranking aggregation approaches are proposed. Comparisons are made on a case study of 

an auxiliary feed-water system of a nuclear pressurized water reactor. 

 

Notation 
𝑛 Number of system components to be ranked 

𝑀 Number of importance measure rankings to be aggregated 

𝝈𝑗  𝑗-th importance measure ranking vector, 𝑗 = 1,… ,𝑀 

𝜎𝑗(𝑖) Rank of component 𝑖 in the IM ranking 𝝈𝑗. Ranks are assigned in ascending order: rank 1 

refers to the most important component and rank 𝑛 to the least important one 

𝑰𝑗
∗ Vector of the 𝑛 values of the 𝑗-th normalized IM 

𝐼𝑗
∗(𝑖) Value of the normalized IM 𝑗 for component 𝑖 

𝐶= (𝑛
2
) Number of possible pairwise comparisons among 𝑛 components  

𝑡𝑧  Number of agreements between the IM rankings 𝝈𝟏, … , 𝝈𝑴 and another ranking 𝝈, 𝑧 =

1,… , 𝐶  

𝐵𝐶(𝑖) Total Borda score for component 𝑖 

𝐵𝑃𝑗(𝑖) 
Partial Borda score for component 𝑖 in ranking 𝑗 

𝑝𝑖𝑘  Transition probability from component 𝑖 to component 𝑘; 𝑖, 𝑘 = 1,… , 𝑛 

𝐾𝑒(𝝈𝒉, 𝝈𝒎) Kendall distance between IM rankings 𝝈𝒉 and 𝝈𝒎, ℎ,𝑚 = 1,… . ,𝑀 

𝐹(𝝈𝒉, 𝝈𝒎) Spearmann footrule distance between IM rankings 𝝈𝒉 and 𝝈𝒎; ℎ,𝑚 = 1,… . ,𝑀 

𝐾𝑒(𝝈; 𝝈𝟏, … , 𝝈𝑴) Extended Kendall distance of 𝝈 from 𝝈𝟏, … , 𝝈𝑴 

𝐹(𝝈; 𝝈𝟏, … , 𝝈𝑴) Extended Spearmann Footrule distance of 𝝈 from 𝝈𝟏, … , 𝝈𝑴 

RW(𝑖) Ranking-weighted value for component 𝑖 
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1 Introduction 
From a broad perspective, the main objectives of system reliability analysis are the estimation of the 

probability of the system being able to perform its functions for the given mission time [1] and the 

identification of cost-effective solutions to ensure the expected system reliability with the lowest life 

cycle cost. Clearly, system reliability mainly depends on the reliability of its constituent parts and the 

functional, logic and physical relationships among them. Then, a relevant part of reliability analysis 

consists in describing the relationships (by developing mathematical models) between the stochastic 

failure behavior of the system and that of its constituent parts. The corresponding reliability models 

allow also to perform an Importance Measure (IM) analysis [2], which is useful in industrial practice 

for cost-effective reliability allocation and maintenance strategy definition. Quantitative IMs have 

been introduced for quantifying the relative importance of the components on the Reliability 

Availability and Maintainability (RAM) performance of the whole system, depending on the role, 

function and logic position they have in the system failure structure and/or on their failure probability 

values.  

Various IMs have been proposed in the literature [3]-[12], with different scopes of application. In this 

respect, reference [12][13] divides IMs into two classes: 

1) Design Centered (DC) IMs; these are used to support decisions about system design or re-

design (i.e., whether adding or removing components, subsystems, changing operating 

procedures, etc.), based on the evaluation of the significance of the effect of a component not 

being in service, due to either a failure or a preventive maintenance action. According to the 

definition provided in [13], we include in this class the Birnbaum (Bi) and the Risk Reduction 

Worth (RRW) IMs. 

2) Test & Maintenance Centered (TMC) IMs, which aim at evaluating the impact on the system 

performance of changes in the test and maintenance strategy on the system components. The 

Fussel-Vesely (FV), Criticality (Cr) and Risk Achievement Worth (RAW) IMs belong to this 

class [13]. 

On the other side, whichever the application, different IMs could lead to different component rankings 

and, thus, to different design choices (for DC IMs) or test and maintenance policies (for TMC IMs). 

This poses the challenging decision making problem of how to exploit the possibly conflicting 

different pieces of information to make the final decision.  

To address this issue, which is the motivation of this work, some works of the literature (e.g., [5], 

[14]) have deeply investigated the relationships between the different IMs. Although these studies 

give a sound basis to justify the differences among the IM rankings, they do not give a formal 

approach to decision making. 

A different perspective, which is considered in this work, is that of building an absolute ranking of 

the system components by aggregating the different IM rankings, based on mathematically sound 

rules. To do this, we propose to frame the IMs as voters that express preferences among the 

components, which are candidates in the election for being the most important item to focus the 

attention on for introducing changes in the system design or in the maintenance and test strategy, to 

improve the system RAM performance. This conceptual framework gives us the possibility of 

exploiting the mature and wide literature on voting systems. The underlying idea is that an aggregated 



ranking that integrates the pieces of information obtained from all the IMs gives the Decision Maker 

(DM) the possibility to make more informed decisions. 

The first attempts at integrating different opinions about the rank positions of some alternatives date 

back to the end of the 18th century, at the birth of the modern democracy in France [15], [16], when 

the philosopher Jean-Jacques Rousseau tried to justify the principle of majority rule underpinning his 

concept of popular sovereignty [17]. With the same aim, the first theories about rank aggregation 

were proposed by Condorcet [15], whose key criterion is that a candidate that wins by majority in all 

pairings against the other candidates is the social best choice. This property has also a statistical 

justification: suppose that there exists a “true” best candidate, then in the Condorcet scheme he/she 

is the most likely to be the winner. The drawback of this method lies in that a winner not always exists 

[18].  

Since then, many Ranking Aggregation (RA) methods have been developed, and their mathematical 

properties formalized. In particular, in the last years RA methods have been proposed to answer a 

number of modern issues such as the quality assessment of industrial products [19], the feature 

selection for machine intelligence and data mining [20]-[22], validation measures for clustering 

algorithms [23], and the integration of ordered list of genes in bioinformatics [24], [25]. Yet, RA 

algorithms have been extensively studied in the Web context to build meta-search engines or improve 

search precision through word association [26], [27], and in the context of political sciences to set 

voting rules in modern democracies [28]. In these fields, a change in the methods to aggregate 

preferences may have countless implications in our daily life.  

In spite of the relevance of these algorithms in the modern society, to the authors’ best knowledge 

they have never been investigated in the context of IMs of engineering equipment, although some of 

them have been applied to similar engineering issues (e.g., [29], [30]).  

On this background, the aim of this paper is to illustrate the application of the theory of RA to the 

field of reliability analysis, in support to decision making for system redesign or test and maintenance 

policy making. To do this, we consider four RA techniques of literature together with a procedure to 

make the aggregated rankings compliant with the Condorcet Criterion (CC) of majority principle. 

Moreover, we propose two additional RA methods, which are compared with the previous ones by 

way of a case study concerning the IMs of the components of an Auxiliary Feed-Water System 

(AFWS) of a nuclear Pressurized Water Reactor (PWR).  

Finally, the approach based on IM ranking aggregation is compared with the Multi-Criteria Decision 

Making (MCDM) approach, where IMs are framed as objective functions to be maximized, and the 

Pareto sets of components with non-dominated IM values are found [31].  

To sum up, the contribution of this work lies in the identification of general rules for taking decisions 

to improve the system reliability and/or the maintenance strategy. To do this, we consider RA 

methods typically used in other domains, two original RA methods and the MCDM approach. 

The remainder of the paper is as follows. In Section 2, we introduce two measures to evaluate the 

distance between rankings, which are fundamental to evaluate the performance of the RA methods 

and are at the basis of some of them. In Section 3, some relevant RA methods of literature are 

presented together with two original approaches and with a procedure for modifying rankings to 

satisfy the Condorcet property. The methods described in Section 3 are applied in Section 4 to the 



IMs of the components of the PWR system that serves as case study. A final discussion is presented 

in Section 5 and conclusions are outlined in Section 6. 

2 Distance between IM rankings 
In this work, we consider different methods to aggregate the rankings obtained from different 

IMs. To compare their performance, it is fundamental to introduce the concept of distance among 

rankings. The following two distances are considered in this work, which are derived from [32]: 

1. The Kendall Distance (KD), 𝐾𝑒(𝝈𝒉, 𝝈𝒎), between IM rankings 𝝈𝒉 and 𝝈𝒎 of 𝑛 components. 

This distance counts the number of pairwise adjacent transpositions needed to transform one 

list into the other. Its formal definition is: 

 𝐾𝑒(𝝈𝒉, 𝝈𝒎) = ⟦{(𝑖, 𝑘) 𝑠. 𝑡. 𝝈𝒉(𝑖) < 𝝈𝒉(𝑘), 𝝈𝒎(𝑖) > 𝝈𝒎(𝑘)}⟧    (1) 

where the operator ⟦∙⟧ indicates the cardinality of the argument set. The distance 𝐾𝑒 ranges 

between zero and (𝑛
2
): the larger its value, the larger the difference between the rankings. For 

example, consider rankings 𝝈𝟏 and 𝝈𝟐 in Table 1: they differ for a swap between the elements 

A and B only; then, 𝐾𝑒(𝝈𝟏, 𝝈𝟐) = 1. Conversely, rankings 𝝈𝟏 and 𝝈𝟑 are opposite: then, the 

maximum number (𝑛
2
) =

5!

2!∙3!
=10 of transpositions is needed to transform a ranking into the 

other. 

 Alternatives Dist. from 𝝈𝟏 Dist. from 𝝈𝟐 Dist. from 𝝈𝟑 Extended 

distance 

Rankings A B C D E KD SFD KD SFD KD SFD KD SFD 

𝝈𝟏 1° 2° 3° 4° 5° 0 0 1 2 10 12 5.5 7 

𝝈𝟐 2° 1° 3° 4° 5° 1 2 0 0 9 12 5 7 

𝝈𝟑 5° 4° 3° 2° 1° 10 12 9 12 0 0 9.5 12 

Table 1: Example of KD and SFD 

2. The Spearman Footrule Distance (SFD), 𝐹(𝝈𝒉, 𝝈𝒎), sums the absolute difference between 

each alternative in rankings 𝝈𝒉 and 𝝈𝒎; that is: 

 𝐹(𝝈𝒉, 𝝈𝒎) = ∑ |𝝈𝒉(𝑖) − 𝝈𝒎(𝑖)|𝑵
𝑖=1         (2) 

This measure ranges between 0 and ⌊
𝑛2

2
⌋, where ⌊⋅⌋ indicates the integer part of a real number. 

From Table 1, we can see that also for SFD the maximum distance value is achieved in case 

of opposite rankings, although this is not a necessary condition.  

Moreover, from Table 1 we can also note that the SFD between two rankings is always larger than or 

equal to the corresponding KD. This is a general result; namely, the following inequality has been 

proved [35]: 

 𝐾𝑒(𝝈𝟏, 𝝈𝟐) ≤ 𝐹(𝝈𝟏, 𝝈𝟐) ≤ 2𝐾𝑒(𝝈𝟏, 𝝈𝟐) (3) 

which states that SFD is an upper bound of KD, smaller than its double. 

Finally, both the definitions of KD and SFD can be extended to the distance of a given ranking 𝝈 

from a set of 𝑀 rankings: 



 𝐾𝑒(𝝈;𝝈𝟏, … , 𝝈𝑴) =
1

𝑀
∑ 𝐾𝑒(𝝈, 𝝈𝒋)

𝑀
𝑗=1  (4) 

 𝐹(𝝈; 𝝈𝟏, … , 𝝈𝑴) =
1

𝑀
∑ 𝐹(𝝈, 𝝈𝒋)

𝑀
𝑗=1   (5) 

In words, the extended distance of 𝝈 from 𝝈𝟏, … , 𝝈𝑴 is the mean value of its distances from every 

other IM (Table 1, last column). 

As mentioned earlier, these distance measures can be used as performance indicators of the RA 

algorithms. Intuitively, given a set of IM rankings  𝝈𝟏, … , 𝝈𝑴, which are “voting” the best candidate 

among all the components, the ranking 𝝈 that minimizes their mutual distances (e.g., Eq. (4) or Eq. 

(5)) is the most representative for  𝝈𝟏, … , 𝝈𝑴, according to the considered distance. The smaller the 

distance, the better the capability of synthesis of the IM rankings. This intuitive reasoning has a 

statistical formalization [35]. 

Finally KD and SFD are at the basis of some aggregation methods discussed below. 

3 Aggregation methods 
The aim of this paper is to illustrate some aggregation methods that can be applied to the reliability 

engineering field in support to decision making based on IMs ranking. For the sake of clarity, all the 

methods considered are divided into two categories, depending on whether the aggregation works on 

the IM rank orders or, rather, directly on the IM values: 

1) Rank-based methods: each IM gives rise to a ranking of component importance. Then, the 

rank orders are aggregated forming a unique ranking. In this class, we consider the Borda 

count method, Markov chain method, Kemeny and Footrule aggregation methods, which are 

derived from the existing literature, and the original ranking-weighted method. 

2)  Value-based methods: the component IM values are normalized between 0 and 100 and, then, 

aggregated according to some rule. The aggregated values are finally ranked in descendent 

order. In this class, we will present the simple mean method and the value-weighted method. 

A detailed description of these methods is given below to highlight their similarity and differences. 

Then, the methods are compared in Section 4 by means of the example of the AWFS.  

Finally notice that similarly to the value-based methods, the MCDM approach is applied on the 

normalized IM values.  

3.1 Rank-based methods 

3.1.1 Borda count method 

The Borda count method, which was formalized by Jean-Charles de Borda in 1784 [16], assumes that 

an alternative is better than another when it gets a higher average position in the different available 

rankings. In other words, the best alternative is that which on average defeats the largest number of 

alternatives in the voting profile (i.e., IMs) considered. 

Formally, given a set of 𝑀 IMs for a system made up of 𝑁 components, the total Borda score 𝐵𝐶(𝑖) 

of the 𝑖-th component, 𝑖 = 1,… , 𝑛 is: 

 𝐵𝐶(𝑖) = ∑ 𝐵𝑃𝑗(𝑖)
𝑀
𝑗=1           (6) 



where the partial score 𝐵𝑃𝑗(𝑖) is the number of alternatives in which 𝑖 is defeated by in IM ranking 

𝝈𝑗.  

Finally, the values 𝐵𝐶(𝑖) 𝑖 = 1,… , 𝑛 are sorted to get the final ranking: smaller values correspond to 

more important components.  

For example, consider the rankings in Table 1. Then, 𝐵𝐶(𝐴) = 𝐵𝑃1(𝐴) + 𝐵𝑃2(𝐴) + 𝐵𝑃3(𝐴) = 0 +

 1 + 4 = 5. 

3.1.2 Markov chain method 

A new class of aggregation methods based on Markov Chains have been proposed in [32], where the 

underlying idea is that the alternatives to be ranked correspond to the 𝑛 states of a Markov Chain 

whose transition matrix depends on the given rankings. In this setting, the stationary distribution of 

the chain will provide the aggregated ranking of the components. 

According to the findings of [32], we set the transition probabilities of the chain as follows: 

 𝑝𝑖𝑘 = {
1

𝑛
∗

⟦𝑟𝑎𝑛𝑘𝑖𝑛𝑔𝑠 𝝈𝑗 𝑡.𝑐.  𝜎𝑗(𝑘)<𝜎𝑗(𝑖)⟧

𝑀
𝑖𝑓 𝑘 ≠ 𝑖

1 − ∑ 𝑝𝑖𝑘𝑘≠𝑖                                𝑖𝑓 𝑘 = 𝑖
  𝑖, 𝑘 = 1,… , 𝑛     (7) 

For example, the transition probability matrix for the rankings in Table 1 reads: 

𝑃 =

[
 
 
 
 
 
 
 
 
 
 
10

5 ∙ 3

2

5 ∙ 3

1

5 ∙ 3

1

5 ∙ 3

1

5 ∙ 3
1

5 ∙ 3

11

5 ∙ 3

1

5 ∙ 3

1

5 ∙ 3

1

5 ∙ 3
2

5 ∙ 3
2

5 ∙ 3
2

5 ∙ 3

2

5 ∙ 3
2

5 ∙ 3
2

5 ∙ 3

9

5 ∙ 3
2

5 ∙ 3
2

5 ∙ 3

1

5 ∙ 3
8

5 ∙ 3
2

5 ∙ 3

1

5 ∙ 3
1

5 ∙ 3
7

5 ∙ 3]
 
 
 
 
 
 
 
 
 
 

 

To wit, the numerator of entry (1,2) of matrix 𝑃 is 2 because component ‘B’ is more important than 

‘A’ in two rankings (i.e., 𝝈𝟐 and 𝝈𝟑).  

From Eq. (7), it clearly emerges that the Markov chain will visit more frequently the components 

ranked in the first positions of IMs  𝝈𝟏, … , 𝝈𝑴. For this, the steady state probability values of these 

top-ranked alternatives will be the largest. The ranking of the steady state probabilities will be the 

final aggregated ranking, in which the components with the largest probabilities are ranked first. With 

reference to the example of Table 1, the steady state vector (i.e., the left eigenvector of 𝑃, [36]) and 

the corresponding raking vector are [0.238, 0.333, 0.179, 0.139, 0.111] and [2, 1, 3, 4, 5], respectively. 

As emerged in [32], the RA method based on the Markov Chain can be seen as a generalization of 

the Borda count method. In fact, the probability of staying in state 𝑖, 𝑝𝑖𝑖, is proportional to the number 

of components that 𝑖 defeats in the IMs 𝝈𝟏, … , 𝝈𝑴. This concept is similar to that of Borda score 

𝐵𝐶(𝑖). 



Notice also that there may be recurrent states, which will lead to assign steady state probabilities to 

the recurrent part of the chain only. When this happens, it suffices to remove from the chain the 

alternatives already ranked, and repeat the procedure to rank the remaining states [32]. 

Finally, notice that although the Markov Chain settings is intuitive and has proven to give useful 

results of ranking aggregation in the Web context [32], it is an heuristics, and a sound mathematical 

formalization of this algorithm is lacking. The definition of such formalization will be the object of 

future research work. 

3.1.3 Kemeny and Footrule optimal aggregation techniques 

This method has been proposed by Kemeny in [37] and is based on the following assumptions:  

 There is a true, but unknown, ranking 𝝈 of the importance of the components to improve, for 

example, the system reliability by its re-design. 

 We are given rankings 𝝈𝟏, … , 𝝈𝑴, which are “noisy” versions of 𝝈. 

 Based on the Condorcet jury theorem [18], the probability 𝑝 of the IM 𝝈𝑗 giving the correct, 

although unknown, order to two alternatives in any pairwise comparison, must be larger than 

0.5. This assumption assures that adding more voters (i.e. IMs) increases the probability that 

the majority decision is correct. Otherwise, the optimal jury consists of a single voter. 

In this setting, the Kemeny optimal RA algorithm searches for the ranking �̅� which is the most likely 

to be 𝝈. 

Formally, let 𝑡𝑧 be the number of agreements between the voting profile 𝝈𝟏, … , 𝝈𝑴 and a ranking 𝝈 

on the z-th pairwise comparison, 𝑧 = 1,… , 𝐶, 𝑡𝑧 ∈ {0,1, … ,𝑀}. The likelihood function for the 

ranking 𝝈 is: 

 𝐿(𝝈; 𝝈𝟏, … , 𝝈𝑴) = ∏ (𝑀
𝑡𝑧
)𝐶

𝑧=1 𝑝𝑡𝑧(1 − 𝑝)𝑀−𝑡𝑧 (8) 

That is, for each pairwise comparison, the number of correct order assignments into the IM rankings 

𝝈𝟏, … , 𝝈𝑴, provided that the true order is 𝝈, has a binomial distribution with parameters 𝑝 and M. 

Ranking �̅� is that which maximizes the total number ∑ 𝑡𝑧
𝐶
𝑧=1  of agreements with the available 

rankings. In other words, we are searching for ranking �̅�, which maximizes the probability of having 

sampled 𝝈𝟏, … , 𝝈𝑴, provided that the probability of each IM 𝝈𝑗, 𝑗 = 1, …𝑀, assigning the correct 

order to two alternatives in any pairwise comparison, is 𝑝 > 0.5 [32]. 

Ranking �̅� is also called Kemeny optimal aggregation, because it has been proved that it minimizes 

the distance 𝐾𝑒(⋅ ; 𝝈𝟏, … , 𝝈𝑴) [39]. However, in [32] it has also been proved that the computation of 

the Kemeny optimal aggregation is NP-hard and, thus, there is no algorithm that allows efficiently 

working with the Kemeny distance. For this reason, the algorithms to find �̅� are not investigated here; 

rather, to overcome this limitation we consider the SFD. That is, we find the footrule optimal 

aggregation ranking �̃� minimizing 𝐹( ∙ ; 𝝈𝟏, … , 𝝈𝑴), which is an approximation of the actual 

optimum Kemeny ranking �̅�. In fact, the following inequality has been proved in [35], which directly 

stems from Eq. (3):  

 𝐾𝑒(�̅� ; 𝝈𝟏, … , 𝝈𝑴) ≤ 𝐾𝑒(�̃� ; 𝝈𝟏, … , 𝝈𝑴) ≤ 2𝐾𝑒(�̅� ; 𝝈𝟏, … , 𝝈𝑴) (9) 



In words, the Kemeny distance of �̃� from the given rankings is an upper bound of the same Kemeny 

distance of �̅� from the same rankings 𝝈𝟏, … , 𝝈𝑴.  

The algorithm to find �̃�, which can be computed in polynomial time [32], exploits some notions of 

graph theory. In the following, we give a pseudo-code of this algorithm, the task of a detailed 

theoretical study for its justification being left to the interested researchers. 

i. Construct a weighted complete bipartite graph (Γ, Ω, W) 

a. Γ is the set of 𝑛 nodes, which are the components to be ranked. 

b. Ω is the second set of 𝑛 nodes, which are the available positions Ω = {1,… , 𝑛}. 

c. For every 𝛾 ∈ Γ, and 𝜔 ∈ Ω compute weights: 

𝑊(𝛾,𝜔) = ∑ |𝜎𝑗(𝛾) − 𝜔|
𝑀

𝑗=1
 

ii. Solve the minimum cost perfect matching problem. Namely, a matching Ψ is a collection of 

edges such that every vertex of Γ ∪ Ω is incident to at most one edge of Ψ. A matching is 

perfect if its cardinality is equal to ⟦Γ⟧ =  ⟦Ω⟧. The minimum cost perfect matching problem 

consists in finding the matching which minimizes the cost ∑ 𝑊(𝛾,𝜔)𝜓∈Ψ , provided that 𝛾, 𝜔 

are vertices incident to 𝜓 ∈ Ψ. In this work, we have adopted the Hungarian algorithm [33] 

to address this minimization problem (see [34] for further details). 

For example, for the three rankings in Table 1, the weight matrix reads: 

     𝑊 =

𝐴

𝐵

𝐶

𝐷

𝐸 [
 
 
 
 
 
5̂     4      5     6     7

4      3̂     4     5     8

6     3     0      3     6̂

7     4     3̂     2      5

 8     7     6     5̂     4 ]
 
 
 
 
 

  

To wit, the (1,1) entry is given by 𝑊(1,1)=|1-1| + |2-1| + |5-1|=5. The Hungarian algorithm finds the 

assignment of components to ranking positions, which minimizes the sum of the weights. In this case, 

it finds the rounded entries of matrix 𝑊, with total weight equal to 14. A different perfect matching 

would have been that indicated by hats. Although this matching is perfect, it is not minimal as it sums 

to 22. Finally, the ranking positions Ω are indicated by the column numbers of 𝑊; then, for every 

column, the number the row of the corresponding entry selected by the Hungarian algorithm gives 

the component to be assigned to the position. In the reference example, the row of the entry selected 

by the algorithm in column 1 of 𝑊 is equal to 2. Then, component ‘B’ is assigned position 1.  

3.1.4 Ranking-weighted method 

In Section 3.1.3, a statistical interpretation has been given to RA, which is based on the idea that all 

the IM rankings are noisy versions of the “true” unknown order. From this, it follows that a ranking 

far from the other can be framed as an ‘outlier’, which is not representative of the population of the 

noisy rankings and, thus, can introduce a bias in the final ranking. To consider this aspect, we can 

weigh the rankings to be aggregated depending on their mutual distances.  

In details, we propose to compute for each component the weighted sum of its position in the available 

rankings: 



 𝑅𝑊(𝑖) = ∑ 𝑤𝑗𝜎𝑗(𝑖)
𝑀
𝑗=1   (10) 

where weights 𝑤𝑗, 𝑗 = 1, … ,𝑀 are defined as 

 𝑤𝑗 =
1

𝑁𝐶
∙

1

𝐹(𝜎𝑗;𝜎1,…,𝜎𝑗−1,𝜎𝑗+1,…𝜎𝑀)
  (11) 

and 𝑁𝐶 is a normalization constant: 

 𝑁𝐶 = ∑
1

𝐹(𝜎𝑗;𝜎1,…,𝜎𝑗−1,𝜎𝑗+1,…𝜎𝑀)

𝑀
𝑗=1  (12) 

This way, the weight assigned to each IM is inversely proportional to its generalized SFD distance 

from the other IMs, so that a ranking far from the others gets less importance. The components are 

finally ranked according to their 𝑅𝑊(𝑖) value, 𝑖 = 1,… , 𝑛: the larger the RW, the smaller the 

importance of the component. 

Notice that the method proposed in this Section, which computes a weighted mean of the rank orders 

in  𝝈𝟏, … , 𝝈𝑴, can be regarded as a generalization of the Borda count method presented in Section 

3.1.1, which is a mean with equal weights. 

3.2 Value-based methods 

The IM ranking methods discussed above are based on the rank of the components, only. That is, to 

get the final aggregated ranking one focuses on if a component has an IM value larger than the others 

in the IM rankings available. This way, the actual values of the IMs are disregarded and, thus, the 

information is lost about how much distant two IM values are. For this reason, we propose intuitive 

methods based on the values of the IMs of the components, rather than on their ranking positions. 

These methods are also computationally inexpensive.  

3.2.1 Simple mean method 

The first value-based method is very simple and intuitive: given m vectors of normalized IMs of 𝑛 

components, 𝑰𝟏
∗ , … , 𝑰𝑴

∗ , we compute the mean of the IM values for each component i:  

 𝐼𝑚𝑒𝑎𝑛(𝑖) =
1

𝑀
∑ 𝐼𝑗

∗(𝑖)𝑀
𝑗=1  (13) 

Then, the 𝑛 values 𝐼𝑚𝑒𝑎𝑛(𝑖) are ranked in descendent order: the larger the value, the smaller the rank. 

Due to its simplicity, this algorithm is not considered as an original contribution of this work: although 

we have not found any work of the literature adopting this model, we expect that it has already been 

used. 

3.2.2 Value-weighted method 

This method is a mixture between the methods presented in Sections 3.1.4 and 3.2.1. Namely, we 

compute the weighed mean of the values of the normalized IMs:  

 𝐼𝑉(𝑖) = ∑ 𝑤𝑗𝐼𝑗
∗(𝑖)𝑀

𝑗=1  (14) 

with the weight values calculated as in Eq. (11). A drawback in using this method could arise from 

the fact that IMs like RAW and RRW can assume very large values (even infinite). This entails that 

all the other components get values next to zero when normalized, even if their original measures 



were different. That is, RAW and RRW may bias the information on the mutual distance of the IMs 

values. This cannot happen with Birnbaum or Fussel-Vesely measures, since they are limited. 

3.3 Local Kemenization 

Whichever the RA method is, it may be asked to be compliant with a commonly accepted principle 

in voting: if an alternative is preferred against all the others in a pairwise competition by the majority 

of the voters, this alternative must be ranked first. This property is called Condorcet criterion (CC), 

and the alternative chosen is the Condorcet winner. An alternative that respects this property does not 

necessarily exist, because the voting profile could lead to a loop in the majority relation (e.g., 

alternative ‘A’ defeats ‘B’ that defeats ‘C’ that defeats ‘A’). For this reason, Truchon ([39]) proposed 

the Extended Condorcet Criterion (ECC) as a generalization of the CC: if there is a partition (𝑋, �̅�) 

of the alternatives such that ∀ 𝐴 ∈ 𝑋, ∀ 𝐵 ∈  �̅�, 𝐴 is preferred to 𝐵 by the majority of voters, then 

the elements in 𝑋 must be ranked smaller (i.e., more important) than those in �̅�. Again, this partition 

does not always exist; however, if it does, then it allows identifying a subset of elements that occupy 

the highest positions in the final ranking, thus giving a partial order to the alternatives. 

In this context, the Local Kemenization (LK) [32] is a procedure that modifies an aggregated 

ranking 𝝈 so that it accomplishes the ECC with respect to the starting IM rankings 𝝈𝟏, … , 𝝈𝒎.  

Moreover, the modified ranking 𝝈′ is maximally consistent with 𝝈 and 𝝈𝟏, … , 𝝈𝒎. That is, if 𝝈′(𝑖) <

𝝈′(𝑗), then one of the following propositions hold: 

1) 𝝈(𝑖) < 𝝈(𝑗),  

2) A majority of 𝝈𝟏, … , 𝝈𝒎 prefers i to j. 

In other words, the order of two elements differs between 𝝈 and 𝝈′ only if the majority of the IM 

rankings support the change. 

The LK procedure proceeds inductively: assume that we have already built the new modified 

ranking 𝝈′ for the first 𝑖 − 1 components of the ranking 𝝈. Then, the 𝑖-th component is appended at 

the end of the actual partial ranking 𝝈′, and it is moved up in the ranking until we find a component 

that has a majority of votes against it by the original IM rankings 𝝈𝟏, … , 𝝈𝒎. 

As the name implies, the ranking 𝝈′ derived from this method is locally Kemeny optimal: there is no 

ranking 𝝈′′ such that  𝐾𝑒(𝝈′, 𝝈′′) = 1, for which 𝐾𝑒(𝝈′′ ; 𝝈𝟏,  … ,𝝈𝒎) < 𝐾𝑒(𝝈′ ; 𝝈𝟏,  … ,𝝈𝒎). 

Obviously, the Kemeny optimal aggregation �̅� found in Section 3.1.3 is also locally optimal, the 

converse being not always true. 

4 Case study 
In this Section, we apply the 6 methods described in the previous section also with LK to the IMs of 

the components of a simplified scheme of an AFWS in a PWR. The example is taken from [13], 

together with its Reliability Block Diagram (RBD) (Figure 1). The underlying assumption is that all 

components are in standby mode and periodically tested. This allows predicting the average 

unavailability of each component as [13]: 

 

𝑈 =  
1

2
𝜆𝑇0  +  𝐹𝑟

𝑇𝑟

𝑇
 +  

𝑇𝑡

𝑇
         (15) 



where, 𝜆 is the component failure rate (h-1), T is the test interval (h), 𝑇𝑅 is the average repair duration 

(h), 𝑇𝑡 is the average test duration (h), 𝐹𝑟 is the frequency of repair/test interval and 𝑇0 = 𝑇 − 𝑇𝑅 − 𝑇𝑡 

is the operating time (h). The values of these parameters are reported in Table 2.  

Figure 2 shows the normalized values of the Bi, RRW, FV, Cr and RAW IMs. In particular, the value 

𝐼𝑗(𝑖) of the j-th IM of the i-th component, 𝑖 = 1… , 𝑛,  and 𝑗 = 1,… ,𝑀 is normalized between 0 and 

100 as follows: 

 𝐼𝑗
∗(𝑖) =

𝐼𝑗(𝑖)−min
𝑖

(𝐼𝑗(𝑖))

max
𝑖

(𝐼𝑗(𝑖))− min
𝑖

(𝐼𝑗(𝑖))
∗ 100        (16) 

The corresponding IM rankings are reported in Table 3.  

From Figure 2, we can note that some of the IMs considered give similar results in evaluating the 

importance of the components. For example, Bi and RAW IMs give the components the same rank 

positions: component ‘N’ is much more relevant than any other, whereas ’L’ stands out from the 

remaining ones (mainly due to the larger unavailability of ‘M’). Also RRW and Cr give the 

components the same ranking orders (Table 3), even if the IM values are slightly different (i.e., the 

values of Cr for components ‘I’, ’J’, ’K’ and ’L’ are larger than the corresponding values of RRW). 

The FV measure gives results similar to those of RRW and Cr, except for component ‘N’, which is 

given the third position.  

To sum up the results in Table 3, the five IMs considered assign the same ranking positions to the last 

six components, only, whereas the rank orders differ for the most important ones. This entails that it 

is not possible to make a simple decision on system design and maintenance, as if the rankings were 

the same. This consideration also holds if we divide the IMs into the two categories proposed in 

Section 3: rankings in the first two rows (DC IMs) are different from each other as well as those in 

the last three rows (TMC IMs). Thus, to make a decision we consider the aggregation of the rankings. 

Finally, notice that as it clearly emerges from the system RBD (Figure 1) and component parameter 

values (Table 2), components ‘I’ and ‘J’ can be inter-changed without altering the system reliability 

behavior. Then, their ranks coincide in every IM. However, without loss of generality, in each ranking 

we consider component ‘J’ less important than component ‘I’. 

 

Figure 1: Reliability Block Diagram of the auxiliary feed-water system in a PWR 



Component A B C D E F G H I J K L M N 

𝜆 1.0E-7 1.0E-7 1.0E-6 1.0E-6 1.0E-6 1.0E-6 1.0E-7 1.0E-7 1.0E-4 1.0E-4 1.0E-5 5.0E-7 3.0E-4 1.0E-7 

Fr 9.2E-3 9.2E-3 2.5E-2 2.5E-2 2.5E-2 2.5E-2 7.7E-4 1.8E-4 6.8E-1 6.8E-1 5.5E-1 4.3E-3 1.5E-1 5.8E-4 

Tt 0 0 0 0 0 0 0 0 2 2 2 0 0 0 

Tr 5 5 10 10 10 10 15 24 36 36 24 10 10 5 

T 720 720 720 720 720 720 720 720 720 720 720 720 720 720 

Table 2 AFW component parameters 

 

 

Figure 2 Normalized IMs of the components of the system 

 

 1° 2° 3° 4° 5° 6° 7° 8° 9° 10° 11° 12° 13° 14° 

B N L H G K M I J A B D F C E 

RRW N M L I J K H G A B D F C E 



FV M L N I J K H G A B D F C E 

C N M L I J K H G A B D F C E 

RAW N L H G K M I J A B D F C E 

Table 3 IM rankings: the design-centered IMs are dark grey, whereas the test & maintenance centered IMs are light grey 

4.1 Results 

In this Section, we apply the six methods presented in Section 3 to aggregate the five IM rankings in 

the following three settings: 

1) Considering all the five IMs 

2) Considering only the DC IMs 

3) Considering only the TMC IMs 

The obtained aggregated rankings are also “locally Kemenized” with the procedure introduced in 

Section 3.3, and the twelve resulting rankings are compared. 

4.1.1 Application to all the considered IMs 

In this Section, we apply the six aggregation methods presented in Section 3 to the five IM rankings 

reported in Table 3. Notice that making the final decision about how to improve the system based on 

the aggregation of DC and TMC IMs must not be surprising: as mentioned above, relationships exist 

among the IMs of the two groups, which have been deeply investigated in sound works of literature 

(e.g., [5], [14]). For example (e.g., see [2]), Criticality IM (i.e., a TMC IM) can be regarded as a 

function of the Birnbaum IM (i.e., a DC IM) as well as FV (i.e., TMC) is linked to RRW (i.e., DC). 

On this basis, some generalized IMs have also been proposed, which encode both DC and TMC IMs 

(e.g., [5], [14]). 

The aggregated rankings are shown in Table 4 (rows 1-6), which also reports the Kendall generalized 

distance (Eq. (4)) of every aggregated ranking from the five IMs (last column). As mentioned before, 

this distance can be regarded as a performance indicator of the aggregation method: the smaller its 

value, the better is the synthesis of the input rankings. 

Table 4 also reports the ranking obtained by applying LK to the six aggregated ranking (last row). 

The result of the procedure is shown only once because LK yields the same result when it is applied 

to the six aggregated rankings. Notice also that this ranking has the smallest Kemeny distance together 

with the two value-based methods and footrule aggregation method; then, it is the most proximal to 

the available voting profiles. Also, according to the statistical interpretation of the Kemeny distance 

introduced in Section 2, this ranking is the most likely to be the “true” ranking.  

Notice that all the aggregate methods agree that there are three groups of components of different 

importance: i) components ‘L’, ‘M’ and ‘N’ are the most impactful (dark grey area in Table 4); ii) 

components ‘G’, ‘H’, ‘I’, ‘J’, and ‘K’ have a medium level of importance (light grey area in Table 

4); iii) the remaining six components, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’ and ‘F’, have the smallest importance 

(remaining part of Table 4). This information may be useful for decision making. 

 

 

1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  11th  12th  13th  14th  KD 



Borda count N L M I H K J G A B D F C E 6 

Markov chain N L M H K G I J A B D F C E 6,8 

Footrule aggregation N M L I J K H G A B D F C E 5,2 

Ranking-weighted N L M I K H J G A B D F C E 5,8 

Simple mean N M L I J K H G A B D F C E 5,2 

Values-weighted N M L I J K H G A B D F C E 5,2 

Local kemenization N M L I J K H G A B D F C E 5,2 

Table 4 Aggregation methods considering all the five IMs  

The application of MCDM approach yields the Pareto sets indicated in Table 5. From this Table, it 

emerges that the Pareto set contains the three components identified as most important by all the 

aggregation methods (i.e., ‘L’, ‘M’, ‘N’). The second set of non-dominated solutions contains the 

components of the medium level of importance, except for ‘J’, which belongs to the third non-

dominated set. This means that the MCDM approach distinguishes between the importance of this 

component and those of the components in the previous set, differently from the aggregated rankings. 

Finally, the last three sets contain the remaining components, ordered coherently with the IM 

aggregated rankings 

 

 1 2 3 4 5 6 

MCDM L, M, N G, H, I, K J A, B D, F C, E 

Table 5 MCDM results considering all the five IMs 

4.1.2 Application to DC IMs 

Design-centered IMs include the Birnbaum and RRW IMs, which are aggregated in Table 6 by the 

six RA algorithms considered. When only two IMs are considered, LK does not modify the 

aggregated rankings, because the Condorcet criterion is always respected. For this reason, the results 

of the application of LK are not shown in Table 6. In details, consider two generic alternatives ‘A’ 

and ‘B’; then, pairwise comparison must yield one out of the following three outcomes: 

1) Both the measures prefer A to B. 

2) Both the measures prefer B to A. 

3) One measure prefers A to B while the other prefers B to A. 

In the first two cases, all the aggregation methods obviously rank the preferred alternative higher than 

the other one (according to the Condorcet criterion), whereas in the third case a Condorcet winner 

does not exist, although it can be demonstrated that the ECC is always respected.  

We can also notice that all the aggregation methods confirm the results of the possibility of 

partitioning the components according to their importance in three groups, as for the case when all 

the IM rankings are considered. Moreover, the value-based methods and the Markov Chain method 

give exactly the same rankings obtained when considering the five IMs. 

Furthermore, notice that the generalized Kendall distance of the aggregated rankings is always equal 

to six. This result is not surprising. In fact, the Kendall distance between the two rankings of the IMs 



is equal to 12. Now, any aggregation method must find a ranking “between” the two input rankings, 

and a ranking with Kendal distance from the input rankings equal to six can be considered as a ‘mean’ 

ranking. 

 

DESIGN-CENTERED IMs 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  11th  12th  13th  14th  KD 

Bi N L H G K M I J A B D F C E  

RRW N M L I J K H G A B D F C E  

Borda count N L M H I K G J A B D F C E 6 

Markov chain  N L M H K G I J A B D F C E 6 

Footrule aggregation  N M L I K J H G A B D F C E 6 

Ranking-weighted  N L M H I K G J A B D F C E 6 

Simple mean  N M L I J K H G A B D F C E 6 

Values-weighted  N M L I J K H G A B D F C E 6 

Table 6: Design-centered IMs and relative aggregation methods 

Finally, the results of the MCDM approach for this 2-objectives problem are summarized in Table 7. 

The Pareto set contains component ‘N’, only; this result is coherent with the Ras in Table 6, where 

‘N’ always occupies the first ranking position. The rest of the components are arranged as in the case 

of all the considered IMs (Table 5). 

 1 2 3 4 5 6 7 

MCDM N  M, L G, H, I, K J A, B D, F C, E 

Table 7: Design-centered IMs and relative aggregation methods 

4.1.3 Applicaton to TMC IMs 

TMC IMs include Fussell-Vesely, RAW and Criticality IMs, whose aggregated rankings are shown 

in Table 8. These reflect the general results in Table 4: again the footrule aggregation method and the 

value-based methods agree with the local Kemenization (which does not vary among the six 

methods), and they are the methods with the minimum Kendall distance from the voting profile.  

TMC IMs 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  11th  12th  13th  14th  KD 

FV M L N I J K H G A B D F C E  

RAW N L H G K M I J A B D F C E  

Cr N M L I J K H G A B D F C E  

Borda N L M I H K J G A B D F C E 6 

Markov chain N L M K H G I J A B D F C E 7 

Footrule aggregation N M L I J K H G A B D F C E 4.67 

Ranking- weighted N L M I J K H G A B D F C E 5 

Simple mean N M L I J K H G A B D F C E 4.67 

Values-weighted N M L I J K H G A B D F C E 4.67 

Local kemenization N M L I J K H G A B D F C E 4.67 



Table 8 Aggregation methods considering only the test & maintenance-centered IMs 

The MCDC approach yields the Pareto sets identified in Table 5. In this respect, it is worth noticing 

that the aggregation methods with smaller KD consider component ‘J’ more important than ‘K’ and 

‘H’, whereas the opposite conclusion can be derived from Table 5.  

5 Discussion 
Based on the results above, it could seem that after considering different aggregation methods we are 

back to square one: the aggregated rankings give different results and the decision maker still cannot 

take a univocal decision. To overcome this issue, in this Section we derive and justify some general 

rules to provide reliability engineers with a systematic framework for ranking components based on 

their importance values.  

To do this, we first find the ‘true’ component importance ranking by reducing the failure rate of each 

component by Δ=5-10-20 -30 % and, then, we sort the system components according to the extent to 

which this reduction increases the system availability. This approach gives the true ranking for both 

DC and TMC IMs: although for TMC IMs we should evaluate the effect on the overall system 

performance of a change in the parameters relevant to test and maintenance strategy (i.e., 𝑇, 𝐹𝑟, etc.), 

when we do this we always get a reduction in component unavailability, which is the same effect of 

the reduction in the component failure rates. For this reason, we can assume that the large change (up 

to 30%) in the failure rate encodes all possible changes in the test and maintenance parameters and, 

thus, the final ranking can be assumed the true ranking also for TMC IMs. 

The true ranking is reported in Table 9, which is the same for all considered values of Δ. This ranking 

corresponds to that of the value-based methods, the Footrule aggregation (except for the DC IMs) 

and Kemenization (when it makes sense).  

With respect to the MCDM approach, the relative importance of component ‘J’ provided in case of 

both all considered IMs and TMC IMs differs from that in Table 9. This suggests that MCDM can 

give incorrect results. Besides that, a further pitfall of MCDM for IM-based decision making is that 

it does not differentiate among the components of the same set: should this contain a large number of 

components, we would always need an additional technique to support the final decision about the 

components on which it is most convenient to allocate the budget to improve their reliability or 

maintenance. For this, the RA approach can to be preferred to MCDM. 

RESULTS 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  11th  12th  13th  14th  

Impact ranking N M L I J K H G A B D F C E 

Table 9 Impact on system reliability of an increase of up to 30% of component failure rate 

In conclusion, the following practical decision rule is derived from the considerations above: 

 In case there are two IMs only, then consider the value-based methods, which are the novelty 

of this work. They seem to give the most reliable solutions, because in case of contradiction 

of the two input rankings about two alternatives, they prefer the one which mostly defeats the 

other.  



 In case there are multiple IMs, choose any aggregation ranking, preferably a value-based 

method, and make the local kemenization. This procedure possibly reduces the Kendall 

distance and, thus, provides a sound basis to take decisions. 

Finally, with respect to future research work, the final practical decision rules need to be further 

validated by way of diverse case studies (i.e., with different numbers of components, ranges of the 

magnitude orders of the component reliabilities, system logic structures, etc.). In this sense, the 

present work paves the way to a new research pathway on IMs, which builds on the findings of this 

work (e.g., the relevance of making the local kemenization) to propose further improvements, such 

as: 

 The Footrule aggregation method, which has been investigated by a few authors ([32], 

[38], [39]), deserves a deeper investigation within the IM context, as its statistical 

interpretation can support the development of techniques that allow estimating the 

uncertainties in the final ranking. In this respect, a combination of Bootstrap method and 

Ensemble-based Sensitivity Analysis (EBSA) has been proposed in [29] to identify the 

variables that most affect the uncertainty on an output. Similarly, a Bootstrap method has 

been adopted in [13] for IM RA and also to quantify the uncertainty on each alternative 

position. However, both works ([13] and [29]) do not consider the aggregation ranking 

and the concept of distance between rankings. For this, future research work is in order 

to further capture the statistical interpretation of the outcomes of RA algorithms and, also 

to give definitive rules to DMs to identify the most important components. This can also 

constitute the basis of decision algorithms that guide the DM in selecting the portfolio of 

actions to achieve cost effective improvements of the system RAM attributes. 

 In this work, we have disregarded the uncertainty that can affect the component failure 

probabilities and, thus, the IM values. Indeed, in [13], [41], [42] it has been shown that 

disregarding these epistemic uncertainties can lead to biased ranking. Future research 

work will investigate how to aggregate uncertain IMs. For this, we will build on [43]-

[46]: in [43] and [45], Uncertainty IMs (UIMs) have been propounded to quantify the 

effect of epistemic uncertainties in IMs, which however do not allow tackling the issue 

of IM ranking in the presence of the epistemic uncertainty. For this, Aven and Nøkland 

have proposed a ranking method based on the couple (IM, UIM) [46], whereas Toppila 

and Salo [43] propose a computational method based on a novel branch and bound 

algorithm to treat multilinear functions of interval-valued probabilities. The objective of 

the future research work will be the aggregation of these measures to get the final 

aggregated ranking with the estimation of its robustness.  

 

6 Conclusion 

RA methods are useful tools to combine the rankings obtained from different IMs and, thus, choose 

the most impactful components for system reliability. We have presented six different aggregation 

methods, which have applied to an example of a simplified AFWS in a PWR, composed by fourteen 

components, with five IMs to aggregate. The aggregation methods have also been compared with the 

MCDM approach. 



The set of IMs has also been divided into two classes DC and TMC IMs. In all cases, the best methods 

turn out to be the value-based ones and the Footrule optimal aggregation method (an approximation 

of the Kemeny method), as they have the smallest Kendall distance from the input IMs. Moreover, 

the final application of the Local Kemenization procedure seems necessary, when applicable. 

Future research works will focus on the formalization of the statistical properties of the Footrule 

optimal aggregation method and on the characterization of the uncertainty in the final ranking to allow 

the DM to make more informed decisions.  
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