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Translation initiation factor elF4G1 preferentially binds yeast
transcript leaders containing conserved oligo-uridine motifs

BORIS ZINSHTIEYN,1 MARIA F. RO]AS-DURAN,2 and WENDY V. GILBERT?
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

ABSTRACT

Translational control of gene expression plays essential roles in cellular stress responses and organismal development by enabling
rapid, selective, and localized control of protein production. Translational regulation depends on context-dependent differences
in the protein output of mRNAs, but the key mRNA features that distinguish efficiently translated mRNAs are largely unknown.
Here, we comprehensively determined the RNA-binding preferences of the eukaryotic initiation factor 4G (elF4G) to assess
whether this core translation initiation factor has intrinsic sequence preferences that may contribute to preferential translation
of specific mRNAs. We identified a simple RNA sequence motif—oligo-uridine—that mediates high-affinity binding to elF4G in
vitro. Oligo(U) motifs occur naturally in the transcript leader (TL) of hundreds of yeast genes, and mRNAs with unstructured
oligo(U) motifs were enriched in immunoprecipitations against elF4G. Ribosome profiling following depletion of elF4G in vivo
showed preferentially reduced translation of mRNAs with long TLs, including those that contain oligo(U). Finally, TL oligo(U)
elements are enriched in genes with regulatory roles and are conserved between yeast species, consistent with an important
cellular function. Taken together, our results demonstrate RNA sequence preferences for a general initiation factor, which
cells potentially exploit for translational control of specific mRNAs.
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INTRODUCTION (Hinnebusch 2005; Arribere and Gilbert 2013; Pelechano
et al. 2013); stable RNA secondary structures, which block
or impede ribosome recruitment or scanning (Kozak 1990;
Ding et al. 2014; Weinberg et al. 2016); and target sites for
certain RNA-binding proteins, which lead to translational
repression and mRNA decay of specific sets of messages
(Hentze et al. 2004; Beckmann et al. 2005). In contrast, rela-
tively little is known about TL features that can act as general
translational enhancers, although such elements could
contribute substantially to the wide range of TEs observed
in eukaryotic cells (Gilbert 2010; Shatsky et al. 2014; Lee
et al. 2015).

Eukaryotic initiation factor 4G (eIF4G) is a prime candi-
date to mediate the activity of translational enhancer se-
quences. elFAG is the scaffold subunit of elF4F, which
initially recognizes translation-competent mRNAs (Jackson
et al. 2010; Hinnebusch and Lorsch 2012). eIF4G bridges
the cap-binding activity of eIF4E, the helicase activity of
elF4A, and the poly-A binding activity of PABP/Pabl, there-
by forming the translational “closed loop” complex (for re-
view, see Thompson and Gilbert 2017). elF4G contains

Eukaryotic cells in different tissues and developmental stages
require different protein complements to achieve their form
and function, despite having identical genomes. The contri-
bution of translational control to differences in protein pro-
duction is well established in specific cases, yet the general
mechanisms governing the rate at which protein is produced
from a particular species of mRNA are poorly understood.
Transcript leaders (TLs; also known as 5'-untranslated re-
gions) directly contact the translation initiation machinery
and can strongly influence the rate of translation (Hinne-
busch et al. 2016). Different TL sequences from yeast are suf-
ficient to confer a 1000-fold range of translational efficiencies
(TEs) both in vivo and in lysates (Rojas-Duran and Gilbert
2012), but the important functional elements within these
TLs are mostly unknown. Several well-characterized TL fea-
tures can repress translation to varying degrees. Inhibitory
features include upstream open reading frames, which divert
ribosomes from the main open reading frame of an mRNA
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three RNA-binding domains that directly interact with
mRNA and are essential for yeast growth (Berset et al.
2003; Park et al. 2011a), although specific functional interac-
tions between elF4G and cellular mRNAs have not been
characterized. In the context of some viral mRNAs, direct
RNA binding by eIF4G is both necessary and sufficient to
confer efficient translation, even in the absence of a cap or
a poly(A) tail (Pestova et al. 1996a,b). High-affinity binding
of elF4G could facilitate the translation of those cellular
mRNAs most dependent on the activity of the e[F4F com-
plex, such as those with long or structured TLs (Sen et al.
2015, 2016), or allow coordinated translational control under
conditions that limit e[F4F activity including viral infection
(Castellé et al. 2006, 2011), nutrient depletion (Thoreen
et al. 2012), and heat shock (Cuesta et al. 2000).

Here, we have comprehensively determined the RNA-
binding preferences of eIF4G1 from Saccharomyces cerevisiae
and tested the effects of these preferences on translation in vi-
tro and in vivo. Using RNA Bind-n-Seq (RBNS), a quantita-
tive high-throughput technique to measure RNA-binding
affinities in vitro (Lambert et al. 2014), we tested approxi-
mately 87,380 distinct RNA motifs and showed that recom-
binant e[F4G1 preferentially binds to unstructured RNA
sequences containing oligo-uridine (U). Consistent with
this result, inserting U, into an unstructured RNA increased
binding to eIF4G1 by 20-fold in electrophoretic mobility shift
assays (EMSAs). Hundreds of yeast TLs contain oligo(U) se-
quences, which are evolutionarily conserved among budding
yeast species and enriched in genes with regulatory roles. TL
oligo(U) elements enhanced translation in vitro for four of
eight TLs tested, although this effect could be mediated by
a factor other than elF4G. In vivo, we found that eIF4G pref-
erentially bound mRNAs with unstructured oligo(U) motifs.
However, TL length, and not the presence or absence of
oligo(U) motifs, was the best predictor of translational sensi-
tivity to eIF4G depletion in vivo. Taken together, our results
show that short TL RNA sequences can act as translational
enhancers and suggest that the intrinsic RNA-binding prefer-
ences of core translation factors may contribute to gene-spe-
cific differences in translation efficiency or regulation.

RESULTS

elF4G1 binds oligo(U) sequences with high affinity

We used RBNS (Lambert et al. 2014) to determine the RNA-
binding specificity of eIF4G. This competitive in vitro bind-
ing assay consists of mixing randomized RNA libraries with
different concentrations of protein, and sequencing the
bound RNA (Fig. 1A). RBNS reports directly and quantita-
tively on the innate RNA-binding preferences of a protein
of interest. It is neither biased by the sequences present in a
transcriptome, nor affected by processes that could indirectly
alter protein—RNA association in vivo. We performed RBNS
with recombinant elF4G1 (Supplemental Fig. SIA,B), the
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more abundant and better characterized of two S. cerevisiae
paralogs of eIF4G (Goyer et al. 1993; Ghaemmaghami et al.
2003), and a library of random 20mer RNA.

Analysis of the RNA sequences bound by eIF4G1 revealed
a strong enrichment for sequences containing oligo(U), and a
weaker enrichment for sequences containing five or more
consecutive Gs. As expected, these enrichments were con-
centration-dependent; they peaked at an intermediate con-
centration (320 nM) and then decreased at higher protein
concentrations where binding ceases to be competitive and
all sequences are bound to a similar extent (Fig. 1B). The
computation of enrichment values used here could lead
to an artifactual enrichment of short homopolymer sequenc-
es if a longer homopolymer is enriched (Supplemental Fig.
S1C). To account for this, the enrichment was recomputed,
comparing only complete homopolymers of the same length.
The enrichment for oligo(U) persisted, and it increased with
the length of the homopolymer, indicating that eIF4G prefer-
entially binds to longer oligo(U) stretches (Supplemental Fig.
S1D). Strikingly, the enrichment for oligo(U) was similar in
magnitude to that observed previously for known binding
sites of highly sequence-specific mammalian splicing factors
(Supplemental Fig. SIE).

EMSAs on homopolymeric U and A sequences confirmed
the preference of eIF4G1 for binding oligo(U). elF4Gl
bound to Uy with a 17-fold tighter affinity than A, (Fig.
1D), confirming the RNA sequence preference observed by
RBNS. To determine if short stretches of the homopolymers
were sufficient for tight binding in the context of a longer se-
quence, Uj, or G, were embedded in a sequence of 25 CA
repeats and tested by EMSA with eIF4G1. The addition of
Gyp increased binding moderately compared with the poly
(CA) control, and the addition of Uy, resulted in tight bind-
ing comparable to the Uy homopolymer (Fig. 1E), recapitu-
lating the results from RBNS and confirming oligo(U) as the
preferred binding site for eIF4G1 in vitro.

Oligo(U) sequences are conserved and enriched
in genes with regulatory functions

Searching the S. cerevisiae transcriptome for TLs with contin-
uous stretches of U’s identified 380 genes containing a total of
463 oligo(U) motifs >7-nt-long within their annotated TL
(Supplemental Table S1; Pelechano et al. 2013). We assessed
the conservation of oligo(U) sequences for each U; motif in
yeast TLs by computing branch length scores (BLSs), a mea-
sure of the evolutionary distance over which a sequence is
exactly conserved (Fig. 2A; Friedman et al. 2008). BLSs for
oligo(U) motifs were compared with a set of control 7mers,
which differ from U; by up to three U-to-A substitutions.
Only U-to-A substitutions were used to maintain the A+U
content in the motif, as G and C nucleotides have substan-
tially lower representation in the yeast transcriptome. For
each BLS, a significantly higher fraction of oligo(U) elements
was conserved compared with the control set (Fig. 2B), and
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FIGURE 1. eIF4G1 preferentially binds to oligo(U) sequences. (A) RBNS method summary. GST-tagged eIF4G, at several concentrations, was in-
cubated with a pool of random 20mer RNA. Protein and bound RNA were isolated with glutathione-conjugated magnetic beads, and the bound RNA
was deep-sequenced to identify binding motifs. (B) RBNS enrichment scores at all concentrations of e[F4G1, for the twenty 7-nt sequences that were
most enriched at 320 nM eIF4G1. Enrichment values are computed as the frequency of a motif in the bound library divided by its frequency in the
input library. (C) Log-scaled histogram of RBNS enrichment values at 320 nM elF4G1 for all 7-nt sequences. Vertical black line indicates 2 SDs above
the mean of the distribution. (D) EMSA to measure binding affinity of eIlF4G1 to homopolymer sequences. (Left) Representative gel. Binding reactions
were performed with twofold dilutions of eIF4G1 ranging from 15 to 1000 nM. The fast-migrating band seen in some lanes is consistent with an RNA
decay product, likely a mononucleotide. (Right) Quantification of homopolymer-binding experiments, in which solid and dotted lines indicate the
two separate replicates. Kys are mean + SD from two independent replicates. A,, binding was too weak to yield a reliable fit in one replicate. (E) EMSA
on model TL sequences. (Left) Representative gel. Binding reactions were performed with threefold dilutions of eI[F4G1 ranging from 25 to 2000 nM.
(Right) Quantification of binding experiments. Each data point is mean + SD from two (Gj,) or three (CA, Uj,) independent replicates.

43 U, motifs were completely conserved between five yeast ~ eIF4G in vivo, we analyzed transcriptome-wide RNA immu-
species that shared their last common ancestor ~10 million ~ noprecipitation and RNA sequencing (RIP-seq) data for sev-
years ago (Supplemental Table S1; Budovskaya et al. 2005). eral yeast translation initiation factors (Costello et al. 2015).
The conservation of oligo(U) sequences in TLs implies that Oligo(U) mRNAs were preferentially associated with both
these elements play a physiologically relevant role subject to ~ paralogs of eIlF4G, when compared with all genes (median
selective pressure. Gene ontology analysis (Balakrishnan  enrichment increased 1.13- and 1.11-fold for eIF4Gl and
et al. 2012) on genes with TLs containing U; revealed an en-  eIF4G2, respectively), and enrichment was increased for con-
richment for genes with regulatory functions and for genes  served oligo(U) sequences (BLS>1) (Fig. 3). As mRNAs
whose protein products localize to the cell periphery or cellu-  containing oligo(U) had longer TL lengths than most
lar bud (Fig. 2C,D). Taken together, these results show that =~ mRNAs (Supplemental Fig. S2B), we compared the enrich-
e]F4G1-binding motifs are evolutionarily conserved and raise ~ ments of oligo(U) mRNAs with a set of mRNAs with a sim-
the possibility that yeast cells could exploit mRNA affinity for ~ ilar distribution of transcript-leader lengths. This group was
eIF4G to tune the translation of genes necessary for specific ~ also enriched in eIF4G IPs, indicating that association of
adaptive responses. oligo(U) mRNAs with eIF4G could alternatively be due to
their longer than average TL lengths. Notably, this group dis-
plays an unexpected set of associations with translation initi-
ation factors. Although eIF4E and eIF4G enrichment values
were globally well correlated (Pearson r=0.74 for eIF4Gl
In vitro binding preferences do not necessarily reflect in vivo ~ versus eIF4E, 0.72 for eIF4G2 versus eIlF4E) (Supplemental
association. To examine whether oligo(U) motifs recruit Fig. S2A), the oligo(U) mRNAs were not enriched in IPs

Oligo(U) mRNAs preferentially copurify
with elF4G from yeast
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FIGURE 2. Oligo(U) sequences in TLs are conserved, and enriched in genes with regulatory
functions. (A) Example of conservation scoring for one oligo(U) sequence. The branch length
score (BLS) is the sum of the horizontal branch lengths connecting S. cerevisiae to all other species
that contain a U; at the aligned position, as indicated in blue. BLSs increase with conservation
over increasing evolutionary distance. Tree and branch lengths were downloaded from the
UCSC genome browser. (B) Fraction of U; motifs or control 7mers in TLs passing each branch
length cutoff. P values for the conservation of U; motifs are the probability of a background motif
having an equal or greater conservation fraction than U; (Supplemental Methods). The P values
decline sharply above a cutoff of 1.268, due to the lack of overall conservation in TLs between
Saccharomyces castellii and Saccharomyces kluyverii and the other five yeast species. (C) Percent
of genes with Uy in their TL that belong to each significantly enriched gene ontology category.
(TXN) transcription, (AA) amino acid. (D) Percent of genes with conserved U; (BLS > 1.0 in
B) in their TL that belong to each significantly enriched gene ontology component category.

against eIF4E and were slightly depleted in IPs against cyto-
plasmic poly(A)-binding protein (Pabl), suggesting that
some of these elFAG—mRNA interactions happen outside
the context of the canonical closed loop complex.

Consistent with the possibility that oligo(U) motifs pro-
mote stable binding to eIF4G in the absence of eIF4E, these
oligo(U) mRNAs were also enriched in IPs against the
elF4E-binding protein (4E-BP) EAP1 (median enrichment
increased 1.20-fold) (Supplemental Fig. S2C). 4E-BPs repress
translation by competing with eIF4G for interaction with
eIF4E, thereby excluding eIF4G from 4E-BP-bound mRNAs
(Haghighat et al. 1995; Richter and Sonenberg 2005; Cridge
et al. 2010). The observed association of oligo(U) mRNAs
with both eIF4G and EAP1 could reflect distinct pools of
these mRNAs bound to either factor. Alternatively, oligo(U)
motifs or some function of TL length may allow eIF4E-inde-
pendent recruitment of elF4G to an EAP1-bound mRNA,
thereby allowing these mRNAs to escape translational repres-
sion by EAPI.
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the bound motifs (Fig. 4A). The sequenc-
P es bound by eIF4Gl showed a sharp
drop in pairing probability at the bound
oligo(U) motif (Fig. 4B) compared
with the input and no-protein controls.
The preference for single-strandedness
showed the same concentration depen-
dence as the RBNS enrichment for oligo
(U), with the strongest enrichment for
oligo(U) coinciding with the strongest
preference for unpaired sequences at
320 nM (compare Fig. 4B with Fig. 1B).
Thus, eIF4G1 preferentially binds
oligo(U) in unstructured contexts.

mRNAs with unstructured oligo(U)
motifs were also more enriched in pull-
downs of eIF4G from yeast cells. We used transcriptome-
wide nuclease reactivity data (Kertesz et al. 2010) to group
oligo(U) sequences in yeast TLs based on their average
RNA secondary structure propensity (PARS score) and
repeated the RIP-seq enrichment analysis (Fig. 4C; Supple-
mental Fig. S2D). Unstructured sequences were enriched sig-
nificantly more than structured ones in RIP-seq for eIF4Gl
(median change 1.08-fold, P=0.016) and eIF4G2 (median
change 1.19-fold, P = 0.002), whereas the group of structured
oligo(U) TLs was not significantly enriched against the set of
all TLs covered in the PARS data. This difference is not a re-
sult of TL length biases. The sets of structured and unstruc-
tured TLs have similar lengths, and the length-matched
controls for these two gene sets had similar enrichments in
the eIF4G RIP-seq (Fig. 4C). Furthermore, the difference
in IP enrichment between structured and unstructured
oligo(U) was not seen for other factors. This indicates that,
in agreement with in vitro results, a base-paired oligo(U)
motif is less likely to bind to eIF4G in vivo.
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FIGURE 3. Oligo(U) mRNAs preferentially copurify with eIF4G from yeast. Cumulative distributions of RIP-seq enrichments from (Costello et al.
2015), for genes containing oligo(U) of length 7 or greater. P values for 7xU compare the indicated gene set with the set of all genes with RIP-seq data,
as computed by the Mann—Whitney U-test. The P values for the length-matched controls compare the control gene set with the set of all 7xU genes in

the RIP-seq data.

Oligo(U) motifs are correlated with elF4G-dependent
translation in vivo

We hypothesized that e[F4G-binding motifs would promote
e]F4G-dependent ribosome recruitment. To determine the
impact of eIF4G and oligo(U) sequences on translation in
vivo, we performed ribosome footprint profiling (Ribo-seq)
and total mRNA sequencing (Ingolia et al. 2009) on wild-
type (WT) controls and mutant yeast in which eIF4G levels
were reduced using a temperature-sensitive degron allele
(4G-ts) (Fig. 5A; Park et al. 2011b). eIF4G levels were greatly
reduced even in permissive conditions, as previously report-
ed (Park et al. 2011b), and eIF4G was undetectable or barely
detectable within 2 h of shifting the 4G-ts strain to the non-
permissive condition (Fig. 5B; Supplemental Fig. S3A). Bulk
polysome levels were moderately reduced (twofold) in the
4G-ts strain under permissive conditions, but collapsed (to
34-fold less than unshifted WT) after further eIF4G depletion
(Fig. 5C; Supplemental Fig. S3B), indicating a severe global
reduction in translation initiation.

We examined gene-specific differences in basal translation
activity and sensitivity to eIF4G levels by computing transla-
tional efficiency (TE), defined as the ratio of ribosome foot-
print read density to RNA-seq read density for a particular
mRNA (Ingolia et al. 2009). As oligo(U) mRNAs have longer
than average TLs, which are correlated with reduced TE
(Weinberg et al. 2016), we chose a set of mRNAs with a sim-
ilar distribution of TL lengths as a control (Supplemental Fig.
S3C). In WT cells, mRNAs with oligo(U) in their TLs had re-
duced TE when compared with the full set of genes, but only
slightly less than the length-matched controls (Fig. 5D). This
indicates that these genes are, on average, translationally
disadvantaged, but primarily because of their longer TLs.
In permissive conditions, oligo(U) mRNAs exhibited de-
creased TE in the 4G-ts strain compared with WT that could
be entirely attributed to their longer TLs (Fig. 5E). Upon
further depletion of eIF4G, the TE of oligo(U) mRNAs was

reduced more than the length-matched controls (Fig. 5E),
and this effect was larger after longer depletion times
(Supplemental Fig. S3D). This reduction in TE was consis-
tent across four of the five experiments, although the effect
for oligo(U) mRNAs was only statistically different from
the length-matched controls in two of the five depletion ex-
periments (Supplemental Fig. S3D). Although these results
are consistent with the model that oligo(U) sequences help
to recruit e]F4G to messages that are particularly dependent
on its activity, the small effect sizes make it difficult to tease
apart the contributions of TL length versus TL sequence in
the translational response to e[F4G depletion.

We found that eIlF4G depletion led to a marked decrease in
TE for mRNAs with TLs longer than 135 nt (Supplemental
Fig. S4A), consistent with the role of eIF4G in recruiting
and activating eIF4A to unwind RNA structure and ensure
processivity of the scanning pre-initiation complex on long
and structured TLs (Garcia-Garcia et al. 2015; Sen et al.
2015; Gao et al. 2016). The same effect can be seen in pub-
lished Ribo-seq data for strains depleted of e[F4A and its ac-
tivator e[F4B (Supplemental Fig. S4B; Sen et al. 2015, 2016).
We note that our findings contradict previous TE measure-
ments conducted on the same eIF4G depletion strain using
polysome microarrays (Supplemental Fig. S4C; Park et al.
2011b), which showed the opposite relationship between
TE change upon eIF4G depletion and TL length. This discrep-
ancy may be a result of the technical limitations of the poly-
some microarray assay, which assessed translation changes
by monitoring the fraction of a message that sediments with
an arbitrary heavy polysome fraction, a measure that is biased
by coding sequence length (Arava et al. 2003) and thus skews
translational changes for certain classes of genes.

Oligo(U) motifs promote translation in vitro

The results from ribosome profiling suggest that oligo(U)
motifs promote elF4G-dependent ribosome recruitment,
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and mutant mRNAs persisted (Fig. 6B).
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is responsible for the difference in lysate
translation between these mRNAs, or
that the small amount of residual
elF4G in these depleted extracts is suffi-
cient to confer an advantage on the
oligo(U) mRNAs. Overall, these results
demonstrate the ability of short oligo(U)
sequences to stimulate protein produc-
tion. However, the exact mechanism by
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DISCUSSION

The RNA-binding activity of eIlF4Gl is
essential for yeast growth (Berset et al.
2003), yet the role of this activity in
translation initiation is not currently
understood. Although previous work
suggested that e[F4G1 binds RNA non-
specifically (Berset et al. 2003), certain vi-
ral mRNAs rely on high-affinity binding
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elF4G1 log2 RIP-seq enrichment

FIGURE 4. eIF4G1 binds oligo(U) in unstructured contexts. (A) Overview of RNA structure
analysis. In this cartoon example, darker arcs represent larger pairing probabilities, and faint
or absent arcs represent low probability pairings. See the main text for details. (B) Pairing prob-
abilities for oligo(U) and surrounding sequence for each eIF4G1 concentration, normalized to
the input sequences. The sequences are aligned at the 5 U of the homopolymer, but many ex-
tend more than 7 nt, which explains the sharp drop in pairing probability at the 5'-end of the
sequence and the gradual rise at the 3’-end. (C) Cumulative distributions of RIP-seq enrich-
ments from Costello et al. (2015), for genes containing oligo(U) of length 7 or greater, grouped
by the average PARS structural propensity of the oligo(U) from Kertesz et al. (2010). “Less
structured” oligo(U) have a mean PARS score from —2.0 to <0.1, whereas “more structured”
oligo(U) have a mean PARS score from 0.1 to 3.5. Length-matched control sets have a similar
distribution of TL lengths to the corresponding gene set. P values are for comparison of more
structured and less structured gene sets (or their length-matched controls) to each other, as

computed by the Mann—-Whitney U-test.

but these results are complicated by the longer TL lengths of
oligo(U) mRNAs. To directly test the impact of oligo(U) mo-
tifs on translation, we chose eight TLs of varying lengths con-
taining oligo(U) motifs. These TLs and their oligo(U) mutant
counterparts, plus partial coding sequences (12—-87 nt), were
cloned in-frame with the nanoLuc open reading frame, in vi-
tro-transcribed, m’G-capped, and translated in yeast lysates.
Of the eight TLs tested, four exhibited decreased luciferase
production per mRNA when the oligo(U) was mutated
(Fig. 6A; Supplemental Fig. S5), whereas one exhibited in-
creased luciferase production per mRNA (Supplemental
Fig. S5). We next compared the activity of these TL pairs in
translation extracts genetically depleted of eIF4G. Although
the overall level of translation was severely reduced in
elF4G-depleted extracts, the difference between the oligo(U)
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elF4G2 log2 RIP-seq enrichment

1.0 15

to eIlF4G for their translation (Pestova
et al. 1996a), raising the possibility that
specific cellular mRNAs might also
exploit the intrinsic RNA-binding pre-
ferences of eIF4G. Here, we have system-
atically determined the RNA-binding
preferences of eI[F4G1 in vitro and discov-
ered a strong and specific affinity of
elF4Gl1 for oligo(U) sequences. We find
that oligo(U) elements are present in the
TLs of hundreds of yeast mRNAs and
are frequently conserved. Under condi-
tions of limiting eIF4G activity, mRNAs
with oligo(U) in their TLs are poorly
translated in vivo, as are other mRNAs
with long TLs. We further showed that oligo(U) motifs
directly enhance translation initiation in lysates, but this effect
seems likely to be mediated by a factor other than eIF4G.

The translational effects of oligo(U) sequences in yeast TLs
vary and can be modified by other sequence features. Our
RBNS data indicate that sequestration of oligo(U) sequences
in RNA secondary structures inhibits eIF4G binding. This
may explain some of the spread in the data for IP enrichment
of oligo(U) mRNAs with eIF4G and TE changes upon eIF4G
depletion. In addition, upstream start codons can still divert
ribosomes from translating the main open reading frame,
thus reducing TE even if ribosome recruitment is enhanced
by an oligo(U) motif.

Although the conditions used here to deplete eIF4G were
genetic rather than environmental, many cellular stress
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FIGURE 5. mRNAs with oligo(U) in their TL are sensitive to e[F4G depletion. (A) Schematic of culture conditions for eIF4G depletion experiments.
(B) Western blot of eIF4G1 from WT and 4G-ts strains during depletion time course. The degron-tagged eIF4G1 (black arrowhead) runs slightly
above the native protein. The ribosomal protein ASC1 is included as a loading control. Thirty- and 10-sec exposures are shown. (C) Polysome profiles
of samples collected for ribosome profiling. (D) Violin plots of TE (footprint RPKMs/mRNA RPKM:s) for each gene from ribosome profiling for the
WT strain. Red horizontal lines indicate the mean for each gene set, boxes show lower and upper quartile ranges, whiskers indicate 95% intervals. 7xU
indicates genes with oligo(U) of length 7 or longer in their TL, and BLS >1 is the set of genes with conserved U7. P values are for comparison of the
indicated gene set with the set of all genes, or against the 7xU gene sets for the length-matched controls, as computed by the Mann—Whitney U-test. (E)
Violin plots of the log, fold difference in TE for each gene between the WT strain and the 4G degron strain, pre- and post-eIF4G1 depletion. Gene sets

and P values as in D.

responses involve global translational changes that repro-
gram the proteome faster or more efficiently than is possi-
ble by a transcriptional response alone (Ashe et al. 2000;
Hinnebusch 2005; Liu et al. 2013; Shalgi et al. 2013; Vaidya-
nathan et al. 2014). Notably, several stress responses require
mRNA-specific modulation of eIF4G activity, either by di-
rected elF4G recruitment (Gilbert et al. 2007) or through
inhibition of e[F4G-dependent translation by 4E-BPs (Ibra-
himo et al. 2006; Cridge et al. 2010; Thoreen et al. 2012).
The evolutionary conservation of oligo(U) sequences within
TLs, as well as the cellular roles of the genes containing
them, suggests that differential mRNA recognition by

elF4G plays a role in responses to cellular stimuli in yeast.
Intriguingly, a recent screen for sequences promoting cap-
independent translation in human cells (Weingarten-Gab-
bay et al. 2016) discovered oligo(U) sequences among the
most potent stimulators. Although the basis for this activity
was not determined, direct binding of eIF4G is sufficient to
promote efficient cap-independent initiation (De Gregorio
et al. 1999).

The portions of e[F4G1 responsible for specific binding to
unstructured oligo(U) motifs are currently unknown.
Although eIF4G was initially assigned an RNA recognition
motif based on sequence (Goyer et al. 1993), this domain
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FIGURE 6. Oligo(U) motifs stimulate translation in vitro. NanoLuc activity from control (A) and eIF4G-depleted (B) in vitro translation ex-
tracts programmed with capped and polyadenylated NanoLuc mRNA bearing the indicated TL. Each point represents an independent exper-
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sequence for the indicated gene. *Statistically significant (P < 0.05 by two-tailed Student’s t-test) differences between WT and mutant NanoLuc

activity.

was found not to bind RNA (Berset et al. 2003), and the em-
pirically determined RNA-binding domains of eIF4G1 do
not resemble any well-defined RNA-binding motifs at the se-
quence level (Burd and Dreyfuss 1994). However, two of
these domains are arginine-serine rich (RS), resembling the
unstructured RS domains commonly found in splicing
factors. Although splicing factor RS domains are thought
to mediate protein—protein interactions, not RNA binding
(Graveley 2000), in eIF4G, these domains appear to mediate
interactions with both RNA and other proteins (Berset et al.
2003; Singh et al. 2012). It will be interesting to determine
which of the domains of eIF4G confer RNA-binding speci-
ficity and whether the many phosphorylation sites found
within these domains (Albuquerque et al. 2008; Holt et al.
2009; Swaney et al. 2013) regulate translation of oligo(U)
mRNAs.

The factors that influence the rate of translation initiation
are just beginning to be described, and, until recently, the in-
trinsic RNA-binding preferences of the core initiation factors
have largely been ignored. Several other translation initiation
factors, including eIF4A, elF4B, and multiple subunits of
elF3, have RNA-binding activity and may also have differen-
tial affinities for mRNAs. Indeed, human eIF3 was recently
shown to preferentially associate with specific RNA structures
in TLs in vivo, with enhancing or repressing effects on trans-
lation determined by contextual features that are not yet un-
derstood (Lee et al. 2015). Our results suggest that sequence-
specific RNA binding by core initiation factors could have
widespread effects on basal translation rates and enable coor-
dinated translational control of specific subsets of mRNAs.
The approach described here for comprehensive characteri-
zation of the RNA-binding preferences of purified factors is
broadly applicable. With a complete affinity profile of the
translation initiation machinery, we can begin to quantita-
tively predict the protein output of a transcriptome from
the sequence of its mRNAs.
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MATERIALS AND METHODS

Purification of yeast elF4GT1

Full-length eIF4Gl1 fused to N-terminal GST and C-terminal 6xHis
tags was purified as described in (Mitchell et al. 2010), with the
modifications described in Supplemental Experimental Procedures.

RNA library synthesis

Randomized RNA libraries consisted of 20 nt of randomized RNA
sequence, followed by an adaptor sequence used for priming reverse
transcription and Illumina library preparation. All RNAs were pro-
duced by runoff T7 transcription from DNA oligos (Supplemental
Table S2).

RNA Bind-n-Seq

The binding reactions were modified from Lambert et al. (2014) as
follows. One micromolar RNA pool was incubated with concentra-
tions of eIF4G ranging from 0 to 1280 nM for 30’ at 22°C, then in-
cubated with MagneGST glutathione beads (Promega) for 10’ at 22°
C. The supernatant was removed, the beads were washed once, and
the bound RNA eluted at 70°C for 10 min. The bound RNA and in-
put pool were reverse-transcribed and processed into Illumina se-
quencing libraries (Supplemental Methods).

Electrophoretic mobility shift assays

Approximately 60 femtomoles of 5'-end-labeled RNA was equili-
brated at 22°C in 5 uL of 2xTHEM buffer. eIF4G at twice the desired
concentration in 5 pL of storage buffer was added to the RNA and
equilibrated for 30 min at 22°C. Samples were run on a 1XTHEM
7% acrylamide MIDI gel for 40-120 min at 140 volts. Gels were
scanned on a Typhoon phosphorimager and bands were quantified
using ImageQuant TL software (GE Healthcare). Fraction bound
was defined as the ratio of the upper band intensity to the total in-
tensity of upper and lower bands.
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Computational methods

RBNS data were analyzed with the tools developed in Lambert et al.
(2014). The RBNS enrichment value for a kmer is the fraction of that
kmer out of all kmers in the bound library, divided by the same frac-
tion for that kmer in the input library. Sequence conservation anal-
ysis was done using the algorithm in Friedman et al. (2008). These
tools were supplemented with custom Python scripts for all other
analyses. For TL annotations, we used the median TL lengths
from Pelechano et al. (2013), except for generating synthetic oligo
pools, where multiple TL isoforms were included for some
mRNAs, and for PARS structure analysis, where we used the match-
ing annotations from Kertesz et al. (2010). For ribo-seq TE plots, all
mRNAs with an AUG codon in their TL were excluded from anal-
ysis, to avoid complication from the known regulatory effects of
upstream open reading frames. All plots from automated analyses
were made with Matplotlib (Hunter 2007). Detailed methods for
individual analyses are provided in Supplemental Experimental
Procedures. RBNS data were deposited into the NCBI short read
archive with accession number SRR1909253. Ribo-seq data were
deposited into the gene expression omnibus with accession number
GSE87641.

In vitro translation

Yeast translation extracts and uncapped luciferase mRNA were
made exactly as described in Rojas-Duran and Gilbert (2012).
Strain YWG3, grown to mid-log phase, was used to make lysate
for Supplemental Figure S5. For Figure 6, strains YAJ3 and YAJ41
(see eIF4G depletion) were grown in SC-URA and shifted to
the nonpermissive condition for 2 h before harvesting. NanoLuc
RNAs with various TLs were made by runoff transcription from
plasmids (Supplemental Table S3) linearized with Ecl136 II (NEB)
after the encoded poly(A)s, tail. Transcripts were m’G-capped
with recombinant vaccinia capping enzyme (Shuman and Moss
1990).

elF4G depletion

For elF4G depletion experiments, cultures of WT yeast YAJ3
(MATa trplA leu2-3,112 ura3-52 gen2A::hisG Pgap;-myc-UBRI1:
TRP1:ubrl, pRS316 <URA3>), or eIF4G depletion strain
YAJ41 (MATa trplAleu2-3,112 ura3-52 gen2A:hisG Pgap-myc
UBRI1:TRP1::ubrl tif4632A:kanMX6 Peyp,-UBI-R-DHFR®-HA-
tif4631-td::URA3::tif4631) (Park et al. 2011b), were grown at the
permissive condition of 2% raffinose + 0.1 mM copper sulfate at
26°C (pre-shift). At r=—-30 min, galactose was added to 2% to
induce expression of the degron tag’s cognate ubiquitin ligase.
At t=0, bathocuproinedisulfonic acid was added to 1 mM to
chelate copper and shut off the CUP1 promoter driving eIF4G
transcription, and the culture was shifted to 36°C to activate the
degron tag. For YPA experiments, pre-shift, =0 h, and t=2 h
were collected for ribosome profiling. For SC experiments, t=2 h
and t=28 h time points were collected.

Ribosome footprint profiling

Ribosome footprint profiling was performed essentially as described
in Thompson et al. (2016), with cycloheximide added to 0.1 mg/mL

just prior to cell harvest and lysis. rRNA was subtracted from mRNA
libraries using the Ribo-Zero Yeast rRNA Subtraction Kit
(Ilumina).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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