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Large-scale tumor sequencing projects enabled the identification
of many new cancer gene candidates through computational ap-
proaches. Here, we describe a general method to detect cancer genes
based on significant 3D clustering of mutations relative to the
structure of the encoded protein products. The approach can also
be used to search for proteins with an enrichment of mutations at
binding interfaces with a protein, nucleic acid, or small molecule
partner. We applied this approach to systematically analyze the
PanCancer compendium of somatic mutations from 4,742 tumors
relative to all known 3D structures of human proteins in the Protein
Data Bank. We detected significant 3D clustering of missense
mutations in several previously known oncoproteins including
HRAS, EGFR, and PIK3CA. Although clustering of missense muta-
tions is often regarded as a hallmark of oncoproteins, we observed
that a number of tumor suppressors, including FBXW7, VHL, and
STK11, also showed such clustering. Beside these known cases, we
also identified significant 3D clustering of missense mutations in
NUF2, which encodes a component of the kinetochore, that could
affect chromosome segregation and lead to aneuploidy. Analysis
of interaction interfaces revealed enrichment of mutations in the
interfaces between FBXW7-CCNE1, HRAS-RASA1, CUL4B-CAND1,
OGT-HCFC1, PPP2R1A-PPP2R5C/PPP2R2A, DICER1-Mg2+, MAX-DNA,
SRSF2-RNA, and others. Together, our results indicate that system-
atic consideration of 3D structure can assist in the identification of
cancer genes and in the understanding of the functional role of
their mutations.
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To elucidate the genetic basis of cancer, efforts have been initi-
ated to sequence the exomes or genomes of many human tu-

mors. Among them are large-scale efforts such as The Cancer
Genome Atlas (TCGA) (1) and the International Cancer Genome
Consortium (ICGC) (2), as well as many smaller-scale projects.
These efforts have collectively found millions of somatic mutations
in virtually all human genes (the vast majority of which are non-
functional or “passenger” mutations) across thousands of tumor
samples (3). The amounts of available cancer sequencing data are
growing rapidly and will continue to grow in the foreseeable future.
We and others have developed computational methods to detect
cancer-associated genes and functional mutations from such data,
based on a significant overall burden of mutations or on significant
positional clustering of mutations in the one-dimensional (1D)
gene sequences, corresponding to mutational hotspots (3–6).
For some cancer proteins, it has been observed that, although

mutations may be distributed along the linear amino acid sequence,
they tend to cluster in certain regions of the 3D structure, such as
active sites. A clear example is KRAS, where particular missense
mutations at the active site are positively selected in cancer because
they disable the GTPase activity of the protein, locking it in its
GTP-bound, active state, which promotes proliferation. As a result,
recurrently mutated residues (e.g., G12, G13, I36, A59, Q61, K117,
A146) tend to occur around the substrate-binding pocket of KRAS
(Fig. 1). This and other individual examples of proteins showing 3D

clustering of cancer missense mutations are sometimes used in the
literature as supporting evidence for the involvement of those
proteins in the disease or as a basis for functional hypotheses about
the clustered mutations [e.g., EGFR (8), PIK3CA (9), DIS3 (10),
SPOP (11), MRE11 (12), ERCC2 (13)]. Stehr et al. (14) and Ryslik
et al. (15) assessed the structural clustering of missense mutations
in 29 and 131 proteins, respectively, and demonstrated that taking
into account 3D structural information can be helpful for identifying
mutation hotspots in known cancer proteins or in new candidates.
Here, we seek to undertake comprehensive studies of 3D clus-

tering of somatic missense mutations in cancer across all human
proteins with available protein structures. Such integrative analysis
may help to identify new cancer proteins that have been missed by
other methods. In addition, it can help explain the functional roles
of individual mutations based on their spatial location in the pro-
tein; for example, mutations that cluster at protein interaction in-
terfaces may perturb key molecular interactions (16).

Results
To systematically discover genes in which somatic mutations
show significant clustering in the 3D structure of the encoded
protein, we analyzed the set of missense mutations identified by
comprehensive (exome or genome) sequencing of 4,742 tumors
from 21 cancer types (PanCancer compendium) (3) relative to
the structural and cocomplex data available in the Protein Data
Bank (PDB) (17) for >4,000 human proteins and >5,000 protein
interactions, respectively (Fig. 2).

Significance

Tumor sequencing efforts have enabled the identification of
cancer genes based on an excess of mutations in the gene or
clustering of mutations along the (one-dimensional) DNA se-
quence of the gene. Here, we show that this approach can
be extended to identify cancer genes based on clustering of
mutations relative to the 3D structure of the protein product.
By analyzing the PanCancer compendium of somatic mutations
in nearly 5,000 tumors, we identified known cancer genes
and previously unidentified candidates based on clustering of
missense mutations in protein structures or at interfaces with
binding partners. In addition, we found that 3D clustering is
present in both oncoproteins and tumor suppressors—contrary
to the view that such clustering is a hallmark of oncoproteins.
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CLUMPS Method.We focused first on 3D mutation clustering within
each protein, developing a statistical method called CLUMPS
(clustering of mutations in protein structures) to assess the signif-
icance of mutational clustering in a given 3D structure. CLUMPS
does not attempt to specify individual clusters but rather detects an
overall enrichment of mutated residues that are spatially close to
each other. The method uses a weighted average proximity (WAP)
scoring function summarizing the pairwise Euclidean distances of
all mutated residues in the structure, weighted by the normalized
number of samples in which they are mutated (SI Appendix, Fig. S1
and Materials and Methods). We assess the significance of a given
WAP score by comparing it to the null distribution obtained by
randomly permuting the positions of the mutations across all res-
idues in the structure (preserving the distribution of the number of
samples mutated at a given residue) to obtain an empirical P value.
CLUMPS is designed to be insensitive to other types of signals
frequently used to discover cancer genes, such as overall muta-
tional burden, clustering within the linear amino acid sequence, or
mutation enrichment in evolutionarily conserved sites.
Using CLUMPS, we systematically looked for 3D mutation

clustering in 4,062 human proteins, each of which had (i) somatic
missense mutations in the PanCancer compendium and (ii) avail-
able structural information in the PDB. These proteins were rep-
resented by a total of 41,063 3D structures (after filtering out
structures with less than three missense mutations). Because of the
existence of multiple, often partially or completely overlapping
structures for some proteins, we developed a heuristic method to
select a set of minimally overlapping structures with maximal
combined protein sequence coverage, to represent each protein
(Materials and Methods). Using this heuristic, we selected 4,822
representative structures for the 4,062 proteins. To validate the
P values generated with CLUMPS, we confirmed that the vast
majority of data points were consistent with the null model and lay
on the diagonal of the Q-Q plot (SI Appendix, Fig. S2).

Significant Mutation Clustering in Known Oncoproteins, Tumor Suppressors,
and the Kinetochore Component NUF2. Of the 4,062 human proteins
tested, 10 showed significant 3D clustering of missense mutations at
a false discovery rate (FDR) q≤ 0.1 (Table 1 and Dataset S1). The
list included four well-established oncoproteins (PIK3CA, PTPN11,
BRAF, and HRAS), four well-established tumor suppressors (PTEN,
TP53, FBXW7, and CDKN2A), and PPP2R1A, a central component
of the protein phosphatase 2A (PP2A) complex that also functions as
a tumor suppressor (19). All structures are shown in Dataset S15.
The final protein on the list was the kinetochore component

NUF2 (P= 9× 10−5, q= 0.05). In the available protein structures
(comprising the Nuf2 protein domain), missense mutations formed
two clusters that involved six and two mutated residues, respectively
(Fig. 3). The smaller cluster was located at the interaction interface
with another kinetochore component, NDC80 (also called retino-
blastoma-associated protein HEC), and was separated from the
larger cluster (Fig. 3). Although one false positive among the 10

significant results might be expected given the threshold q≤ 0.1, the
biological role of NUF2 (discussed below) supports the hypothesis
that its mutations play a functional role in cancer. We also noted
the presence of two likely mutational hotspots in portions of the
protein not covered by available structures: an S340L missense
mutation in three independent samples and a splice site mutation at
the end of exon 8 in three separate samples (SI Appendix, Fig. S3).
NUF2, also known as cell division associated 1 (CDCA1), is

responsible for kinetochore-microtubule attachment and is hence
pivotal for the proper segregation of sister chromatids during mitosis.
A dysfunctional kinetochore may missegregate sister chromatids and
cause chromosomal instability and aneuploidy, which often lead to
cancer (21). In fission yeast, NUF2-null mutations indeed cause

Fig. 1. Spatial mutation clustering in KRAS. (A) Protein
sequence of KRAS (Isoform 2B; UniProt: P01116-2) with
mutated residues from the PanCancer data set (3)
shown in red. Recurrent mutations (at least three sam-
ples) are shown in larger font and are annotated with
position and number of samples with such mutations.
Gray arcs between such residues are shown if their
centroids are located closer than 13 Å between each
other in the protein structure; arc width and label show
the spatial distance in these cases (wider arcs corre-
sponding to shorter distances). The C-terminal part of
the protein sequence not covered by the structure in B
is shown in smaller, gray font. (B) 3D structure of KRAS
(gray) with substrate GDP (blue) bound to its active site
(PDB ID code 4LUC) (7). Mutated residues are shown in
red (recurrent mutations: sticks, nonrecurrent muta-
tions: thin lines) and color intensity scales with the
number of mutations per residue.

Fig. 2. Schematic overview of the analyses in this study. (Upper) Triangles
denote somatic missense mutations in individual samples; bars labeled s1–s5
represent PDB structures covering different parts of the protein sequence;
the representative structures, s1 and s5, selected with our heuristic (Mate-
rials and Methods) are highlighted in black. (Lower) Mutated residues are
shown as pins (red: recurrent, pink: nonrecurrent mutation).
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defects in chromosome segregation (22). Although NUF2 mis-
sense mutations have not been previously linked to human cancer,
multiple levels of evidence implicate the gene in this disease. For
example, elevated NUF2 gene expression has been found in a
range of tumor types and cell lines (23–26) and is associated with
poor outcome in cancer patients (23, 25). Furthermore, silencing
of NUF2 inhibits tumor growth and leads to apoptosis in cancer
cell lines (23–28), likely induced by the spindle checkpoint path-
way (22). Experimental follow-up is required to ultimately un-
derstand the role of the clustered NUF2 mutations in cancer.

Restricting 3D Clustering Analysis to Known Cancer Proteins.We also
applied CLUMPS to a subset of 425 structures of 316 proteins
that have previously been implicated in cancer [based on COS-
MIC Classic (29) or the Cancer Gene Census (30), or being
significantly mutated (3); Dataset S2]. By focusing on this subset,
the analysis restricts the number of statistical hypotheses tested
and hence increases the statistical power.
The restricted analysis identified significant 3D mutation cluster-

ing (q≤ 0.1) in seven additional proteins (Table 1 and Dataset S1):
three tumor suppressors (SPOP, STK11, and VHL), three onco-
proteins (EGFR, RAC1, and FGFR3), and the cancer-associated
protein MTOR.

Spatial vs. Linear Patterns of Mutation Clustering. We examined the
relationship between 1D clustering (with respect to the linear
DNA sequence, as calculated with MutSig-CL) (3) and 3D clus-
tering (with respect to spatial structure of protein products, as
calculated with CLUMPS) of missense mutations. Although some
of the genes identified with CLUMPS as having significant 3D
mutation clustering in the encoded protein structure also showed
1D clustering, others clearly did not (Table 1). For example,
missense mutations in STK11 often affected residues at the sub-
strate pocket of the protein product (SI Appendix, Fig. S4), but

were nonrecurrent and nonadjacent in sequence, resulting in sig-
nificant 3D clustering (P= 0.001) but not 1D clustering (P= 0.9).
Overall, there was little correlation between the P values for 3D

and 1D clustering for all tested proteins (Spearman’s ρ= 0.064; SI
Appendix, Fig. S5). This lack of correlation is not surprising, con-
sidering that the null model of CLUMPS preserves the distribution
of the number of missense mutations per residue during the per-
mutations. In contrast, the null distribution of MutSig-CL is created
by permuting all mutations independently of each other (while
preserving the mutational signatures of individual tumors) (3, 18);
hence, MutSig-CL is by design highly sensitive to 1D mutation
hotspots. To further ensure that the clustering signal captured by
CLUMPS was not merely a consequence of mutations in consec-
utive residues (i.e., direct neighbors in the linear protein sequence),
we repeated the full CLUMPS analysis after combining each un-
interrupted sequence of mutated residues into a single meta-resi-
due, represented by its centroid in three dimensions, and treating
is as a single event during the permutations. This analysis yielded
similar results (Dataset S3), indicating that spatially clustered
residues were often not direct sequence neighbors but rather far-
ther apart in the linear protein sequence.
Importantly, our clustering analysis found similar numbers of tu-

mor suppressors and oncoproteins. On its face, this result might seem
contrary to the frequent assumption that 3D (14) and 1D (5) clus-
tering are hallmarks of oncogenes, as opposed to tumor suppressor
genes (although mutational hotspots are known in some tumor
suppressors such as TP53) (31). In fact, Yang et al. recently reported
enrichment of missense mutations in particular protein domains of
both tumor suppressors and oncoproteins; however, within individual
domains, they reported mutation clustering for oncoproteins and
uniform mutation distribution for tumor suppressors in 1D (32). 3D
clustering of missense mutations in tumor suppressors, identified with
CLUMPS, may reflect important properties of protein structure.
Whereas most nonsense and frameshift mutations will suffice to
abolish protein function, only a subset of single amino acid sub-
stitutions may suffice to abolish a tumor suppressor’s function, and
these may be concentrated in particular regions of a protein critical to
protein structure or protein interaction (see below).
We note that Stehr et al. did not observe a higher level of 3D

clustering of mutations in tumor suppressors (including some
identified here: PTEN, TP53, FBXW7, CDKN2A, STK11, VHL)
than of common germ-line polymorphisms in the same proteins
(14). Hence, they concluded that tumor suppressors, in contrast to
oncoproteins, lack mutation clustering. The discrepancy with our
results likely reflects major differences in methodology. Specifically,
(i) we weighted mutations according to frequency of occurrence in a
defined patient cohort, whereas Stehr et al. weighted all mutated
residues equally and thus likely overweighted passenger mutations

Table 1. Proteins with significant 3D (i.e., spatial) mutation
clustering identified with CLUMPS

Protein

Spatial clustering

Positional clustering PP qfull qrestricted

Full analysis
PTEN* 1e-06 0.001 0.0001 8e-08
PTPN11† 1e-06 0.001 0.0001 0.0003
PIK3CA† 1e-06 0.001 0.0001 7e-08
TP53* 1e-06 0.001 0.0001 8e-08
FBXW7* 2e-05 0.02 0.002 6e-08
BRAF† 3e-05 0.02 0.002 5e-08
PPP2R1A* 6e-05 0.04 0.003 0.0003
NUF2 9e-05 0.05 — 0.4
HRAS† 0.0001 0.05 0.005 9e-08
CDKN2A* 0.0001 0.05 0.005 6e-08

Restricted analysis
SPOP* 0.001 0.4 0.04 4e-05
STK11* 0.001 0.4 0.05 0.9
EGFR† 0.001 0.5 0.05 6e-08
VHL* 0.002 0.5 0.05 1
MTOR 0.002 0.5 0.05 6e-08
RAC1† 0.002 0.5 0.06 1e-05
FGFR3† 0.003 0.6 0.07 0.02

qfull and qrestricted denote the FDR calculated in the full analysis of 4,062
human proteins represented in the PDB and in the restricted analysis of a
subset of 311 previously implicated cancer proteins, respectively. Proteins in
the bottom part of the table were significant in the restricted analysis but not
in the full analysis. The P values in the “Positional clustering P” column were
obtained with MutSig-CL (18) using mutations from the PanCancer compendium
across the whole gene sequence (3).
*Known tumor suppressor.
†Known oncoprotein.

Fig. 3. Crystal structure of NUF2 (gray) bound to a fragment of NDC80 (pale
green) (PDB ID code 3IZ0) (20). The structure covers protein domain Nuf2
(residues 4–156 of the reference NUF2 protein of 464 amino acids). Mutated
residues are shown in red (all residues are mutated in a single tumor sample
each with the exception of G28, which is mutated in two samples).
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(which are expected to be scattered randomly across the protein)
relative to driver mutations (which tend to recur across patients due
to positive selection); (ii) Stehr et al. weighted small interresidue
distances (up to 2 Å) very strongly compared with our score, which
declines more slowly for distances up to 6–8 Å; and (iii) we studied
mutations obtained through comprehensive sequencing of a de-
fined set of tumors, whereas Stehr et al. examined mutations from
COSMIC (which is subject to serious reporting bias).
CLUMPS aims to detect the tendency of mutated protein

residues to cluster together, regardless of the number of clusters
formed. As evident in Datasets S15 and S16, some proteins
feature one mutation cluster (e.g., HRAS, CDKN2A, FGFR3),
whereas in other proteins, more than one cluster is apparent (e.g.,
VHL, SPOP, EGFR, NUF2).

Spatial Patterns of Co-Occurring Mutations. In our analyses above, for
each protein, we collated missense mutations from all patients while
ignoring the fact that, in some cases, a single patient may contribute
more than one mutation. Mutations that co-occur in a patient and
impact spatially proximal protein residues may act together, e.g., to
change the binding affinity to another biomolecule beyond levels
achievable through a specific single mutation. To explore such po-
tential synergistic effects between co-occurring mutations, we
searched for samples harboring pairs of spatially proximal mutations
in the 17 significant protein structures identified with CLUMPS.
Overall, 167 patient–protein combinations had more than one

mutation (Dataset S4). Of these, 23 had at least one spatially
proximal (≤ 10 Å) pair of mutated residues. In 16 of these 23
cases (highlighted in Dataset S4), each of the residues in the pair
were mutated in at least one other patient and hence were less
likely to be passengers. The 16 pairs fell within a total of four
proteins: EGFR, PTEN, PIK3CA, and TP53. Interestingly, the
EGFR residue R108 located in the protein’s extracellular domain
was affected by a missense mutation in a total of five glioblastoma
multiforme patients, of which four had an additional missense
mutation in the same protein domain. In two of these patients, the
additional mutation affected the spatially proximal residue A289,
whereas in two other patients, the distant residues P596 and G598
were affected, respectively. The co-occurrence of mutations in the
extracellular domain of EGFR may be due to the complex mech-
anism of ligand-free, cancer-associated EGFR dimerization, which
may require several simultaneous structural changes of EGFR (33).

Common and Tumor Type-Specific Mutation Clustering. In our anal-
ysis above, we combined mutations from all tumor types because
we were concerned that there would be insufficient statistical

power to detect proteins with significant mutation clustering when
considering individual tumor types separately (3). However, it is
possible that there may be tissue-specific cancer mechanisms that
are missed when merging all tumor types. We therefore applied the
full CLUMPS analysis separately to each of the five tumor types
with the largest patient cohorts (Dataset S5), omitting breast can-
cer because it is known to have multiple, very distinct subtypes. As
we expected, the individual analyses revealed only small numbers
(one to five) of significant proteins (Datasets S6–S10). In all but
one case, the proteins were also detected in the combined analysis.
The exception was GUSB, which showed significant mutation
clustering only in kidney cancer.
We then focused on the proteins identified in the combined

PanCancer analysis above (Table 1) and manually inspected the
results to see if they showed specificity to particular tumor types.
For example, it is well known that EGFR mutations found in lung
adenocarcinoma and those found in glioblastoma multiforme
cluster in different parts of the protein (intracellular protein ki-
nase domain and extracellular region, respectively) (3, 32, 34). In
fact, this difference is thought to be responsible for the differential
sensitivity of these cancer types to EGFR kinase inhibitors (34).
With CLUMPS, we were able to confirm the tissue-specific mu-
tation clustering in EGFR (Datasets S7 and S10).
Interestingly, we also identified tumor type-specific clusters in

SPOP, a substrate recognition component of an E3 ubiquitin-pro-
tein ligase complex that mediates the ubiquitination and subsequent
proteasomal degradation of MAPK8, PTEN, and other cancer-
related proteins. In Barbieri et al. (11), we described a 3D cluster of
missense mutations from prostate tumors affecting mostly hydro-
phobic residues at the substrate-binding cleft of SPOP (called
mutation cluster S for convenience). Here, we identified an addi-
tional, distant cluster (called cluster E), formed by mutations ex-
clusively found in endometrial tumors and impacting four charged
residues. The cluster was located in the same Math domain of the
protein but spatially far from the substrate-binding pocket (Fig. 4
and SI Appendix, Fig. S6A). Residues forming cluster E were found
to be mutated in a total of six samples; three samples had mutations
at E50 (consistently changing this negatively charged residue to the
positively charged lysine), whereas the rest of the residues (R45,
E46, and E47) were mutated in a single sample each. Interestingly,
using endometrial cancer mutation data that were recently gener-
ated by TCGA (https://tcga-data.nci.nih.gov) and were not part of
our PanCancer dataset, we observed that the mutation incidence of
all four residues from cluster E was increased in this data set (R45:
two samples total, E46: two, E47: three, E50: four; the glutamate
residues being altered to lysine in most cases), supporting the no-
tion that cluster E contains driver mutations. To investigate the
potential effects of SPOP mutations in clusters S and E on substrate
protein levels, we analyzed TCGA reverse-phase protein array
(RPPA) data from endometrial tumors (35). We expected muta-
tions in cluster S (i.e., those affecting residues responsible for sub-
strate interaction) to perturb the binding of SPOP with substrates
and thus to dysregulate their ubiquitination and proteasomal deg-
radation. Indeed, we found elevated levels of two known SPOP
substrates, MAPK8 and PTEN, in endometrial tumors with muta-
tions in cluster S relative to tumors with no mutations in SPOP
(two-tailed t test, P< 0.05). In contrast, the levels of MAPK8 and
PTEN were not significantly changed in tumors with mutations in
cluster E (SI Appendix, Fig. S6B). Theurillat et al. recently analyzed
the protein levels of a novel SPOP substrate, DEK, in prostate
tumor cell lines, where different SPOP variants were overexpressed
(36). Consistent with our findings, they observed that DEK levels
were significantly elevated in the case of missense variants in the
substrate-binding pocket (cluster S) but not in the case of SPOP-
E50K (which falls in our cluster E). Overall, our results suggest that
the mutations in cluster E have a distinct, potentially endometrial-
specific role, which remains to be elucidated experimentally.

Mutation Clustering at Biomolecular Interaction Interfaces May Point
to Interactions Potentially Perturbed in Cancer. 3D missense mu-
tation clustering in some proteins may reflect selection for

Fig. 4. Tissue-specific missense mutation clustering in SPOP (PDB ID code
3HU6) (37). All residues mutated in endometrial or prostate tumors are high-
lighted in color according to tissue of origin. Residues shown as thick sticks are
recurrently mutated in the PanCancer data set (at least three samples). A
substrate protein fragment is shown in orange. The distance between clusters
S and E is 23 Å (average pairwise atomic distance); the corresponding within-
cluster distances are 9 Å for cluster S and 6 Å for cluster E.
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mutations that alter specific molecular interactions. Several
studies have established that alteration of protein interactions
plays a key role in many diseases (16, 38–42), including cancer
(9, 16, 43). We tested for enrichment of missense mutations at
known interfaces (inferred from structurally resolved com-
plexes, such as cocrystals, from the PDB) of proteins, mediating
interactions with other proteins, small molecule or ion ligands,
DNA, and RNA. To quantify enrichment, we calculated the
total number of samples that had a mutation at any residue (of
either interaction partner) belonging to an interaction interface
and compared it with a null distribution obtained by randomly
scattering the mutations across all residues in the protein
structure (preserving the number of samples per mutated

residue and the number of mutations per structure). As in the
CLUMPS analyses described above, we applied the FDR
method to correct for multiple hypothesis testing and used a
threshold q≤ 0.1 to identify those interfaces that showed sig-
nificant enrichment for mutations.
Enrichment of mutations at protein–protein interaction interfaces. Among
1,145 heteromeric protein–protein interaction interfaces tested,
7 passed the significance threshold (Table 2 and Dataset S11).
When we restricted the analysis to 304 protein–protein interfaces
involving at least one known or candidate cancer protein (Dataset
S2) to increase statistical power, we found 9 additional interfaces
with significant clustering (Table 2 and Dataset S11). All struc-
tures are depicted in Dataset S15.

Table 2. Molecular interactions showing enrichment of interface mutations

Interactor A Interactor B Interface Mutations P qfull qrestricted

Protein–protein
Full analysis

FBXW7 CCNE1 66* j 1 1e-07 5.7e-05 1.5e-05
PPP2R1A PPP2R5C 23* j 0 1e-07 5.7e-05 1.5e-05
CAND1 CUL4B 6* j 9* 9e-05 0.035 0.0092
RASA1 HRAS 3 j 27* 0.0002 0.044 0.012
EXOSC7 EXOSC2 2 j 4* 0.0002 0.051 –

OGT HCFC1 8* j 3 0.0003 0.053 –

PPP2R1A PPP2R2A 23* j 0 0.0003 0.053 0.02
Restricted analysis

ARHGEF25 RHOA 1 j 13* 0.002 0.17 0.076
RAC1 NCF2 11* j 2 0.002 0.17 0.076
PIK3CA PIK3R1 299* j 21 0.002 0.17 0.076
HLA-E B2M 3* j 4* 0.002 0.17 0.076
GRB14 HRAS 0 j 16* 0.004 0.22 0.097
FCGRT B2M 3 j 5* 0.004 0.22 0.097
ARHGEF11 RHOA 1 j 13* 0.004 0.22 0.097
TCEB1 VHL 4 j 23* 0.004 0.22 0.097
SMAD3 SMAD4 6 j 20* 0.004 0.22 0.097

Protein–compound/ion
Full analysis

PTEN L(+)-tartrate# 76 9e-07 0.0034 0.00038
HRAS GTP 30 9e-06 0.016 0.0018
DICER1 Mg2+ 8 1e-05 0.016 0.0018
FBXW7 SO2−

4
# 52 3e-05 0.028 0.0031

EP300 Lys-CoA# 16 6e-05 0.048 0.0054
TP53 1,2-ethanediol# 278 0.0002 0.098 0.011

Restricted analysis
HRAS R,S,R-bisfuranol# 21 0.0004 0.21 0.027
KRAS 20G# 300 0.0006 0.23 0.03
SETD2 SAH# 11 0.0009 0.25 0.042

Protein–DNA/RNA
Full analysis

TP53 DNA 253 4e-05 0.0044 0.0013
FOXO1 DNA 4 0.0005 0.022 0.0064
WT1 DNA 10 0.0005 0.022 0.0064
MAX DNA 9 0.0008 0.022 0.0065
RUNX1 DNA 8 0.0009 0.022 0.0065
TFAM DNA 6 0.001 0.027 –

TDG DNA 4 0.002 0.027 –

Restricted analysis
SRSF2 RNA 5 0.02 0.25 0.059

The table shows all significant results both from a full analysis of all distinct interfaces in PDB and from a restricted
analysis of interfaces involving at least one known cancer protein (as per Dataset S2). The corresponding FDR q-values
are shown in columns qfull and qrestricted, respectively. A dash (–) in the qrestricted column means that the corresponding
interaction does not involve a known cancer protein. In the case of protein-protein interactions, the numbers of
mutations at the interface of each partner are separated by the pipe (j) symbol; an asterisk (*) denotes that this
number is individually significant (permutation test P ≤ 0.05) without considering mutations in the other partner.
Protein–compound/ion interactions where a molecule other than the natural substrate occupies (or is near) the protein
active site in the available PDB structure are marked with the hash symbol (#). SAH, S-adenosyl-L-homocysteine; 20G,
N-1-[(2,4-dichlorophenoxy)acetyl]piperidin-4-yl-4-sulfanylbutanamide.
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Most of the significant interfaces carried mutations in both in-
teraction partners. In three cases (CAND1-CUL4B, PIK3CA-
PIK3R1, and B2M-HLA-E), the number of interface mutations was
significant (P≤ 0.05) for each of the two partners individually, as
well as for the combined number of mutations at the interface. In
the other cases, only one of the interactors showed a significant
number of mutations at the interface (in addition to the interface as
a whole), perhaps because interface mutations in the other partner
are deleterious for other reasons (such as essential interaction with
a third partner). Below, we discuss some of the significant cases.

i) FBXW7-CCNE1. Cyclin E1 (CCNE1) is a critical cell cycle
protein, which at abnormally high levels promotes premature
cell division, genomic instability, and tumorigenesis. FBXW7
(F-box/WD repeat-containing protein 7) is a substrate recog-
nition component of an E3 ubiquitin-protein ligase complex,
mediating the ubiquitination and subsequent proteasomal
degradation of CCNE1 and other cancer proteins like MYC
and JUN. We found that all six recurrently mutated residues
(found in at least three samples from our mutation dataset)
of FBXW7 clustered together at the WD40 propeller domain
of the protein product. Four of them, R465, R479, R505, and
R689, interacted directly with the substrate CCNE1 through
hydrogen bonds (Fig. 5A). Changes in these residues could
perturb the interaction, causing insufficient ubiquitination/
degradation of CCNE1 in tumor samples (as has been pre-
viously shown in model systems) (44, 46, 47).

ii) PPP2R1A interaction with PPP2R5C or with PPP2R2A.
PPP2R1A is a constant regulatory subunit of the heterotri-
meric protein phosphatase 2 (PP2A) complex, serving as a
scaffold for complex assembly. PP2A is a serine/threonine
phosphatase, which controls numerous signaling pathways. It
is involved in negative control of cell growth and division and
has been implicated as a tumor suppressor (19). Perturbation
of the PPP2R1A interactions with other PP2A subunits
through mutations at the protein–protein binding interface
(SI Appendix, Fig. S7) may disturb assembly of the complex
and may hence abolish its tumor suppressor function.

iii) CUL4B-CAND1. CUL4B (cullin 4B) serves as a scaffold for
multiple Cullin-RING-based E3 ubiquitin-protein ligase
complexes that mediate the ubiquitination of target proteins,
followed by their proteasomal degradation. CUL4B is im-
portant for the regulation of cyclin E (48), members of the
MTOR pathway (49) and multiple histones (50) and plays a
role in DNA repair on damage from UV light (51). It has
been implicated in cancer (52) and is significantly mutated in
breast tumors (3). CAND1 (Cullin-associated NEDD8-disso-
ciated 1) is a key regulator of cullin-based E3 ubiquitin li-
gases. It has been found to be transcriptionally deregulated
in prostate cancer (53) and high-grade neuroendocrine lung
tumors (54). Furthermore, targeted knockdown of CAND1
has been shown to promote proliferation of prostate carci-
noma cells (55). Altogether, the enrichment of mutations at
the CUL4B-CAND1 interface suggests positive selection of
mutations that disrupt the interaction and hence potentially
prevent the ubiquitination and degradation of cancer-related
proteins. Moreover, mutations in CUL1 (a paralog of CUL4B),
which are found frequently in prostate cancer, have been sug-
gested to disturb the interaction with CAND1 and have been
associated with aberrant centriole synthesis, which can lead to
aneuploidy (53).

iv) HRAS-RASA1. Mutations that disturb the interaction be-
tween HRAS and the GTPase activating protein RASA1
(SI Appendix, Fig. S8) would be expected to lead to consti-
tutive activation of the HRAS oncoprotein.

v) EXOSC2-EXOSC7. Both proteins are subunits of the RNA
exosome complex responsible for the decay of all types of
RNA. In Chapman et al. (10), we reported that multiple my-

eloma patients frequently harbor mutations in DIS3, the cat-
alytic subunit of the RNA exosome. Based on their location
at the enzymatic pocket of DIS3, and on prior experimental
evidence from model organisms, those mutations were pre-
dicted to abolish the catalytic activity of the exosome (10).
The enrichment of mutations at the EXOSC2-EXOSC7 in-
terface found here may reflect selection for mutations dis-
turbing the binding of these two subunits. Our findings thus
support the potential causal role of the RNA exosome in
cancer and suggest that exosome-mediated RNA decay may
be disturbed in cancer in alternative ways: through mutations
abolishing the enzymatic activity of the catalytic subunit or
through mutations disabling exosome complex formation.

vi) OGT-HCFC1. HCFC1 is involved in several processes im-
portant in cancer, including cell cycle control, positive reg-
ulation of proliferation, chromatin organization, histone
acetylation, and transcriptional regulation. Notably, it is a
major downstream effector of BRCA1-associated protein
1 (BAP1) (56), whose frequently observed mutations have a
causal role in cancer (57). OGT is involved in the post-
translational modification and direct proteolysis of HCFC1
(58), thus influencing its activity and abundance. Interestingly,
two of the three mutated interface residues of HCFC1 were
threonines (SI Appendix, Fig. S9), which could be glycosylated
by OGT (58). A plausible hypothesis based on the significant
enrichment of mutations at the OGT-HCFC1 interface is that
such mutations might disturb the regulation (through post-
translational modifications or cleavage) of HCFC1, leading
to deregulation of cancer-related processes mentioned above.

vii) RHOA-ARHGEF25. RHOA is a GTPase that controls cell
contractility and motility and also promotes tumorigenesis
through STAT3 activation. ARHGEF25 activates RHOA by
exchanging GDP for GTP in its substrate pocket. In a recent
publication (59), two mutation hotspots in RHOA, Y42 and
D59, were identified in gastric adenocarcinoma that were pre-
dicted to localize at the interaction interface of RHOA with a
downstream effector, ROCK1. This interface coincides with
the binding interface or RHOA for ARHGEF25. In this study,
the significant enrichment of missense mutations at the com-
mon protein binding interface of RHOA was mainly driven by
a different positional hot-spot, E40 (reported in ref. 3). Muta-
tions at the common interface of RHOA may act by preferen-
tially modifying the affinity of RHOA to downstream effectors
(like ROCK1), activators (like ARHGEF25), or perhaps to a
third class of proteins, GTPase activating proteins (GAPs), that
inactivate RHOA by promoting its GTP hydrolysis function.

viii) PIK3CA-PIK3R1. The enrichment of mutations at the
PIK3CA-PIK3R1 interaction interface is consistent with pre-
vious reports (9); it shows positive selection for mutations that
disturb the negative regulation of the oncoprotein PIK3CA by
PIK3R1, thus leading to constitutive activation of PIK3CA.

ix) B2M-HLA-E. The formation of the HLA-E MHC class I,
resulting from interaction with B2M, is important for cell rec-
ognition by natural killer cells and thus crucial for host immu-
nity against cancer (60). Interface mutations in B2M or HLA-E
that disrupt the interaction may result in failure of MHC com-
plex formation and subsequently to immune system evasion,
which is recognized as an emerging hallmark of cancer (61).

x) VHL-TCEB1. VHL is a well-known tumor suppressor that
functions as the substrate recognition component of an E3
ubiquitin ligase complex also comprising TCEB1, TCEB2,
and CUL2. It plays a central role in the ubiquitination and
degradation of hypoxia-inducible transcription factors 1α
(HIF1A) and 2α (HIF2A), which are important for tumor
angiogenesis. Germ-line inactivating mutations in VHL
cause the Von Hippel–Lindau cancer syndrome. Moreover,
VHL is frequently affected by inactivating (nonsense,
frameshift, or splice site) somatic mutations in sporadic kidney
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tumors. We found that somatic missense mutations in VHL
are significantly enriched at the interface of the VHL protein
product with another ubiquitin ligase component, TCEB1
(P= 0.004) and at its interface with the substrate, HIF1A
(P= 0.01) (Fig. 6A). Such missense mutations likely lead to
loss of VHL function through loss of interactions with either
TCEB1 or HIF1A, which are essential for HIF1A regulation.
Some of these missense mutations in VHL have been already
demonstrated to cause interaction perturbations and/or HIF
dysregulation (62, 66). Notably, TCEB1 was also mutated at its
interface to VHL in four samples in our dataset, with three
samples harboring mutations at TCEB1-Y79 (Fig. 6A). Muta-
tions in TCEB1 could also abolish the interaction with VHL.
Consistent with our hypothesis, alterations of this residue have
been associated with HIF accumulation in cell lines (67).

Increased CCNE1 levels in colorectal tumors with FBXW7-CCNE1 interface
mutations. To follow up on results above concerning the FBXW7-
CCNE1 interface, we sought experimental evidence. Because
FBXW7 is known to regulate the degradation of CCNE1, we pre-
dicted that mutations at the interface would lead to abolished in-
teraction and hence to increased levels of CCNE1 protein. By
analyzing experimental RPPA and RNAseq data from TCGA (45),
we found that primary colorectal tumors carrying FBXW7 muta-
tions that affect interface residues indeed show normal levels of
CCNE1 RNA but significantly elevated levels of CCNE1 protein
(two-tailed t test, P= 8× 10−5; Fig. 5B) compared with colorectal
tumors in which FBXW7 is nonmutant and CCNE1 has normal

copy number. The same was true for samples with inactivating (i.e.,
nonsense, frameshift or splice-site) mutations in FBXW7 (two-
tailed t test, P= 0.002). Our results, based on human tumors, were
consistent with previous studies in cell lines and model organisms
(44, 46, 47). Interestingly, the RPPA data did not show significant
protein-level changes in MYC (two-tailed t test, P= 0.21 and
P= 0.19 for samples with interface and inactivating mutations
in FBXW7, respectively) and JUN (analogously, P= 0.26 and
P= 0.12), which are also substrates of FBXW7. Altogether,
these results suggest that patients with either FBXW7 missense
mutations at the substrate interface, or with FBXW7 inacti-
vating mutations, may benefit from inhibitors of CCNE1 or of
its downstream effector CDK2.
Enrichment of mutations at protein binding sites for small molecules or
ions. In addition to examining protein–protein interactions, we also
looked for enrichment of mutations at binding interfaces with other
types of biomolecules. We tested for enrichment at 3,759 unique
protein interfaces for small molecules or metal ions, using an
analogous statistical approach as for protein–protein interactions.
We found six protein–compound/ion interaction interfaces with
significant (q≤ 0.1) mutation enrichment. When we restricted the
analysis to 423 interfaces involving only cancer proteins, three ad-
ditional hits were obtained (Table 2 and Dataset S12). Here we
discuss two examples:

i) HRAS-GTP.Mutations at the active site of HRAS, similarly to
its paralog KRAS (Fig. 1), disturb the GTPase activity of the
oncoprotein, locking it in its active, GTP-bound state (68).

ii) DICER1-Mg2+. Mg2+ is required for the activity of DICER1 (69),
which is pivotal in processing siRNAs that play important roles in
posttranscriptional gene silencing. Germ-line mutations that in-
activate DICER1 are known to predispose to a range of tumors
(70), and DICER1 inhibition promotes metastasis (71). A signif-
icant fraction of missense mutations in DICER1 from our data
affect negatively charged residues in direct contact with the pos-
itively charged magnesium ions, consistently altering these resi-
dues to positively or noncharged residues (Fig. 6B). The observed
somatic mutations in the magnesium-binding residues likely
abolish the DICER1–Mg2+ interaction, thereby interfering
with DICER1 function and potentially leading to tumor for-
mation, metastasis, or both.

In both examples above, perturbation of the protein–compound/
ion interactions may drive cancer because they involve known
cancer proteins and the ligands are required for the activity of those
proteins. However, this might not be the case for some of the
remaining seven significant interactions (marked with # in Table 2):
For example, the significance of the FBXW7–SO2−

4 interaction may
reflect the fact that the sulfate ion is located near the CCNE1
binding interface of FBXW7. Similarly, missense mutations in
PTEN cluster at its active site and most likely perturb its interaction
with phosphatidylinositol trisphosphate; however, the available
PDB structure has tartrate bound at the active site instead of this
natural substrate (72).
Enrichment of mutations at protein interaction interfaces with DNA and
RNA. Finally, we analyzed protein–DNA and protein–RNA com-
plexes from the PDB to look for enrichment of mutations affecting
protein residues in direct contact with nucleic acids. We tested 124
protein–DNA and 51 protein–RNA interfaces and found 7 signifi-
cant protein–DNA and no significant protein–RNA interfaces
(Table 2 and Datasets S13 and S14). Five of the protein–DNA
interactions involved known cancer proteins, including TP53
and MAX, whereas two interactions also implicated the pro-
teins TFAM and TDG in cancer. A restricted analysis focusing
only on known cancer proteins yielded one additional significant
case, the SRSF2–RNA interface (Table 2 and Dataset S14). We
discuss two examples below:

i) MAX-DNA. A significant number of mutations in the MAX
(Myc-associated factor X) transcription factor affected three
positively charged residues in direct contact with the negatively

Fig. 5. Spatial location of FBXW7 mutation hotspots and their effect on
CCNE1 protein levels. (A) Crystal structure of FBXW7 (gray) bound to the
degron of CCNE1 (orange) (PDB ID code 2OVQ) (44). All recurrently mutated
residues (at least three samples) of FBXW7 are shown as red sticks; color in-
tensity scales with recurrence. Hydrogen bonds between such residues and
CCNE1 residues are shown as blue dotted lines. (B) CCNE1 protein and RNA
levels (as measured by RPPA and RNAseq, respectively) (45) in colorectal cancer
samples with different FBXW7/CCNE1 genotypes (“nrm”: normal copy num-
ber; “amp.”: amplified, “interf. mut.”: mutation at interaction interface).
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charged DNA molecule (Fig. 6C). The overall mutation fre-
quency of MAX in the PanCancer compendium was not sig-
nificant (3), although an independent study has suggested that
MAX is significantly mutated in pheochromocytoma and para-
ganglioma (73). MAX forms heterodimers with MYC, which is
a classic cancer gene that is amplified in various cancers (74).
Another heterodimerization partner of MAX, called MGA
(MAX gene associated), was found significantly mutated in
the PanCancer compendium (3).

ii) SRSF2-RNA. SRSF2 is a pre-mRNA splicing factor and a com-
ponent of the spliceosome. We and others found it to be sig-
nificantly mutated in acute myeloid leukemia (3, 75), where it
has been associated with adverse outcome (75). Here, we found
that missense mutations in this protein clustered at the interac-
tion interface with RNA, including the recurrently mutated res-
idue P95 and two nonrecurrently mutated residues (Fig. 6D).

Although the examples all achieved statistical significance, sev-
eral were supported by relatively few samples from the PanCancer
compendium. For example, the TFAM–DNA and TDG–DNA
interfaces were mutated in only four and six tumor samples, re-

spectively (Table 2). Encouragingly, a potential association of these
interactions with cancer makes good biological sense: truncating
TFAM mutations that abolish interactions with DNA, frequently
found in colorectal tumors, have been shown to cause resistance to
apoptosis (76), and TDG plays important roles in DNA deme-
thylation and damage repair (77). However, larger cohorts of se-
quenced tumors will be needed to draw robust conclusions, based
solely on statistical methods, about the role of perturbing the in-
teraction of these proteins with DNA in cancer.

Discussion
Using large-scale datasets of cancer somatic mutations and of 3D
models of human proteins, we systematically searched for spatial
clustering of missense mutations with respect to 3D protein struc-
tures. Such clustering likely results from positive selection for
certain missense mutations in cancer. Overall, we identified 50
different proteins with clustering of mutations and/or enrichment
of mutations at interaction interfaces (Tables 1 and 2). As antici-
pated, many of these proteins are known cancer drivers, including
HRAS, FBXW7, and SPOP, whereas others, like NUF2, OGT,
and HLA-E, represent previously unidentified candidates that

Fig. 6. Examples for protein–protein, protein–ion, protein–DNA, and protein–RNA interaction interfaces significantly enriched with mutations. All mutated
residues in each protein are shown in red, with color intensity scaling with the number of samples with mutations at the corresponding residue. Recurrently
mutated residues are shown as sticks and residues mutated in one or two samples as thin lines. All mutated interface residues are labeled (in A, dark green
labels correspond to TCEB1 residues). (A) Many mutations in VHL (gray) cluster at both its interfaces to substrate HIF1A (orange) and to cocomplex partner
TCEB1 (pale green) (PDB ID code 1LM8) (62). (B) Mutations in the DICER1 C-terminal RNase III domain (gray) cluster at the interaction interface with its
activator magnesium (orange sphere) (PDB ID code 2EB1) (63). (C) A heterodimer of MAX (gray) and MAD (pale green) bound to DNA (orange) (PDB ID code
1NLW) (64). (D) SRSF2 (gray) bound to RNA (orange) (PDB ID code 2LEB) (65).
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require experimental follow-up. Our analyses not only identify
candidate cancer genes, but also highlight specific alleles to be
tested experimentally.
Interestingly, our analyses demonstrated that 3D clustering of

somatic mutations is not only a characteristic of some oncoproteins
but also of some tumor suppressors. It is broadly appreciated that
missense mutations that constitutively activate oncoproteins: i.e.,
gain-of-function mutations tend to be localized to specific regions of
the 3D structure of these oncoproteins (5, 9, 14, 15). Similarly,
missense mutations capable of destroying the function of tumor
suppressor proteins could also cluster spatially. They may occur
preferentially at key residues in the 3D core of proteins, destabilizing
them (14). Others may abolish specific molecular interactions and
would tend to cluster at protein interaction interfaces (38, 78). In-
deed, our analyses identified enrichment of missense mutations in
interaction interfaces of known tumor suppressors with their sub-
strates (e.g., in PTEN, FBXW7, SPOP, STK11, VHL), with essential
cocomplex partners (e.g., in PPP2R1A, PIK3R1, VHL) and with
DNA (e.g., in TP53). Furthermore, loss-of-interaction mutations of
tumor suppressors that lead to loss of function may have similar
effects on gene/protein expression to protein-destabilizing mutations.
An example given above was FBXW7, where both inactivating (i.e.,
nonsense, frameshift, or splice-site) mutations throughout the pro-
tein and missense mutations located at the binding interface with
CCNE1 showed the same effect on CCNE1 protein levels.
Discriminating driver from passenger missense mutations in the

same gene is currently a central challenge in cancer genetics and has
clear clinical implications. Although this problem was not within the
scope of this study, our 3D mutation clustering approach may help
prioritize potential driver mutations. More precisely, clustered mu-
tations more likely reflect positive selection than their randomly
scattered counterparts. For example, mutations clustered at molec-
ular interaction interfaces would tend to disrupt important in-
teractions. We are currently investigating the mutation discrimination
potential of our approach and results will be published elsewhere.
Databases of somatic mutations in cancer and of protein struc-

tures are growing rapidly. Improved methods for 3D structure
determination have led to unprecedented growth of the PDB (17).
In addition, computational methods can help to infer 3D structures
of as yet unresolved proteins and protein complexes, based on
available structures of their homologs and/or on other types of
experimental data (79). At the same time, dramatic decreases in
sequencing costs enable the sequencing of many additional tumors.
More extensive mutational and structural data will enable the
discovery of 3D clustering of mutations in more proteins, in studies
both within and across different tumor types. Such discoveries
should lead to new insights into tissue-specific and general mo-
lecular mechanisms of cancer.

Materials and Methods
Mutation Data. We used the somatic mutation dataset published in ref. 3.
UniProt protein sequence coordinates for missense mutations were mapped
using Oncotator (80).

Protein Structures.Wedownloaded all humanprotein structures fromPDBon 27
March 2014 and used SIFTS (81) to cross-map both protein identifiers and indi-
vidual amino acid residues between PDB and UniProt. Structures with mutations
in less than three tumors were filtered out, resulting in an input dataset of
41,063 structures (counting different PDB chains within the same PDB file sep-
arately) of 4,062 human proteins. Biomolecular interaction interface definitions
were obtained from PDBsum (82) on 27 July 2014. PyMol (https://www.pymol.
org) was used for structure visualization and residue distance calculations.

Selection of Representative Structures for Each Protein. Many human proteins
were represented by multiple PDB structures that often (i) covered only parts

of the reference protein sequence (SI Appendix, Fig. S10) and (ii) overlapped
partially or completely with each other (SI Appendix, Fig. S11). We de-
veloped a greedy algorithm to select a set of minimally overlapping, “rep-
resentative” structures for each protein so that the set jointly covered a
maximal part of the reference (UniProt) protein sequence. We built this set
by consecutively adding the longest structure (i.e., that with largest protein
sequence coverage) so that no pair of structures in the set overlapped with
each other by more than 10% of the shorter structure. For groups of
structures with comparable lengths but with high mutual overlap, we se-
lected the structure with median CLUMPS P value. Although choosing the
structure with the best P value might appear as a more intuitive choice, we
reasoned that cancer proteins might tend to have more structures in PDB
compared with their noncancer counterparts due to study bias. Thus,
selecting the structure with the best P value would artificially reward cancer
proteins, whereas selecting those with median P value would not. Our al-
gorithm selected 4,822 (from the total of 41,063) representative structures
corresponding to 4,062 human proteins. The joint protein sequence cover-
age of these representative structures is shown in SI Appendix, Fig. S12.

CLUMPS Methodology. To identify significant clustering of mutations in proteins
with available structural data, we first defined a WAP score summarizing all
pairwise distances between mutated residues in a given 3D protein structure (SI
Appendix, Fig. S1) as

WAP=
X

q,r

nqnre
−
d2q,r

2t2 , [1]

where q and r (q≠ r) are protein residues; dq,r is the Euclidean distance (in Å)
between the centroids of those residues; and nq (or nr) is the number of
samples where q (or r) is found mutated, normalized to the range [0,1] using
the sigmoidal Hill function

nq =
Nm

q

θm +Nm
q
. [2]

Here,Nq is the number of samples with amissense mutation impacting residue q
of the protein; and θ= 2 and m= 3 are parameters of the Hill function con-
trolling the critical point (center) and steepness of the sigmoid function, re-
spectively. The exponential function in Eq. 1 transforms the absolute spatial
distance dq,r between residues to the interval [0,1] with shorter distances (rela-
tive to the parameter t that can be interpreted as a “soft” distance threshold
and was set to t = 6 Å) mapping to a value close to 1 and longer distances
mapping to values near zero (SI Appendix, Fig. S13A). The absolute number of
samples withmutations at a given residuewas normalized as per Eq. 2 to avoid a
disproportionally high influence of very frequently mutated residues (positional
ultra-hotspots) compared with less frequently but still recurrently mutated ones.
A sigmoidal function was chosen to down-weight residues mutated in only one
sample while rewarding residues mutated in three or more samples (SI Ap-
pendix, Fig. S13B). We calculated a WAP score for each protein structure and
assessed its significance using a null model assuming a uniform distribution of
mutations across the protein residues covered by the given PDB structure, pre-
serving the number of samples with mutations at a given residue. The null
distribution was obtained through 104 randomizations, and, if the resulting P
value was less than 0.1, we extended the randomizations to 106. SI Appendix,
Fig. S14 shows a comparison of P values of the top scoring 300 proteins against
P values obtained with CLUMPS when mutated residues are weighed equally
regardless of recurrence. All P values were corrected for multiple testing con-
sistently throughout the manuscript using the FDR method (83), implemented
in the p.adjust function in R (https://www.r-project.org/).

Additional method descriptions are provided in SI Appendix.
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