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A small body orbiting a black hole follows a trajectory that, at leading order, is a geodesic of the black
hole spacetime. Much effort has gone into computing “self-force” corrections to this motion, arising from
the small body’s own contributions to the system’s spacetime. Another correction to the motion arises from
coupling of the small body’s spin to the black hole’s spacetime curvature. Spin-curvature coupling drives a
precession of the small body, and introduces a “force” (relative to the geodesic) which shifts the small
body’s worldline. These effects scale with the small body’s spin at leading order. In this paper, we show that
the equations which govern spin-curvature coupling can be analyzed with a frequency-domain decom-
position, at least to leading order in the small body’s spin. We show how to compute the frequency of
precession along generic orbits, and how to describe the small body’s precession and motion in the
frequency domain. We illustrate this approach with a number of examples. This approach is likely to be
useful for understanding spin coupling effects in the extreme mass ratio limit, and may provide insight into
modeling spin effects in the strong field for nonextreme mass ratios.
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I. INTRODUCTION

A. The motion of spinning bodies
in curved spacetime

Perturbative techniques have proven to be very fruitful
for understanding the two-body problem of general rela-
tivity. Typically one uses the mass ratio of the system as the
small parameter defining the perturbation. An example of
such a system is an extreme mass ratio inspiral, or “EMRI,”
a small compact object (mass μ ∼ 1–100 M⊙) whose orbit
about a massive black hole (mass M ∼ 106M⊙) evolves (at
lowest order) due to gravitational-wave-driven backreac-
tion. Such systems are regarded as important sources of
gravitational waves for low-frequency, space-based gravi-
tational-wave detectors such as eLISA [1]. Modeling EMRI
systems has been a major motivator for much of the
progress this field has seen. More fundamentally, such a
system represents a clean limit of the general two-body
problem. Many quantities which describe the evolution of
binaries can be solved in this limit quite precisely. Although
formally applicable only to systems with large mass ratios,
perturbation-theory-based analyses have proven to be
useful for understanding binary systems even for mass
ratios of order unity [2–4].

At zeroth order in the mass ratio, the small body moves
on a geodesic of the background spacetime:

Dpα

dτ
¼ 0: ð1:1Þ

The operatorD=dτ is a covariant derivative evaluated along
the small body’s trajectory, with τ proper time along that
trajectory. Corrections to geodesic motion enter at higher
order in the mass ratio. Schematically, we write

Dpα

dτ
¼ fα: ð1:2Þ

The force fα that pushes the smaller body away from
a geodesic can arise from a number of physical effects.
A particularly important and interesting example is the
gravitational self-force, fαsf . It arises from the small body’s
own contribution to the binary’s spacetime, and enters at
order ðμ=MÞ2. This force encodes the loss of energy and
angular momentum from the binary due to gravitational
waves, as well as smaller scale but observationally impor-
tant shifts to observables like orbital frequencies. Many
groups have put considerable effort into computing the
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gravitational self-force; see Refs. [5] and [6] for a very
detailed overview and discussion of the self-force problem
in general relativity, and Refs. [7–14] for some examples of
recent progress in the field.
Other forces arise when we consider that the small body

is not a point mass, but has internal structure. The leading
example of such structure is spin. Spin couples to the
curvature of the background spacetime, modifying the
smaller body’s motion [15–18]:

Dpα

dτ
¼ −

1

2
Rα

νλσuνSλσ; ð1:3Þ

DSαβ

dτ
¼ pαuβ − pβuα: ð1:4Þ

These are the Mathisson-Papapetrou equations, commonly
called the Papapetrou equations. Here, Rα

μλσ is the
Riemann curvature of the background spacetime (which
we will take to be a Kerr black hole), uα ¼ dxα=dτ is the
orbiting body’s four-velocity (tangent to its orbit world-
line), and pα is its four-momentum. The tensor Sλσ

describes the spin of the small body; we define it precisely
in Sec. III. If the small body is itself a Kerr black hole,
then Sλσ ∝ sμ2, where s ≤ 1 is the small body’s dimension-
less spin parameter, and where the small body’s mass μ will
be defined precisely in Sec. III A. In this case, typical
components of the spin will have magnitude S≡ sμ2 ≤ μ2,
so the leading effect of the spin-curvature force will be of
order μ2.
A major motivation for our analysis is that nongeodesic

effects associated with the self-force and with spin-
curvature coupling both lead to forces that scale at leading
order as μ2 (at least if the small body is considered to be a
Kerr black hole, in the case of spin-curvature coupling).
This very crudely suggests that the effects of these two
forces might be comparable. However, it should be empha-
sized that this scaling argument can only motivate a more
careful analysis which ultimately examines gauge invariant,
observable quantities. It is only through such an analysis
that one can ascertain whether these forces drive secularly
accumulating phase shifts (for example), or produce
periodic signatures that may be searched for in astrophysi-
cal data. The work in this paper is the first step in a program
to develop such an analysis, laying the foundations for an
examination of such effects for generic orbits of spinning
bodies with arbitrary spin-orbit orientations.
Equations (1.3) and (1.4) must be supplemented by an

additional constraint, reflecting an internal degree of free-
dom associated with the small body’s structure. One can
reference an extended body’s motion to an infinite number
of worldlines which pass through it. The additional con-
straint which must be imposed can be understood as
specifying which of these worldlines one uses. This

constraint is called the spin-supplementary condition, or
SSC, in the case of a body described by its mass and spin.
Figure 1 of Ref. [19] provides a very clear and simple

illustration of why the SSC is needed. In nonrelativistic
dynamics, a natural choice for the worldline that one uses to
describe a body’s motion is the one which passes through
its “center of mass,” or COM. However, in relativistic
dynamics, the COM is observer dependent. An observer
who is at rest with respect to the axis of rotation of a
uniform spinning sphere will place the COM at the sphere’s
geometric center. An observer moving relative to the
rotation axis will not: thanks to the relativistic trans-
formation of mass currents, and thanks also to the fact
that different mass elements of the sphere have different
relative velocities to this observer, the moving observer
places the spinning sphere’s COM away from the rota-
tion axis.
In this language, the SSC can be regarded as choosing a

particular observer and tying the body’s worldline to their
choice of COM. Costa and Natário [19] provide excellent
discussion and many further details elaborating on this
point. An SSC which is commonly used in the literature is
the Tulczyjew SSC [20],

pαSαβ ¼ 0: ð1:5Þ

Several variations on Eq. (1.5) have been formulated, and
are compared by Kyrian and Semerák in Ref. [21]. Many
SSCs1 differ from one another atOðS2Þ; if the smaller body
is itself a Kerr black hole, this difference is Oðμ4Þ. These
differences will be extremely small for large mass ratio
systems, suggesting that it would be useful to linearize our
system in spin.
Related to the internal degree of freedom is the fact that

the four-momentum and four-velocity are in general not
parallel to one another when the small body’s spin is taken
into account. Instead, we have

pα ¼ μuα − uγ
DSαγ

dτ
; ð1:6Þ

the momentum and velocity are only parallel if the second
term vanishes (which in fact it does for some SSCs; see
Sec. 3.4 of Ref. [21] for an example). For several cases
(including the Tulczyjew SSC, which we will use),

DSαβ

dτ
¼ OðS2Þ: ð1:7Þ

In such a case, pα and uα are parallel at order S.

1Though not all SSCs: as emphasized by Costa and Natário
[19], some SSCs differ even at linear order in S. The motion one
finds using these different SSCs is equivalent; see Ref. [19] for
detailed discussion. We are grateful to Costa and Natário for
correspondence which alerted us to this point.
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Given an initial position, velocity, and spin configura-
tion, Eqs. (1.3), (1.4), and (1.5) can be integrated to
describe the motion of the small body as it orbits the
larger black hole. When S ¼ 0, Eq. (1.3) reduces to the
geodesic equation (1.1), and Eqs. (1.4) and (1.5) can be
ignored. The trajectories they describe reduce to Kerr
geodesic orbits. For S small, these equations describe a
nearly geodesic orbit, modified by a spin-curvature force of
order S ¼ sμ2. As already mentioned, the scaling of the
spin-curvature force with mass is naively similar to the
scaling for the gravitational self-force, motivating a more
careful analysis to ascertain whether its effects are of
observational relevance. Examples of such analyses have
been done for special cases. Burko [22] and Burko and
Khanna [23] find that the spin-curvature force may in fact
dominate over certain aspects of the self-force for circular
and equatorial orbits, at least when the small body’s spin is
large and aligned with the orbit; similar results were found
by Steinhoff and Puetzfeld [24].

B. Past work

Because all astrophysical objects spin, it has long been
known that it is important to include the impact of spin
when modeling the evolution of and gravitational-wave
emission from compact binaries. This has long been done
in post-Newtonian studies of comparable mass coalescing
compact objects (see Refs. [25–27,27–35] and references
therein for some examples of historical and current work on
this problem), and has been a major focus of work in
numerical relativity (see Refs. [36–43] for some examples
of work on this problem in the past half decade). Active
work is now ongoing to expand the effective one-body
framework [44,45] to include the effect of spin [46–55].
Although there has been a great deal of work studying

motion under the influence of the Papapetrou equations
(see Kyrian and Semarák [21] and references therein for
an outstanding review), the impact that the small body’s
spin has for potentially relevant EMRI sources has not yet
been carefully quantified. It appears that, to date, the most
careful and rigorous analyses of spin-enhanced, large-mass
ratio dynamics have focused upon simple orbits and simple
spin-orbit configurations. Most work on this problem
has focused upon circular orbits with spin parallel to the
orbital angular momentum [24,56–59]; at least one paper
[60] considered the small body’s spin to be slightly
misaligned from parallel, leading to precession kinematics
which influenced the system’s emitted gravitational waves.
A very recent analysis using a Hamiltonian formulation of
spin-curvature coupling has the promise of analyzing
motions for general orbits and spin orientations [61],
though at present the authors confine their analysis to
spherical background spacetimes and planar orbits. With
one exception, analyses which focus on issues of
gravitational-wave measurement and data analysis likewise
use the circular, equatorial, parallel spin limit [22,62]. The

one exception is Barack and Cutler [63], who developed a
“kludge” model for the inspiral and waveforms by pushing
the post-Newtonian expansion beyond its formal range of
validity in order to assess parameter measurement accuracy
with space-based gravitational-wave detectors. Barack and
Cutler found that the small body’s spin has a negligible
impact on parameter accuracy, except when the small body
has maximal spin. It will be important to revisit this
analysis using techniques that accurately describe the small
body’s motion and precession deep into the strong field.

C. Our approach to spin-enhanced orbital motion

A major goal of the work we present here is to develop
tools that can be used to efficiently compute orbits that
include the impact of spin-curvature forces for EMRI
systems with arbitrary spin-orbit configurations. In this
paper, we focus on computation of the precession and
forces for EMRIs; later work will examine how to evolve
orbits using the resulting force. We assume μ ≪ M, where
M is the mass of the large black hole, and μ is the mass of
the orbiting body. We assume that the smaller body has a
spin S, and define the dimensionless spin parameter
s ¼ S=μ2. If the small body’s spin obeys the Kerr bound,
then 0 ≤ s ≤ 1.
Our approach to modeling spin-enhanced orbital motion

is based on the fact that, for large mass ratio systems, the
motion will be “close to” a Kerr geodesic, with the spin-
curvature force introducing corrections to the orbiting
body’s worldline of order μ=M ≪ 1. This suggests that a
useful way to compute the force’s effect is with the method
of osculating geodesics [64,65], in which the body is
regarded as evolving through a sequence of geodesic orbits.
This sequence of geodesics shares the tangent to the body’s
true worldline at each moment. Osculating geodesics
generalize the technique of osculating orbits that are
commonly used in astrophysical dynamics, and are a
powerful way to describe motion which is perturbed away
from an exact, integrable trajectory.
It should be emphasized at this point that the equations

of motion for a spinning body on a generic orbit about a
Kerr black hole are not integrable.2 One can in fact
find configurations that lead to chaotic orbital evolution
[66–68]. Our proposed method of treating the motion as a
sequence of osculating geodesics presumes that the motion
is “nearly” integrable, in the sense that the nonintegrable
spin-curvature coupling acts as a weak perturbation to the
integrable geodesic motion. This is presumably reasonable
provided that the small body’s spin is “small enough,”
though it remains to be quantified what “small enough”
really means.
In our formulation of this problem, we use the fact that

functions arising from motion on a Kerr orbit can be

2We are very grateful to Georgios Loukes-Gerakopoulos for
useful discussions on this point.
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expanded in a Fourier series [69]. A Kerr black hole orbit is
triperiodic, with separate frequencies describing its radial,
polar, and axial motions. Many functions which arise from
motion along such an orbit, including those governing spin-
curvature coupling, can be written

fðzÞ ¼
X∞

k;n¼−∞
fkne−iðkΩθþnΩrÞt; ð1:8Þ

where z is the worldline followed by the orbiting body, t is
time as measured by a distant observer, and Ωθ;r are
frequencies characterizing the orbit’s motion in the θ
and r directions. (A third frequency associated with axial
motions, Ωϕ, exists, but is not important in this analysis
thanks to the axisymmetry of the Kerr spacetime.) Similar
forms can be written down using different time para-
metrizations. Including the small body’s spin introduces
a new frequency Ωs which is associated with the small
body’s precession as it moves along its orbit. These
frequencies all vary smoothly with the parameters that
describe bound Kerr orbits, and so evolve in a simple way
as the worldline moves through its sequence of osculating
geodesics.
We find that frequency-domain expansions of the

quantities needed to model spin-enhanced motion tend to
converge rapidly, at least for orbital eccentricities e≲ 0.7 or
so.3 This approach should thus facilitate efficient calcu-
lation of the quantities needed to compute spin-enhanced
orbits. Describing these quantities in the frequency domain
can be useful for understanding how harmonic features
of the orbital and precessional motion are imprinted on
observationally important characteristics of the system. We
expect that a frequency-domain description will prove
useful for extending codes which compute radiation from
generic Kerr orbits (e.g., [70]) to include the effects of spin.
Work of this nature has been done so far for simpler orbit
and spin configurations [56–58,60,71].

D. Organization of this paper

In this paper, we show how to compute the new
frequency associated with the small body’s spin and
examine the Fourier decomposition of all the relevant
quantities needed to compute spin-enhanced EMRI orbits.
Since our analysis is based on expanding about geodesics
of Kerr black holes, we begin in Sec. II by reviewing the
properties of these geodesics. We introduce the notation
that we use, and describe briefly the parametrization and
properties of Kerr black hole orbits. Chief among these

properties is the periodic structure of these orbits. We
review the triperiodic structure of Kerr black hole orbits,
and describe how any function which arises from motion
along such an orbit can be expanded in a Fourier series of
the orbit’s fundamental frequencies. In Sec. III, we move
beyond geodesics, summarizing how the small body’s spin
couples to spacetime curvature. We first review the general
equations that govern spin-curvature coupling in Sec. III A,
and then examine in Sec. III B how these equations
simplify when we linearize in the small body’s spin.
In Sec. IV, we then study the precession of the small

body’s spin in the frequency domain. We do this analysis in
what is often called “Mino time,” a time variable that fully
separates the radial and polar motions of Kerr black hole
orbits, and that has proven to be well suited for studies
of strong-field motions. We begin by studying precession
along a circular equatorial orbit (Sec. IVA). This limit turns
out to be very clean when analyzed using Mino time.
Changing to the Boyer-Lindquist time coordinate (appro-
priate for analyzing quantities that distant observers would
measure) and taking the weak-field limit, we recover well-
known results describing gyroscope precession in general
relativity. We then generalize to more complicated orbit
geometries in Secs. IV B and IV C. In all these cases, we
find that the frequency characterizing precession is the
eigenvalue of a matrix representation of the relevant
equations. This representation can become fairly compli-
cated for generic orbits, thanks to the complicated time-
frequency structure of the underlying orbits. Nonetheless,
we find it is not terribly difficult in this framework to
accurately construct the solution for the small body’s
precession.
With the small body’s precession in hand, we then

examine the spin-curvature force (1.3) in Sec. V. We find
that the frequency-domain expansion converges quickly,
and is an excellent way to describe these quantities in the
large mass ratio regime. Interestingly, there exist certain
configurations in which the precession and orbit frequen-
cies are “commensurate” with one another: some linear
combination of the precession and orbit frequencies sums
to zero. Fourier components of the force corresponding to
such combinations would be constant in time, and one
might imagine that the system’s evolution would be
substantially modified as compared to “nearby” orbit
configurations (as has been seen in studies of the self-
force’s behavior at black hole orbit resonances [72,73]). In
Sec. VI, we show that, at least at linear order in spin,
resonant spin-curvature coupling does not have any special
impact on the system’s evolution. This is due to the
existence of conserved constants of the motion. To
“protect” these constants, certain contributions to the
spin-curvature force vanish when the precession and orbit
frequencies are commensurate. We speculate that such
resonances (or an analog of such resonances) might have
more interesting effects if the analysis were taken to higher

3Based on experience studying gravitational waves from
eccentric binary systems (e.g., Ref. [70]), we expect that the
frequency-domain expansion will converge very slowly as e → 1.
We have not, however, done a systematic study to determine the
value of e at which the frequency-domain approach becomes less
useful.
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order in the small body’s spin, and might be connected to
the onset of chaos that has been seen in past analyses of the
orbits of spinning bodies [66–68].
We conclude in Sec. VII with a sketch of our plans for

future work on this problem. Chief among these plans is to
marry this scheme for computing the motion of a small
body to an osculating geodesic integrator [64,65] in order
to compute the full worldline describing a small spinning
body orbiting a Kerr black hole. This analysis is underway,
and early results indicate that it is a robust and accurate way
to describe these orbits. We then hope to use it to broaden
the class of sources that can be incorporated into future
EMRI models, and to model two-body dynamics in general
relativity more broadly.

II. BACKGROUND: CONVENTIONS, NOTATION,
AND GEODESIC MOTION

We begin by laying out the conventions and notation that
we will use, and describe in some detail the Kerr geodesics
that constitute the background motion we use for orbits of
spinning bodies. This material has appeared in great depth
in quite a few other sources, so we simply summarize what
is relevant for us here and point the reader to relevant
literature.

A. Generalities

Our goal is to understand the motion of a small body of
mass μ orbiting a Kerr black hole with mass M and spin
parameter a. We will use Boyer-Lindquist coordinates for
our analysis, in which the metric is

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Marsin2θ
Σ

dtdϕþ Σ
Δ
dr2

þ Σdθ2 þ ðr2 þ a2Þ2 − a2Δsin2θ
Σ

sin2θdϕ2; ð2:1Þ

where

Δ ¼ r2 − 2Mrþ a2; Σ ¼ r2 þ a2cos2θ: ð2:2Þ

(We use geometric units with G ¼ 1 ¼ c throughout this
paper.) From Eqs. (2.1) and (2.2), it is straightforward to
compute the Kerr metric’s connection coefficients and
Riemann curvature components in these coordinates, both
of which we need in explicit form. Semerák provides a
catalog of these quantities (Ref. [74], Appendix A; see also
footnote 2 of Ref. [21]).
The Kerr spacetime admits two Killing vectors, ξαt and

ξαϕ, corresponding to timelike and axial diffeomorphisms. It
also admits a Killing tensor Kμν, given by

Kμν ¼ Σðmμm̄ν þ m̄μmνÞ − a2cos2θgμν; ð2:3Þ

where

mμ ≐ ½mt;mr;mθ; mϕ�

≐ 1ffiffiffi
2

p ðrþ ia cos θÞ ½−ia cos θ; 0;Σ; iðr
2 þ a2Þ sin θ�

ð2:4Þ

is a Newman-Penrose null tetrad leg,4 and m̄μ is the
complex conjugate of mμ. This tensor satisfies a general-
ized form of Killing’s equation,

∇αKβγ þ∇βKγα þ∇γKαβ ¼ 0: ð2:5Þ

To our knowledge, Kαβ does not have a simple geometrical
interpretation as the Killing vectors do. Note that Kαβ is
symmetric under exchange of indices. For later discussion,
it is useful to note that we can write

Kαβ ¼ fαγfβγ; ð2:6Þ

where the antisymmetric Killing-Yano tensor fαβ is given
by [60]

fμν ¼ a cos θðe1μe0ν − e0μe1νÞ þ rðe2μe3ν − e3μe2νÞ; ð2:7Þ

and where

e0μ ≐
� ffiffiffiffi

Δ
Σ

r
; 0; 0;−asin2θ

ffiffiffiffi
Δ
Σ

r �
; ð2:8Þ

e1μ ≐
�
0;

ffiffiffiffi
Σ
Δ

r
; 0; 0

�
; ð2:9Þ

e2μ ≐ ½0; 0;
ffiffiffi
Σ

p
; 0�; ð2:10Þ

e3μ ≐
�
−
a sin θffiffiffi

Σ
p ; 0; 0;

ðr2 þ a2Þ sin θffiffiffi
Σ

p
�
: ð2:11Þ

The Killing-Yano tensor satisfies

∇γfαβ þ∇βfαγ ¼ 0: ð2:12Þ

Associated with the Killing vectors and the Killing
tensor are three constants which are conserved along a
geodesic worldline. These are the orbit’s energy, axial
angular momentum, and “Carter constant”:

EG ≡ −ξμt pG
μ ¼ −pG

t ; ð2:13Þ

LG
z ≡ ξμϕp

G
μ ¼ pG

ϕ ; ð2:14Þ

4Here and below, we use “≐” to mean “the indexed object on
the left-hand side is represented by the components on the right-
hand side in Boyer-Lindquist coordinates.”
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KG ≡ Kμνp
μ
Gp

ν
G; ð2:15Þ

QG ≡ KG − ðLG
z − aEGÞ2

¼ ðpG
θ Þ2 − a2cos2θ½ðEGÞ2 − μ2� þ cot2θðLG

z Þ2:
ð2:16Þ

The name “Carter constant” is commonly used for both KG

and QG. In all of these quantities, the superscript “G”
indicates that these are quantities associated with motion
along a geodesic. This is to be contrasted with analogs we
will introduce in the next section which are associated with
a more general class of trajectories. In much of our analysis,
it is useful to normalize these quantities to the rest mass of
the orbiting body μ. We indicate their values so normalized
with a hat:

ÊG ¼ EG=μ;

L̂G
z ¼ LG

z =μ;

K̂G ¼ KG=μ2;

Q̂G ¼ QG=μ2: ð2:17Þ

The existence of these constants of motion makes it
possible to separate the equations governing Kerr geo-
desics. In first order form, they become [Ref. [75],
Eqs. (33.32a)–(33.32d)]

Σ2

�
dr
dτ

�
2

¼ ½ÊGðr2 þ a2Þ − aL̂G
z �2

− Δ½r2 þ ðL̂G
z − aÊGÞ2 þ Q̂G�

≡ RðrÞ; ð2:18Þ

Σ2

�
dθ
dτ

�
2

¼ Q̂G − cot2 θðL̂G
z Þ2 − a2 cos2 θ½1 − ðÊGÞ2�

≡ ΘðθÞ; ð2:19Þ

Σ
�
dϕ
dτ

�
¼ csc2θL̂G

z þ aÊG

�
r2 þ a2

Δ
− 1

�
−
a2L̂G

z

Δ
≡ Φðr; θÞ; ð2:20Þ

Σ
�
dt
dτ

�
¼ ÊG

�ðr2 þ a2Þ2
Δ

− a2sin2θ

�

þ aL̂G
z

�
1 −

r2 þ a2

Δ

�

≡ Tðr; θÞ: ð2:21Þ

These equations use proper time τ as the independent
parameter along the geodesic. Another time parameter
which is very useful for studying strong-field Kerr black

hole orbits is λ, defined by dλ ¼ dτ=Σ. The geodesic
equations parametrized in this way are

�
dr
dλ

�
2

¼ RðrÞ;
�
dθ
dλ

�
2

¼ ΘðθÞ; ð2:22Þ

dϕ
dλ

¼ Φðr; θÞ; dt
dλ

¼ Tðr; θÞ: ð2:23Þ

By using λ as our time parameter, the r and θ coordinate
motions completely separate. The parameter λ is often
called “Mino time,” following Mino’s use of it to untangle
these coordinate motions [76].

B. Parametrizing geodesics

We have found it very useful to introduce the following
reparametrization of r and θ:

r ¼ pM
1þ e cosðψ þ ψ0Þ

; cos θ ¼ cos θm cosðχ þ χ0Þ:

ð2:24Þ

We further find it helpful to remap θm to θinc, defined by

θinc ¼ π=2 − sgnðLzÞθm: ð2:25Þ

This angle encodes whether the orbit is prograde (Lz > 0)
or retrograde (Lz < 0). It smoothly varies from θinc ¼ 0°
for prograde equatorial (θm ¼ 90°, Lz > 0) to θinc ¼ 180°
for retrograde equatorial (θm ¼ 90°, Lz < 0).
There is a fairly simple mapping between the constants

of motion ðÊG; L̂G
z ; Q̂

GÞ and the orbital geometry param-
eters ðp; e; θmÞ. See Appendix B of Ref. [77] for explicit
formulas relating these two parametrizations; Ref. [78] also
provides many valuable results for studies of Kerr geodesic
motion. Notice that r oscillates between rmin and rmax,
given by

rmin ¼
pM
1þ e

; rmax ¼
pM
1 − e

: ð2:26Þ

Likewise, θ oscillates from θmin ¼ θm to θmax ¼ π − θm.
The transformations (2.24) replace the variables r and θ

with secularly accumulating angles ψ and χ. As ψ and χ
evolve from 0 to 2π, r and θ move through their full
ranges of motion. By combining Eq. (2.24) with
Eq. (2.22), it is straightforward to develop equations
for dψ=dλ, and dχ=dλ. In this parametrization, a geodesic
worldline is defined by a set of four functions [ψðλÞ, χðλÞ,
ϕðλÞ, tðλÞ], three orbital parameters ðp; e; θmÞ, and four
initial conditions. We define χ ¼ ψ ¼ 0 at λ ¼ 0; the
value of r and θ at λ ¼ 0 is then set by the angles ψ0 and
χ0 defined in Eq. (2.24). We likewise define t ¼ t0 and
ϕ ¼ ϕ0 at λ ¼ 0.
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Let us define λr0 ¼ λr0ðψ0Þ to be the value of λ closest to
zero5 for which rðλr0Þ ¼ rmin; likewise, λθ0 ¼ λθ0ðχ0Þ is the
value of λ closest to zero for which θðλθ0Þ ¼ θmin. We
define the “fiducial geodesic” as the geodesic for which
λr0 ¼ λθ0 ¼ ϕ0 ¼ t0 ¼ 0. It is easy to show that if ψ0 ¼ 0,
then λr0 ¼ 0; likewise, if χ0 ¼ 0, then λθ0 ¼ 0.

C. Geodesics and functions of geodesics
in the frequency domain

Bound Kerr orbits are triperiodic, as was first explicitly
shown by Schmidt [77]. It is simplest to compute the three
orbital periods in Mino time, which (as discussed above)
separates the radial and polar motions. Using this time
variable, it is not too difficult to compute three periods Λr,
Λθ, and Λϕ associated with the radial, polar, and axial
motions, respectively, as well as associated frequencies
ϒr;θ;ϕ ¼ 2π=Λr;θ;ϕ. One can also compute a quantity Γ
which converts these periods and frequencies to their
Boyer-Lindquist coordinate time analogues:

Tr;θ;ϕ ¼ ΓΛr;θ;ϕ ð2:27Þ

are the periods in Boyer-Lindquist time, and the associated
frequencies are

Ωr;θ;ϕ ¼ ϒr;θ;ϕ

Γ
: ð2:28Þ

Since Boyer-Lindquist time corresponds to time as mea-
sured by distant observers, this formulation is useful for
describing the time-frequency behavior of observable
quantities. Schmidt [77] first showed how to compute
the frequencies Ωr;θ;ϕ using elegant but somewhat abstract
techniques. Drasco and Hughes [69] showed how to
understand these periodicities in simpler terms, with
easy-to-compute quadratures describing Λr;θ;ϕ and Γ (from
which computing Ωr;θ;ϕ is straightforward). Fujita and
Hikida [78] then showed that these quadratures can be
evaluated analytically, yielding easy-to-use formulas for
ϒr;θ;ϕ and Ωr;θ;ϕ as functions of p, e, and θm.
These frequency-domain expansions are excellent tools

for characterizing the behavior of functions associated
with geodesic black hole orbits. The Mino-time periodic
expansion is particularly good for describing strong-
field orbital dynamics, and will be used extensively6 in
this paper. Let fðλÞ≡ f½rðλÞ; θðλÞ� be a function of r
and θ that is computed along a geodesic worldline
z ¼ ½tðλÞ; rðλÞ; θðλÞ;ϕðλÞ�. Then,

f ¼
X∞

k;n¼−∞
fkne−iðkϒθþnϒrÞλ; ð2:29Þ

where

fkn ¼
4π2

ΛrΛθ

Z
Λr

0

Z
Λθ

0

f½rðλrÞ; θðλθÞ�eikϒθλθeinϒrλrdλθdλr:

ð2:30Þ

A more complicated expansion must be used for functions
which depend in addition on t and ϕ; see Ref. [69] for
discussion. We will not need this more complicated form
for this paper.
Let us denote by ~fkn the amplitude (2.30) computed

along the fiducial geodesic, χ0 ¼ ψ0 ¼ 0. Once ~fkn is
known, it is simple to compute the amplitude along an
arbitrary geodesic [79]:

fkn ¼ eiξknðψ0;χ0Þ ~fkn; ð2:31Þ

where

ξknðψ0; χ0Þ ¼ kϒθλθ0ðχ0Þ þ nϒrλr0ðψ0Þ: ð2:32Þ

This means that one only needs to compute ~fkn; the Fourier
amplitudes along all other geodesics can be obtained from
this quite simply.

III. SPIN-CURVATURE COUPLING

Strictly speaking, geodesic motion only applies to a zero-
size point body moving through spacetime (and neglecting
self-force effects). If the body has any structure beyond the
point particle description, that structure will couple to the
spacetime through which it moves. This coupling will push
the small body away from the geodesic, appearing as a
force driving the body’s motion.
Papapetrou [17] pioneered a moment-based technique

for determining these couplings (see also Mathisson’s
discussion in Ref. [16]). Following the discussion in
[80], the key idea is to choose some representative world-
line that passes through a body moving through spacetime.
One computes moments of the body’s stress-energy tensor
Tαβ about that worldline. If the body is sufficiently compact
that moments beyond the nth can be taken to vanish,
then one can find equations of motion in terms of those
nonvanishing moments by enforcing ∇αTαβ ¼ 0. If all
moments beyond n ¼ 0 vanish (meaning that the small
body is a monopole point mass), then the geodesic
equations for motion in the background spacetime emerge
from this procedure. The first moment to couple beyond
this describes the small body’s spin angular momentum.
Spin couples to the curvature of the background spacetime,
producing a force which pushes the small body away from

5Due to periodicity, λ ¼ λr0 � 2πjΛr will also satisfy this
condition for any integer j (where Λr is the Mino-time radial
period). A similar statement holds for λθ0.6Although not needed here, it is worth noting that converting
from this form to the Boyer-Lindquist expansion is simple [69].
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the geodesic. One can consider the coupling of higher
order moments as well [81]; for example, the small
body’s quadrupole moment couples to the gradient of
the curvature [82,83].
Here we discuss the spin-curvature coupling and the

force which results from it. Further detailed discussion
and derivations can be found in Refs. [15–18,80]. We first
summarize the equations which govern the motion of a
small spinning body through curved spacetime in full
generality, making no assumptions about the magnitude
of the small body’s spin or the worldline that it follows. We
then introduce a perturbative expansion, developing these
equations at leading order in the small body’s spin, and
treating its four-velocity as “close to” geodesic motion
(in a sense that is quantified precisely below). A similar
approach was developed in Refs. [84,85], though without
the goal of then connecting this perturbative force to an
osculating geodesic integrator.

A. General form

We begin by defining the spin tensor, which is central to
our analysis. Let δzα ¼ xα − zα, where xα is a general point
in spacetime, and zα is position along the small body’s
worldline. The spin tensor is defined as

Sαβ ¼ 2

Z
Σ
δz½αTβ�γdΣγ ð3:1Þ

¼ 2

Z
t
δz½αTβ�t ffiffiffiffiffiffi

−g
p

d3x: ð3:2Þ

In these equations, Tαβ is the stress-energy tensor of the
orbiting body, and square brackets around indices denote
antisymmetrization: A½αβ� ¼ ðAαβ − AβαÞ=2. In the covari-
ant form (3.1), the spin is defined on an arbitrary spacelike
hypersurface Σ, and xα are coordinates in that surface. In
Eq. (3.2), we have taken Σ to be a “slice” of constant t,
where t (not necessarily the Boyer-Lindquist time) is used
to parametrize the orbiting body’s worldline; g is the
determinant of the metric.
By enforcing ∇αTαβ ¼ 0, we find the following equa-

tions governing the motion of the small body [16–18]:

Dpα

dτ
¼ −

1

2
Rα

νλσuνSλσ; ð3:3Þ

DSαβ

dτ
¼ pαuβ − pβuα: ð3:4Þ

The operator D=dτ denotes a covariant derivative along the
worldline that the small body follows. The four-velocity is
defined, as usual, by uα ¼ dxα=dτ. However, it is not the
case that pα ¼ μuα (where μ is the small body’s rest mass).
As discussed in Sec. I, Eq. (3.3) and (3.4) do not fully

determine the small body’s motion. One must also impose a

spin-supplementary condition (SSC), which accounts for
degrees of freedom which are implicit in its non-pointlike
structure. An outstanding review and discussion of this
condition and its physical meaning is given by Costa
and Natário [19]; further excellent review and comparison
is given in Kyrian and Semerák [21], and additional
comparison of spin-supplementary conditions is provided
by Ref. [86].
A commonly used choice is the Tulczyjew SSC [20],

pαSαβ ¼ 0: ð3:5Þ

We use Eq. (3.5) for our analysis. We emphasize that this is
an arbitrary choice, and is adopted primarily because
it is often used in literature that examines gravitational-
wave generation from spin-enhanced orbits (e.g.,
Refs. [24,56–60]). Equivalent motion can be shown to
follow from a range of SSCs, though one must be careful to
compare properly, as described in detail in Ref. [19].
Using Eq. (3.5), one can show that

uμ ¼ M
μ2

�
pμ þ 2SμνRνρστpρSστ

4μ2 þ RαβγδSαβSγδ

�
: ð3:6Þ

The parameters μ and M both have the dimensions of
mass, and are related7 to uα and pα by

μ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−pαpα

p
; ð3:7Þ

M≡ −pαuα: ð3:8Þ

Note that uαuα ¼ −1. Using Eq. (3.5), one can show that μ
is constant along the orbiting body’s worldline, but thatM
is not. From these definitions, it is simple to see that
μ ¼ MþOðS2Þ, and that uα ¼ pα=μþOðS2Þ. The mass
parameters μ and M are identical for geodesic orbits (as
they must be), and cannot be distinguished at linear order in
the small body’s spin.
From the spin tensor, one finds the spin vector [21]

Sμ ¼ −
1

2μ
ϵμναβpνSαβ: ð3:9Þ

Here,

ϵαβγδ ¼
ffiffiffiffiffiffi
−g

p ½αβγδ� ð3:10Þ

where the metric determinant
ffiffiffiffiffiffi−gp ¼ Σ sin θ for Kerr, and

where ½αβγδ� is the totally antisymmetric symbol:

7We have reversed the definitions of μ and M relative to how
they are defined in Ref. [21]. We do this so that −pμpμ has the
same name in both the spinning and spinless cases.
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½αβγδ� ¼ þ1 if αβγδ is an even permutation of 0123

¼ −1 if αβγδ is an odd permutation of 0123

¼ 0 otherwise: ð3:11Þ

Notice that pμSμ ¼ 0. Less obviously,

S2 ≡ SαSα ¼
1

2
SαβSαβ ð3:12Þ

is a constant.
Equations (3.3), (3.4), and (3.5) can be integrated to

build the worldline of a spinning body. The worldline
which one finds from such an integration admits a constant
of the motion for each of the spacetime’s Killing vectors: If
ξα is one of these Killing vectors, then

C ¼ pαξ
α −

1

2
Sαβ∇βξα ð3:13Þ

is constant along the spinning body’s worldline. For the
Kerr spacetime, these constants are

ES ¼ EG þ 1

2
∂βgtαSαβ; ð3:14Þ

LS
z ¼ LG

z −
1

2
∂βgϕαSαβ: ð3:15Þ

These quantities define conserved energy and axial angular
momentum for a spinning body orbiting a Kerr black hole;
the superscript “S” distinguishes them from the conserved
quantities associated with geodesics. In general, there is no
conserved quantity analogous to the Carter constant for
orbits of spinning bodies.

B. Leading order in small body’s spin

We now imagine that the small body’s spin can be taken
to be “small” in some meaningful way. Let us define the
dimensionless spin parameter s by

S ¼ sμ2; ð3:16Þ

where S, defined in Eq. (3.12), is the magnitude of the spin
vector. If the small body is itself a Kerr black hole, we
expect that s ≤ 1. Even for non-Kerr small bodies, this
bound is likely to be a useful guide as long as the small
body is compact. We thus expect that spin effects will have
an impact on the motion at order μ2. It is worth noting other
literature uses different conventions to normalize S. For
example, Refs. [66] and [71] define

S ¼ σμM: ð3:17Þ

In these works, the authors are not restricting their analysis
to the large mass ratio limit, so μ is the reduced mass of the

system, andM is its total mass. If the binary’s secondary is
in fact a Kerr black hole, then this condition implies that
σ ≤ ðμ=MÞ. It should be noted that these conditions are
somewhat arbitrary, since it is the spin S that matters in
the equations of motion, not the parameters s and σ. The
definition of these dimensionless parameters is simply a
convenience to guide our intuition.
The scaling of S with μ for the case of the small body

being a Kerr black hole suggests that, especially for large
mass ratio systems, it would be fruitful to neglect terms
that are of OðS2Þ and higher. With our convention for the
scaling of the small body’s spin, the terms we are neglect-
ing would introduce effects at fourth order in the small
body’s mass. Truncating at OðSÞ, we find

uμ ¼ pμ=μ: ð3:18Þ

It follows that

DSμν

dτ
¼ 0; ð3:19Þ

so that the spin tensor is parallel transported along the small
body’s worldline at OðSÞ.
We now rewrite the equation of motion Eq. (3.3) to

leading order in S. We emphasize again that the derivative
operator D=dτ is a derivative along the small body’s
worldline, and that our goal is to develop a force term
that can be used with an osculating geodesic integrator. As
such, our small body’s motion will be regarded as tangent
to some geodesic at every moment along its worldline. The
geodesic to which the worldline is tangent will differ at
each step, but there will be some “reference geodesic”
defining D=dτ at each moment.
We begin by writing the small body’s 4-velocity

uα ¼ uαG þ uαS; ð3:20Þ

where uαG satisfies the geodesic equation,

DuαG
dτ

¼ 0; ð3:21Þ

and where uαS ¼ OðSÞ. Linearizing Eq. (3.3) in S, we have

DuαS
dτ

¼ −
1

2μ
Rα

νλσuνGS
λσ: ð3:22Þ

Equation (3.22) defines the force which, in the osculating
geodesic picture, carries the small body’s worldline from
one reference geodesic to another. It is worth emphasizing
that Eq. (3.22) only makes sense in this picture, since the
derivative operator D=dτ is defined quite strictly with
respect to this geodesic. The results that we present in
Sec. V B for the spin-curvature force should thus be
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regarded as the force tending to push a spinning body away
from a specified reference geodesic.
The SSC (3.5) becomes

uGα Sαβ ¼ 0 ð3:23Þ

when we linearize in S. The spin vector (3.9) becomes

Sμ ¼ −
1

2
ϵμναβuGν Sαβ: ð3:24Þ

This equation can be inverted:

Sαβ ¼ ϵαβμνuGμ Sν: ð3:25Þ

It follows from Eq. (3.24) that

DSμ

dτ
¼ 0; ð3:26Þ

so that the spin vector is parallel transported along the
body’s worldline at OðSÞ. It also follows that

uGα Sα ¼ 0 ð3:27Þ

at this order. This means that we only need to know three of
the components of Sα; the fourth component is determined
by the constraint. Equation (3.27) tells us that, in the
orbiting body’s rest frame, the spin vector is purely spatial.
At linear order in S, the motion acquires a new conserved

constant [60,87]:

KS ¼ KG − 2pμ
GS

ρσðfνσ∇νfμρ − fνρ∇νfσρÞ; ð3:28Þ

where fμν is the Killing-Yano tensor introduced in
Eq. (2.7). Although there is in general no analog of the
Carter constant for spinning bodies orbiting Kerr black
holes, there is such an analog at leading order in the smaller
body’s spin.
The leading-order-in-spin approach we have described is

designed to be used for integrating orbits using the
technique of osculating geodesics [64,65]. The small
body’s true worldline is, at every moment, tangent to some
geodesic, the “osculating” geodesic. Using Eq. (3.22), we
compute the force which pushes the small body away from
that osculating geodesic. We use this to step the system by
some amount Δτ along its worldline, updating the spin via
Eq. (3.26). At the end of this step, we update the osculating
geodesic, and then repeat.
Integrating orbits with this scheme, one will find that the

geodesic values for the energy, axial angular momentum,
and Carter constant will oscillate as the system moves
between different osculating geodesics. However, the spin-
enhanced energy, axial angular momentum, and Carter
constant, given by Eqs. (3.14), (3.15), and (3.28), will all be
constant.

IV. FREQUENCY DOMAIN TREATMENT
OF SPIN PRECESSION

We now expand on the details of our approach to
analyzing spin-curvature forces. In addition to treating
the small body’s spin as a perturbative parameter, we take
advantage of the fact that Kerr geodesics are triperiodic, so
any function arising from these geodesics can be computed
in a Fourier expansion. In the next section, we will use this
to show how the components of the spin curvature force
behave in the frequency domain.
We start by analyzing the precession of the small body’s

spin. Precession introduces new frequencies into our
analysis, which can be represented as eigenvalues of a
matrix representation of the master precession equation.
Once the precession frequency is known, it is straightfor-
ward to include it in a frequency-domain expansion of the
spin-curvature force.
Begin by expanding the covariant derivative in

Eq. (3.26), and changing the independent parameter from
proper time τ to Mino time λ. The “master equation”
governing precession becomes

dSα

dλ
¼ −Γα

μνSμUν; ð4:1Þ

where

Uν ≡ uν
dτ
dλ

¼ dxν

dλ
: ð4:2Þ

This can be regarded as an eigenvector equation. To
expedite solving it, write

dS
dλ

¼ P · S; ð4:3Þ

where S ≐ ðSr; Sθ; SϕÞ, and where P is a 3 × 3 matrix
which depends only on r and θ. Here and throughout the
paper, boldface symbols denote vectors and matrices whose
indices are associated with the spatial coordinates r, θ,
and ϕ. It should be clear from context which quantities are
two-index matrices, and which are one-index vectors.
As discussed in Sec. III, the timelike component St is

determined by the constraint uGα Sα ¼ 0. Taking this into
account, the elements of P are given by

Pi
j ¼ −Γi

νjU
ν þ Γi

ν0U
ν
Uj

U0

: ð4:4Þ

Each element of this matrix varies with time as the small
body moves through its orbit. Because the matrix is itself a
function of Kerr geodesic motion, it can be expanded in the
frequency domain, so we write
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P ¼
X∞
k¼−∞

X∞
n¼−∞

Pkne−iðkϒθþnϒrÞλ: ð4:5Þ

Harmonics of ϒϕ do not enter due to the spacetime’s
axisymmetry. Each Fourier component Pkn is itself a 3 × 3
matrix. The indices k and n formally run from −∞ to ∞,
although in practice the sums converge at finite value.
We now discuss how to solve this. There are three cases

which we discuss separately: circular equatorial orbits,
for which we need only the k ¼ n ¼ 0 terms; eccentric
equatorial, circular inclined, or “resonant” orbits, for which
we need one index; and generic orbits, for which we
need both.

A. Circular and equatorial orbits

When the osculating geodesic is circular and equatorial,
the small body’s precession has a particularly simple
analytic solution. We develop this solution first in a
straightforward way, and then reanalyze this solution as
an eigenvector problem. This allows us to begin developing
the tools we will need to study more complicated orbit
geometries.

1. Analytic solution for the spin

Consider an orbit of constant radius r, with constant
polar angle θ ¼ π=2. The precession matrix P is quite
simple in this limit:

Pϕ
r ¼

½a2M − rðr − 2MÞ2�L̂G
z − aMð3r − 4M þ a2ÞÊG

Δ
;

ð4:6Þ

Pr
ϕ ¼ −3MðL̂G

z − aÊGÞ þ aMðL̂G
z − aÊGÞ2
r2ÊG þ rL̂G

z ;

ð4:7Þ

Pi
j ¼ 0 ðall other indicesÞ: ð4:8Þ

Note that Q̂G ¼ 0 for equatorial orbits, so the Carter
constant does not appear in these expressions.
Using this, Eq. (4.3) becomes

dSr

dλ
¼ Pr

ϕSϕ; ð4:9Þ

dSθ

dλ
¼ 0; ð4:10Þ

dSϕ

dλ
¼ Pϕ

rSr: ð4:11Þ

For an equatorial orbit, Sθ is the component of the small
body’s spin normal to the orbital plane. Equation (4.10)

tells us that this spin component is constant for circular,
equatorial orbits. As we will see in Sec. V B, the product
rSθ is constant for all equatorial orbits, consistent with
this result. For the other two components, we combine
Eqs. (4.9) and (4.11) yielding

d2Sr;ϕ

dλ2
− Pr

ϕPϕ
rSr;ϕ ¼ 0: ð4:12Þ

The values of ÊG and L̂G
z appearing in Pr

ϕ and Pϕ
r are

given by [88]

ÊG ¼ r3=2 − 2Mr1=2 � aM1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − 3Mr2 � 2aM1=2r3=2

p ; ð4:13Þ

L̂G
z ¼ �M1=2ðr2∓2aM1=2r1=2 þ a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r3 − 3Mr2 � 2aM1=2r3=2
p : ð4:14Þ

The upper sign is for prograde orbits, the lower is for
retrograde.
Combining Eqs. (4.6), (4.7), (4.13), and (4.14), we find

the somewhat remarkable simplification

Pr
ϕPϕ

r ¼ −rM ≡ −ðϒCE
s Þ2: ð4:15Þ

In terms of Mino-time λ, this means that for circular
equatorial orbits, Sr;ϕ undergo simple harmonic oscillations
at the frequency

ϒCE
s ¼

ffiffiffiffiffiffiffi
Mr

p
: ð4:16Þ

The “CE” superscript is a reminder that this quantity only
applies to circular and equatorial orbits. By matching to
initial conditions, it is a straightforward exercise to con-
struct Sr;ϕðλÞ.
Using dλ ¼ dτ=Σ, with Σ ¼ r2 for an equatorial orbit,

we convert to frequency conjugate to proper time along the
orbit:

ωCE
s ¼ ϒCE

s

Σ
¼

ffiffiffiffiffi
M
r3

r
: ð4:17Þ

Finally, using Eqs. (2.21), (4.13), and (4.14), we can
convert this to a frequency conjugate to observer time:

ΩCE
S ¼ M1=2

r3=2 � aM1=2

�
1� 2a

ffiffiffiffiffi
M
r3

r
−
3M
r

�1=2

: ð4:18Þ

As before, upper sign labels prograde orbits, and lower
labels retrograde.
The rate at which the spin vector is seen to precess is

given by the difference between this frequency and the
orbital frequency. Using
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Ωorb ¼
M1=2

r3=2 � aM1=2 ; ð4:19Þ

we have

Ωprec ¼ Ωorb −ΩCE
s

¼ 3

2

M3=2

r5=2
∓ aM

r3
þOðr−7=2Þ: ð4:20Þ

The term at Oðr−5=2Þ reproduces well known results for
the geodetic precession of an orbiting gyroscope; the term
at Oða=r3Þ reproduces the “gravitomagnetic” or Lense-
Thirring correction to this precession arising from the larger
body’s spin. See, for example, Eqs. (3.3) and (3.4) of
Ref. [25] (noting that, for an equatorial Kerr orbit, Barker
and O’Connell’s n and nð2Þ are parallel to one another, and
point along the black hole’s spin axis).

2. The spin as an eigenvector

Let us now reorganize the above analysis, introducing
notation that will generalize to more complicated orbit
geometries. We begin by writing

S ¼ Sae−iϒ
a
s λ: ð4:21Þ

Using this, Eq. (4.3) becomes

−iϒa
sSa ¼ P · Sa: ð4:22Þ

In other words, Sa is an eigenvector of P with eigenvalue
−iϒa

s . Using Eqs. (4.6), (4.7), and (4.8), we find the
following three eigenvectors and eigenvalues:

S0 ¼

0
B@

0

1

0

1
CA; ϒ0

s ¼ 0; ð4:23Þ

S�1 ¼

0
B@

�Pr
ϕ=Pϕ

r

0

1

1
CA; ϒ�1

s ¼ �ϒCE
s ; ð4:24Þ

where ϒCE
S ¼ ffiffiffiffiffiffiffi

Mr
p

as before.
A general spin vector can then be written

S ¼ c0S0 þ c−1S−1eiϒ
CE
s λ þ c1S1e−iϒ

CE
s λ; ð4:25Þ

with c−1;0;1 determined by initial conditions. As we
saw above, the θ component of S is constant, while the
components Sr and Sϕ undergo simple harmonic oscilla-
tions [see Eqs. (4.9)–(4.16)]. A generalization of this
behavior holds for all equatorial orbits.

B. Circular inclined, eccentric equatorial,
and resonant generic orbits

In the circular equatorial case, the matrix P does not vary
with time, so the frequency-domain expansion (4.5) is trivial.
We now consider cases in which the matrix varies, but is
characterized by one dynamically important frequency.
If the orbit is circular but inclined, then the angle θ varies

over the orbit. Only the polar frequency matters in this case,
and (4.5) simplifies to

P ¼
X∞
k¼−∞

Pke−ikϒθλ: ð4:26Þ

If the orbit is equatorial but eccentric, then the radius r
varies over the orbit, and Eq. (4.5) becomes

P ¼
X∞
n¼−∞

Pne−inϒrλ: ð4:27Þ

In the general case, we expect both radial and polar
frequencies to be important, and we must use Eq. (4.5)
with no simplifications. However, for the special case of
resonant orbits [72,73], the two frequencies are simply
related to one another:

ϒθ ¼ βθϒ; ϒr ¼ βrϒ; ð4:28Þ

with βr and βθ both integers. A harmonic kϒθ þ nϒr ¼
Nϒ, with N ¼ kβθ þ nβr. In this case, the expansion takes
the form

P ¼
X
N

PNe−iNϒλ: ð4:29Þ

This sum runs from −∞ to ∞, but the spacing between
frequencies will depend in detail on the nature of the
resonance.
In these three cases, the expansion can be written8

P ¼
X∞
j¼−∞

Pje−ijϒxλ ð4:30Þ

for an appropriate choice ofϒx. To solve Eq. (4.3) with this
form of P, we assume that there exist solutions Sa of the
form

Sa ¼
X∞
j0¼−∞

e−iϒ
a
s λSa

j0e−ij
0ϒxλ: ð4:31Þ

The index a labels different eigenvectors and eigenvalues.
Equation (4.3) then becomes

8With perhaps an adjustment to the spacing for resonant orbits.
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− i
X∞
j0¼−∞

ðϒa
s þ j0ϒxÞSa

j0e−iϒ
a
s λe−ij

0ϒxλ

¼
X∞

j;j0¼−∞

Pj · Sa
j0e−iϒ

a
s λe−iðjþj0Þϒxλ: ð4:32Þ

The common factor of e−iϒ
a
s λ on both sides cancels.

Multiply both sides by eiqϒxλ, and integrate from λ ¼ 0
to 2π=ϒx:

−i
X∞
j0¼−∞

ðϒa
s þ j0ϒxÞSa

j0δj0;q ¼
X∞

j;j0¼−∞

Pj · Sa
j0δðjþj0Þ;q:

ð4:33Þ

Performing the sums over j0, this simplifies further:

−iðϒa
s þ qϒxÞSa

q ¼
X∞
j¼−∞

Pj · Sa
q−j: ð4:34Þ

Let us truncate the sum over j at some finite value �jmax.
Expand this equation and rearrange:

P−jmax
· Sa

qþjmax
þ P−jmaxþ1 · Sa

qþjmax−1 þ � � �
þ ðP0 þ iqϒxIÞ · Sa

q þ � � � þ Pjmax−1 · S
a
q−jmaxþ1

þ Pjmax
· Sa

q−jmax
¼ −iϒa

sSa
q: ð4:35Þ

The eigenvalue ϒa
s must satisfy this for each of the

2jmax þ 1 Fourier components.
To solve Eq. (4.35), we rewrite it as a bigger matrix

equation. We first assemble a “vector of vectors” by
combining the different Fourier components Sa

j as follows:

Sa ¼

0
BBBBBBBBBBBBB@

Sa
−jmax

Sa
−jmaxþ1

..

.

Sa
0

..

.

Sa
jmax−1

Sa
jmax

1
CCCCCCCCCCCCCA

: ð4:36Þ

There are 2jmax þ 1 elements in Sa, each of which is
itself a 3 element spin vector. We likewise define the
ð2jmax þ 1Þ × ð2jmax þ 1Þ matrix of matrices P whose
elements are each 3 × 3 precession matrices:

Pgh ¼
�
Pg−h g ≠ h;

P0 þ igϒxI g ¼ h:
ð4:37Þ

The indices g; h ∈ ½−jmax; jmax�, and I is the 3 × 3 identity
matrix. As a concrete example, for jmax ¼ 2 this matrix is

P ¼

0
BBBBBB@

ðP0 − 2iϒxIÞ P−1 P−2 P−3 P−4

P1 ðP0 − iϒxIÞ P−1 P−2 P−3

P2 P1 P0 P−1 P−2

P3 P2 P1 ðP0 þ iϒxIÞ P−1

P4 P3 P2 P1 ðP0 þ 2iϒxIÞ

1
CCCCCCA
: ð4:38Þ

To find the solution for the precessional motion of the
small body, we then solve for the eigenvectors and
eigenvalues of the system

P · Sa ¼ −iϒa
sSa: ð4:39Þ

When we do this we find 3 × ð2jmax þ 1Þ eigenvalues
and eigenvectors. On physical grounds,9 we expect only 3
eigenvalues and eigenvectors, so we appear to have far
more solutions than are needed.

On careful analysis, we find that these many solutions are
simply related to one another: they fall into 3 groups, each of
which has 2jmax þ 1 members. The eigenvalues in each
group are simply shifted from one another by some multiple
of ϒx. The surfeit of solutions originates in a relabeling
ambiguity in the eigenvector expansion. Take Eq. (4.31)
and shift the index j0 by some integer Δj0. The resulting
eigenvector Sa is unchanged by this shift if we take

ϒa
s → ϒa

s þ Δj0ϒx; ð4:40Þ
and likewise shift the eigenvector components:

Sa
j0 → Sa

j0þΔj0 : ð4:41Þ
Strictly speaking, this shift leaves the system unchanged only
in the limit jmax → ∞. However, provided jmax is large and
we confine ourselves to solutions with Δj ≪ jmax, the

9The equation governing the spin vector S is first order, and we
need three eigenvectors to set initial conditions for the three
components of S. Furthermore, since the spin components are
real numbers, we expect the three eigenvalues to take the form
ϒ1

s ¼ −ϒ−1
s ≡ϒs, and ϒ0 ¼ 0.
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different precessional solutions that we construct with these
related eigensolutionswill differ negligibly from one another.
We emphasize here that this relabeling ambiguity means

that in principle any eigenvalue/eigenvector set can be used
to construct a valid solution, provided one correctly
accounts for the index shift. In practice, we find that the
set which has ϒ0

s ¼ 0 and ϒ−1
s ¼ −ϒ1

s is computed most
accurately, and is the one we have used in our analyses.

An example usefully illustrates how this relabeling
ambiguity works. Consider an equatorial eccentric orbit
around a black hole with a ¼ 0.9M, p ¼ 10M, and
e ¼ 0.1; for this orbit, ϒr ¼ 2.824M. Note that e ¼ 0.1
is fairly small, so we expect the expansion (4.27) to
converge for a fairly small value of nmax.
Solving Eq. (4.39) with nmax ¼ 3, we find 21 eigenval-

ues which we group as follows:

ϒ1;Δn
s ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

11.638M

8.812M

5.987M

3.163M

0.339M

−2.485M
−5.301M

; ϒ0;Δn
s ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

8.456M

5.648M

2.824M

0

−2.824M
−5.648M
−8.456M

; ϒ−1;Δn
s ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

5.301M

2.485M

−0.339M
−3.163M
−5.987M
−8.812M
−11.638M

: ð4:42Þ

These eigenvalues are of the form

ϒ1;Δn
s ¼ ϒ1

s þ Δnϒr;

ϒ0;Δn
s ¼ ϒ0

s þ Δnϒr;

ϒ−1;Δn
s ¼ ϒ−1

s þ Δnϒr; ð4:43Þ
with Δn ∈ ½−nmax; nmax�, and with ϒ1

s ¼ 3.163M ¼ −ϒ−1
s ,

and ϒ0
s ¼ 0. (Note that ϒ−1

s ≠ 1=ϒs.) The eigenvalues
corresponding to Δn ¼ �nmax fall slightly off of the trend

given by Eq. (4.43). As stated above, we expect the shifted
solutions to differ negligibly from one another when
Δn ≪ nmax. The errors may be large when Δn ≈ nmax.
Next examine one of the eigenvectors. We focus on

those corresponding to the eigenvalues labeled ϒ0;Δn
s in

Eq. (4.42). Because data at Δn ¼ �nmax appears to be less
accurate than the other solutions, focus attention on
the “innermost” 5 solutions (those corresponding to ϒ0

s ¼
�5.648M, �2.824M, and 0). These five eigenvectors are

S0 ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0

2.157 × 10−6

0

0

7.805 × 10−7

0

0

−0.000211

0

0

0.0499

0

0

0.998

0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0

7.806 × 10−7

0

0

−0.000211

0

0

0.0499

0

0

0.998

0

0

0.0499

0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0

−0.000211

0

0

0.0499

0

0

0.998

0

0

0.0499

0

0

−0.000211

0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0

0.0499

0

0

0.998

0

0

0.0499

0

0

−0.000211

0

0

7.806 × 10−7

0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0

0.998

0

0

0.0499

0

0

−0.000211

0

0

7.805 × 10−7

0

0

2.157 × 10−6

0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ð4:44Þ
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Recall that S is a “vector of vectors,” constructed by
combining the Fourier components Sj which are each
associated with a given eigenvalue. These individual
Fourier components are indicated in the eigenvectors
shown in Eq. (4.44); five components are included. Notice
the cyclic nature of the eigenvectors’ components. This
demonstrates how these components must be shifted
according to Eq. (4.41) when we shift the eigenvalues.
Notice also the slight numerical differences between the
smallest components: Although they should be identical,
we see both 7.806 × 10−7 and 7.805 × 10−7. This differ-
ence goes away if we use a larger value of nmax, although
similar errors then appear in even smaller components.
Empirically, we find that the eigenvectors corresponding

to larger shifts tend to exhibit more numerical error. We
thus use the set requiring no shift, for which the eigenvalues
have the form ϒ1

s ¼ −ϒ−1
s ≡ϒs, ϒ0

s ¼ 0. Once these
eigenvalues are identified, it is not difficult to isolate the
associated eigenvectors, ðS1;S0;S−1Þ. We then extract the
coordinate-domain spin eigenvector Fourier components
Sa

j and assemble the solution for spin precession along an
orbit:

S ¼
Xjmax

j¼−jmax

ðc0S0
j þ c−1S−1

jeiϒsλ þ c1S1
je−iϒsλÞe−ijϒxλ:

ð4:45Þ

This sum runs from −jmax to jmax. For the example
discussed above, the coordinate-domain eigenvector
Fourier components are given by

S00 ¼

0
B@

0

0.998

0

1
CA; S0�1 ¼

0
B@

0

0.0499

0

1
CA;

S0�2 ¼

0
B@

0

−0.000211
0

1
CA: ð4:46Þ

Notice that only the θ components of S0 are nonzero; if we
had examined the S�1 solutions, we would find by contrast
that their θ components were all zero. Recall that for
circular equatorial orbits, Sθ is constant, and Sr;ϕ undergo
simple harmonic oscillation. For an eccentric equatorial
orbit, we find a similar behavior: the components Sr;ϕ are
strongly coupled and oscillatory, whereas Sθ varies inde-
pendent of the other two components. We will revisit this
behavior in Sec. V B.
Figures 1–4 show representative examples of how ϒs

computed by this procedure varies with respect to orbital
parameters for circular inclined and equatorial eccentric
orbits. We omit the case of generic but resonant orbits since
they are more complicated to compute, and do not add

much to these results. Since the amount of data involved is
significant, we do not show examples of the eigenvectors,
though of course they are found by this procedure as well.
Figures 1 and 2 show how ϒs varies with inclination θinc

for orbits of constant radius r for several values of black
hole spin. The finite span of data used in Fig. 2 is simply
because no stable orbits exist at r ¼ 5M beyond some
inclination θmax

inc for the spins we include here. The gap near
θinc ¼ 90° in Fig. 1 is because we need a large value of kmax
in Eq. (4.26) to accurately model highly inclined orbits in
the frequency domain. We have fixed kmax ¼ 12 for this
initial analysis. Empirically, we find that the expansion
converges to nine or ten digits of precision for kmax ¼ 12 on
the range θinc ≤ 70° and θinc ≥ 110°. This holds for all
values of r and a that we consider here; a larger value of
kmax would be needed if we examined inclinations θinc
outside this range. In other words, the value of kmax needed
for the expansion to converge depends quite a bit on orbital
inclination, but only weakly on black hole spin and orbital
radius.
One trend we see for the circular orbits is that ϒs does

not vary by much with inclination angle at constant r,

FIG. 1. Spin precession frequency ϒs for circular inclined
orbits of radius r ¼ 10M as a function of θinc. The gap near
θinc ¼ 90° is because we truncate the expansion (4.26) at
kmax ¼ 12. More terms than this must be kept in order for the
precession matrix to be accurately represented in the frequency
domain when the orbit is nearly polar. Two interesting features we
see here are that ϒs varies very little as a function of θinc, and that
there is a near symmetry between the prograde (θinc < 90°) and
retrograde (θinc > 90°) branches: ϒsðθincÞ≃ ϒsð180° − θincÞ.
These features are particularly pronounced for small a, and arise
because the Kerr spacetime deviates from sphericity only slightly
at r ¼ 10M.
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especially for large radius and small spin. This reflects the
fact that the spacetime is nearly spherically symmetric for
these orbits, and so ϒs ≃

ffiffiffiffiffiffiffi
rM

p
at all inclinations. Figure 1

also shows a near symmetry between prograde and retro-
grade orbits: ϒsðθincÞ≃ϒsð180° − θincÞ. This also follows
from the fact that the spacetime is nearly spherically
symmetric at r ¼ 10M. In all cases, we find that ϒs

decreases from
ffiffiffiffiffiffiffi
rM

p
as θinc increases toward 90° (pre-

sumably reaching a minimum at θinc ¼ 90°), and increases
back to

ffiffiffiffiffiffiffi
rM

p
as θinc increases toward 180°.

Figures 3 and 4 show the variation of ϒs with eccen-
tricity e for several examples of orbits of constant semi-
latus rectum p, for several spins. The general trend we see
is that ϒs monotonically increases from ϒsðe ¼ 0Þ ¼ffiffiffiffiffiffiffiffi
pM

p
when p is large. This is apparent in the left-hand

(prograde) panel of Fig. 3, the a ¼ 0.1M curve in the right-
hand (retrograde) panel of Fig. 3, and in the a ¼ 0.9M and
a ¼ 0.8M curves of Fig. 4.
The behavior we find deviates from this tendency as

orbits approach the last stable orbit (LSO), which marks
the boundary between stable and unstable orbits. For
prograde orbits at p ¼ 5M, the LSO is at eLSO ¼ 0.503
for a ¼ 0.5M, and at eLSO ¼ 0.796 for a ¼ 0.6M. All

prograde p ¼ 5M orbits are stable for a ¼ 0.7M, though
the LSO is close to these orbits: pLSO → 4.79M as e → 1,
not far beyond the large e portion of the a ¼ 0.7M curve.
The turnaround we see in the a ¼ 0.9M and a ¼ 0.5M
curves in the right-hand panel of Fig. 3 appears to be the
same phenomenon. For retrograde orbits at p ¼ 10M,
eLSO ¼ 0.469 at a ¼ 0.9M. All retrograde orbits at p ¼
10M are stable for a ¼ 0.5M, though this curve lies close to
the LSO: pLSO ¼ 9.90M as e → 1.

C. Generic orbits

Finally, consider generic orbits, which include both
radial and polar motions. We now need to solve
Eq. (4.3) including both r and θ frequencies. To do so,
we begin by assuming that there exist solutions Sa of the
form

Sa ¼
X∞

k0¼−∞

X∞
n0¼−∞

e−iϒ
a
s λSa

k0n0e−iðk
0ϒθþn0ϒrÞλ: ð4:47Þ

With this, Eq. (4.3) becomes

− i
X∞

k0;n0¼−∞

ðϒa
s þ k0ϒθ þ n0ϒrÞSa

k0n0e−iϒ
a
s λe−iðk0ϒθþn0ϒrÞλ

¼
X∞

k;k0;n;n0¼−∞

Pkn · Sa
k0;n0e−iϒ

a
s λe−i½ðkþk0Þϒθþðnþn0Þϒr�λ:

ð4:48Þ

As in Sec. IV B, we find a common factor of e−iϒ
a
s λ which

cancels. To go further, we use a trick adapted from classical
mechanics [69] for analyzing biperiodic functions: on both
sides, change ϒθλ to ϒθλθ and ϒrλ to ϒrλr; multiply by
eipϒθλθeiqϒrλr ; integrate both λθ and λr over one full period.
The result is

− i
X∞

k0n0¼−∞

ðϒa
s þ k0ϒθ þ n0ϒrÞSa

k0n0δk0;pδn0;q

¼
X∞

k;k0;n;n0¼−∞

Pkn · Sa
k0n0δðkþk0Þ;pδðnþn0Þ;q: ð4:49Þ

Performing the sums over k0 and n0, this simplifies to

−iðϒa
s þ pϒθ þ qϒrÞSa

pq ¼
X∞

k;n¼−∞
Pkn · Saðp−kÞðq−nÞ:

ð4:50Þ

As in the previous analysis, truncate these sums at�kmax
and �nmax, then expand the equation and rearrange. If
written out directly, the rather cumbersome result would be
difficult to analyze. We again clean things up substantially

FIG. 2. Spin precession frequency ϒs for circular inclined
orbits of radius r ¼ 5M as a function of θinc. The maximum
allowed inclination at this radius is θinc ≃ 59.9° for a ¼ 0.5M,
and θinc ≃ 82.6° for a ¼ 0.9M; no stable orbits exist at this radius
for a ¼ 0.1M. The variation of ϒs with inclination is stronger at
this radius than it was at r ¼ 10M. This is not surprising, since
this is a stronger field region of the spacetime, and the deviations
from spherical symmetry are be much larger here. Aside from the
stronger variation and the cutoffs associated with the lack of
stable orbits at large θinc, the trends we see are qualitatively
similar to those seen in Fig. 1.
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by nesting matrices, though we will need to take things one
layer “deeper” since we have a second dynamical frequency
in our problem. Let us first define

Sa
k ¼

0
BBBBBBBBBBBBBBBBBBB@

Sa
k;−nmax

Sa
k;−nmaxþ1

..

.

Sa
k;−1

Sa
k;0

Sa
k;1

..

.

Sa
k;nmax−1

Sa
k;nmax

1
CCCCCCCCCCCCCCCCCCCA

: ð4:51Þ

Next define the matrix Pk whose elements are given by

Pk;gh ¼
�
Pk;g−h g ≠ h;

Pk;0 þ igϒrI g ¼ h:
ð4:52Þ

Recall that I is the 3 × 3 identity matrix.

FIG. 4. Spin precession frequency ϒs for prograde eccentric
equatorial orbitswithp ¼ 5M as a functionof eccentricitye.We see
considerably more variation in the behavior ofϒs here than we did
for progradeorbits atp ¼ 10M (left-handpanel ofFig. 3). The trend
we find supports the idea thatϒs decreases for orbits that comeclose
to the last stable orbit: For prograde orbits atp ¼ 5M eLSO ≃ 0.796
at a ¼ 0.6M, and eLSO ≃ 0.503 at a ¼ 0.5M. (For a ¼ 0.7M,p ¼
5M is outside the separatrix between stable and unstable orbits for
all e, though it is close to the separatrix as e → 1.)

FIG. 3. Spin precession frequency ϒs for eccentric equatorial orbits with p ¼ 10M as a function of eccentricity e. Left-hand panel
shows prograde orbits (Lz > 0), right-hand panel is retrograde (Lz < 0). In the prograde cases, ϒs smoothly and monotically increases
with e, varying only slightly with spin. (Indeed, the curves for a ¼ 0.1M and a ¼ 0.5M lie practically on top of each other.) The
retrograde cases show considerably more variation. We find that ϒs tends to decrease as orbits approach the last stable orbit: For
retrograde orbits at p ¼ 10M, eLSO ≃ 0.4694 at a ¼ 0.9M. Orbits with p ¼ 10M are outside the separatrix for all e at a ¼ 0.5M,
although this value of p is close to the separatrix as e → 1.
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We then define

Sa ¼

0
BBBBBBBBBBBBBBBBBBB@

Sa
−kmax

Sa
−kmaxþ1

..

.

Sa
−1

Sa
0

Sa
1

..

.

Sa
kmax−1

Sa
kmax

1
CCCCCCCCCCCCCCCCCCCA

; ð4:53Þ

and a matrix P whose elements are given by

Pcd ¼
�
Pc−d c ≠ d;

P0 þ idϒθI c ¼ d:
ð4:54Þ

The matrix I is the ð2nmax þ 1Þ × ð2nmax þ 1Þ identity
matrix.
As a concrete example, imagine that we truncate our

sums at kmax ¼ 2, nmax ¼ 3. The vector Sa
k has 2nmax þ

1 ¼ 7 elements, and is given by

Sa
k ¼

0
BBBBBBBBBBBB@

Sa
k;−3

Sa
k;−2

Sa
k;−1

Sa
k;0

Sa
k;1

Sa
k;2

Sa
k;3

1
CCCCCCCCCCCCA

: ð4:55Þ

The matrix Pk has ð2nmax þ 1Þ2 ¼ 49 elements, and is
given by

Pk ¼

0
BBBBBBBBBBBBB@

ðPk;0 − 3iϒrIÞ Pk;−1 Pk;−2 Pk;−3 Pk;−4 Pk;−5 Pk;−6

Pk;1 ðPk;0 − 2iϒrIÞ Pk;−1 Pk;−2 Pk;−3 Pk;−4 Pk;−5

Pk;2 Pk;1 ðPk;0 − iϒrIÞ Pk;−1 Pk;−2 Pk;−3 Pk;−4

Pk;3 Pk;2 Pk;1 Pk;0 Pk;−1 Pk;−2 Pk;−3

Pk;4 Pk;3 Pk;2 Pk;1 ðPk;0 þ iϒrIÞ Pk;−1 Pk;−2

Pk;5 Pk;4 Pk;3 Pk;2 Pk;1 ðPk;0 þ 2iϒrIÞ Pk;−1

Pk;6 Pk;5 Pk;4 Pk;3 Pk;2 Pk;1 ðPk;0 þ 3iϒrIÞ

1
CCCCCCCCCCCCCA

:

ð4:56Þ

Next, the vector Sa has 2kmax þ 1 ¼ 5 elements:

Sa ¼

0
BBBBBB@

Sa
−2

Sa
−1

Sa
0

Sa
1

Sa
2

1
CCCCCCA
: ð4:57Þ

The matrix P has ð2kmax þ 1Þ2 ¼ 25 elements:

P ¼

0
BBBBBB@

ðP0 − 2iϒθIÞ P−1 P−2 P−3 P−4

P1 ðP0 − iϒθIÞ P−1 P−2 P−3

P2 P1 P0 P−1 P−2

P3 P2 P1 ðP0 þ iϒθIÞ P−1

P4 P3 P2 P1 ðP0 þ 2iϒθIÞ

1
CCCCCCA
: ð4:58Þ
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Finally, to solve for the precessional motion of our
spinning body, we must find the eigenvalues and eigen-
vectors of the matrix equation

P · Sa ¼ −iϒa
sSa: ð4:59Þ

Doing so, we now find an even greater abundance of
eigensolutions: Eq. (4.59) yields 3 × ð2kmax þ 1Þ ×
ð2nmax þ 1Þ eigenvalues and eigenvectors. This originates
from essentially the same relabeling ambiguity that was
responsible for the extra eigensolutions we found for
Eq. (4.39), but with an additional order of “extraness”
arising from the additional frequency associated with the
underlying geodesic. Starting with Eq. (4.47), we can shift
the sum over k0 by Δk0 and the sum over n0 by Δn0,
provided we shift the eigenvalue by

ϒa
s → ϒa

s þ Δk0ϒθ þ Δn0ϒr; ð4:60Þ

and correspondingly shift the components of the
eigenvectors.
Bearing this in mind, we find that the eigensolutions

can be organized into three groups. As we discussed in
Sec. IV B, the relabeling ambiguity means that the multiple
solutions are in principle equivalent to one another,

provided that the eigenvector indices are properly shifted.
In practice, we find the most accurate solution corresponds
to the eigenvector set ϒ1

s ¼ −ϒ−1
s ≡ϒs, ϒ0 ¼ 0. From the

associated eigenvectors ðS−1;S0;S1Þ, we extract the
Fourier components Skn, and finally assemble the solution
for spin precession along a generic orbit:

S ¼
X
k;n

ðc0S0
kn þ c−1S−1

kneiϒsλ þ c0S0
kne−iϒsλÞ

× e−iðkϒθþnϒrÞλ: ð4:61Þ

These sums run from −kmax to kmax, and from −nmax
to nmax.
Figure 5 shows an example of how ϒs varies with e and

θinc for a sample of generic orbits. We consider orbits with
p ¼ 10M about a black hole with spin a ¼ 0.9M. We have
fixed kmax ¼ 5 and nmax ¼ 5. The restriction on k means
that we can only examine orbits with θinc ≲ 60° and
θinc ≳ 120°. Although no issue of principle prevents us
from increasing kmax and examining more highly inclined
orbits, we hold to kmax ¼ 5 in order to keep the precession
matrix small and our analyses simple for this initial
exploration.
The trends we see in Fig. 5 combine the trends we see

for circular inclined and equatorial eccentric orbits. In

FIG. 5. Example of the spin precession frequencyϒs for generic orbits. All examples are for orbits of a black hole with a ¼ 0.9M, and
have p ¼ 10M. We plot ϒs versus eccentricity at specified inclinations; left-hand panel shows prograde orbits (θinc < 90°), right shows
retrograde (θinc > 90°). We fixed kmax ¼ 5 for this initial analysis. With this choice of kmax, we find empirically that we can accurately
computeϒs for θinc ≲ 60° and θinc ≳ 120°. The behavior we see combines trends we see in both the equatorial eccentric and the inclined
circular cases. For the prograde orbits, we see thatϒs decreases with θinc at fixed e (similar to what we see in Fig. 1), but increases with e
at fixed θinc (similar to what we see in the left-hand panel of Fig. 3). Interestingly, for prograde orbits ϒs varies much less with θinc as e
becomes large. For the retrograde cases, we see the strong influence of proximity to the last stable orbit (LSO), much as we saw in the
right-hand panel of Fig. 3 and in Fig. 4.
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particular, we see that ϒs tends to increase with e as other
parameters are held fixed; it tends to decrease with θinc with
all other parameters fixed; and tends to decrease sharply as
the LSO is approached. This last point is particularly visible
in the right-hand panel of Fig. 5, which shows data for
retrograde orbits (θinc > 90°). Each trend line we plot is
terminated near10 the LSO.We seeϒs sharply decreasing in
all of the cases we show here as we move to large e and
approach the LSO.
One new feature of the general case is apparent in the

left-hand panel of Fig. 5, which shows data for prograde
orbits (θinc < 90°): ϒs varies much more weakly with θinc
as e → 1. For e near 1, much of the orbit is spent at
large radius, where the spacetime is nearly spherical, and
ϒs does not depend on θinc in the spherically symmetric
limit. This behavior suggests that it may be useful to
examine the limit e → 1 (for which ÊG ¼ 1). One might
find a simple solution forϒs in this case, much as we found
ϒs ¼

ffiffiffiffiffiffiffiffi
pM

p
for circular and equatorial orbits. If such a

solution exists, it may be a useful constraint for computing
ϒs more generally.

V. THE SPIN-CURVATURE FORCE
IN THE FREQUENCY DOMAIN

We now move to a discussion of the spin curvature force.
We begin with some notation: we denote by fα forces
defined with respect a trajectory’s proper time τ. The force
corresponding to the spin-curvature interaction is given by

fαS ¼ −
1

2
Rα

νλσuνGS
λσ: ð5:1Þ

This is just a rewriting of Eq. (3.22).
Since we find it very useful to use Mino time λ as our

independent parameter, it is very useful to also define a
force defined with respect to λ. Let us put

Fα ≡
�
dτ
dλ

�
fα ¼ Σfα: ð5:2Þ

Combining Eqs. (5.1) and (5.2), we have

Fα
S ¼ −

1

2
Rα

νλσUν
GS

λσ; ð5:3Þ

where Uα
G ≡ dxα=dλ ¼ ΣuαG. Using Eq. (3.25), which

relates the spin tensor Sαβ to the spin vector Sα, plus the rule

St ¼ −
uGj
uGt

Sj ¼ −
UG

j

UG
t
Sj; ð5:4Þ

which follows from the constraint uGα Sα ¼ 0 and from
Eq. (3.25), Eq. (5.3) can be written

Fα
S ¼ Cα

jSj: ð5:5Þ

The components of the 4 × 3 curvature coupling matrix C
are given by

Cα
j ¼ −

1

2Σ
Rα

νλσϵ
λσβγpγjUG

βU
ν
G; ð5:6Þ

with

pγj ¼ gγj − gγt
UG

j

UG
t
: ð5:7Þ

We now introduce the Fourier expansion. Each matrix
element Cα

j can be expanded using Eqs. (2.29) and (2.30).
We further know that the spin vector can be written as
(4.61). Putting all of this together, the force components
can be written

Fα
S ¼

X1
j¼−1

X∞
k;n¼−∞

ðFα
SÞjkne−ijϒsλe−iðkϒθþnϒrÞλ: ð5:8Þ

For presenting our results, it is useful to project Fα
S onto the

Killing vectors and tensors: we define

dEG

dλ
≡ −Fα

Sξ
t
α ¼ −FS

t ; ð5:9Þ

dLG
z

dλ
≡ Fα

Sξ
ϕ
α ¼ FS

ϕ; ð5:10Þ

dKG

dλ
≡ 2KαβuαGF

β
S: ð5:11Þ

As the small body moves along its orbit, its geodesic
energy, axial angular momentum, and Carter constant will
each vary according to Eqs. (5.9)–(5.11) due to the spin-
curvature force.
These quantities can likewise be Fourier expanded: for

C ∈ ðEG; LG
z ; KGÞ, we have

dC
dλ

¼
X1
j¼−1

X∞
k;n¼−∞

�
dC
dλ

�
jkn

e−ijϒsλe−iðkϒθþnϒrÞ: ð5:12Þ

With one exception, we use the expansion (5.12) of the
components (5.9)–(5.11) in our detailed discussion of the
spin force components that we study in Secs. V B and V C.
The exception is for the radial component of the spin force,

10For p ¼ 10M and a ¼ 0.9M, we have eLSO ¼ 0.469 at
θinc ¼ 180°; eLSO ¼ 0.534 at θinc ¼ 162.8°; eLSO ¼ 0.654 at
θinc ¼ 151.4°; and eLSO ¼ 0.850 at θinc ¼ 139.9°. Stable orbits
exist all the way to e ¼ 1 at θinc ¼ 128.4°, the final data set
included in this plot.
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Fr
S. It is not difficult to see that Fr

S completely11 decouples
from Eqs. (5.9)–(5.11). Since it nonetheless includes
important information, we examine it along with the
components dEG=dλ, dLG

z =dλ, and dKG=dλ.
Before beginning our analysis, it is useful to examine

how the quantities we will study scale with the small body’s
mass μ and the black hole’s mass M. Begin with the spin
components themselves. As already discussed, the spin
magnitude S≡ sμ2, with s ≤ 1 a dimensionless parameter.
We also know that

S2 ¼ gαβSαSβ: ð5:13Þ

Consider now a point at some coordinate r ¼ AM (where A
is some positive number). Noting how the different metric
components scale with black hole mass M at this coor-
dinate, we infer that

Sr ∼ μ2;

Sθ;ϕ ∼ μ2=M: ð5:14Þ

Next examine the scaling of the various quantities which
enter into the two forms of the spin-curvature force,
Eqs. (5.1) and (5.3). From the behavior of the Riemann
tensor, the components of the 4-velocity, the spin tensor,
and the factor dτ=dλ, we see that

ft;rS ∼
sμ2

M2
; fθ;ϕS ∼

sμ2

M3
; ð5:15Þ

Ft;r
S ∼ sμ2; Fθ;ϕ

S ∼
sμ2

M
: ð5:16Þ

Projecting onto the Killing vectors and Killing tensor to
assemble the rates of change of geodesic energy, angular
momentum, and Carter constant associated with the spin
force, we find

dEG

dλ
∼ sμ2;

dLG
z

dλ
∼ sμ2M;

dKG

dλ
∼ sμ3M2: ð5:17Þ

In the figures that follow, we divide all of the quantities we
plot by these scaling rules, so that one can easily assess the
impact of our analysis for different masses and different
small body spins.

A. Initial conditions for the spin vector

Our first step is to select initial conditions for the small
body’s spin vector. We begin by picking initial spatial
components as measured in an orthonormal frame, and then
convert the components to a Boyer-Lindquist coordinate
frame. We emphasize that the orthonormal frame compo-
nents are merely a convenient tool for visualizing the initial
spin vector. An ensemble of spins that have the same
magnitude S but differing orientations will have orthonor-
mal frame components of similar magnitudes. By contrast,
in the Boyer-Lindquist coordinate frame, the components’
magnitudes will vary strongly as a function of the orbit’s
radius r and angle θ.
Let S|̂ be an orthonormal frame component, and let Sj be

a coordinate frame component. Then,

Sr̂ ¼ ffiffiffiffiffiffi
grr

p
Sr; Sθ̂ ¼ ffiffiffiffiffiffi

gθθ
p

Sθ; Sϕ̂ ¼ ffiffiffiffiffiffiffi
gϕϕ

p
Sϕ: ð5:18Þ

We must next fix the timelike spin component. To do so,
we enforce SαuGα ¼ 0, and find

St ¼ uGi S
i

ÊG : ð5:19Þ

We used uGt ¼ −ÊG. Finally, we have the rule that S≡ffiffiffiffiffiffiffiffiffiffi
SαSα

p ¼ constant along the small body’s worldline.
With all this in mind, we use the following algorithm to

set initial conditions on the spin vector:
(i) Select initial components in the orthonormal frame.
(ii) Convert to Boyer-Lindquist coordinate frame com-

ponents using Eq. (5.18).
(iii) Compute the initial St using Eq. (5.19).
(iv) Increase or decrease all components by whatever

factor is needed that so that S is some pre-
scribed value.

In the results we discuss below, we set S=μ2 ¼ 1, and
choose our initial components so that Sr̂ ¼ Sθ̂ ¼ Sϕ̂. Orbits
that are eccentric begin at peripasis (ψ ¼ 0); orbits that are
inclined begin at θ ¼ θmin (χ ¼ 0).

B. Results

Here we show results for three representative cases. All
are for orbits about a black hole with spin parameter
a ¼ 0.9M, but we consider different orbit geometries in
order to explore how precession and the spin-curvature
force behave in these different cases.

(i) Equatorial eccentric: We examine an orbit with
p ¼ 5M, e ¼ 0.7, θinc ¼ 0°. This orbit is charac-
terized by a radial frequency ϒr ¼ 1.7842M, and a
precession frequency ϒs ¼ 2.2737M.

(ii) Inclined circular: We examine an orbit with
p ¼ 5M, e ¼ 0, θinc ¼ 60°. This orbit is character-
ized by a polar frequency ϒθ ¼ 2.9230M, and a
precession frequency ϒs ¼ 2.1833M.

11There are two ways to write the tensor Kαβ. In one way,
dKG=dλ is independent of Fr

S, but involves the other three
components; the other way, it is independent of Fθ

S and involves
the other three. In either case, one of the force components
decouples from the projection of Fα

S onto the Kerr metric’s
Killing quantities.
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(iii) Generic: We examine an orbit with p ¼ 8M,
e ¼ 0.5, θinc ¼ 30°. This orbit is characterized
by a radial frequency ϒr ¼ 2.4304M, a polar fre-
quency ϒθ ¼ 3.2367M, and a precession frequency
ϒs ¼ 2.8429M.

To present our results, we compare frequency-domain
expansions for the evolution of the spin vectors [computed
using Eq. (4.45)] and the spin-curvature force [computed
with Eq. (5.12)] to time-domain solutions computed by
directly integrating Eq. (4.1), and combining with Eq. (5.3).
The time-domain solutions were found using the
Mathematica function NDSOLVE, which adaptively choo-
ses integration methods to optimize accuracy. As we will
discuss below and in Sec. V C, our time- and frequency-
domain solutions agree with one another to within 10−6 or
10−7 over many hundred of orbital periods, an indication
that the solutions are quite accurate. It is worth noting that
in the frequency-domain approach, most of the computa-
tional effort is spent solving for the frequencies, the
precession eigenvectors, and the Fourier-modes of the
force components. Although we have not yet done a careful
study of computational cost, our present studies indicate
that the frequency-domain expansion is likely to be useful

for large-scale studies of spin-enhanced binary motion,
especially if it is practical to precompute and store such
quantities in order for them to be read into a code and used
as needed.

1. Equatorial orbits

Equatorial orbits have two particularly nice properties.
First, the spin component Sθ̂ ¼ rSθ is constant along the
background geodesic. To see this, examine the θ compo-
nent of the precession equation (4.4):

dSθ

dλ
¼ Pθ

jSj ¼ −
Ur

G

r
Sθ: ð5:20Þ

We used the equatorial condition (θ ¼ π=2, uθ ¼ 0) to
simplify the general expression for Pθ

j. Use Ur
G ¼ dr=dλ

and rearrange:

Sθ
dr
dλ

þ r
dSθ

dλ
¼ 0; ð5:21Þ

or

FIG. 6. Example of spin precession and spin-curvature force for an eccentric, equatorial orbit (a ¼ 0.9M, p ¼ 5M, e ¼ 0.7,
θinc ¼ 0°). In the left-hand panel, the solid (red) curves show the components of SðλÞ reconstructed from the frequency-domain
expansion (4.45); on the right, the solid (red) curves show the spin-curvature force components dEG=dλ and dLG

z =dλ reconstructed from
the frequency-domain expansion (5.12). (We do not include the components Sθ or dKG=dλ; they evolve trivially in this case, as
discussed in the main text.) The lowest frequency component is a beat between the radial frequency ϒr ¼ 1.7842M and the precession
frequencyϒs ¼ 2.2737M. The range in λ shown is enough for features in the corresponding beat period, 2πM=ðϒs −ϒrÞ≃ 12.84, to be
seen. The dots (green) show the same data, but computed by direct time-domain integration of the equation of spin precession (4.1) and
direct construction in the time-domain of the spin-curvature force (5.3). The agreement between the time- and frequency-domain
solutions is outstanding. This is typical for equatorial orbits provided the frequency-domain expansion is truncated at a sufficiently large
value of n. We used nmax ¼ 10 here. (Note that S≡ ffiffiffiffiffiffiffiffiffiffi

SαSα
p

is constant, although this is not apparent from the data shown here.)
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dðrSθÞ
dλ

¼ dSθ̂

dλ
¼ 0; ð5:22Þ

so Sθ̂ ¼ constant.
The second useful property of these orbits is that

KG ¼ constant, at least at leading order in S. We initially
saw this empirically, finding dKG=dλ ¼ 0 in our numerics
for all equatorial configurations. We then realized it is
simple to prove this analytically, which we do in
Appendix A.
The constancy of Sθ̂ and KG means that only the

components Sr, Sϕ, dEG=dλ, and dLG
z =dλ are interesting

for equatorial orbits. Figure 6 shows the behavior of the
spin components Sr and Sϕ, as well as the force compo-
nents dEG=dλ and dLG

z =dλ, for the equatorial eccentric
case we examine. Results for other equatorial cases are
qualitatively similar. Notice that the frequency-domain
solutions (solid lines) and time-domain solutions (dots)
agree quite well. Detailed analysis shows that the two
solutions differ by at most 10−7 out to Mλ ¼ 500; see also
discussion in Sec. V C. This level of agreement is typical
for the equatorial eccentric cases we have examined,
provided we include enough terms in the frequency-domain
expansion. We go to n ¼ 10 in the cases shown in Fig. 6.
Notice that the harmonic content of the solution is fairly

complicated, especially for Sϕ. One noteworthy feature is a

beat between the radial frequency and the precession
frequency, with a period Λbeat ¼ 2π=ðϒs −ϒrÞ≃
12.85M−1. We show enough data to see about two full
cycles of this beat.

2. Circular and generic orbits

No simplification allows us to disregard components of
the spin vector or the spin-curvature force for circular or
generic orbits. Figure 7 shows the behavior of the three spin
components Sr;θ;ϕðλÞ and the three force components
dEG=dλ, dLG

z =dλ, and dKG=dλ for the inclined circular
case. As in the equatorial case, we see excellent agreement
between the frequency- and time-domain data in the plot.
We find similar levels of agreement for other circular
inclined cases we have examined, provided we include
enough harmonics. For this plot, our frequency domain
solution includes terms out to kmax ¼ 20. Detailed analysis
for this case shows agreement within 10−6 for small λ,
drifting to a disagreement of ∼10−5 atMλ ¼ 500. This drift
is due to errors in ϒs, and can be improved by including
more terms in the Fourier expansion; see Sec. V C for
further discussion of this point. We find that ϒs is
computed more accurately for smaller values of θinc.
As in the equatorial case, our solutions have rather ornate

harmonic structure, with complicated beats between the
polar frequency and the precession frequency. We show
enough data to again capture about two full beat cycles,

FIG. 7. Example of spin precession and spin-curvature force for an inclined, circular orbit (a ¼ 0.9M, p ¼ 5M, e ¼ 0, θinc ¼ 60°). As
in Fig. 6, the solid (red) curves show quantities reconstructed from the frequency-domain expansion. Dots (green) show the same data
computed by direct time-domain integration. We show the spin-vector components in the left-hand panels, and components of the spin-
curvature force on the right. The lowest frequency component is a beat between the polar frequency ϒθ ¼ 2.9230M and the precession
frequency ϒs ¼ 2.1833M; the λ range we show is wide enough that features in the corresponding period, 2πM=ðϒθ −ϒsÞ≃ 8.49, can
be seen. We again find outstanding agreement between the time- and frequency-domain solutions provided that the frequency-domain
expansion is truncated at sufficiently large k. We used kmax ¼ 20 for the results shown here.
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which have period Λbeat ¼ 2π=ðϒθ −ϒsÞ≃ 8.49M−1 in
this case.
Finally, Fig. 8 shows the spin and force components for a

generic orbit. We include terms to kmax ¼ nmax ¼ 10 here.
The time- and frequency-domain solutions differ by about
10−6 for Mλ≲ 50, but the difference drifts to several ×
10−5 for Mλ ¼ 500. This can be improved by including
more terms in the Fourier sums.
Because two orbital frequencies are available to beat

against the precession frequency, the harmonic structure we
find is particularly ornate for generic orbits. The span
we show is sufficient to show beat structure at the
radial-precession beat period [Λbeat−rp ¼ 2π=ðϒs −ϒrÞ≃
15.23M−1] and at the polar-precession beat period
[Λbeat−pp ¼ 2π=ðϒθ −ϒsÞ≃ 15.96M−1].

3. The radial component

As discussed above, we examine the spin-curvature force
component Fr

S separately since it decouples from dEG=dλ,
dLG

z =dλ, and dKG=dλ. Figure 9 shows this component for
the three configurations that were used to produce Figs. 6,
7, and 8. The main new feature that we see here is that this
force component has a nonzero average value: for these
orbits, hFr

Si < 0, indicating that there is an attractive force
between the body and the black hole that it orbits. In

retrospect, this is not surprising: on average, the spin vector
in these three configurations has a component that is
parallel to the black hole’s spin, and it is well known that
the spin-curvature interaction enhances the gravitational
attraction of two bodies in a way that depends on the
relative alignment of their spin and orbital angular
momenta (see, e.g., discussion in Sec. VA6 of
Ref. [89]). To clearly illustrate this, let us examine
Eq. (5.3) in the limit of a circular, equatorial orbit, for
an orbiting body whose spin is oriented normal to the
equatorial plane. For this case, Ur

G ¼ Uθ
G ¼ 0, θ ¼ π=2,

and the only nonzero spin vector component is Sθ. We find

Fr
S ¼ ∓ 3MSθ̂

r3

� ffiffiffiffiffi
M
r

r
∓ a

r

�
Δ

1� 2a
ffiffiffiffiffiffiffiffiffiffiffi
M=r3

p
− 3M=r

;

ð5:23Þ

where the upper sign is for prograde orbits and the lower is
for retrograde. We have written this using the orthonormal
form Sθ̂ ¼ ffiffiffiffiffiffi

gθθ
p

Sθ, which is particularly simple and con-
venient for a circular, equatorial orbit. Recall also that our
Fα is expressed usingMino time λ rather than proper time τ,
and hence this differs by a factor Σ from other analyses of
this quantity. Converting to d=dτ and considering r ≫ M,
Eq. (5.23) agrees with the “spin-orbit” and “spin-spin”

FIG. 8. Example of spin precession and spin-curvature force for a generic orbit (a ¼ 0.9M, p ¼ 8M, e ¼ 0.5, θinc ¼ 30°). As in the
previous two figures, the solid (red) curves show quantities reconstructed from the frequency-domain expansion. Dots (green) show the
same data computed by direct time-domain integration. Left-hand panels are the spin-vector components, right-hand panels are
components of the spin-curvature force. Features in these data are present at beats between the radial (ϒr ¼ 2.4304M), polar
(ϒθ ¼ 3.2367M), and precession (ϒs ¼ 2.8429M) frequencies. The range in λ we show allows features at the radial-precession
[2πM=ðϒs −ϒrÞ≃ 15.23] and polar-precession [2πM=ðϒθ −ϒsÞ≃ 15.96] beat periods to be seen. As in the previous examples, we
find outstanding agreement between the solutions provided that the frequency-domain expansion is truncated at sufficiently large values
of k and n. We used kmax ¼ nmax ¼ 5 for the results shown here.
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forces given in Eqs. (5.69b) and (5.69c) of Ref. [89], which
in turn follows the discussion and derivation given
in Ref. [90].
Because Fr

S has an average nonzero value, it will play a
role similar to the conservative self-force, causing a shift to
quantities like orbital frequencies, and leading to a secu-
larly growing term in the orbital phase. Especially for orbits
at small radius, this could have important implications for
gravitational-wave source modeling.

C. Convergence

The Fourier expansions we have introduced, Eq. (4.45)
for the evolution of the spin vectors and Eq. (5.12) for the
spin-curvature force, are formally correct only when an
infinite number of terms are kept in the expansion. In this
section, we examine how well these quantities converge
when the sums are truncated at a finite number of terms.
Figure 10 shows a typical example of how frequency-

domain expansions converge as more terms are kept in the
Fourier expansion. We show the convergence of the spin
vector component Sr as a function of Mino-time λ, for an
equatorial eccentric orbit with parameters a ¼ 0.9M,
p ¼ 5M, e ¼ 0.7 (the orbit that was used to generate data
for Fig. 6). We examine ΔSr as a function of λ, where

ΔSr ≡ SrTD − SrFD;nmax
; ð5:24Þ

with SrTD the result of direct time-domain integration
of Eq. (4.1) along the geodesic, and SrFD;nmax

from the
frequency-domain expansion (4.45), truncating at
n ¼ nmax.
To assess convergence, we examine this difference for

nmax ¼ 5, 7, and 10. As expected, the difference decreases
as nmax is increased, but the manner in which it decreases is
quite interesting. We generally see that, for small nmax, ΔSr
monotonically increases with λ, meaning that the two
solutions drift away from each other. This drift is due to
errors in our determination of the precession frequency,ϒs.
Recall that ϒs is the eigenvalue of the precession equa-
tion (4.3). Determining this eigenvalue accurately requires
us to describe the underlying geodesic motion accurately;

FIG. 10. Comparison of quantities computed in the frequency
domain with quantities computed in the time domain. We show
the difference between SrðλÞ computed in the time domain using
Eq. (4.1) and SrðλÞ computed in the frequency domain using
Eq. (4.45). We truncate the Fourier expansion at three different
values of nmax in order to explore how well this expansion
converges. The data shown here is for the same orbit we used in
Fig. 6, i.e. an equatorial eccentric orbit with a ¼ 0.9M, p ¼ 5M,
e ¼ 0.7. A major source of error is due to inaccuracies in our
determination of the precession frequency ϒs This frequency is
an eigenvalue of Eq. (4.3); we cannot solve the eigensystem
accurately with insufficient Fourier modes. This accounts for the
drift with time that we see in the top two panels: when nmax ¼ 5,
the two solutions drift by several × 10−5 over an integration time
Mλ ¼ 500. When nmax ¼ 7, there is still a drift, but it is reduced
by two orders of magnitude. When nmax ¼ 10, the drift has been
eliminated, and we find a difference jΔSr=μ2j ≲ 10−7 at all times.
The convergence of other spin components and the force
components behaves in this way for all orbits we have examined,
although the detailed values of nmax and kmax needed to converge
depends on orbit parameters.

FIG. 9. The force component Fr
S for the configuration used to

produce Fig. 6 (top panel), Fig. 7 (middle panel), and Fig. 8
(bottom panel). In all three cases, this force component has an
average value hFr

Si < 0, corresponding to an attractive force
between the orbiting body and the black hole, consistent with a
weak-field analysis of orbits with aligned spins. This component
of the spin-curvature force will play a role in the kinematics of
these orbits akin to that played by the conservative self-force.
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in the frequency domain, this description becomes pro-
gressively more accurate as more terms are kept in our
Fourier expansion. When we use nmax ¼ 5, our solution
drifts by jΔSrj≃ several × 10−5 when we integrate to
Mλ ¼ 500. Increasing this to nmax ¼ 7, the drift is reduced
by about two orders of magnitude. Increasing still further to
nmax ¼ 10 removes the drift altogether, and the two
solutions differ by roughly 10−7 at all times.
The convergence behavior shown for SrðλÞ is typical: we

see quite similar behavior for the other spin components
and for all the components of the spin-curvature force. This
is true for all the orbits we have examined, although the
values of nmax and kmax needed to achieve convergence
depends on an orbit’s detailed parameters. We find it is not
difficult to achieve a convergent frequency-domain repre-
sentation of all physically important quantities relating to
spin-curvature coupling for astrophysically interesting
orbits.

VI. ARE SPIN-PRECESSION RESONANCES
INTERESTING?

Precession introduces a new frequency into the kinemat-
ics of an orbiting body. This suggests that interesting effects
may arise when the spin frequency ϒs is commensurate
with the orbital frequencies ϒθ;r, i.e. for orbits such that k
and n can be found satisfying

jϒs þ kϒθ þ nϒr ¼ 0; ð6:1Þ

with j ∈ ð−1; 0; 1Þ. At such spin-orbit resonances, the
Fourier mode corresponding to the harmonics which satisfy
(6.1) will be constant with time, suggesting that the
system’s evolution could differ substantially from its
behavior away from a resonance. Such behavior has been
seen in studies of the dissipative self-force [72,73] and of
gravitational-wave recoil [91] when the Kerr orbital
frequencies Ωr and Ωθ are commensurate.
Although important for the self-force problem and for

radiation recoil, one can quickly convince oneself that
spin-curvature coupling cannot produce dynamically
important resonances, at least at linear order in S.
Consider Eq. (5.12) for an orbit that has frequency
harmonics which satisfy Eq. (6.1). For these modes, we
would have dC=dλ ¼ constant: these quantities would
grow linearly in λ without bound. Such growth is incon-
sistent with the existence of the conserved integrals ES, LS

z ,
and KS, defined by Eqs. (3.14), (3.15), and (3.28). The
contributions to ES, LS

z , and KS proportional to the spin
tensor are oscillatory, so unbounded growth of the “geo-
desic” terms would, before long, violate their constant
nature. To protect the system from these resonances, it must
be the case that ðdC=dλÞjkn ¼ 0 for modes and frequencies
which satisfy Eq. (6.1).

Figure 11 shows an example of ðdC=dλÞjkn vanishing on
resonance. We examine a sequence of orbits, each with
a ¼ 0.9M, e ¼ 0.2, and θinc ¼ 20°, and varying the semi-
latus rectum p. The sequence we examine includes one
value of p such that ϒs −ϒθ þϒr ¼ 0. We indeed find
that ðdC=dλÞj¼1;k¼−1;n¼1 is zero on resonance, though it is
nonzero on nearby orbits. (We only show C ¼ EG in this
figure, although our data shows that this behavior also
holds for LG

z and KG.)
Although there are no interesting effects due to these

resonances at linear order, there might be interesting effects
at higher order. We speculate that the behavior near
resonance of nonlinear terms (which we have neglected)
may play a role in pushing the dynamical evolution of
spinning bodies from integrable to chaotic motion. The
KAM theorem [92,93] teaches us that an integrable system
will remain integrable under the influence of a weak,
nonintegrable perturbing force as long as that force is
not resonant with the integrable motion. This suggests that
circumstances may change when the perturbing force is in
fact in resonance. If this speculation is correct, an analysis
of spin-curvature forces near these resonances may help us

FIG. 11. Example of the vanishing of spin-curvature coupling
on resonance. We examine a set of orbits about a black hole with
a ¼ 0.9M; each orbit has eccentricity e ¼ 0.3 and inclination
θinc ¼ 20°. We vary the semi-latus rectum: p=M ∈ ð2.78461;
2.83461; 2.88461; 2.98461Þ. The case p=M ¼ 2.83461 is reso-
nant: ϒs −ϒθ þϒr ¼ 0 for that orbit. We find that the Fourier
mode ðdEG=dλÞj¼1;k¼−1;n¼1 vanishes in the resonant case; the
rates of change of LG

z and KG likewise vanish on resonance for
these mode indices. This behavior protects the conserved quan-
tities ES, LS

z , and KS, and guarantees that spin-orbit resonances
are not very interesting at least to linear order in the equations of
motion and precession.
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to understand the onset of chaos that has been seen in
previous analyses of spin-enhanced orbital motion [66–68].

VII. SUMMARY AND FUTURE WORK

We have shown how to compute the coupling
between a small body’s spin and the curvature of the
black hole spacetime through which it moves in the
frequency domain. The spin vector precesses along its
orbit, which introduces a new frequency that must be
accounted for in a frequency-domain description of
quantities associated with this motion. Using the fact
that Kerr geodesic motion is itself characterized by three
frequencies, we have shown that all the quantities
relevant to spin-curvature coupling can be computed
very accurately.
Certain aspects of the large mass-ratio limit have

proven to be useful and surprisingly accurate tools for
helping to understand the two-body problem more gen-
erally. In particular, results that have come from the self-
force program have been shown to agree very well with
results computed using numerical relativity and have
been used to refine effective one-body binary models
[2–4]. We speculate that the results we present here may
similarly find use by providing a limit that can be
modeled precisely for understanding spin precessions
and the influence of spin-curvature coupling in the
evolution of binary systems. A useful starting point
may be to check whether the solutions we find agree
with the elegant results found by Gerosa et al. [35]. If so,
our methods may prove to be a useful starting point for
examining precession and spin-curvature coupling for
more generic binaries than have been considered so far.
We plan to extend this work by using an osculating

geodesic integrator [64,65] to develop spin-enhanced
orbits. An osculating geodesic integrator models a non-
geodesic worldline as a sequence of geodesic orbits. The
spin-curvature force (5.1) then acts to move the small body
from geodesic to geodesic in this sequence. As the orbit
evolves, the geodesic energy EG will oscillate, but will do
so in such a way that the corresponding spin-enhanced
energy ES remains fixed; similar statements hold for LG;S

z

andKG;S. The orbits which we find in this procedure will be
very useful tools for allowing us to understand the
importance of the spin on observable aspects of small
body orbits very generally, allowing us to go beyond the
special spin-orbit configurations that have been analyzed in
detail in earlier work.
Of particular interest will be to compare the spin-

curvature force to other nongeodesic effects that have an
impact on a binary’s evolution, such as the self-force.
We can get a very rough idea of how such forces
compare by simply examining typical spin-curvature
force components that we have computed (e.g., our
Figs. 6–9), along with typical self-force components

found by others (e.g., those shown in Figs. 6, 7, and 8
of Ref. [94]). It should be emphasized that such a
comparison is extremely crude. Even after correcting for
the factor of dτ=dλ ¼ Σ between the two force defi-
nitions, and noting that we examine the forces on rather
different orbits, we must be concerned about gauge.
Best of all would be to develop a gauge-invariant
measure of the influence these forces have on binary
orbits, as was done for simpler spin-orbit configurations
in Refs. [22–24]. At present, the strongest defensible
statement we can make is that the spin-curvature
components appear large enough when crudely com-
pared to self-force components that it is very plausible
that the small body’s spin will leave an observationally
important imprint on a binary’s evolution, especially
when we consider motion through the strong field of the
binary’s larger black hole.
Once spin-enhanced orbits are fully in hand, we can

consider radiation from such configurations. As a first pass,
it may not be too difficult to couple these orbits to some
kind of “kludge” model for the evolution of orbit constants
and wave emission. For example, a useful first approxi-
mation might be to develop a spin-enhanced worldline by
combining the spin-curvature force with a self-force,
allowing us to compute an inspiral with both spin-
precession and spin-coupling effects. We could then
use that worldline as the source of a time-domain black
hole perturbation theory solver (as has been done in, e.g.,
[95]), or even using a cruder approach based on some
approximate set of radiative multipoles (as in e.g.
Refs. [96,97]). Such a tool would likely be a useful
first cut at building spin-enhanced waveforms to quantify
the role that the small body’s spin has the system’s
waves. The frequency-domain description may allow us
to go beyond this and perhaps to extend black hole
perturbation theory codes to include the influence of spin,
much as is done in Ref. [71] but for general orbits and
general spin orientations.
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APPENDIX: KG IS CONSTANT FOR AN
EQUATORIAL ORBIT

While developing the results we show in Sec. V B, we
discovered empirically that for equatorial orbits (θ ¼ π=2,
uθG ¼ 0), the Carter constant KG remained constant as the
small body moved along its osculating geodesic. Here we
examine dKG=dτ for an equatorial orbit analytically. Begin
with the general form for the rate of change ofKG under the
influence of a force fν:

dKG

dτ
¼ 2Kμνp

μ
Gf

ν: ðA1Þ

For the force, we use Eq. (5.1):

fμ ¼ fμS ¼ −
1

2
Rμ

αβγuαGS
βγ: ðA2Þ

Using Eq. (3.25) as well as θ ¼ π=2 and uθG ¼ 0, we
expand this expression and find

dKG

dτ
¼ 2M

r
SθurG
Δ

½ðr2 þ a2ÞuϕG − autG�
× ½ðr2 þ a2ÞÊG − aL̂G

z þ ΔðauϕG − utGÞ�: ðA3Þ

Plugging in the equatorial values of utG and uϕG
[Eqs. (2.20) and (2.21) with θ ¼ π=2] yields
dKG=dτ ¼ 0.
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