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Versatile and on-demand biologics co-production
in yeast
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Current limitations to on-demand drug manufacturing can be addressed by technologies that

streamline manufacturing processes. Combining the production of two or more drugs into a

single batch could not only be useful for research, clinical studies, and urgent therapies but

also effective when combination therapies are needed or where resources are scarce. Here

we propose strategies to concurrently produce multiple biologics from yeast in single batches

by multiplexing strain development, cell culture, separation, and purification. We demon-

strate proof-of-concept for three biologics co-production strategies: (i) inducible expression

of multiple biologics and control over the ratio between biologic drugs produced together; (ii)

consolidated bioprocessing; and (iii) co-expression and co-purification of a mixture of two

monoclonal antibodies. We then use these basic strategies to produce drug mixtures as well

as to separate drugs. These strategies offer a diverse array of options for on-demand, flexible,

low-cost, and decentralized biomanufacturing applications without the need for specialized

equipment.
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The shortage of essential drugs is of global concern1,2,
especially in developing countries. In underdeveloped
countries, governments may face budget limitations that

prevent infrastructure improvement. Even in developed countries,
emergency situations can compromise the supply of important
medicines, such as the insulin shortage crisis in New Orleans after
Hurricane Katrina3, or raise the risk of infectious disease out-
breaks that need to be rapidly addressed. On-site, small-scale
drug manufacturing can provide drugs on demand for isolated or
inaccessible regions4–6. However, it is difficult to precisely predict
the types and amounts of drugs needed in a certain region and
time, so a large number of strains have to be cultivated and
multiple facilities built in order to generate a large supply of
needed drugs. High capital investment and maintenance costs
and low utilization rates make such production difficult in regions
with limited resources. Therefore, it would be of great interest to
have a versatile platform to manufacture a variety of different
drugs on demand and on site with low capital investment.

Biologics manufacturing involves four phases: strain/cell line
construction, upstream processing (fermentation), downstream
purification, and drug formulation. Usually, each biologic is
produced in one strain within a manufacturing facility. Although
economically efficient for large-scale production in biopharma-
ceutical plants, this method is inefficient and time-consuming for
small-scale production, which would be useful for single-dose
production, laboratory-scale research, and clinical studies7,8, in
addition to the conditions mentioned above.

We envision that performing multiple bioprocesses simulta-
neously can overcome challenges in portable and/or small-scale
biologics manufacturing. Here we sought to co-produce multiple
drugs in a single batch via a versatile platform (Fig. 1) that: (i)
generates several drugs on demand rather than one by one; (ii)
enables control over the ratio of co-produced drugs and reduces

the overall manufacturing time; and (iii) separates and purifies
drugs in a two-stage downstream process to efficiently recover
products and eliminate cross-contamination. This co-production
strategy can also be used to manufacture combination drugs, i.e.,
drugs containing two or more active pharmaceutical ingredients.
Combination drugs can have synergistic effects on a single disease
or confer broad protection9. For example, cocktails consisting of
multiple antiretroviral drugs are widely used against HIV10, and
combination vaccines allow for fewer administrations but broad-
spectrum protection against several pathogens11. Another class of
combination drugs consists of polyclonal antibodies, which are
mixtures of synergistic monoclonal antibodies (mAbs) that
simultaneously interact with multiple epitopes either on the same
target or on distinct targets12–15. For example, ZMapp, an anti-
Ebola virus drug, combines three mAbs16; another example is the
combination of lumiliximab and rituximab, which has shown
enhanced antitumor effects in clinical studies17. Although mAb
mixtures have certain advantages, such as synergistic effects and
broad-spectrum protection18–21, the cost to manufacture them
using conventional strategies is much higher than that of pro-
ducing single mAbs because each mAb needs its own production
strain and manufacturing equipment. Thus strategies for produ-
cing multiple mAbs and other biologics in a single batch as a co-
culture should have advantages.

Chinese hamster ovary (CHO) cells are often used for biologics
manufacturing22. However, because of their slow growth rate,
CHO cells are not amenable to on-site, rapid drug manufacturing.
Pichia pastoris is also used as a heterologous protein expression
host because it: (i) can secrete large amounts of recombinant
proteins using the alpha mating factor secretion signal but
secretes few host proteins; (ii) grows rapidly in inexpensive
media; (iii) has a eukaryotic posttranslational modification sys-
tem; and (iv) is not contaminated with endotoxins or viruses23–25.

Inducible gene expression systems

1. Biologics mixture for two indications

2. HSA-associated formulation

3. Polyclonal antibody production

Simultaneous production
of

multiple biologics

Recombinase-based gene integration

Multiple-biologics strain construction

Biologics co-production and separation

Fig. 1 Integrated synthetic biology platform for versatile biologics production. Single-biologic or multiple-biologics P. pastoris strains are implemented with
small-molecule-inducible gene expression cassettes integrated into the genome via recombinases. These strains produce combination drugs or multiple
biologics concurrently via a consolidated, versatile bioprocessing platform
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Furthermore, glycoengineered P. pastoris strains with humanized
glycosylation pathways are able to produce recombinant proteins
and antibodies with humanized glycosylation profiles26,27. Syn-
thetic biology offers a variety of platforms to regulate gene
expression in various organisms. For instance, Glieder et al.
developed a toolbox of synthetic promoters to systematically
regulate protein expression/secretion in P. pastoris28–30. Recently,
our laboratory developed a recombinase-based gene integration
approach enabling the efficient insertion of large DNA fragments
into the P. pastoris genome and an estrogen-inducible promoter,
in addition to the native methanol-inducible promoter (AOX1
promoter)6. These tools were used to selectively produce either of
two different biologics at a time in a portable microbioreactor
platform.

Here we describe a versatile and consolidated bioprocessing
platform to further streamline on-demand protein drug produc-
tion. To explore the manufacturing of therapeutic protein mix-
tures, we designed three strategies for protein co-expression in
P. pastoris: (i) a single strain with two inducible expression sys-
tems, (ii) a single strain with one inducible and one constitutive
expression system, and (iii) two strains both having the same
inducible expression system. Instead of producing each biologic
separately, each strategy yielded protein mixtures produced as a
single batch. We also describe the separation and purification of
individual therapeutic proteins from the protein mixtures. Finally,
to establish the scalability of our approach, we constructed a third
inducible system and showed orthogonal inducible production of
three different therapeutic proteins. These advanced inducible
gene expression systems and proof-of-concept applications in
protein expression provide new strategies for biologics
production.

Results
Inducible and tunable biologics co-production. To create a
flexible system to produce one or more biologics, we began by
constructing a two-biologics P. pastoris strain (pPP363) that
could be programmed to produce either human growth hormone
(hGH) or interferon (IFN) alone or both proteins at once. hGH, a
22 kDa therapeutic protein used to treat growth hormone defi-
ciency, was placed under the control of an estrogen-inducible
promoter. IFNα-2b, a 19 kDa antiviral protein drug, was placed
under the control of the AOX1 methanol-inducible promoter6.
After 48 h of induction, 58 mg/L hGH was produced in the pre-
sence of estrogen, 61 mg/L of IFNα-2b in the presence of
methanol, and 189 mg/L hGH and 53 mg/L IFNα-2b in the
presence of both estrogen and methanol (Fig. 2a, b). The results
were confirmed by Coomassie blue staining and western blotting
(Fig. 2c).

Interestingly, the titer of estrogen-induced hGH significantly
increased when hGH and IFNα-2b were co-expressed versus the
condition in which hGH was expressed on its own. To explore
this further, we tested whether the use of methanol as a carbon
source could enhance the strength of the estrogen promoter or
increase protein secretion. We designed three estrogen-inducible
protein expression cassettes, one that expressed intracellular
green fluorescent protein (GFP) (pPP255), one that secreted hGH
(pPP364), and one that secreted granulocyte-colony stimulating
factor (G-CSF) (pJC021). We found that estrogen-induced
intracellular GFP expression was similar with or without
methanol, whereas estrogen-induced secretion of hGH and G-
CSF increased in the presence of methanol (Supplementary
Fig. 1). The results demonstrate that methanol enhances the
secretion of certain proteins in P. pastoris.

Having established that we could co-express two biologics in a
single strain of P. pastoris, we then sought to fine-tune the ratio of

the co-expressed proteins with our two inducible systems by
varying inducer concentrations during fermentation. The two-
biologics strain (pPP363) was grown for 48 h and induced with
methanol and 0–10 μM estrogen. The ratio of hGH to IFNα-2b
increased as the concentration of estrogen increased (Fig. 2d). To
establish the generality of this observation, we constructed a
strain expressing human serum albumin (HSA) upon methanol
induction and hGH upon estrogen induction (pJC135) and a
strain expressing hGH upon methanol induction and G-CSF
upon estrogen induction (pJC034). We observed that, as the
concentration of estrogen increased, the strain pJC135 produced
more hGH while maintaining the same amount of HSA (Fig. 2e).
This resulted in an increased ratio of hGH to HSA in the
supernatant. Similar results were seen with estrogen-dependent
protein co-expression with the strain pJC034 (Fig. 2f). In Fig. 2d,
we observed an increase in estrogen-inducible hGH production
between 0.01, 0.1, and 1 µM estrogen. This is consistent with our
characterization of this system in our prior paper, which showed
titrable control of reporter expression up to ~1 µM estrogen6. At
10 µM estrogen, we observed a decrease in hGH production; we
hypothesize that this could be due to competition for resources
between the two payloads at very high expression levels, which is
likely to be dependent on the strain context and the specific
payloads being co-expressed31,32. A similar effect was observed in
Fig. 2f, where estrogen-induced G-CSF production also decreased
at 10 µM estrogen.

It is difficult to maintain the ratio of two co-produced biologics
by simply co-culturing two single-biologic strains because
fluctuations during fermentation can change the growth rates of
the competing strains. Researchers can perform extensive strain
engineering to create microbial consortia that maintain the ratio
of co-cultured strains, but it is time-consuming and laborious to
optimize these systems33,34. In contrast, our two-biologics
strategy enables dynamic control over the ratio of one biologic
to another via the modulation of inducer concentrations without
the need to modify strain growth rates.

Consolidated posttranslational bioprocessing. The formulation
of unstable proteins is difficult, especially for hydrophobic pro-
teins, such as growth factors, IFNs, and cytokines35. To enhance
solubility and reduce drug adsorption on container surfaces,
excipients are used to formulate drugs. One excipient used in the
pharmaceutical industry is HSA, the most abundant protein in
human plasma. HSA, which can also be used as a drug, has a low
risk of immunogenicity and stabilizes proteins by reducing
aggregation, oxidation, and nonspecific adsorption36–38. How-
ever, the addition of another established cell line and manu-
facturing platform to produce HSA can make it costlier to
produce than other small-molecule excipients (e.g., sugars, amino
acids, and surfactants). Therefore, we envisioned that co-
expressing a protein drug (hGH) along with HSA as an exci-
pient in a single engineered strain of P. pastoris could resolve this
problem.

P. pastoris can effectively secrete large amounts of recombinant
HSA and HSA fusion proteins39–41. We constructed a strain
expressing two fusion proteins (pJC172): (i) HSA-hGH, consist-
ing of an alpha-mating factor secretion signal, HSA, a tobacco
etch virus (TEV) protease cleavage site, and hGH; and (ii) Golgi-
TEV, consisting of a Golgi apparatus localization signal (the
membrane-binding domain of alpha-1,2-mannosyltransferase)
and TEV protease26,42. TEV protease recognizes the amino acid
sequence ENLYFQ/X and cleaves between glutamine (Q) and X
(P1’ site amino acid), where X can be any amino acid except
proline (P)43,44. This feature of TEV makes it a widely used
protease to produce intact proteins from fusion proteins45. We
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envisioned that the fusion protein HSA–hGH would be
synthesized and folded in the endoplasmic reticulum and then
would enter the Golgi before being secreted. The Golgi
localization signal should direct the localization of TEV protease
to the inner membrane of the Golgi, where it cleaves the ready-to-
be-secreted HSA–hGH into HSA and intact hGH (Fig. 3a).
Although 2A peptides have been used to secrete multiple proteins
from a single cistron at the translational level46, our approach
provides a new strategy to produce multiple biologics at the
posttranslational level with only a single secretion signal.

We observed that the overexpression of intracellular TEV
protease lysed the cells, so we tuned estrogen-induced TEV
protease expression with estrogen and used the methanol-
inducible promoter to express HSA–hGH (Fig. 3b and Supple-
mentary Fig. 2). Our dose–response experiments revealed that
basal expression of TEV protease was sufficient for effective

cleavage, whereas induction of TEV expression with estrogen at a
higher concentration (0.1 μM) caused cell lysis. This cell lysis
could be due to the overexpression of TEV protease. Thus we
induced HSA–hGH expression with methanol and allowed TEV
protease to be constitutively expressed without estrogen addition.
HSA–hGH was correctly cleaved by basally expressed TEV,
yielding HSA and hGH, as verified by Coomassie blue staining
(Fig. 3b) and western blotting (Fig. 3c). We also observed some
uncleaved fusion protein, which could be explained by previous
studies which showed that the processing efficiency of TEV
protease is 90% when phenylalanine (F) occupies the P1’ site,
since phenylalanine is the N-terminal amino acid of hGH44.
Traditional chromatography, though not used here, could be
applied to remove uncleaved fusion proteins together with host
cell proteins. Our system is thus able to achieve consolidated
bioprocessing of therapeutic proteins at the posttranslational
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Fig. 2 Biologics co-production with individually controllable biologic expression cassettes. E, estrogen induction; M, methanol induction; E+M, estrogen plus
methanol induction. Red text above the gels indicates commercial standards while black text indicates samples obtained under induction with E and/or M.
a Schematic illustrating the inducible production of one or two biologics from the dual-biologics production strain. b Titers of hGH and IFNα-2b in the
supernatants of P. pastoris under different induction conditions. Values represent mean and s.e.m. (n= 3). c One microgram pure hGH or IFNα-2b or 30 μL
supernatant of each sample was loaded in each lane and western blotting was performed with anti-hGH and anti-IFNα-2b antibodies. d The ratio of hGH to
IFNα-2b in supernatants increased as the concentration of estrogen increased. e Schematic representation of the strain expressing HSA and hGH. The
expression of hGH and the ratio of hGH to HSA in supernatants increased as the concentration of estrogen increased. f Schematic representation of the
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level. This strategy could be potentially adapted to regulate other
posttranslational processes, such as glycosylation, by replacing
TEV protease with glycosyltransferases and glycan-processing
enzymes.

Single batch manufacturing of two monoclonal antibodies.
Traditionally, polyclonal antibodies are made by producing each
mAb separately and mixing the purified mAbs to make the final
products. It was previously shown that, if conventional approa-
ches are used, the manufacturing cost for a mixture of two
antibodies is about double that for a single mAb12,13,47. We
sought to co-culture two strains to produce antibody mixtures
within a single batch in order to reduce manufacturing costs. To
demonstrate a relevant proof-of-concept, we chose a mixture of
two therapeutic antibodies, anti-programmed cell death 1 (anti-
PD1) and anti-cytotoxic T-lymphocyte–associated antigen 4
(anti-CTLA4). Both are checkpoint inhibitor antibodies approved
for treating advanced melanoma18,21. The targets of these anti-
bodies, PD1 and CTLA4, respectively, both negatively regulate
T cells, but they are upregulated at different stages of T-cell
activation. CTLA4 is briefly upregulated in the priming phase,
whereas PD1 is consistently expressed in the effector phase of T-
cell activation48,49. The human anti-CTLA4 antibody binds to
CTLA4 on the T-cell surface, blocking CTLA4 from shutting
down T-cell activation in the early stage, whereas the human anti-
PD1 antibody binds to PD1, preventing tumor cells from inhi-
biting T-cell activity (Fig. 4a). We constructed two P. pastoris
strains that each produced one of the mAbs (pJC110 expressing
anti-PD1 antibodies and pJC111 expressing anti-CTLA4 anti-
bodies) and optimized culture conditions (temperature and time)
for antibody production (Fig. 4b). We produced mixtures of these
two antibodies by co-culturing the two strains. The antibodies
were purified using protein G column (Supplementary Fig. 3) and
then verified using sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) (Fig. 4b) and western blotting
(Supplementary Fig. 4).

To test the activity of these antibodies, we assayed cell surface
receptor binding on human primary T cells. Human primary
T cells were activated with phytohaemagglutinin (PHA) to
express the cell surface receptors PD1 and CTLA4. On Day 3
and Day 10 post-induction, we analyzed the expression of the
receptors using commercial anti-PD1 and anti-CTLA4. On Day 3,
almost 99% of the activated T cells were expressing PD1 and 15%
of them were expressing CTLA4, consistent with prior studies
(Fig. 4e)48,49.

We then used cell-binding assays and a competitive assay to
confirm the correct structures and targets of the antibodies
produced in P. pastoris. Purified anti-PD1 antibody alone, anti-
CTLA4 antibody alone, and the mixture of these co-produced two
antibodies made in this study were added to the cells, and cells
were then stained with labeled detection antibodies. Antibodies in
all three samples bound to the activated T cells (Fig. 4e).
Competitive assays with commercial antibodies binding to the
two receptors were also performed to confirm that the two
homemade antibodies produced in P. pastoris did indeed bind to
their respective targets. We first incubated the cells with either
homemade anti-PD1 or the mixture and then incubated the cells
with phycoerythrin (PE)-labeled commercial anti-PD1. The
fluorescence of the cells incubated with homemade anti-PD1
and then incubated with PE-labeled commercial anti-PD1
decreased compared to that of the cells incubated with only
PE-labeled commercial anti-PD1, indicating that the homemade
antibody bound to the same epitope as the commercial anti-PD1
(Fig. 4e). The same assay for our anti-CTLA4 antibody showed
that this antibody bound to CTLA4 (Fig. 4e).

On Day 10, the activated T cells are expected to be in the
effector phase, when CTLA4 expression is downregulated but
PD1 expression is maintained. Using commercial antibodies, we
observed the expression of PD1 and the disappearance of
CTLA4 staining (Fig. 4e). Using homemade anti-PD1 antibodies
and the antibody mixture, we then confirmed the blocking of PD1
receptors (Fig. 4e). These results indicate that the co-culture and
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co-purification of the antibody mixture in a single batch in P.
pastoris could simplify the manufacturing process for antibody
mixtures. Compared with mammalian hosts, the use of P. pastoris
has the potential to decrease the time and cost needed to produce
antibodies and antibody mixtures. Moreover, the ratio of two
antibodies should be tunable if we were to replace the AOX1
promoter of one strain with the independently inducible estrogen
promoter.

Selective protein separation from biologics mixtures. Having
established three effective methods to produce multiple biologics
in a single batch, we sought to develop purification procedures
that could be used to separate out individual therapeutic proteins
from these mixtures. It is economically difficult to have multiple
parallel manufacturing platforms to produce different drugs,
especially in parts of the world where resources are scarce. To
make multiple drugs in small quantities with only one set of
manufacturing equipment, we sought to generate mixtures of
biologics and then separate them through downstream proces-
sing. We expected this co-production-plus-separation metho-
dology to take less time than existing procedures (Fig. 5a). We
previously showed that we could produce two therapeutic pro-
teins sequentially in a single manufacturing platform6, thus
reducing the total manufacturing time from (tgrowth + tinduction) ×
2 to (tgrowth + tinduction × 2), where tgrowth refers to the amount of
time needed to grow the production host to high cell densities
and tinduction refers to the amount of time needed to induce
expression of the desired drug. Here we aimed to further reduce
the time to produce N proteins from (tgrowth + tinduction ×N) with
sequential induction to (tgrowth + tinduction) with simultaneous
manufacturing (Fig. 5a). Downstream separation and purification
should require from several hours to a couple of days for all
strategies39. We used HSA and hGH as examples to demonstrate
a prototypical workflow for the proposed simultaneous produc-
tion strategy.

We first purified proteins produced by the single strain
expressing HSA upon methanol induction and hGH upon
estrogen induction (pJC135) with two inducible expression
systems. To purify HSA and hGH in the supernatant, we used
a Blue Sepharose column, which binds a variety of proteins,
including albumin, IFN, lipoproteins, blood coagulation factors,
and several enzymes (Fig. 5b)39,50. We loaded the supernatant
into the column and eluted hGH and HSA with high salt buffer to
get rid of most of the host cell proteins. The resulting eluate was
further purified using reverse-phase chromatography, and the
peaks of hGH and HSA were collected (Supplementary Fig. 5).
The samples were then analyzed by using an SDS-PAGE gel and
Matrix-assisted laser desorption/ionization (MALDI) (Fig. 5c, d).
MALDI chromatographs indicated that the separation of hGH
and HSA was virtually complete (below the detection limit). Our
two-step purification strategy comprised a Blue Sepharose
column (column 1) for purifying the two proteins from the host
proteins and a reverse-phase column (column 2) to separate the
two proteins.

To simplify purification further, the number of columns used
for the separation of HSA and hGH was reduced based on the
idea that proteins with different binding affinities to the Blue
Sepharose column can be eluted with different elution conditions,
such as salt concentration. We tested various conditions using
commercial HSA and hGH samples and found that a low salt
buffer (20 mM sodium phosphate and 100 mM sodium chloride)
could be used to elute hGH and that a high salt buffer (20 mM
sodium phosphate and 2M sodium chloride) could be used to
elute HSA (Fig. 5e and Supplementary Fig. 6). We then used the
same strategy to demonstrate the separation of HSA and hGH in

the supernatant (Fig. 5f). The fraction eluted first contained
92.4% hGH and 7.6% HSA, whereas the second eluate contained
95.4% HSA and 4.6% hGH, which was calculated using ImageJ. If
drugs of high quality are required for further testing or clinical
use, minor components and other impurities can be removed by
traditional chromatographic purification processes.

To further multiplex this approach, we sought to combine
multiple protein co-expression strategies. We co-cultured two
strains, one strain expressing HSA upon methanol induction and
hGH upon estrogen induction (pJC135) and one strain expressing
anti-PD1 antibody (pJC110) upon methanol induction. Ninety-
six hours post-induction, the supernatant containing HSA, hGH,
and anti-PD1 was harvested and dialyzed against 20 mM sodium
phosphate. We chose two commercially available columns for
separation: a Protein A column was used for antibody purifica-
tion, as the Fc region of antibodies binds to protein A at neutral
pH and can be eluted at low pH (pH = 3.0); and a Blue Sepharose
column was used to separate hGH and HSA, as described above.
To separate the three proteins, the supernatant was first injected
into a Protein A column. Anti-PD1 was captured in the column,
whereas hGH, HSA, and the cell host proteins passed through.
Anti-PD1 was then eluted by using a low pH buffer. The flow-
through was then injected into the Blue Sepharose column. hGH
and HSA were captured in the column, whereas the cell host
proteins passed through. hGH was eluted with low salt buffer, and
HSA was then eluted with high salt buffer (Fig. 5g, h). The
fraction eluted first contained 86.1% hGH and 13.9% HSA,
whereas the later eluate contained 89.9% HSA and 10.1% hGH,
which was calculated using ImageJ. Thus we achieved primary
recovery and effective separation of individual drugs from co-
expressed drug mixtures, which can be followed by traditional
chromatography purification processes for clinical studies.

Orthogonal control of three biologics production. To demon-
strate the potential scalability and generality of this approach, we
designed a third gene-expression system in P. pastoris, which was
inducible with IPTG (isopropyl β-D-1-thiogalactopyranoside). To
make an IPTG-inducible promoter, we inserted a tandem repeat
of two lac operator (lacO) sequences next to the GAP constitutive
promoter. The sites of the two lac operators were separated by
two nucleotides and placed 54 bp upstream of the start codon (39
bp upstream of the 3′ end of the promoter) (Supplementary
Fig. 7). We used constitutive TEF1 to drive the expression of the
lac repressor (LacI), which binds to the lac operator on the GAP
promoter in the absence of IPTG, thus preventing RNA poly-
merase from binding and transcribing from the artificial GAP
promoter. IPTG releases LacI from the promoter, initiating
transcription (Fig. 6a)51,52. We used GFP as the reporter and
constructed a P. pastoris strain carrying the IPTG-inducible sys-
tem (pPP309). In a dose–response test, GFP fluorescence was
activated six-fold in the presence of 1 mM IPTG compared to no
IPTG, validating the inducibility of this system (Fig. 6b).

We then tested the orthogonality of the three systems
(methanol-inducible, estrogen-inducible, IPTG-inducible) by
integrating a plasmid consisting of methanol-inducible red
fluorescent protein, estrogen-inducible GFP, and IPTG-
inducible cyan fluorescent protein (CFP) expression cassettes
into the P. pastoris genome (pJC101) (Fig. 6c). We induced
protein expression with the respective inducers and measured
fluorescence intensity by flow cytometry after 48 h. We observed
the expected inducible gene expression and found that there was
no cross-activation between the three inducers and the non-
cognate promoters (Fig. 6c).

Having demonstrated the selectivity and orthogonality of the
three inducible systems in P. pastoris, we sought to produce the
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therapeutic proteins hGH, G-CSF, and IFNα-2b. We used the
methanol-inducible promoter to express hGH, the estrogen-
inducible promoter to express G-CSF, and the IPTG-inducible
promoter to express IFNα-2b (pJC031) (Fig. 6d). G-CSF was not
stable in the medium, so we added protease inhibitors to increase
its expression (Fig. 6e). The therapeutic proteins were validated
and quantified by western blotting (Fig. 6f). We noted that the
sizes of hGH and G-CSF appeared to be bigger than their

corresponding commercial standards, which might be due to
differences in glycosylation patterns. The titer of hGH was 51.2
mg L−1 (86% of the total therapeutic proteins) in the presence of
methanol; that of G-CSF was 22.9 mg L−1 (100% of the total
therapeutic proteins) in the presence of estrogen; and that of
IFNα-2b was 9.5 mg L−1 (92% of the total therapeutic proteins) in
the presence of IPTG (Fig. 6g). We observed IFNα-2b expression
in media with methanol but did not observe CFP expression from
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the same IPTG promoter (Fig. 6c), consistent with the hypothesis
that methanol can enhance the secretion of certain proteins but
not intracellular protein expression (Supplementary Fig. 1). We
also tested the co-production of biologics in the three-biologics
strains with two or three inducers and observed the expected
protein production corresponding to the inducer combinations
(Fig. 6h, i).

Discussion
We have developed flexible and consolidated bioprocessing
schemes for integrated rapid strain engineering, inducible protein
expression, and selective or combined protein purification. We
showed simultaneous production of multiple biologics and
combination drugs by integrating inducible protein expression
systems with upstream and downstream bioprocessing in P.
pastoris. We demonstrated inducible expression of single biolo-
gics, simultaneous production of multiple distinct biologics, co-
production of protein mixtures, and ratio control for combina-
tions. We also have presented a single-batch approach for poly-
clonal antibody production, which can be used for cancer
immunotherapy and other therapeutic applications (Table 1).
Finally, we constructed a system that allows orthogonal triple-
gene control of the inducible production of three therapeutic
proteins. This system can produce one, multiple, or combination
proteins at a defined ratio from one strain of P. pastoris and with
one set of production equipment in a short timeframe. The ability
to produce multiple therapeutic proteins simultaneously in a
single batch has the potential to significantly reduce the number
of strains and facilities required for protein production, thus
lowering time and expense53,54.

Previously, we developed a portable device to produce a single
dose of two different drugs at the point-of-care, which can be
used to provide medications for people in remote areas6. In a
continuous manufacturing mode, such as perfusion culture, we
can consistently produce a protein for a long period of time.
Although this or other well-established on-demand strategies can
manufacture a single type of drug4–6, additional production
devices and additional cost and time are required if multiple
drugs are needed for the same patient or for different patients13.
Thus, using existing approaches, a choice has to be made between
cost (using multiple devices together) and time (producing one
drug at a time), both of which increase as the number of regions
to be serviced and the number of people to be treated expand,
because of the likelihood of concurrent needs for different drugs.

Our platform is suited not only to single drug production but
also to the small-scale production of combination drugs (Fig. 4)
and multiple distinct drugs (Fig. 5) at a time. Drugs can be
generated as they are needed by adding the corresponding
inducers during batch or continuous culture and changing the
types and concentrations of inducers dynamically to meet the
fluctuating demand for drugs in a certain region, for preclinical

studies, or for clinical trials. Compared with the co-culture of
different strains, our single-strain production strategy is able to
produce one or more desired proteins in the same batch, and the
ratio can be dynamically tuned by varying inducer concentrations
(Fig. 2). The ability to produce mixtures of proteins could enable
combination drugs or polyvalent vaccines to be made or could be
used in conjunction with separation technologies to create several
distinct drugs for different patients.

When multiple biologics are produced in a single facility but
are not used together as combination drugs, there is the risk of
cross-contamination. This risk depends on the type of the drug
and can be evaluated using acceptable daily exposure (ADE)
values55. Recently, Carver proposed a banding scheme to assess
the potency or toxicity of biologics; the biologics were categorized
according to their toxicity56. In this scheme, toxins have the
lowest ADE values, and growth factors and antibodies have
higher ADE values. Unlike traditional purification processes, our
approach consists of two stages: separation and polishing, where
one column is used to separate the proteins in the mixture. In this
work, we demonstrated primary separation of antibodies, hGH,
and HSA using affinity columns. These molecules can be further
purified by traditional processes to remove other components,
ensuring that impurities remain below their ADE levels.

One advantage of our approach compared with other small-
scale or flexible manufacturing systems4–6 is that it can operate in
existing drug manufacturing set-ups used in academia or indus-
try. Our multiple-biologics strains can be grown in common
bioreactors, and the expression of proteins of interest can be
regulated by using chemical inducers. Protein mixtures can be
separated and polished by adding a commercially available
separation column to the purification system, which is ideally the
first column to maximize recovery and purity. Protein purifica-
tion systems usually consist of multiple types of chromatography
and filtration, such as affinity chromatography, ion exchange
chromatography, and hydrophobicity chromatography to remove
impurities (mostly host cell proteins) of various characteristics
and to thereby obtain high quality products. Protein mixtures can
be separated using one or more columns depending on the
proteins’ characteristics. Instead of developing new affinity col-
umns or adding tags to the proteins, we can adapt common
chromatography columns to purify protein mixtures of interest.
In this work, we performed preliminary separation and pur-
ification for the biologics of interest and used common quality-
control techniques, such as SDS-PAGE, western blotting, and
cell-surface-binding assays, to assay our process outputs. For
clinical studies, more comprehensive product quality-control
technologies, such as peptide mapping and glycan analysis, will be
important to confirm that the manufacturing processes and
eventual products are consistent and of high quality.

We have constructed three orthogonal inducible systems and
developed three strategies for protein co-production. Both the

Table 1 Three strategies for therapeutic protein co-production

1 2 3

Modes Biologics co-production in single
strains with individually controllable
biologic expression cassettes

Biologics co-production with
posttranslational processing

Biologics co-production with multiple
strains

No. of strains 1 1 2
No. of promoters 2 2 1
Posttranslational
processing

No Yes No

Case studies Producing two distinct drugs for
two indications at defined ratios
(hGH and IFNα-2b)

Producing a drug of interest together with
HSA, as an example of an HSA-associated
formulation (HSA and hGH)

Producing monoclonal antibody
mixtures for cancer immunotherapy
(anti-PD1 and anti-CTLA4)
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systems and modes can be multiplexed to meet the need for
customized medications. Additional inducible systems can be
designed and advanced genetic circuits can be integrated to
increase the number of outputs. For example, adapting this sys-
tem to utilize non-chemical inducers, such as distinct wavelengths
of light, may enhance its utility. If developed as a continuous
production system6,57, our platform should be able to produce
desired proteins on demand in a dynamic fashion, reducing cost
and allowing for precise control over the quantities and relative
concentrations of the proteins obtained. IPTG and estrogen
require freezing for long-term storage. Other inducers with
greater stability characteristics could be used in the future, such as
galactose and ethanol58. Moreover, light-inducible systems could
be developed to avoid issues with inducer stability in the future59.
Thus we envision that this platform can reduce the time and cost
for producing multiple drugs and can improve access to impor-
tant biologics.

Methods
Media and buffers. BMGY medium contained 1% yeast extract (VWR, PA), 2%
peptone (VWR, PA), 100 mM potassium phosphate buffer (pH = 6.0) (VWR, PA),
4 × 10−5 % biotin (ThermoFisher, MA), 1.34% Yeast Nitrogen Base (Sunrise Sci-
ence, PA), and 2% glycerol (VWR, PA). BMMY contained 1% yeast extract, 2%
peptone, 100 mM potassium phosphate buffer (pH = 6.0), 4 × 10−5 % biotin, and
1% methanol (VWR, PA). YPD contained 1% yeast extract, 2% peptone, and 2%
glucose (VWR, PA).

Binding buffer for Protein A, Protein G, and Blue Sepharose columns contained
20 mM sodium phosphate (pH = 7.0) (Teknova, CA). Elution buffer for Protein A
and Protein G columns contained 0.1 M citric acid (pH = 3.0) (VWR, PA). Elution
buffer for Blue Sepharose column contained 20 mM sodium phosphate and 100
mM sodium chloride or 2000 mM sodium chloride (VWR, PA).

Strains and plasmid construction. The parental P. pastoris strain, derived from
wild-type P. pastoris strain (ATCC 76273), was constructed before6. In brief,
plasmid pPP074 was transformed into wild-type P. pastoris cells using electro-
poration and colonies were selected with 100 μg/mL G418 Sulfate (ThermoFisher,
MA). The multiple constructs used in these experiments were built using restric-
tion enzyme cloning and/or Gibson assembly. Plasmids are available for dis-
tribution at Addgene.

Electroporation. Competent cells were prepared by first growing a single colony of
P. pastoris in 5 mL YPD at 30 °C for 48 h. In all, 100 μL of the resulting culture was
inoculated in 50 mL of YPD and grown at 30 °C for another 24 h. The cells were
centrifuged at 1500×g for 5 min at 4 °C and resuspended in 50 mL of ice-cold sterile
water, then centrifuged at 1500×g for 5 min at 4 °C and resuspended with 20 mL of
ice-cold sterile water, then centrifuged at 1500×g for 5 min at 4 °C and resuspended
in 10 mL of ice-cold 1 M sorbitol, and then centrifuged at 1500×g for 5 min at 4 °C
and resuspended in 0.5 mL of ice-cold 1 M sorbitol (Sigma, MA). In all, 5 μg of
plasmids of interest and 5 μg of Bxb1 recombinase expression vector were mixed
and then added to 80 μL of competent cells and incubated for 5 min in an ice-cold
0.2 cm electroporation cuvette (Bio-Rad Laboratories, CA). Pulse parameters were
1500 V, 200Ω, and 25 μF. Immediately after pulsing, 1 mL of ice-cold 1M sorbitol
was added to the cuvette, and the cuvette content was transferred to a sterile culture
tube containing 1 mL 2× YPD. The culture tubes were grown overnight at 30 °C at
250 rpm. Samples were then spread on YPD plates (1% yeast extract, 2% peptone,
1 M sorbitol, 1% dextrose, and 2% agar) with 75 μg/mL zeocin (ThermoFisher,
MA).

SDS-PAGE and western blotting. For reducing SDS-PAGE, 30 μL of cell super-
natants or purified samples were mixed with 10 μL loading dye and 4 μL 2-
mercaptoethanol (ThermoFisher, MA) and heated at 90 °C for 10 min. For non-
reducing SDS-PAGE, 30 μL of cell supernatants or purified samples were mixed
with 10 μL loading dye and heated at 70 °C for 10 min. The samples were loaded
into NuPAGE Bis-Tris pre-cast gels (ThermoFisher, MA) and run for 35 min at
200 V in MES buffer (ThermoFisher, MA).

Gels were transferred to PVDF membranes using iBlot system (ThermoFisher,
MA) according to the manufacturer’s protocol. Membranes were blocked overnight
using Detector Block blocking buffer (Kirkegaard & Perry Laboratories, MD) and
washed three times using phosphate-buffered saline (PBS) with Tween 20 for 5
min. Membranes were incubated with primary antibodies overnight and then with
secondary antibodies for 3 h. The intensity of bands was analyzed using ImageJ.

Primary antibodies used in this study: anti-hGH (ab155972, Abcam, MA):
2000X dilution; anti-IFN (ab14039, Abcam, MA): 2000X dilution; anti-G-CSF
(AHC2034, ThermoFisher, MA): 2000X dilution; anti-HSA (ab84348, Abcam,
MA): 2000X dilution; anti-human antibody heavy chain (MAB1302, EMD

Millipore, MA): 2000X dilution; and anti-human antibody light chain (ab1050,
Abcam, MA): 2000X dilution.

Secondary antibodies used in this study: Rabbit anti-Mouse IgG H&L (HRP)
(ab6728, Abcam, MA): 5000X dilution; Rabbit anti-Chicken IgY H&L (HRP)
(ab6753, Abcam, MA): 5000X dilution; and Goat anti-rabbit IgG (HRP) (7074 S,
Cell Signaling Technology, MA): 2000X dilution.

The uncropped Commassie blue and western blotting gel images can be found
in Supplementary Figures 8, 9, 10, and 11.

LabChip protein expression analysis. P. pastoris cells (pPP363, pPP364, and
pJC021) were inoculated (at optical density (OD) of 0.05) in 2 mL BMGY medium
in 24 deep-well plates and grown at 30 °C and 800 rpm for 48 h. Cells were pelleted,
resuspended in induction medium, and cultured at 30 °C at 800 rpm for another
48 h. For methanol induction, cells were supplemented every 24 h with 1%
methanol. The protein titers were measured using the Protein Express Assay
LabChip Kits (760499, PerkinElmer, MA) in LabChip GX II Touch system (Per-
kinElmer, MA) (Fig. 2b and Supplementary Fig. 1).

Expression and purification of monoclonal antibodies. P. pastoris cells (pJC110
and pJC111) were inoculated into 1 mL BMGY medium and grown at 30 °C at 250
rpm overnight. The resulting culture was inoculated at OD of 0.05 into 200 mL
BMGY medium and grown at 30 °C at 250 rpm for another 48 h. The cells were
then induced in 200 mL BMMY medium with 1 μM pepstatin A (P5318-5MG,
Sigma, MO) and chymostatin (C7268-5MG, Sigma, MO) and cultured at 25 °C and
shaken at 250 rpm for 96 h and supplemented with 1% methanol and 1 μM of
pepstatin A and chymostatin every 24 h. The supernatant was dialyzed in 20 mM
sodium phosphate (pH = 7.0) and purified using a Protein G column (GE
Healthcare, MA) according to the manufacturer’s manual. The buffer of purified
antibodies was then changed to PBS (ThermoFisher, MA) using PD-10 Desalting
Columns (GE Healthcare, MA) (Supplementary Fig. 4).

Activation of human primary T cells and cell-binding assays. Human periph-
eral blood mononuclear cells (PBMCs) were obtained from a leukoreduction collar
(Brigham and Women’s hospital Crimson Core Laboratory, MA) with gradient
centrifugation. Human PBMCs were activated with PHA and cultured in Roswell
Park Memorial Institute 1640 medium (ThermoFisher, MA), supplemented with
10% fetal bovine serum, 10 mM HEPES, 0.1 mM non-essential amino acids, 1 mM
sodium pyruvate, 100 U/mL penicillin, 100 μg/mL streptomycin, 50 μM 2-ME, and
50 IU/mL rhIL-2 (NCI, MD) for 3 days or 10 days before being used for validating
anti-CTLA4 antibody and anti-PD1 antibody production. PHA-activated PMBCs
were incubated with purified anti-CTLA4 antibody and/or anti-PD1 antibody at
4 °C for 25 min, then incubated with commercial PE-labeled anti-human CD279
(PD-1) (329920, BioLegend, CA) or PE-labeled anti-human CD152 (CTLA4)
(349906, BioLegend, CA). Flow cytometric analysis was done by LSRII Fortessa
cytometer (BD Biosciences, CA). Data analysis was done by the FlowJo software
(TreeStar Inc, OR) (Fig. 5e).

Expression and separation of protein mixtures. P. pastoris cells (pJC135) were
inoculated into 1 mL BMGY medium and grown at 30 °C and 250 rpm overnight.
The resulting culture was inoculated at an OD of 0.05 into 50 mL BMGY medium
and grown at 30 °C and 250 rpm for another 48 h. The cells were then induced in
50 mL BMMY medium with 1 μM estrogen (E4389-100MG, Sigma, MO) and 1%
L81 (435430-250ML, Sigma, MO) at 30 °C and 250 rpm for 48 h, and supple-
mented with 1% methanol every 24 h. The supernatant was dialyzed in 20 mM
sodium phosphate (pH = 7.0). In all, 5 mL of the resulting supernatant was injected
into a 1 mL Blue Sepharose column and eluted using 5 mL elution buffer (20 mM
sodium phosphate and 2000 mM sodium chloride, pH = 7.0). The eluted compo-
nent was then concentrated using an Amicon ultra-15 centrifugal filter
(UFC901024, EMD Millipore, MA) (Fig. 5c).

HSA and hGH (A7736-1G, Sigma, MO) were separated and collected using RP-
HPLC under the following conditions. Column: C4; Buffer A: 0.05% TFA; Buffer B:
0.043% TFA, 80% CAN; Gradient: 5%B @5min–100%B @45min; Inject amount:
50 μL; Flow rate: 0.3 mL/min; Detectors: 210 nm, 280 nm (Fig. 5c).

Protein separation using chromatographic columns. A total of 100 mg hGH and
100 mg HSA were mixed and diluted in 5 mL PBS. The solution was injected into a
1 mL Blue Sepharose column. The first fraction (mainly hGH) was eluted with 5
mL low salt buffer (20 mM sodium phosphate and 100 mM sodium chloride, pH =
7.0), and the second fraction (mainly HSA) was eluted with 5 mL high salt buffer
(20 mM sodium phosphate and 2000 mM sodium chloride, pH = 7.0) (Supple-
mentary Fig. 8). The supernatant consisting of hGH and HSA was separated as
described above (Fig. 5e, f).

P. pastoris cells (pJC135 and pJC110) were inoculated into 1 mL BMGY
medium and grown at 30 °C and 250 rpm overnight. Each of the resulting cultures
was inoculated at an OD of 0.05 into 200 mL BMGY medium and grown at 30 °C
and 250 rpm for another 48 h. The cells were then induced in 200 mL BMMY
medium with 1% L81 (435430-250 ML, Sigma, MO) at 25 °C and 250 rpm for 48 h
and supplemented with 1% methanol and with 1 μM pepstatin A and chymostatin
every 24 h. The supernatant was dialyzed in 20 mM sodium phosphate (pH = 7.0).
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In all, 5 mL of the resulting supernatant was injected into a 1 mL Protein A
Column (GE Healthcare, MA) and washed with 5 mL 20mM sodium phosphate
(pH = 7.0) and then eluted using 2 mL elution buffer (anti-PD1 antibody) (0.1 M
citric acid, pH = 3.0). The flow-through was injected into a 1 mL Blue Sepharose
column. The first fraction (mainly hGH) was eluted with 5 mL low salt buffer (20
mM sodium phosphate and 100 sodium chloride, pH = 7.0), and the second
fraction (mainly HSA) was eluted with 5 mL high salt buffer (20 mM sodium
phosphate and 2000 sodium chloride, pH = 7.0) (Fig. 5g, h).

Flow cytometry. P. pastoris cells (pPP309) were inoculated at an OD of 0.05 in 1
mL of BMGY and grown at 30 °C and shaken at 250 rpm for 48 h. The resulting
cultures were then cultured in induction medium with different concentration of
IPTG (Gold Biotechnology, MO) for another 48 h. In all, 50 μL of the cultures was
added to 500 μL PBS for flow cytometric analysis in a BD LSR II flow cytometer
(Fig. 5b).

P. pastoris cells (pJC101) were inoculated at an OD of 0.05 in 2 mL of BMGY in
24 deep-well plates and grown at 30 °C and shaken at 800 rpm for 48 h. The
resulting cultures were then cultured in induction medium consisting of methanol,
estrogen, or IPTG for another 48 h. In all, 50 μL of the cultures was added to 500 μL
PBS for flow cytometric analysis in a BD LSR II flow cytometer (Fig. 5c).

3-biologics production strain protein co-production. P. pastoris cells (pJC031)
were inoculated at an OD of 0.05 in 2 mL of BMGY in tubes and grown at 30 °C
and shaken at 250 rpm for 48 h. The resulting cultures were then cultured in
induction medium consisting of methanol plus IPTG, estrogen plus IPTG (with
protease inhibitors), methanol plus estrogen (with protease inhibitors), or
methanol, estrogen plus IPTG for another 48 h. Protease inhibitors can increase the
stability of G-CSF and was added if needed. In all, 15 μL of the cultures was loaded
in each lane for western blotting experiments as described above.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request. The plasmids used in this work have
been deposited in Addgene (ID numbers are provided in Supplementary Table 1).
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