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This paper presents amultifidelitymethod for optimization under uncertainty for aerospace
problems. In this work, the effectiveness of the method is demonstrated for the robust opti-
mization of a tailless aircraft that is based on the Boeing Insitu ScanEagle. Aircraft design
is often affected by uncertainties in manufacturing and operating conditions. Accounting for
uncertainties during optimization ensures a robust design that is more likely to meet perfor-
mance requirements. Designing robust systems can be computationally prohibitive due to the
numerous evaluations of expensive-to-evaluate high-fidelity numerical models required to esti-
mate system-level statistics at each optimization iteration. This work uses a multifidelityMonte
Carlo approach to estimate the mean and the variance of the system outputs for robust opti-
mization. The method uses control variates to exploit multiple fidelities and optimally allocates
resources to different fidelities to minimize the variance in the estimates for a given budget.
The results for the ScanEagle application show that the proposed multifidelity method achieves
substantial speed-ups as compared to a regular Monte-Carlo-based robust optimization.

I. Introduction

Uncertainties exist in most engineering systems and accounting for these uncertainties during the design process
is key to obtaining robust systems that satisfy performance requirements under varying conditions. In contrast with

deterministic optimization, where commonly safety factors are used to get a conservative design, optimization under
uncertainty (OUU) seeks efficient designs that are likely to meet performance requirements under varying conditions.
In OUU, statistics of quantities of interest need to be estimated at many points in the design space, which is usually done
using Monte Carlo methods that require large number of high-fidelity model evaluations to meet accuracy requirements.
Figure 1a. shows a representation of OUU, where Monte Carlo estimates (inner-loop) for the output statistics are
evaluated in each optimization iteration (outer-loop) using a single high-fidelity model. If the high-fidelity model is
expensive then the cost of OUU becomes intractable. Thus, although OUU offers a probabilistic framework that leads to
flexibility in treatment of uncertainty in the system, it is computationally prohibitive to implement in most engineering
applications desiring a certain level of accuracy.

One way to reduce the computational cost of OUU is by using cheap-to-evaluate low-fidelity models to speed up
the estimators with occasional recourse to the expensive high-fidelity model to ensure unbiasedness [1–3]. Figure 1b
shows a framework for multifidelity OUU. Low-fidelity models are approximations for the high-fidelity models that
can provide the general trend of the outputs to a certain extent. They can be data-fit surrogate models, approximations
of underlying physics, or reduced-order models. More details about different types of low-fidelity models used in
multifidelity methods can be found in [4].

There have been various efforts for developing multifidelity methods for optimization and uncertainty quantification
and a survey of such methods can be found in [4]. For optimization, bifidelity approaches have been developed that
use data-fit Gaussian process surrogates with adaptive sampling for occasional queries to the high-fidelity model to
do Bayesian optimization [5, 6]. There are recent extensions of Bayesian optimization that combine multiple (≥ 2)
fidelities [7, 8] to achieve faster convergence. Similarly, there have been efforts on developing multifidelity methods
for uncertainty quantification using Bayesian regression [9], polynomial chaos expansions, and stochastic collocation
methods [10]. Multifidelity uncertainty quantification methods based on Monte Carlo simulation generally combine
multiple fidelities using control variates [11] for obtaining a lower variance in the multifidelity estimator compared to
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(a) Single high-fidelity model
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(b) Multiple fidelity models

Fig. 1 Optimization under uncertainty using a single high-fidelity model, or multiple fidelities.

the single-fidelity Monte Carlo estimator at the same cost. The multilevel Monte Carlo [12] method uses the known
complexity of the different models to construct the control variates. The StackMC approach [13] uses data-fit surrogate
models and cross-validation to implement a control variates method for variance reduction.

In this work, we use the control-variates-based multifidelity Monte Carlo (MFMC) method to estimate the statistics
for OUU. MFMC combines information from multiple (≥ 2) fidelities to reduce the overall error in the estimates. The
MFMC method for estimating mean is described in [14] and is applicable to any type of low-fidelity model. The MFMC
method for estimating the variance has been used for global sensitivity analysis [15]. The MFMC method optimally
allocates resources between different models in order to minimize the error in the estimate for a given computational
budget. Here, we present a multifidelity method for robust optimization using MFMC for estimating the mean and the
variance. A bifidelity implementation of MFMC with separate set of samples for the mean and the variance estimates
has been used for robust optimization in [3]. In this work, we extend the MFMC method for multiple fidelities in robust
optimization and find the optimal allocation of resources to minimize the error in the mean and variance estimates using
the same set of samples. The approach maintains the same level of accuracy as a regular Monte Carlo estimate using
high-fidelity solves (Figure 1a), while needing substantially less computational effort.

We demonstrate the proposed multifidelity method for a tailless aircraft design. Specifically, we aim to find a robust
tailless aircraft design that is protected against the risks from the uncertainties in flight conditions and manufacturing.
Tailless aircraft offer aerodynamic and environmental benefits at reduced direct operating costs. They can be small-scale,
like micro UAVs, or very large scale, like the blended-wing-body design [16]. In this paper, we study a model based on
the Boeing Insitu ScanEagle because it has a variety of uses in both the civilian and military realms. The ScanEagle
UAV was originally developed to fly missions to track schools of tuna, but it was later developed as a general and
modular platform often used for military purposes as well. It is used for reconnaissance, person-of-interest tracking, and
ordinance delivery missions, and at any given time there are an average of 17 ScanEagle aircraft in flight globally [17].
It can be launched from a ship or on ground from a unique launching and retrieval system, allowing it to operate in
many varied conditions. Fig. 2 shows the ScanEagle aircraft.

Tailless aircraft like the ScanEagle are challenging to design because they involve a tightly coupled multidisciplinary
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Fig. 2 ScanEagle aircraft with baseline configuration (image used with permission from Rohr 3D Solutions,
LLC).

system and their unconventional configuration makes stability considerations more critical. The coupling effects between
disciplines create design trade-offs and complicates the process of finding good aircraft designs. An experienced aircraft
designer may be able to consider some of these interdisciplinary tradeoffs, but there are more than dozens of coupled
disciplines. Aerodynamics, structures, propulsion, controls, thermal effects, internal electronics packing, and trajectory
are just some of these disciplines. In this work, we use a multidisciplinary feedback-coupled model with exchange of
information between the aerodynamic analysis and the structural analysis.

We can evaluate and optimize a design using multidisciplinary design optimization (MDO) to consider the trade-offs
between disciplines. MDO has been widely used for aircraft to evaluate conventional and new designs while considering
many different disciplines [18–21]. However, aircraft operate at uncertain conditions. For example, wind gusts may
affect the apparent air speed over a wing, or engine performance might be degraded due to weather or air quality.
Additionally, there are also manufacturing uncertainties like uncertainty in material properties, manufacturing tolerances,
etc. The lift-producing wing in the tailless aircraft is even more important for control than a conventional design, which
means that it is especially important to account for these uncertainties and the resulting risks in the design process. We
treat the ScanEagle model as black-box and the proposed multifidelity method is not restricted to any particular choice
of low-fidelity models.

The remainder of the paper is organized as follows. Section II describes the computational model for the ScanEagle
tailless aircraft and the optimization problem formulation. The multifidelity robust optimization method using MFMC
is described in Section III followed by the results for the ScanEagle aircraft in Section IV. Section V presents the
conclusions.

II. Problem Setup
The first part of this section describes the computational model used for analyzing the ScanEagle tailless aircraft

followed by the optimization problem formulation used in this work.

A. Computational Model
To model this aircraft we use OpenAeroStruct, an open-source aerostructural analysis and optimization tool [22].

OpenAeroStruct combines a vortex lattice method and 1-D finite-element analysis to model lifting surfaces, such as
aircraft wings and tails. OpenAeroStruct has been developed in NASA’s OpenMDAO framework [23] which streamlines
the model development and interdisciplinary communication. Once an aircraft model is set up in OpenAeroStruct,
users can select from a range of discretizations to control the level of fidelity of the analysis. OpenAeroStruct includes
visualization tools to view optimization progress and the designs at each iteration. Figure 3 shows an example of analysis
for a baseline ScanEagle model in OpenAeroStruct. Table 1 details the nominal parameters for ScanEagle used in this
study.

OpenAeroStruct uses a 2-D vortex lattice method to perform the aerodynamic analysis. This method can be thought
of as an extension of lifting-line theory, but is more general in that it can model low aspect ratio wings, swept wings,
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Table 1 Nominal ScanEagle parameters used in the computational model.

Parameter Value Units
MTOW 22 kg
OEW 10 kg
Cruise speed 22.9 m/s
Cruise altitude 4.57 km
Range 1800 km
Wingspan 3.11 m
Wing sweep 20 degrees
Root chord 0.3 m
Spar Young’s modulus 85 GPa
Spar Shear modulus 25 GPa
Spar yield 350 MPa
Spar density 1600 kg/m3

Fuel burn: 6.174153 kg

Major iteration: 0

1 0 15

0

5

10

Twist

1 0 1
0.0025
0.0050
0.0075
0.0100

Thickness

1 0 1
0.0

0.5

1.0
Normalized lift

Elliptical

1 0 1
Normalized span

1.0

0.5

0.0
Normalized stress Failure limit

Fig. 3 Analysis of baseline ScanEagle model using OpenAeroStruct.

delta wings, and cambered airfoils more accurately. To compute the aerodynamic forces acting on a lifting surface, we
construct a series of horseshoe vortices based on the planform shape. We then enforce the condition that the normal flow
velocity must be zero at collocation points on the lifting surface, which allows us to solve for the vortex circulations, and
thus the aerodynamic forces.

For the structural analysis, OpenAeroStruct uses a 1-D series of 6-degree-of-freedom beam elements connected
end-to-end to represent the wing structural spar. We construct the global stiffness matrix for the spar and compute the
nodal displacements and rotations based on the forces and moments acting on the lifting surface. The wingbox structural
properties are represented by an equivalent tubular cross-section to simplify the analysis and parameterization.

These aerodynamic and structural analyses are coupled within OpenAeroStruct using a consistent and conservative
transfer scheme. Because OpenAeroStruct is implemented in OpenMDAO, a variety of solvers can be used to converge
this coupled aerostructural system, including block Gauss–Seidel or Newton for the nonlinear system. OpenAeroStruct
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can model multiple lifting surfaces and users can set up the optimization problem using pre-defined or user-defined
objective and constraint functions.

B. Optimization Problem Formulation
To optimize aerostructural performance, we minimize the fuel burn subject to realistic constraints. Given a nominal

range (in this case, 1800 km), we can compute the fuel weight needed to fly this mission using the Breguet range equation.
Since this is a propeller-driven aircraft, we compute an equivalent jet thrust specific fuel consumption TSFC [24] given
by

TSFC = Cpower
V
ηp
,

where Cpower is the power specific fuel consumption, V is the velocity, and ηp (fixed at 0.7 here) is the propeller
efficiency. Then the fuel weight W f is computed using the Breguet range equation [24] given by

W f = (W0 +Ws)

exp *

,

R · TSFC
V

(
L
D

)−1
+
-
− 1


,

where W0 is the aircraft empty weight, Ws is the structural spar weight, R is the range, L is the lift, and D is the drag.
The computed W f value is the amount of fuel burn needed to fly a conventional mission of the provided range. We select
fuel burn as the objective function because it captures the tradeoffs between aerodynamic and structural performance
in a realistic manner. When controlling the aerodynamic twist and structural thickness, we can decrease fuel burn by
increasing L

D or by decreasing Ws .
The inputs for the deterministic optimization problem in this work are the eight design variables d = [d1, . . . , d8] ∈

D ⊆ R8, where D denotes the design space as described in Table 2. Sweep and angle of attack are scalar design
variables that affect the wing design and flight conditions, respectively. Instead of directly controlling the aerodynamic
and structural meshes for twist and thickness, we use a pair of b-splines to produce smooth distributions from a smaller
number of control points. This allows us to choose the number of b-spline control points for the twist and thickness
distributions without changing the analysis mesh sizes. In this paper, we use three b-spline control points each for both
the twist and the thickness distributions.

Table 2 Bounds of the eight design variables for the ScanEagle aircraft.

Design variable Description Lower bound Upper bound Units
d1

structural spar thickness control points 1 10 mmd2

d3

d4

aerodynamic twist control points -5 10 degreesd5

d6

d7 angle of attack 0 10 degrees
d8 wing sweep 10 30 degrees

To ensure that the obtained design is realistic, we require that three performance requirements are satisfied at the
optimal design. Firstly, we ensure that the structural spar does not fail by comparing the computed von Mises stresses
(σVM ) to the allowable yield stress (σyield) in each element. We aggregate these structural failure constraints into a
single constraint using a Kreisselmeier–Steinhauser (KS) function [25]. Secondly, the lift L generated must be greater
than or equal to the total weight W so that the aircraft can at least sustain level flight for the cruise portion of the mission.
Having the capacity to generate more lift than the total weight of the aircraft is allowable because the balance can be
controlled with engine throttle settings and the angle of attack. Thirdly, we also enforce a coefficient of moment CM

constraint so that the aircraft is trimmed at the nominal flight condition. With this constraint, the nominal flying shape
does not induce a pitching moment. For aircraft with tails, the tail incidence angle can vary to satisfy the CM constraint,
but due to the lack of a tail we must use a combination of wing sweep and aerodynamic twist to satisfy the constraint
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here. The deterministic optimization problem formulation is given by

min
d∈D

f (d)

subject to
KS(σVM ) − σyield

σyield
≤ 0,

W − L
W

≤ 0,

CM = 0,
dlb ≤ d ≤ dub,

(1)

where f is the fuel burn for the tailless aircraft, and dlb and dub represent the lower and upper bounds for the design
variables, respectively. Figure 4 shows the extended design structure matrix (XDSM) [26] diagram corresponding to
deterministic aerostructural optimization.

angle of attack(0),
twist(0),
sweep(0),

thickness(0)

mesht,(0)

angle of attack∗,
twist∗,
sweep∗,

thickness∗

0, 6→1:
Optimization

2: angle of attack, twist
3: twist,
sweep,

thickness

5:
angle of attack,

twist,
sweep,

thickness

1, 4→2:
MDA 2: mesht 3: mesht

loads∗ 4: loads
2:

Aerodynamics 3: loads 5: loads

displacements∗ 4: displacements
3:

Structures
5: displacements

6: fuel burn, σVM ,
lift, weight, CM

5:
Functional
Evaluations

Fig. 4 XDSM diagram for deterministic aerostructural optimization. The numbers in the diagonal blocks
correspond to the order of execution. The black line follows the analysis execution path whereas the thicker
gray lines show data-passing paths. The default solver for the multidisciplinary analysis (MDA), shown here in
the center block loop, is Gauss–Seidel. The optimal results are outputted as represented by the values with ∗.
See [26] for more details on how to interpret this figure.

For the OUU problem formulation, the inputs for the system are the eight design variables d as given in Table 2 and
the six uncertain input random variables Z as defined in Table 3. The random variables are represented by independent
truncated normal distributions with lower and upper bounds defined by two standard deviations from the mean. The
manufacturing uncertainty is captured by the variability in Young’s modulus E, shear modulus G, material mass density
ρmass, and aircraft empty weight W0. The variation in operating conditions is captured by the uncertainty in Mach
number M and thrust specific fuel consumption T SFC.

In this work, the robust optimization formulation considers a linear combination of the mean E[.], and the square
root of the variance

√
Var[.] (i.e., the standard deviation) of the quantity of interest as given by

min
d∈D

E[ f (d,Z)] + η
√
Var[ f (d,Z)]

subject to E[g1(d,Z)] + η
√
Var[g1(d,Z)] ≤ 0,

E[g2(d,Z)] ≤ 0,
E[h(d,Z)] = 0,
dlb ≤ d ≤ dub .

(2)

The inequality constraint g1 ≤ 0 is used to avoid structural failure, and g2 ≤ 0 is used to satisfy the lift constraint. The
equality constraint h = 0 ensures that the moment coefficient is equal to zero. There are several ways of formulating the
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Table 3 Truncated normal distribution parameters of the uncertain random variables for the ScanEagle
aircraft with lower and upper bounds defined by two standard deviations from the mean.

Random variable Description Mean Standard deviation Units
E Young’s modulus 85 5 GPa
G shear modulus 25 1 GPa

ρmass material mass density 1600 50 kg/m3

W0 aircraft operating empty weight 10 0.2 kg
M Mach number 0.071 0.005 –

T SFC thrust specific fuel consumption 0.3036 0.00607 1/hr

stochastic constraints in the optimization problem in terms of the risk of violating the performance requirements (robust
or reliability constraints, penalty method to combine them into a single objective, etc). We use a robust constraint
formulation for all the stochastic constraints. For the lift and moment coefficient constraints, we consider the mean value
of the performance metric. For the structural failure constraint in this stochastic setup, instead of the commonly used
safety factor approach, we use a robust constraint formulation to ensure that the performance requirement is satisfied up
to η standard deviations from the mean.

The objective and the constraints depend on the mean and the variance, which require uncertainty propagation of the
random variables through the system. In most cases, numerical approaches are used to compute estimates of these
statistics for a specified mean squared error (MSE) because analytic solutions for the statistics are not available. The
next section describes Monte-Carlo-simulation-based approaches for robust optimization.

III. Multifidelity Robust Optimization
Robust optimization involves solving for the required statistics for each design dt , where t is the current optimization

iteration. The required statistics for a given design variable dt are the mean, i.e., E[.] and the variance, i.e., Var[.]
estimates for f and g1, and the mean estimates for g2 and h. In this case, the required statistics for the constraints are
estimated using the same set of samples as that for the objective because f , g1, g2, and h are all obtained at the same
time as system outputs from a single analysis. Section III.A discusses the regular Monte Carlo simulation approach using
a single high-fidelity model for estimating the statistics. Section III.B describes the multifidelity Monte Carlo method
that uses information from the low-fidelity models to reduce the cost for estimating the statistics while maintaining the
same MSE as the regular high-fidelity Monte Carlo approach. Implementation details for the multifidelity method are
provided in Section III.C.

A. High-Fidelity Monte Carlo Simulation Approach
Given m independent and identically distributed (i.i.d.) high-fidelity samples f (dt, zj ) for j = 1, . . . ,m, Monte

Carlo simulation can be used to obtain estimates for the mean and variance of f at dt . The Monte Carlo estimator of the
mean of f is given by

ŝm(dt ) =
1
m

m∑
j=1

f (dt, zj ). (3)

The subscript m in the estimator denotes that m samples were used to compute it. Note that the Monte Carlo estimator
is an unbiased estimator for the mean, which means that the expected value of the estimator’s error is zero, i.e.,
E[ŝm(dt )] = E[ f (dt,Z)]. We measure the error in the mean estimator using the MSE, which in this case is equal to the
variance of the mean estimator because of its unbiased nature. That is,

J1 = MSE[ŝm(dt )] = Var[ŝm(dt )] =
σ2

m
, (4)

where σ2 is the variance of f (dt,Z). Equation (4) shows that the accuracy of the estimator depends on the variance of
f (which we cannot control) and on the number of Monte Carlo samples (which we choose). It also shows that many
samples will be needed to achieve a low error, which is why uncertainty quantification is expensive.
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The estimate of the unbiased sample variance of f , which is also needed in our robust optimization objective
function, is given by

v̂m(dt ) =
1

m − 1

m∑
j=1

(
f (dt, zj ) − ŝm(dt )

)2
, (5)

where the subscript m in the estimator denotes that m samples were used to compute it. In order to define the Monte
Carlo estimator for the variance of f , we introduce an auxiliary variable given by

bm(dt, zj ) =
m

m − 1

(
f (dt, zj ) − ŝm(dt )

)2
. (6)

Now, the estimator of the variance given by Equation (5) can be redefined as

v̂m(dt ) =
1
m

m∑
j=1

bm(dt, zj ). (7)

Similar to the mean estimate, the Monte Carlo estimate of the variance is also unbiased, which means that the expected
error in our variance estimate is zero (i.e., E[v̂m(dt )] = Var[ f (dt,Z)]). We measure the accuracy of the variance
estimator through its MSE. Again, because of the unbiased nature of the variance estimator, its MSE is given by the
variance of v̂m(dt ). Assuming that different sets of Z realizations are used for ŝm(dt ) and v̂m(dt ) (or, equivalently, that
the bm(dt,Z) samples are i.i.d.), the MSE can be defined similarly to that of ŝm(dt ) as given by

J2 = MSE[v̂m(dt )] = Var[v̂m(dt )] =
τ2

m
, (8)

where τ2 is the variance of the auxiliary variable bm(dt,Z). Note that in this work, the same set of realizations of
random samples of Z are used for ŝm(dt ) and v̂m(dt ), making the bm(dt,Z) samples not i.i.d. MSE[v̂m(dt )] can be
defined as the variance of sample variance in terms of the second and fourth moments taking into account that the
bm(dt,Z) samples are not i.i.d. [27]. However, as we mention in Section III.C, we need at least crude initial sample
estimates for the variances in order to implement this method and it is very difficult to get even a crude estimate of
fourth moments with a small set of samples. Hence, we use the definition of MSE given by Equation (8) neglecting that
our samples are not i.i.d.

We define a total error metric for estimating both the mean and the variance as the sum of the MSE of the mean and
the variance estimates. The error metric Jm is given by

Jm = J1 + J2 = MSE[ŝm(dt )] +MSE[v̂m(dt )] =
σ2 + τ2

m
, (9)

where the subscript m denotes that we use m samples to compute the estimators (and again we note that we use the
same set of samples to compute both mean and variance). The chosen form of the error metric Jm in Equation (9) is
motivated by the form of the OUU objective function in Equation (2) (noting that we cannot compute the MSE of the
OUU objective function directly). In our implementation, we specify the tolerance on Jm and compute the required
number of samples. In order to ensure that the error in the estimate is below a specified tolerance Jtol , the required
number of Monte Carlo samples is

m∗ =
σ2 + τ2

Jtol
. (10)

B. Multifidelity Monte Carlo Approach
This section develops a multifidelity Monte Carlo (MFMC) method for more efficient estimates of the required

statistics in robust optimization while maintaining the same level of accuracy (fixed MSE). The proposed method is an
extension of the MFMC method [3, 14] to estimate both the mean and the variance using the same set of samples when
multiple fidelities are available.

Consider k models f (1), . . . , f (k) with f (1) being the highest fidelity and no known hierarchy for the other k − 1
models. For a given design dt , we order the models such that

|ρ1,1 | + |q1,1 | > · · · > |ρ1,k | + |q1,k |, (11)
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where ρ1,i is the correlation coefficient between the highest fidelity f (1) (dt,Z) and ith fidelity f (i) (dt,Z), and q1,i is the
auxiliary variables correlation coefficient between the highest fidelity b(1)

m (dt,Z) and ith fidelity b(i)
m (dt,Z). This means

that as the index in the ordering of the models increases, their correlation with the high-fidelity model decreases. In this
case, the correlation with the high-fidelity model defines our level of confidence in that particular model.

Once the ordering is established for design dt , we can see that it makes sense to use a lower fidelity model if and
only if it is cheaper to evaluate than the higher fidelities. Let the cost incurred for evaluating model f (i) be wi ∈ R+.
After reordering the models according to Equation (11), the costs should satisfy w1 ≥ · · · ≥ wk ≥ 0 to make sure that a
lower fidelity model is cheaper to evaluate. Otherwise, models with higher cost and lower correlation are removed from
the set of available fidelities for design dt .

Define m = [m1, . . . ,mk]T ∈ Nk as the vector of sample sizes for different fidelities such that 0 < m1 ≤ · · · ≤ mk .
Let z1, . . . , zmk

be mk realizations of the random variable Z. Then each model f (i) is evaluated at the first mi samples
to obtain the corresponding system outputs. Thus, the highest fidelity is evaluated least number of times and the rest of
the fidelities are evaluated with increasing frequency as their index in the ordering increases. Then the outputs from the
different fidelities are used to define the Monte Carlo estimators,

ŝ(i)
mi

(dt ) =
1

mi

mi∑
j=1

f (i) (dt, zj ), (12)

v̂ (i)
mi

(dt ) =
1

mi

mi∑
j=1

b(i)
mi

(dt, zj ), (13)

where ŝ(i)
mi

(dt ) denotes the mean estimate of f (i) computed with mi samples and v̂ (i)
mi

(dt ) denotes the variance
estimate of f (i) computed with mi samples. Following similar notation, the auxiliary variable b(i)

mi
(dt, zj ) =

mi

mi−1

(
f (i) (dt, zj ) − ŝ(i)

mi
(dt )

)2
for each fidelity i = 1, . . . , k.

The Monte Carlo estimators from the different fidelities are combined using the control variates method to reduce
the estimator variance. The MFMC estimate for the mean is given by

ŝMF (dt ) = ŝ(1)
m1

(dt ) +
k∑
i=2

αi

(
ŝ(i)
mi

(dt ) − ŝ(i)
mi−1

(dt )
)
, (14)

where α2, . . . , αk are the control variate coefficients for the different fidelities for the mean estimate. The MFMC
estimate for the variance is given by

v̂MF (dt ) = v̂ (1)
m1

(dt ) +
k∑
i=2

βi
(
v̂ (i)
mi

(dt ) − v̂ (i)
mi−1

(dt )
)
, (15)

where β2, . . . , βk are the control variate coefficients for the different fidelities for the variance estimate. Figure 5 shows
the MFMC method for estimating the mean for a given design variable dt . The MFMC estimate for the variance follows
a similar flow.

Now, we need to choose values for the samples sizes for each fidelity (m1, . . . ,mk) and control variate coeficients
(α2, . . . , αk, β2, . . . , βk) in order to implement the MFMC estimates. This is done by minimizing the error in the MFMC
mean and variance estimators while taking into account the correlations with high-fidelity model and the costs of the
different models. Similar to the Monte Carlo error metric in Equation (9), the MFMC error metric can be defined as

J (m, α2, . . . , αk, β2, . . . , βk ) = MSE[ŝMF (dt )] +MSE[v̂MF (dt )] = Var[ŝMF (dt )] + Var[v̂MF (dt )]. (16)

The derivation for the variance of the MFMC estimate of the mean (Var[ŝMF (dt )]) is available in [14]. The variance
of the MFMC estimate of the variance (Var[v̂MF (dt )]) can be similarly derived neglecting that our b(i)

mi
(dt,Z) samples

are not i.i.d. [28]. We do not repeat those derivations here, but just give the resulting sample sizes and control variate
coefficients as follows.

The optimal sample sizes m∗ and the optimal coefficients, α∗i and β
∗
i for i = 2, . . . , k that minimize the error metric
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Fig. 5 MFMC method for estimating the mean for given design variable dt .

given in Equation (16) for a given budget p can be found (using Karush-Kuhn-Tucker conditions) to be

α∗i =
ρ1,iσ1

σi
(17)

β∗i =
q1,iτ1

τi
(18)

r∗i =
m∗i
m∗1
=

√√√
w1(σ2

1 (ρ2
1,i − ρ

2
1,i+1) + τ2

1 (q2
1,i − q2

1,i+1))

wi (σ2
1 (1 − ρ2

1,2) + τ2
1 (1 − q2

1,2))
(19)

m∗1 =
p

wT r∗
(20)

m∗i = m∗1r∗i . (21)

For evaluating these optimal allocation and optimal coefficients, set ρ1,k+1 = 0 and q1,k+1 = 0. The MFMC method will
allocate most samples to the low-fidelity model that best balances low cost and high correlation.

Given a value of tolerance in the error Jtol the value of required budget preq can be found by substituting the optimal
solution into Equation (16) and solving to get

preq =
wT r∗

[
σ2

1 + τ
2
1 +

∑k
i=2

(
1
r∗i
− 1

r∗
i−1

) (
ρ2

1,iσ
2
1 + q2

1,iτ
2
1

)]

Jtol
(22)

This required budget is to ensure that the error in the estimators is below Jtol .

C. Implementation Details
In order to implement the MFMC method for a given design dt , we need the values for σi, τi, ρ1,i, and q1,i for all the

fidelities i = 1, . . . , k, which are usually not known analytically. We use an inital set of minit random realizations of Z
to get sample estimates of these quantities. Apart from these quantities, we also need the costs wi associated with each
fidelity, which can be found by timing these initial runs. As shown in [14], these crude sample estimates are sufficient to
get the values of optimal allocation and the optimal coefficients, and small perturbations in these sample estimates
typically have small effects on the MFMC allocations. Then the MFMC method is applied to get the mean and variance
estimates that are used to compute the robust optimization objective function and constraints for the given design dt as
summarized in Algorithm 1.

IV. Numerical Results
We demonstrate the multifidelity robust optimization method on the ScanEagle tailless aircraft application and

compare the performance of the proposed method with the regular Monte Carlo estimator method. We consider three
different fidelities for the ScanEagle analysis by varying the wing mesh defined by the number of evenly-spaced spanwise

10



Algorithm 1 MFMC approach for estimating the mean and the variance

1: procedure MeanVarMFMC( f (1), . . . , f (k), dt, Jtol, σ1, . . . , σk, τi, . . . , τk, ρ1,i, . . . , ρ1,k, q1,i, . . . , q1,k)
2: Ensure that the models f (1), . . . , f (k) are ordered according to Equation (11)
3: Set ρ1,k+1 = 0 and q1,k+1 = 0
4: Compute optimal coefficients α∗i and β

∗
i using Equations (17)- (18)

5: Compute optimal values for ratios of sample sizes ri for i = 1, . . . , k using Equation (19)
6: Compute required budget preq to ensure that the error metric meets the specified tolerance Jtol using

Equation (22)
7: Compute optimal sample sizes m∗ using Equations (20)- (21) and preq
8: Round up m∗ to the nearest integer greater than or equal to it.
9: Sample z1, . . . , zmk

realizations of Z
10: Evaluate model f (i) at the first z1, . . . , zmi samples for i = 1, . . . , k
11: Compute MFMC estimate for mean ŝMF (dt ) using Equation (14) and variance v̂MF (dt ) using Equation (15)
12: return ŝMF (dt ), v̂MF (dt )
13: end procedure

and chordwise points. Details for the different models and the average cost associated with each fidelity are summarized
in Table 4. The high-fidelity model f (1) is around 35 times more expensive than the low-fidelity model f (2) and around
77 times more expensive than the low-fidelity model f (3) . These simulations were run on a desktop machine with an
Intel i7-4790K 4-core 4.0 GHz CPU and 32 GB of RAM.

Table 4 Different fidelity models and their cost for ScanEagle analysis.

Model Number of spanwise points Number of chordwise points Evaluation cost (s)
High-fidelity model f (1) 61 7 4.74 × 10−1

Low-fidelity model f (2) 21 3 1.33 × 10−2

Low-fidelity model f (3) 5 2 6.15 × 10−3

The outer-loop stochastic optimization problem given by Equation (2) is solved through sequential local searches
using the basin-hopping [29] algorithm with seven restarts. The derivative-free constrained optimization by linear
approximation (COBYLA) [30] algorithm with maximum iterations set to 50 is used for the local searches. These
algorithms are implemented from the scipy.optimize toolbox in Python. The Monte Carlo method (Section III.A) and
MFMC method (Section III.B) are used for the inner-loop uncertainty propagation to estimate the mean and the variance.
The tolerance on the error is set at Jtol = 10−4 for both the Monte Carlo and the MFMC methods in order to maintain
the same level of accuracy. For the MFMC method, an initial set of 20 samples are used to sample estimates indicated
in Section III.C. Two formulations of the robust optimization problem given in Equation (2) are solved: (1) with η = 2,
and (2) with η = 3.

The convergence of the robust fuel burn objective function as a function of the computational effort is shown in
Figure 6, where the computational effort is represented by equivalent number of high-fidelity solves. It can be seen
that in both cases the multifidelity robust optimization method locates the best design with around 90% computational
savings as compared to the regular Monte Carlo estimator method. For the η = 2 case, the regular Monte Carlo method
takes more than 8 hours to locate the best design as compared to around 47 minutes using the multifidelity method on
our machine. For the η = 3 case, the regular Monte Carlo method takes 2.9 hours to locate the best design as compared
to around 23 minutes using the multifidelity method on our machine.

The computational effort is examined in more detail by plotting it for each optimization iteration in Figure 7. It
can be clearly seen that the computational effort for the Monte Carlo estimator is always more than that of the MFMC
estimator in this case. The reason for the low computational effort for the MFMC method is due to the use of cheaper
low-fidelity models to speed-up the estimators. The allocation of resources between the different fidelities quantified by
the number of samples for each is shown in Figure 8. It can be seen that the cheapest model f (3) is evaluated most
(hundreds of times per iteration), followed by the model f (2) , and the expensive high-fidelity model f (1) is evaluated
very few times. Note that we used at least 20 initial samples for each fidelity in the MFMC method to calculate the
parameters noted in Section III.C. The number of samples required for some of the models could be less than 20, if the

11



0 10000 20000 30000 40000 50000 60000
Computational effort (equivalent high-fidelity solves)

5.55

5.60

5.65

5.70

5.75

5.80

5.85

5.90

5.95
R

ob
us

t
fu

el
bu

rn
ob

je
ct

iv
e

Regular MC
Multifidelity MC

(a) η = 2

0 5000 10000 15000 20000
Computational effort (equivalent high-fidelity solves)

5.9

6.0

6.1

6.2

6.3

6.4

R
ob

us
t

fu
el

bu
rn

ob
je

ct
iv

e

Regular MC
Multifidelity MC

(b) η = 3

Fig. 6 Comparison of convergence histories of robust optimization using the regular Monte Carlo (regular
MC) estimator and the multifidelity estimator.

cheaper models are highly correlated to the high-fidelity model. However, since at least 20 samples are used here for
every model (more than required for some models for certain designs given the Jtol), this can lead to a lower error in the
MFMC estimates than the specified Jtol .
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Fig. 7 Comparison of computational effort required in each optimization iteration.

Figures 9 and 10 show the details of the robust objective and constraint values associated with each design visited
during the optimization process. Note that as seen before, the computational efforts for the multifidelity method is
substantially less than that of the regular Monte Carlo method in these plots. Table 5 shows the best design configurations
for the ScanEagle aircraft obtained through the different robust optimization methods along with the initial design.
Using the multifidelity robust optimization method, the expected fuel burn decreases from 6.09 kg for the initial design
to 5.32 kg for the best design obtained from the η = 2 case, and to 5.53 kg for the best design obtained from the η = 3
case. For all the cases, the constraints are satisfied, i.e., the expected value of the moment coefficient constraint for
the best design is approximately zero, the expected value of the lift constraint is below zero and the structural failure
constraint is satisfied up to η standard deviations of the mean. The initial design in this case does not satisfy the moment
constraint. Note that there are differences between the best designs obtained using the Monte Carlo method compared to
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Fig. 8 Number of samples required for each fidelity per optimization iteration for the multifidelity robust
optimization method.

the multifidelity method for the same value of η. This is because the best designs obtained here could be local optima of
the stochastic global optimization problem, or they could correspond to unconverged solutions. Given the global nature
of the design problem and the stochastic nature of the objective function, we cannot make rigorous statements about the
convergence of our runs. However, the results show that the optimizer is able to achieve significant improvements in the
designs, reducing both mean and variance from the initial design point. The results for the Monte Carlo method and the
multifidelity method could potentially improve if we run the optimizer for longer. However, Figure 6 shows that the
convergence for the regular Monte Carlo method has stalled. Continuing to run it is expensive in terms of function
evaluations but not yielding improvements in the best design found. For this problem, the multifidelity approach has
managed to find better designs at greatly reduced computational cost.

Figure 11 visually compares the two best design configurations obtained using the multifidelity method for the η = 2
and η = 3 cases. The spar thickness is greater for the η = 3 due to the requirement to handle higher loadings for the more
extreme flight conditions. The sweep values are close to the same, which is expected to satisfy the CM = 0 constraint.
The increase in twist for the η = 3 is offset by a corresponding decrease in angle of attack, though the twist distribution
does vary more smoothly in this case. For the η = 3 case, the effective twist at the wingtips is lessened and acts to
unload the outboard wing, allowing the optimizer to handle higher loading conditions without failing structurally.

V. Conclusions
This paper presented a multifidelity robust optimization method for a ScanEagle tailless aircraft application in the

presence of uncertainties in manufacturing and operating conditions. The best designs obtained using the multifidelity
method decreased the expected fuel burn to 5.32 kg for the η = 2 case and 5.53 kg for the η = 3 case as compared to
6.09 kg for the initial design. The multifidelity method uses the control-variates-based MFMC to combine information
from different fidelities in order to reduce the variance in the estimators used in the OUU problem objective function
and constraints. The MFMC method used in this work optimally allocates resources between the different fidelities for
minimizing the error in the estimates of the mean and the variance when the same set of samples is used for both. This
optimal allocation depends on the costs of the low-fidelity models and their correlation to the high-fidelity model. The
MFMC estimates are unbiased and substantially reduce the computational cost by sampling the cheaper low-fidelity
models more. For the ScanEagle analysis, the lower fidelity models were created by using coarser discretizations of the
wing mesh. In general the multifidelity method can be used with any kind of low-fidelity model. The multifidelity
robust optimization method maintains the same level of accuracy as the regular Monte Carlo method but offers around
90% computational savings for the ScanEagle problem.

In this work, the multifidelity method ensures that the estimates for the statistics of the objective function are below
a given tolerance on the error. However, in general we can choose the optimal allocation of resources based on whether
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Table 5 Comparison of best designs obtained from different methods and the initial design used for ScanEagle.

Design variable/
Output statistic Initial design

Monte Carlo Multifidelity
η = 2 η = 3 η = 2 η = 3

d1 5.5 1.15 6.91 1 1
d2 5.5 3.89 5.61 1.04 1.12
d3 5.5 3.47 5.21 3.41 4.60
d4 2.5 -3.27 2.46 -1.59 0.55
d5 2.5 4.62 4.58 0.34 6.37
d6 2.5 5.64 4.99 4.50 6.30
d7 5 3.56 4.12 5.54 2.52
d8 20 19.13 18.54 18.73 18.35
E[ f ] 6.09 5.39 5.92 5.32 5.53
Var[ f ] 2.2×10−2 1.7×10−2 1.6×10−2 2×10−2 2×10−2

E[g1] -0.58 -0.61 -0.56 -0.59 -0.61
Var[g1] 1.5×10−3 1.5×10−3 1.6×10−3 1.9×10−3 8.3×10−4

E[g2] -0.23 -0.25 -0.31 -0.31 -0.31
E[h] -9.2×10−2 -8.9×10−4 -6.3×10−4 -2.8×10−4 -5.9×10−4

the objective function or the constraints require more budget to meet their specified tolerances. This strategy will be
explored in our future work.
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Fig. 9 Optimization history of the robust objective function and constraints for η = 2 associated with each
visited design versus computational effort. Red dashed line shows the feasibility limit for the constraints. Note
that the computational effort on the x-axis of the two plots have different magnitudes.
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Fig. 10 Optimization history of the robust objective function and constraints for η = 3 associated with each
visited design versus computational effort. Red dashed line shows the feasibility limit for the constraints. Note
that the computational effort on the x-axis of the two plots have different magnitudes.
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