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Abstract—Communication networks are vulnerable to natural
disasters, such as earthquakes or floods, as well as to phyalic
attacks, such as an Electromagnetic Pulse (EMP) attack. Shc
real-world events happen in specific geographical locati® and
disrupt specific parts of the network. Therefore, the geograhical
layout of the network determines the impact of such events on
the network’s connectivity. In this paper, we focus on asseing
the vulnerability of (geographical) networks to such disaters. In
particular, we aim to identify the most vulnerable parts of the
network. That is, the locations of disasters that would havethe
maximum disruptive effect on the network in terms of capaciy
and connectivity. We consider graph models in which nodes ah Fig. 1.
links are geographically located on a plane. First, we conder
a simplistic bipartite graph model and present a polynomial
time algorithm for finding a worst-case vertical line segmenm cut.

We then generalize the network model to graphs with nodes at U.S. telecommunications capabilities. Our approach isdio g
arbitrary locations. We model the disaster event as a line ggnent insight into robust network design by developing the nemgss
or a disk and develop polynomial time algorithms that find a th to find th t hicall | bl f

worst-case line segment cut and a worst-case circular cut.ifrally, eory 1o |n_ e mos. gepgrap |ca_ y vulnerable areas of a
we obtain numerical results for a specific backbone network, N€twork. This can provide important input to the developtmen

thereby demonstrating the applicability of our algorithms to real-  of network design tools and can support the efforts to mi¢iga
world networks. Our novel approach provides a promising new the effects of regional disasters.

ggggﬂgn for network design to avert geographical disastes or  pare are several works on the topology of the Internet as
' o . a random graph [5] and on the effect of link failures in these

Index Terms—Network survivability, geographically correlated graphs [13], [24] (for more details see Section Il). However
failures, fiber-optic, Electromagnetic Pulse (EMP). most of these works are motivated by failures of routers due

to logical attacks (e.g., viruses and worms), and therelnyd

I. INTRODUCTION on the logical Internet topology. There have also been some

The global communications infrastructure is primarily dxhs attempts to model the Internet using geographical notia@j [
on fiber-optic networks, and as such has physical vulnérab{39]. Yet, these works do not consider the effect of failures
ties. Fiber links and backbone nodes can be destroyed by affijgt are geographically correlated. Finally, [30] studide
thing from Electromagnetic Pulse (EMP) attacks [15], [{8] network inhibition problem in which a set of links has to be
to dragging anchors [2], [9]. Such real-world disasterspeap removed from a graph such that the effect on the graph will
in specific geographic locations, and therefore, the gesfical be maximized. Yet, to the best of our knowledge, the network
layout of the network affects their impact. For example, afihibition problem was not studied under the assumption of
EMP is an intense energy field that can instantly overlodfographically correlated failures.
or disrupt numerous electrical circuits at a large distance Since disasters affect a specific geographical area, they
thereby affecting electronic components in a large gedgcapwill result in failures of neighboring network components.
area [37]. Hence, such an attack over a U.S. city which isTderefore, one has to consider the effect of disasters on the
telecommunications hub would have a disastrous impacten tbhysical layer rather than on the network layer (i.e., tHeatf

_ _ _ _ on the fibers rather than on the logical links). It should btedo
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tradeoffs may imply that in certain cases there may be a needrinally, we present numerical results and demonstrate the
to redesign parts of the network while in other cases theuse of these algorithms. We identify the locations of thestror
is a need to protect electronic components in critical areease line segment and circular cuts in the network presented
(e.g., protecting against EMP attacks by shielding [162]]3 in Fig. 1! In particular, we illustrate the locations of cuts that
In this paper, we are interested in the location of geogrghi optimize the different performance measures describedeabo
disasters that have the maximum effect on the network, mger The main contributions of this paper are the formulation of
of capacity and connectivity. That is, we want to identifg tha new problem (termed as tigeographical network inhibition
worst-case location for a disaster or an attack as well as fioblem), the design of algorithms for its solution, and the
effect on the network. demonstration of the obtained numerical solutions on a U.S.
The global fiber plant has a complicated structure. Fénfrastructure. To the best of our knowledge, we are the tiirst
example, Fig. 1 presents the fiber backbone operated byattempt to study this problem.
major network provider in the U.S. (point-to-point fibersear This paper is organized as follows. We briefly discuss rdlate
represented by straight lines). We consider two graph nsodwlork in Section Il. In Section Ill, we introduce the network
which serve as an abstraction of the continental/underbea fimodels and formulate the geographical network inhibition
plant. In these models, nodes, links, and cuts are geographi problems. In Section IV, we consider a simple case of the
located on a plane. Nodes are represented as points and lipigsrtite model and provide numerical examples that previd
are represented as line segments between these points.ivgight into the location of a worst-case cut. In Section V,
first study a bipartite graph model (in the topological andie develop a polynomial-time algorithm for finding the werst
geographical sense). That model is analogous to the east aase cuts in the bipartite model. In Sections VI and VII we
west coasts of the U.S., where nodes on the left and righs sidéudy the general model with line segment and circular cuts.
of the graph represent west and east coast cities (resplggtivin Section VIII we present numerical results. We conclude an
and the cities within the continent are ignored. Similaithzan ~ discuss future research directions in Section IX.
represent transatlantic or transpacific cables. Sincécaétine
segment cuts are simpler to analyze, we focus initially ahsu Il. RELATED WORK
cuts and provide some motivating examples.

L . . The issue of network survivability and resilience has been
However, the bipartite model does not consider the 'mpa&tensivel studied in the past (e (71, [19], [25], [44}d
on nodes located within the continent; nor does it consider t y P 9. L7, ! ’

impact of a disaster that is not simply a vertical cut. Tharef references therein). However, most of the previous workis t

we later relax thebipartite graph andvertical cut assumptions area and in particular in the area of physical topology aner fib

by considering a general model where nodes can be art;itra?rllleworks (e.g., [26], [27]) focused onsaall number of fiber

located on the plane. Under this model, we consider ailures or on the concept ofShared Risk Link GroufSRLG)

problems. In the first one, disasters are modeled as lineesey 81]' On the contrary, in th|s_ paper we focu; on events that
cuts (not necessarily vertical) in the network graph. In the use a large number of failures in a specific geographical
X recwon (e.q., [2], [9], [16], [32]). To the best of our knowlige,

second one, disasters are modeled as circular areas in whi ] . .
. eographically correlated failurebave been considered only
the links and nodes are affected. These general problems €an - .
few papers and under very specific assumptions [3], [20],

be used to study the impact of disasters such as EMP attai%B%1
(circular disks) and tornadoes (line segments) more tezllty. . The theoretical problem most closely related to the problem

We assume that a regional disaster affects the electrowg consider is known as theetwork inhibition probleni30].

components of the network within a certain region. Hence, trﬂlnder that problem, each edge in the network has a destnuctio
fibers that pass through that region are effectively cut aiueé i

. ; st, and a fixed budget is given to attack the network. A
such a disaster. There are various performance measuresf(fr
the effect of a cut. We consider the following: (i) the exgett

sible attack removes a subset of the edges, whose total
: . . : . destruction cost is no greater than the budget. The obgidiv

capacity of the removed links, (ii) the fraction of pairs afdes 9 g bge

that remain connected, (iii) the maximum possible flow betwe

to find an attack that minimizes the value of a maximum flow
. S : . . in the graph after the attack. A few variants of this problems
a given source-destination pair, and (iv) the average maxim were studied in the past (e.g., [10], [12], [31]). Howeves, a

flow between pairs of nodes. We show that although there A &ntioned above, the removal of (geographically) neigingor

mfﬂmted_r:jurtnbertofhcut I:)cat\)tlons, o_gly %PO'Y”;m'f" .réumtpelrinks has been rarely considered [8], [34]. One of the firgt an
of candidate cuts have to be considered in order to identify %rhaps the closest to this concept is the problem studied in

worst-case cut for these performance measures in any of
problems above. Thus, we are able to show that the location of};,

ahwozzt-l;:ase fu(; iﬁntb N fou?r(]:i by polytqtoTrl]aIttlme T)Igor'tﬂctﬂls's read failures have been extensively studied [13], [118],[
should be noted that any other quantity that can be calduia 4]. Most of these works consider the topology of the Inétrn

in polynomial time may be used as a performance measure. .
poly Y per & a random graph [5] and use percolation theory to study
Hence, measures such as concurrent maximum flow and other

measures that are derived from multicommodity flow problemsiye present resuits only for one major operator. The sameadelbgies
may also be used. can be used in order to obtain results for all other major atpes.

hen the logical (i.e., IP) topology is considered, wide-



There are many ways to define the effect of a cut on the
loss of communication capability in a network. We define the
performance measures and the worst-case cut as follows.

Definition 1 (Performance Measures]he performance
measures of a cut are (the last 3 are defined as the values after
the removal of the intersected links):

o TEC- The total expected capacity of the intersected links.

o« ATTR- The fraction of pairs of nodes that remain con-
nected (this is similar to the average two-terminal reliabi
ity of the networK).

o« MFST- The maximum flow between a given pair of nodes

the effects of random link and node failures on these graphs. ° and. )

The focus on the logical topology rather than on the physical® AMF - The average value of maximum flow between all
topology is motivated by failures of routers due to attacks Pairs of nodes.

by viruses and worms. Based on various measurements (e.gDefinition 2 (Worst-Case Cut)Under a specific perfor-
[17]), it has been recently shown that the topology of theaance measure, &orst-case cuytdenoted bycuty, (z*, y*), is
Internet is influenced by geographical concepts [4], [229][ a cut which maximizes/minimizes the value of the perforneanc
These observations motivated the modeling of the Intermet ameasuré.

scale free geographical graph [36], [40]. Although theselel®  We now demonstrate the formulation of the following opti-

may prove useful in generatiriggical network topologies, we mization problem using th&EC performance measure.
decided to present numerical results basedreal physical

topologies (i.e., the topology presented in Fig. 1).

Fig. 2. A bipartite network and an example of a cut.

Bipartite Geographical Network Inhibition (BGNI) Prob-
lem: Given a bipartite graph, cut height, link probabilities,@n
capacities, find a worst-case vertical line segment cut unde
1. M ODEL AND PROBLEM FORMULATION performance measuréEC.

In this section we present three geographical network inhi-We define the following0, 1) variables:
bition problems. The first problem assumes that the netwsork i
bipartite in the topological and geographic sense and tat t
cuts are vertical line segments. We then present two prablem 2ij(2,y)
where network links can be in almost arbitrary locations on
the plane. In one of the problems, the disasters corresgondat solution to the BGNI optimization problem below is an
line segment cuts in any direction. In the other, the cuts agddpoint of a worst-case cut.
modeled by arbitrarily placed circular disks on the plane.

1 if (4,4) is removed bycuty, (z,y)
0 otherwise

max Z(i,j) DijCij2ij (T, Y)

N . . . such that
A. Bipartite Model with Vertical Line Segment Cuts ;ui <a1
<z <
We now define thgeometricbipartite graph. It has a width _h<y<he (1)

of 1 and height (south-to-north) di;. The height of a left
(west) nodgi.is denoted by;. Similarly, the height of a right The above optimization problem can be formulated as a
(east) nodg is d-enote(.j bxj' Nodes cannot ovgrllap and muskﬂixed Integer Linear Program (MILP) as follows. Define the
have non-negative height; thatis # r; > 0V 4,5 and(; # following (0,1) variables:

l; > 0V i,j. Denote the total number of nodes on the left and g '

right side by N. We denote a link from nodé to node; as {1 if (i, ) crosses the cut location( abovey
U5 =

(1,7) and let(i, j) be represented by a line segment fr{ih;] _
0 otherwise

to [1,7,]. We definep;; as the probability that linki, j) exists,
andc;; as the capacity of linKz, j) wherec;; € [0,00). To

avoid considering the trivial case in which there are nodink {1 if (i, 7) crosses the cut location) belowy + h

with positive capacity, we assume that there exist séraad d,; = )
0 otherwise

J for which ¢;;p;; > 0. We assume that the disaster results in
a vertical line segment cut of height whose lowest point is
at point [z, y]. We denote this cut byut,(x,y). Such a cut
removes all links that intersect it. For clarity, in this eapve _ o _ y
refer to the start and the end of a link as nodes and the start an /"¢ two-terminal reliability between two nodes is the piaitiey they
the end of a cut as endpoints Fig > demonstrates a SpeCrllef\mam connected after random independent link failureg. [3

- or performance measufBEC, the worst-case cut obtains a maximum
construction of the model and an example of a cut. value, while for the rest, it obtains a minimum value.

For hg < 1, the solution to the MILP below is a worst-case



cut. A solution to the GNIL optimization problem below is a worst-

max Z Dijciig case cut.

(i,5) max Z(z}j) pijcijzig([z, yl, [v, w])

such that such that
(rj—l)z—(y—1l) 2u; —1 Vij [, y] # [v, ]
(y+h—=0U)—(rj—lL)x>di; —1 Vi, j Ve —v)2+y—w?2<h
iy +dig > 225 Vi, j x; < o < x; for some ¢ and j

0<z<1 y; <y <y, for some i and j (2)

—h <y<hg

When dealing withCircular Cutswe assume that a disaster
uig, dijy zij € {01} results in a cut of radius which is centered afz,y]. We
Solving integer programs can be computationally intensivéefine this cut asut, (z,y). Such a cut removes all links which
Yet, the geographica| (geometric) nature of the BGNI Pmb|eintersect it (inCIUding the interior of the dlSk) We calketlset
lends itself to relatively low complexity algorithms (seecs Of points for which the Euclidean distancerigway from[z, y]
tion V). Although we initially focus only on th& EC measure, the boundary otut,(z,y). For brevity, we sometimes denote
variants of the BGNI Problem can be formulated for perfothe worst-case cutut,(z*,y") as cut;. We now define the
mance measure&TTR MFST, and AMF (by definition, when following problem and demonstrate its formulation.
computing these measures we assume that {0,1} Vi, ).  Geographical Network Inhibition by Circular Cuts (GNIC)
In the bipartite model, the worst-case cut under some ofthgs,gplem: Given a graph, cut radius, link probabilities, and

measures |s_tr_|v||al. However, in the general model, a woase  capacities, find a worst-case circular cut under performanc
cut is non-trivial.

measureTEC.
B. General Model We define the following (0,1) variable:
The general geometric graph model contaids non- - B 1 if (4,7) is removed bycut, (z, y)
overlapping nodes on a plane. Let the location of nade zij(t,y) = 0 otherwise

be given by the cartesian pajt;,y;]. Assume the points ) S )
representing the nodes are in general form, that is no thrdesolution to the GNIC optimization problem below is the
points are collinear. Denote a link from noddo nodej as Center of a worst-case cut.

(i,7) and let(4, j) be represented by a line segment frpm y;] max S e ([

to [z;,y;]*. We definep;; as the probability ofi, j) existing Z(m)pw 35215 ([, y])

andc;; as the capacity ofi, j) wherec;; € [0,00). We again such- that
assume that;;p;; > 0 for somei and j. We now define two z; < x < x; for some i and j
types of cuts and the corresponding problems. y; <y <yj; for some i and j 3

When dealing withArbitrary Line Segment Cutee assume o
that a disaster results in a line segment cut of lerigihich ~ Similar GNIL and GNIC problems can be formulated for
starts at[z,y] and contains the point,w] (with [z,y] # performance measureATTR MFST, and AMF (for these

[v, w]). We define this cut asuty, ([z, y], [v, w]) (note there can Measures we assume that < {0,1} Vi, j). For example,
be infinitely many ways to express a single cut). A cut remov&§der MFST, flow conversation constraints should be added
all links which intersect it. For brevity, we sometimes denthe 0 the set of constraints, the flow through links for which

worst-case cututy, ([z*,y*], [v*, w*]) ascut}. We now define zij [z, 9], [y,@]) =1is 0,. and the flow betwees andt¢ has .
the following problem and demonstrate its formulation. to be maximized. In sections VI and VIl we use the geometric

nature of the GNIL and GNIC problems to show that under all

Geographical Network Inhibition by Line Segments (GNIL)  these measures, we only need to check a polynomial number
Problem: Given a graph, cut length, link probabilities, andyf |gcations in order to find a worst-case cut.

capacities, find a worst-case cut under performance measure

TEC. IV. A MOTIVATING EXAMPLE
We define the following (0,1) variable: In this section, we consider a simple case of the bipartite
1 if (i,4) is removed mpde! in which the r_letwork is represented as a complete
2oyl [, w]) = by cutn [z, yl, [v, w]) bipartite graph, each side ha§2 nodesp;; = 1, andc;; = 1.

We also place nodes evenly on each side such that they are
separated by distanae An example is shown in Fig. 3. We
, , _ _ _ first obtain a lower bound for the BGNI problem by considering
“Notice that the assumption that links are represented ey degments is d h Th id ical Its f
an approximation of the real deployments (e.g., [23]) inalhiinks may not cuts down the center. en, we provide numerical results tor
be linear. the BGNI problem.

0 otherwise
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200 location of the cut forh = 1.6. Note that the results were relatively monotonic,
with the worst-case cut appearing at the center.
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A. A Lower Bound Fig. 6. The maximum number of removed linKBEC) as a function of the

o z-location of the cut forh = 0.1. Note the two ‘spikes’ in the function at
In this simple model, we can bound the valuel&C for the =z~ .3 andz ~.7.

worst-case cut by considering cuts with endpoints at 0.5.

In the very center of the graph there is an intersectiofV g2 i _
links. a/2 units vertically up and down from this point andt the center while the number of removed links more or less

additional(N/2) — 1 links intersect. Anothea/2 units up and descends from there (Fig. 5). When the cut height is reduced

down from these points, anothe/2) — 2 links intersect. This t© 0-1, significant local maxima begin to appear (Fig. 6). It
pattern continues until all of the links are included. Ttiere, S€ems the smaller the cut height, the more pronounced these

the capacity removed by a worst-case cut of heiglior / < local maxima are. This possibly results from large inteises
he is lower bounded by: — of links crossing at different horizontal locations in theagh.

Small cuts can cut these off-center intersections and reraov

N L) N i1 large number of links but these small cuts are not as efectiv
5+ > (5 —1=1l=5=D- (4) elsewhere in the graph (where links do not intersect).
i=1 The results above motivate us to analytically study theceffe

of the cut location on the removed capacity. In the following

B. Intuition from Numerical Results sections, we focus on developing polynomial-time algonish

We now describe numerical solutions obtained for the BGNibr identifying a worst-case cut.
problem (1) We obtained solutions for a network with 15
nodes on each sideV( = 30) and witha = 1 (hg = 14). V. WORSTFCASE CUTS - BIPARTITE MODEL
Fjg. 4 describesf the vaIues_ OEC under the worst-case cut for In this section we present &N °) algorithm for solving the
different cut heightsh, (notice that forp;; = 1 ande;; = 1, gy problem. The main underlying idea is that the algorithm
.TE.C IS _equwalent o the number of removed I|nks): The rest ley needs to consider cuts which have an endpoint on a link
IS |d§nt|cal to the lower bound for the center cuts in (4)'3Th"ntersection or a node. Before proceeding, we note that the
implies that a worst-case cut is located at the center of ¢ Sjective function takes on a finite number of bounded values
graph. . . This leads to the following observation.

Next, we study the effect Of the horizontal cut location ON Observation 1:There always exists an optimal solution to
TEC (the number of removed links) on the same network. Flﬁi) (i.e., a worst-case cut).
ures 5 and 6 i_IIustrate the_r_naximum number of removed lin SBeIov'v, we present the algorithm which finds a worst-case
Versus the hor!zontaluo pos'“of‘ of the cut on the network. .Forcut. It can be seen that the complexity of Algorithm WCBG is
a given cut .helghtf(), th? maximum ”“mbef of removed_llnksO(Nﬁ)' This results from the following facts: (i) links are line
at each horizontal position:) is not decr_easmg monOton'Ca”ysegments and a pair of line segments can have at most one inter
as we move away from_the _center. With= 1.6 the results . section point (no three nodes are collinear), resulting imast
were relatively monotonic, with the worst-case cut appigan O(N*) link intersections; (ii) there are two candidate cuts per

5These solutions were initially obtained using MATLAB's ggic algorithms link intersection or node (CUtS have two endpoints), andethe
and later on verified using the algorithm described in Sactio fore, the total number of candidate cuts is at rr(d(sN4); (iii)



(e, juw)

(i, ) O\CMV
[l‘w, yw] . .

cuty (z*,y*)

I[xaa Ya) .

. (ia7j04)
cutn(z,y) . . . . .
Fig. 8. Example showing howutj, (z*,y) is a ‘slid up’ version of

Fig. 7. Example showingi., j.) and (ia, ja). (ia,ja) is the lowest link  cuty, (z*, y*). cuty (z*,y), Which has an endpoint on a link intersection,
intersected by the cut and this intersection is[®t,y]. (iw,jw) are the is guaranteed to intersect every linkt, (z*, y*) does because there exist no
highest links intersected by the cut and this intersect®atijz., y.]. Note links atz* from y* to y..

(iw, Ju) is NOt unique.

since evaluatinglykS(Tj*li)IkJrli1yk+h2(7”j*li)mk+li (Line 8) . | I .

takesO(1) time and it has to be evaluated for &l j), finding
the capacity of a candidate cut takegN?).® cutp (z*, y*)

Algorithm 1 Worst-Case Cut in a Bipartite Graph (WCBG) Fig. 9. cutp(z*,y*) is a worst-case cut and has a uniglie, j.,) and
1. input: h, height of cut (i, jo). From this we are able to finduty (z’, yo(x’)), @ worst-case cut

. that has an endpoint on a link intersection.
2: worstCaseCapacityCut- 0 P

3: for every node location and link intersectiny, yi| do
4:  call evaluateCapacityofCutfs, yx)

5. call evaluateCapacityofCut(y, yx — h) Proof: Assume (iq, jo) is not unique orz* € {0,1}
Procedure evaluateCapacityofCut{x, yx) ([z*, o] is @ node or link intersection). Consideut, (z*, y, )

6: capacityCut— 0 which is a ‘slid up’ version of the worst-case attty (z*, y*).

7: for every(i, j) do cuty, (2%, 3. ) intersects at least the same linksaas, (z*, y*)

g; if lcékpsa(é.’&’cLﬁfc;ékatﬁiga?iZﬁ;fj = 1then since, by definition o, y.], there exist no links at* from

10: if capacityCut> worstCaseCapacityCuhen y* 10 yo. Thus,cuty(z*,ya) is also a worst-case cut and has
11 z* <+ xp an endpoint on a node or link intersection. For an example,
122 y* <y see Fig. 8. The case whefg,, j.,) is not unique is analogous
13:  worstCaseCapacityCut- capacityCut except thatuty, (z*, y,, — h), which is a ‘slid down’ version of

cuty (z*,y*), is considered. [ |

We now use a number of steps to prove the theorem belowlemma 2:1f there exists a worst-case cdtit; (x*,y"), such
Theorem 1:Algorithm WCBG finds a worst-case cut whichthat both(i.;, j,) and (ia, ja) are unique, then there exists a

is a solution to the optimization problem in (1). worst-case cut that has an endpoint on a link intersection or
Before proving the theorem, we introduce some useflPde. _
terminology and prove two supporting lemmas.cifty, (z,y) Proof: see Appendix A.

intersects any links, the links which are intersected close  Basically, according to Lemma 2, {f.,, j.,) and (ia, jo) are

the endpoinfz, y] are denoted byi,, j.) and the point where both umquefqr aworst-case cut, we can find anqther worst-ca
they intersect the cut is denoted by, , . (see Fig. 7 for an Cut such that |t_has at least one endpoint on a link intersecti
example). Let those links which interseetty, (z,y) furthest ©OF node (see Fig. 9).

from the endpoinfz, y] be given by(i., j.) and let the point ~ USing the above lemmas, we now prove Theorem 1.

where they intersect the cut be given py,,v.]. Note that Proof of Theorem 1Since (i, ju,) @nd (ia, jo) exist for

(iw, ju) OF (ia, jo) Need not be unique. This is becalise, .| all worst-case .cuts, Lemmas 1 and 2 imply thgt we need (_)nly
of [z, 9a] can be a link intersection. It should be noted thatheck cuts which have endpoints at nodes or link intersestio
since the model assumes that there exists a link with; > 0 © fln.d a worst-case cut. Algprlthm 1 checks all pqssmlg isode
for somei and;j, all worst-case cuts must intersect at least orfd intersections as endpoints, and therefore will nedgssa

link. This implies (i, j.,) and (i, jo) exist for all worst-case find also a worst-case cut. _ -
cuts. We note that although algorithm WCBG finds a worst-case

Lemma 1:1f there exists a worst-case catyty, (*, y*), such cut, there may be other worst-case cuts with the same value.
that either (i, j.,) iS not unique, (ia, jo) is not u(nique, or The endpoints of these cuts do not necessarily have to be on

z* € {0,1}, then there exists a worst-case cut that has é\nlink intersection or a node. However, there cannot be a cut
endpoint’on,a node or a link intersection. with a higher value than the one obtained by the algorithm.

6Computational geometry results can probably be used tocesthe com- VI. WORSTFCASE LINE SEGMENT CUT — GENERAL MODEL

plexity of Algorithm WCBG. Patrticularly, [11] (based on [6knables counting In this section, we present a polynomial time algorithm for

and locating all the intersections 6f? line segments irO(N2log N + I) . . . -
time, wherel is the number of line segment intersections. A modified eersi flndlng the solution of the GNIL Problem; i.e., for flndlng a

of the algorithm of [11] can be used within Algorithm WCBG. worst-case line segment cut in the general model. We show



that we only need to consider a polynomial-sized subsetlof al cutj, cuty,
possible cuts. We first focus on tA&C performance measure

and then discuss how to obtain a worst-case cut for other
measures. Our methods are similar to the approach for gplvin
the BGNI Problem, described in Section V. In this section, a
worst-case cut refers to a worst-cdge segmentut. Fig. 10. cut;L contains a node as well as intersects all links whiahj does.

(i, Jo)

A. TEC Performance Measure Proof: Let b . t with endooints g
. L L roof: Let cut? be a worst-case cut with endpoints given
Before proceeding, note that the objective function in ( 2*, 5] andc[ljz*hw*] We now define some uspeful tegrmi-

takes _on a finite n_umber of bounded values. This leads to logy. Let the links that intersectit? closest to the endpoint
following observation. . s

. i . . . x*,y*] be given by(i., j») and let the closest point fa*, y*]
Opservatlon 2:There always exists an optimal solution t here (i, j.) intersectscut! be given by[z..ya]. Let those
(2) (i.e., a worst-case cut).

. . .links which intersectcut; furthest from the endpoint:*, y*
Below we present an algorithm that finds a worst-case line h poinz”, ]

. . be given by(iy, j.,) and let the closest point to*, w*| where
segment cut under tHEEC measure in the general model. This . given ) N , P o, w ].
. X ; X .S(zw,yw) intersectscut;, be given by[z,,, y.,]. We consider two
algorithm considers all cuts that (i) have an endpoint omia li

. : . . . .. cases, one where eithéi,, j.) or (i., j,) are not unique and
intersection and contain a node not at the intersectignhéive o e, ]a.) ) (1, 5eo) : q
: L . ) the other wheréi,, j,) and (i., j.,) are unique.
an endpoint on a link intersection and another endpoint on a ) _ o o .
In the first case, eithefi,, j.) Or (i.,j.) are not unique

link, (iii) contain two distinct nodes and have an endpointso  Without | f lit NN i
link, and (iv) contain a node and have both endpoints on Jinkfé)r_ cuty,. WIthout 10Ss c/) generalily, we assu ( 3‘”"]?‘) 'S o
unique. We considerut;, which is a translated version ofit}

Algorithm 2 Worst-Case Line Segment Cut in the Generguch that it has an endpoints @t o] and onfv” +z, —

Model (WLGM) x*, w* + yo — y*]. Since there exist no links betweér*, y*|
— - and [z, y»), we knowcutj, intersects at least as many links
1: input: h, length of cut . .
2: worstCaseCapacityCut- 0 ascutj and thus is a worst-case cut that satisfies the lemma.
3 L+ {} Fig. 8 shows the analogous case for the bipartite model.
4: for every link intersectiorfzy, yx] do In the second cas€j.,,j.) and (i.,j.) are both unique

5: for every nodei such thaflz;, y.] # [z, y] do for cut}. If cut} contains a node, the lemma is satisfied. In

* [Lx:yZL]}U {eut that has an endpoint &t y] and contains the f(_)llowing, assumeut; does not contain a node. Now we

7. for every (i, ;) do considercut), ([z* +a,y* +b], [v* 4+ a, w* +b]) andcut} ([z* —

8: L = LuU{cuts that have an endpoint [at., y] and another ¢, y* — dJ, [v* — ¢,w* — d]) to be translated versions ofit}
endpoint on(i, ) } such that (i)sign(a) = sign(c) and sign(b) = sign(d), (ii)

(o]

: for every (7, ) and nodek do

10:  for every node such thatk # [ do there does not exist any nodes in the parallelogram defined by

cut} and cut;, (which we denote “parallelogram3”) except

11 L = L U {cuts that have an endpoint @i j) and contain ’ ’ g ’

[z, yx] and [z;, vi]} those contained irut;, and in the parallelogram defined by
12:  for every(m,n) do . cut; and cut) (which we denote “parallelograr@™) except
13: L = L U {cuts that have an endpoint o, j), another those contained inut/, and (iii) no link intersectsi,, j.) or

endpoint on(m,n), and containxx, yx]}
14: for every cuty, ([zk, y], [k, wk]) € L do
15:  call evaluateCapacityofCutlcy, vk, vk, wg)

(iw, jw) In either parallelogram except amt), or cut}. Since
a node does not exist within the interior of either paratieéon

16: return cut;, all links intersected byut; must also cut one of the other three
Procedure evaluateCapacityofCutgs, y, vk, w) edges of each parallelogram.
17: capacityCut—0 Now choose the maximuna and ¢ such that the edge

18: for every (i,7) do

19 if 2, ([2, 9], [on, wi]) = 1 then ([=*,y*], [z* + a,y* + b]) of parallelogramB and the edge
20: capacityCut«— capacityCut+ ¢;;pi; ([z*,y*], [¢* —c, y*—d]) of parallelogranC' are both parallel to
21: if capacityCut> worstCaseCapacityCuhen the link (i, j») and the parallelograms satisfy the constraints in
22:  cuty, <= cutn([zk, ya, [vk, wi]) the paragraph above. This implies betkt, andcut/ contain

23:  worstCaseCapacityCut- capacityCut a node or contain a point wheteé,, j,) or (i., j.) intersects

a link. Since(iq, jo) is parallel to both edgefz*, y*], [z* +

We now use a number of steps to prove the theorem belawy* + b)) and ([z*,y*], [z* — ¢, y* — d])) and since(iy, j.,)

Theorem 2:Algorithm WLGM has a running time aP(N®)  can cut at most one of the edggs*, w*], [v* +a, w* +b]) and
and finds a worst-case line segment cut that is a solutioneto tfjv*, w*], [v* — ¢, w* — d]) or be parallel to them (as they both

GNIL Problem. lay on the same straight line), we know at least onewaf,
Before proving the theorem we present some lemmas docut) intersects the same links that are intersected:y; .
reduce the set of candidate worst-case cuts. Therefore, we can choosg b, ¢, andd such that eithetut;,

Lemma 3:There exists a worst-case cut that contains a node cut; is a worst-case cut and (i) contains a node (Fig. 10)
or has an endpoint at a link intersection. or (ii) contains a point wheréi,, j.) or (i, j.) intersects a



cuty,
cut},

Fig. 12.  Translatecut; along the line which contains it until one of its
endpoints intersects a link; we call this new eut}, . cut) intersects all links
cutjy intersects.

Fig. 11. Translate an endpoint ofity along the circumference of the circle
until the cut intersects a node or the translated endpotetsacts a link; call
this new cutcut} . Since every link which intersectsut} intersectscut;,,
cutj, is a worst-case cut.

link. In the latter case, we can translate this worst-cagdncu
a similar fashion to the first case to construct a worst-case c
which satisfies the lemma. |
We now consider two cases of worst-case cuts. The first case
is a worst-case cut that has andpointat a link intersection.
The second case is a worst-case cut tta@itainsa node. In
both cases, let the node or link intersection that is in the cti9- 13. Translate an endpoint ofity right along L until it intersects a link
be denoted byd. Lemma 4 handles the first case wherean intersection. Trlis new cut is the_ltfh on the right. We can also translate an
A e - endpoint ofcut; left along L until it intersects a node. This new cut is the
be considered as a link intersection. cut} on the left.
Lemma 4:If there exists a worst-case cut that has an end-

point on pointA, then (i) there exists a worst-case cut that has
an endpoint ond and has its other endpoint on a link or (ii)and has an endpoint on a link, then there exists a worst-case
there exists a worst-case cut that has an endpoinficand cut that contains, has an endpoint on a link, and at least one
contains a node that is net. of the following holds: (i) the cut contains a node that is not

Proof: Assume there exists a worst-case cut with endpoir, (i) one of the cut endpoints is also a link intersectionttha
A, denoted byut; . Therefore, the other endpointait; must is notA , or (iii) the cut has both endpoints on links.
be on a circle of radiug. Denote byf the angle ofcut; in Proof: Let cut; be a worst-case cut such that it contains
some coordinate system. Denotetythe angles fromd to all A and has an endpoint on a link.dfit} has an endpoint o,
nodes inside the circle and all intersections of links whie t then Lemma 4 implies Lemma 6. Assumet;, containsA and
circle (including links tangent to the circle). Chooge= ¢; has an endpoint on a link and domeet have an endpoint on
such thatj = argmin; |§ — 6;]. Choosecut), to be the cut with A. Denote the link which contains this endpoint byand one
endpoint at4 and having lengtth and angle?’. By definition of its endpoints by[z1, y1]. Denote the point at whickut;
of ¢ and thed;’s, all links intersecting-ut} must also intersect intersectsL by [z, yo]. Now translate the endpoint afutj
cut), (because betweehandd’ no link intersects with the circle along L so that this new cut still containd. That is, consider
and there exists no node within the interior of that secfinjus, the cut, of lengthi, with endpoint afax; + (1 — a)xo, ay1 +

cut), is a worst-case cut (see Fig. 11). m (1—a)yo] and passing through, for 0 < a < 1. Fora = 0 this
The following two lemmas handle the second case whereis justcut;. We increase: until a new cut, calledut),, either
can be considered as a node. has an endpoint that i5 away from A (we cannot translate

Lemma 5:If there exists a worst-case cut that contains poifigrther) or cut, can no longer satisfy; ., pi,jci jeut), =
A, then there exists a worst-case cut that containand has 3, ;) pi jcijeuty. In the first case, the cut has both endpoints
an endpoint on some link. on links. In the second case:t] satisfies at least one of the
Proof: Let cut; be a worst-case cut that intersects following: cut}, has an endpoint of that is a link intersection
with endpoints given byz*,y*] and [v*,w*]. Let the links (considered in Lemma 4}ut), intersects a node which is not
that intersectcut; closest to the endpoint:*,y*] be given A, or cut), has an endpoint o and the other endpoint on
by (ia,jo) and let the closest point to*, y*| where (i, j») a link. The first two possibilities are demonstrated in Fig. 1
intersectscut;, be given by[x,,y.]. We considercut) which Fig. 14, which demonstrates the third possibility, shaws),
is a translated version afut; such that it has endpoints atthat containsA and has both endpoints on links. [ |
[Za, Yo and atfv* + x, — 2, w* + yo — y*]. Since there exist  Using the lemmas above we now prove Theorem 2.
no links betweerz*, y*] and [z, y.], and because the same  Proof of Theorem 2The lemmas presented in this section
line contains bothcut; and cutj, we know that every link imply we only need to consider a polynomially sized set of
which intersectsut} also intersectsut), in the same location cuts. By Lemma 3 there are two possible cases of worst-case
(see Fig. 12). Thussutj, is a worst-case cut that contains cuts. The first case is a worst-case cut which has a endpoint at
and has an endpoint on a link (this endpoinfis,y.]). B a link intersection. The second case is a worst-case cuthwhic
Lemma 6:If there exists a worst-case cut that contaiis contains a node. In the first case, Lemma 4 implies that for



L-- only need to consider a polynomial-sized subset of all fdessi
Cut;cutgl cuts. We focus on th@ EC performance measure and then

briefly discuss how to obtain a worst-case cut for the other

performance measures. In this section, a cut refersciecalar

cut of a particular radius.

Before proceeding, note that the objective function in (3)
Fig. 14. Translate an endpoint ofit; alongL until it can no longer intersect takes .On a finite n.umber of bounded values. This leads to the
the bottom link. This new cut isut},. following observation.

Observation 3:There always exists an optimal solution to

(3) (i.e., a worst-case cut).
every link intersectionO(N*), there exists a possible worst- Above, we present an algorithm which finds a worst-case
case cut for every link and nod&,(N?). In the second case, circular cut under thd' £C' measure in the general model.
Lemmas 5 and 6 imply that for every node-link pait énd
some ||nkL)' O(N3), there exist several possib|e Worst_casélgorithm 3 Worst-Case Circular Cut in the General Model
cuts for every node and linkp(N?). Since naively checking (WCGM)
each cut for the total cut capacity tak€$N?), the algorithm 1 input: r, radius of cut
has a total running time a(N'®) (the first case provides the 2 WorstCaseCapacityCut 0

k : 3L« {}
greatest running tlme). | ] 4 for every (Z ,]) do

It should be noted that similarly to the bipartite case, al-s: 1, = L U{cuts that intersedti, j) at exactly one point and are
though the algorithm finds a worst-case cut, there may be othe  centered on the line which contaiis j)}
worst-case cuts with the same value. However, there careot t§:  for (k1) such that(i, j) # (k, ) do

; ; I & if (4,7) is parallel to(k, 1) then
a cut with a better value than the one obtained by the alguorith 8 L'Z LU {cuts that contain nodé or j on its boundary

and intersectk, ) at exactly one poirjt

B. ATTR, MFST, and AMF Performance Measures o: else .
. . ) . 10: L = L U {cuts that intersect:, 7) and (I, k) at exactly

Problem, presented in (2) should be slightly modified in ordea: for everycut, (xx,yx) € L do
to accommodate théA\TTR MFST, and AMF performance 12: call evaluateCapacityofCut(y, yx)
measures. We now briefly discuss how the algorithm has {g: retum cut; .
be modified in order to obtain results for these problems. @chggj;gt%ad?f%capac'tyOfCUt‘@’“’y’“)
Section VIII, we present numerical results obtained usiese 15 for every (i, j) do
modified algorithms. Using the lemmas and theorem abow, itie:  if minimum distance fron(i, §) to [z, yx] is < r then
easy to show that only a polynomial number of candidate cut3: capacityCut«— capacityCut+ ci;pi;
need to be checked in order to find the worst-case cut under alfy if capacityCut> worstCaseCapacityCuhen
of the performance measures. This is due to the fact that té@ &‘g&gggg&%’gg{‘%% capacityCut
performance measures are monotonic. Therefore, any awaliti
link removed/added only increases/decreases the measdre a
all the arguments supporting our lemmas still hold.
For each potential cut some links and/or nodes are remov

Hence, one has to update the network adjacency matrix. Thighthe GNIC Problem.
different operations have to be performed for each measure: Before proving the theorem, we present a useful lemma about
ATTR- If the network is fully connected, the value Ofcuts and line segments and then present some lemmas to reduce
L4 - )

ATTRIs 1. Otherwise, one has to sum over all componen r%e set of candidate cuts.

h | ' (k1 ’ herel is th ber of dp . Lemma 7:If a line segment intersects only the boundary of
e value ofk(k — 1), where is the number of no es in cut, then the line segment and cut intersect at exactly one

each of the components. Then the sum has to be divided ot

N(N—1).In orde_r to verify connectivity or to cqunt the Proof: Proof by contradiction. Assume a line segment

number of nodes in each component, Breadth First Seaﬁ per

BES) algorith the adi i ei | sects only the boundary of a cut and this intersection
(. ) algorithm or the adjacency matrix eigenvalues aBntains more than one point. Since a line segment and a cut
eigenvectors can be used.

. region are both convex, their intersection must be convex as

« MFST- Run a max-flow algqrnhm (e.gO(N?) [1]). . well. However, we assumed at least two points on the boundary
« AMF - Run a max-flow algorithm for every node pair. ¢ o ¢\t are in the intersection. The fact that the inteisec
must be convex implies the chord connecting these two points

VII. WORSFCASE CIRCULAR CUT — GENERAL MODEL st be in the intersection as well. Since part of the chord is

In this section we present a polynomial time algorithm fan the interior of the cut, this leads to a contradiction. m
finding a solution of the GNIC Problem; i.e., for finding a Lemma 8:If there exists a worst-case cut, denotedchy,
worst-case circular cut in the general model. We show that w#hich intersects exactly one link, then there exists a worst

Theorem 3:Algorithm WCGM has a running time of
Qd_Nﬁ) and finds a worst-case circular cut which is a solution
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Fig. 15. An example illustrating Lemma 8ut/. is a translated version of
cut’ such thatfz’, y’] lies on the line which contains the intersected link and

cut’. intersects the link at exactly one point (recalf,y’] is the center of Fig- 16. A case in the proof of Lemma 8ut;. is first translated in the
cut’). direction of (¢, j) to becomecut!’ which intersectgk, 1) at exactly one point

and intersects another link (in this cagey)) at exactly the same point. Then
cut! is translated along(t) towardsp(t¢) to cut/. such thatz’, y'] lies on
the line which containgk, [).

case cut, denoted byut!., that intersects this link at exactly

one point such thatr’, y’] lies on the line which contains the

link (recall [z', %] is the center otut;.). only the boundary of this cut at distinct and non-diametijca

Proof: Sincecut} is a worst-case cut and only intersect®pposing points or two links intersect only the boundaryhis t

a single link, any cut that intersects the same link is alsocat and one of these intersection points is a node. Denate thi

worst-case cut. See Fig. 15. B translated cut byut,.. Now, by Lemma 7 one of the following
Lemma 9:If there exists a worst-case cut, denotedchy’, must hold: eithercut!. intersects the parallel links at exactly

that intersects at least two links, then there exists a wearsé one point each where one of these points is a node, or a link

cut, denoted byut,, that intersects at least two links at exactlyhich intersected the interior afut!! now intersectsut,. at

one point each and at least one of the following holds: (i) axactly one point such thatit]. intersects two links at exactly

least two of the points are distinct and are not diametgicalbne point each such that they are not diametrically opposite

opposite, (ii) at least two of the points are distinct and ofe and distinct.

them is a node, or (iiij2’, y'] lies on a line containing one of  In second sub-case, two links interseat” at a single point,

the two links. C. This impliesC' is a node of at least one of these links. Now
The proof of the lemma above is similar to the proofs odhoose a link with a node given by’ and denote the link

the lemmas in Section VI. Essentially, it is shown that we cawy (k,1). Let p(¢) be a continuous parameterized closed curve

translate a worst-case cut such that it remains a worstaasewhich is always a distance from (k,[) such thatp(0) =

and satisfies the properties in the lemma. [”,y"] andp(tc) wherete > 0 is the point onp(t) closest
Proof: Assume a link that intersectsit’: has node loca- to C' that intersects the line containing:,!) (see Fig. 16).
tions given by[z;, y;] and[z;, y;]. Considercut, [z* + h(z; — Additionally, we require thap(t) is exactlyr units away from

zi),y*+h(y; —y;)] whereh is the minimum nonnegative valueC for 0 < t < t¢. Let p,(t) and p,(t) denote thexz and
such that only the boundaries of this cut and some link iet#rs y components ofp(¢) respectively. Sincecut!” intersectsC,
Denote this translation afut’ by cut! and note by Lemma 7 we know [z”,y"] is on a semi-circular shaped part pf¢)
this cut must intersect at least one link at exactly one poirfthese are the only parts @f(¢) that arer units away from
Every link which is intersected byut’ must intersectcut! an endpoint of(k,1)). Now considercut, [p,(t), py(t)] where
because as a line segment and a cut are continuously tedhslatis the minimum value such that two links intersect only the
away from each other, the last non-empty intersection is aoundary of this cut and these intersection points arendisti
intersection of their boundaries. Thusyt! is also a worst- or ¢t = tc. Denote this translated cut byat;. If ¢ = to we
case cut. In the proceeding we consider two cases. In the fksbw cut.. is centered on the line which contaiiis, ). As
case we assumait” intersects at least two links at exactly ondefore, we know every link which is intersected byt;” must
point each and in the second case we assumf intersects intersectcut,.. This is because as a line segment and a cut
exactly one link at exactly one point. are continuously translated away from each other, the larst n
We first consider the case wheret!’ intersects at least two empty intersection is an intersection of their boundanéso,
links at exactly one point each (in addition to possibly othéhe links that interseatut; at C' remain intersected throughout
links that intersect the interior ofut’). Denote one of the the translation becauseit,.[p.(t), p,(t)] intersectsC' on 0 <
points by A and another byB. If A and B are distinct and t < tc. Thus,cut;. is a worst-case cut and by Lemma 7 we
not diametrically opposite, the conditions in the lemma ainow two links intersect this cut at exactly one point eactl an
satisfied. Now we will consider two sub-cases. In the first subne of the following: i) these points are distinct and one of
case, we assumé and B reside in two diametrically opposingthem is a node given by’ or ii) [z',3'] lies on a line that
points oncut” and in the second sub-case we assutnand contains(k, ) ([z',y'] = p(tc))-
B are not distinct. In the first sub-case, if eithéror B is a Now we consider the case wheret! intersects exactly one
node, the lemma holds true. If neithdror B are nodes, then link at exactly one point (in addition to other links thatergect
A and B are diametrically opposing points where parallel linkghe interior of cut!’). Similarly as above, denote this link by
are tangent teut!’. Denote one of these parallel links by j). (k,1). Let p(¢t) be a continuous parameterized closed curve
Now considercut, [z” + h(z; — x;),y"” + h(y; — v;)] whereh  which is always a distance from (k,l) such thatp(0) =
is the minimum nonnegative value such that two links interrse[z”, y"] (see Fig. 17). Considetut, [p,(t),py(t)] wheret is
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Fig. 17. A case in the proof of Lemmad&ut is first translated in the direction
of (i, j) to becomecut’ which intersectgk, [) at exactly one point. Theeut!’
is translated along(¢) to cut, where(s, j) and (k,) each intersectut,. at Fig. 18

. Line segments cuts optimizing£ZC for h = 2 - the red cuts
exactly one point.

maximizeT'EC' and the black segments are nearly worst-case cuts.

the minimum nonnegative value such that two links interseﬁt/,

only the boundary of this cut (we assume:* intersects at least CGM enumerates all these possible cuts. It considers each
y y r link, O(N?), and finds both cuts that intersect the link at exactly

two links). By Lemma 7 we know these two links intersect th% point and whose center lies on the line which contairss thi

: . n
cut at exact!y one point each. So this case reduces to the fhrﬁf Then, it considers every combination of two link(N'*),
case for which we know the lemma holds.

Lemma 10-There are at mosR0 cuts of radiusr that and if the links are not parallel it finds every cut (if any éxis

intersect two non-parallel line seament links at exacthe o which intersect each of the two links at exactly one pointsuc
: P > S0 - ¥ O hat these points are distinct. By Lemma 10 we know there are
point each such that these points are distinct.

Proof: If a link intersects a cut at exactly one point, ther?t most20 of these cuts for every pair of links. If the links

either a node of the link intersects the boundary of the ctier are parallel, we need only _conS|der cuts that mtersept dne o
S ; .. .. the links at exactly one point and whose boundary intersects
link is tangent to the cut (we call a link tangent to a cut if th

line containing the link is tangent to the boundary of the).cut(t;ije other links endpoint. In total, Algorithm WCGM consider

’ . . ;
For a particular pair of links, this implies a cut that sa¢isfthe O(N”) cuts and since naively checking each cut for the total

. 5 .
lemma falls into at least one of three cases: i) the boundhry%xtzle(r:aenc:‘iﬁzpt?rg;yorfeon&%e)d takBgN*), the algorithm hai a

the cut intersects two distinct nodes (one from each lin), i As mentioned in Section I1I-B, the formulation of the GNIC

the boundary of the cut intersects a node of one link and the . . e
cut is tangent to the other link, or iii) both links are tangtm Eroblem, presented in (3), can be slightly modified in order

the cut to accommodate thATTR MFST, and AMF performance
) measures. This modification is done in exactly the same way
In case one, by geometry we know there are at most two cuts . .
. . - as it was done for the GNIL Problem (see Section VI-B).
of radiusr whose boundary contains two distinct nodes. In case :
. d It should be noted that we can also consider the case of an
two, given a node and a link, we know by geometry there 88Miptic cut with fixed axis (that is, no rotation of the ellipse
at most two cuts of radiug that the link is tangent to and. P ' P

whose boundary contains the node. In case three, given s considered). This disaster model more closely resentbées

non-parallel links, the lines containing these segmenixidi ei?ect of an .EMP' This case can be solvec_j by applying an aff!ne
) . . transformation to the network node locations and then mopni
the plane into four pieces. There exist at most one cut tang

to both lines in each of these pieces. Thus, there are at mos GM.

four cuts tangent to both links. Since for a pair of non-gdatal

links there are four pairs of nodes to consider (with at mwst t VIIl. N UMERICAL RESULTS

cuts per pair that satisfy the lemma), four endpoint-linkpa In this section we present numerical results that demawestra

(with at most two cuts per pair that satisfy the lemma), artie use of the algorithms presented in sections VI and VII.

one link-link pair (with at most four cuts per pair that shtis These results shed light on the vulnerabilities of a spefilfer

the lemma), we know there exists at mastcuts that satisfy network. Clearly, the algorithms can be used in order toinbta

the lemma. m results for additional networks or for a combined fiber plaft
Note that the bound above is a simple upper bound on theveral operators. The results were obtained using MATLAB.

number of possible cuts and can possibly be further reduced. We used Algorithm WLGM, presented in Section VI, to
Using the above lemmas, we now prove Theorem 3. compute worst-case cuts under the=C, ATTR, MFST,

Proof of Theorem 3The lemmas presented in this sectiomnd AM F' performance measures for a fiber plant of a major

imply there exists a worst-case cut that intersects a link aetwork provider [23]. In all cases, we found that the result

exactly one point such that the center of this cut lies on tlae intuitive. We also used Algorithm WCGM, presented in

line containing this link or there exists a worst-case cut thSection VII, to compute worst-case circular cuts under the

intersects two links at exactly one point each and at least oMFST performance measure for the same fiber plant. We found

of the following: (i) at least two of the points are distincthese circular cuts are in similar locations to their lingraent

and are not diametrically opposite or (i) at least two of theounterparts. All distance units mentioned in this sectigmin

points are distinct and one of them is a node. Algorithdongitude and latitude coordinates (one unit is approxatyat
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Fig. 19. Line segments cuts optimizing tA&'T'R for h = 2 - the red cuts Fig. 21. Line segments cuts optimizing the\/ F* for h = 2 - the red cuts
minimize ATT R and the black segments are nearly worst-case cuts. minimize AM F' and the black segments are nearly worst-case cuts.

Fig. 20. Line segments cuts optimizing F'ST between Los Angeles and Fig. 22.  The impact of circular cuts of radius 2 on theFST' between Los
NYC for h = 4 - the red cuts minimizeM FST and the black segments Angeles and NYC. Red circles represent cuts that resul/if'ST = 0 and

are nearly worst-case cuts. Cuts which intersect the noeleesenting Los black circles resultinV/ /ST = 1. Cuts which intersect the nodes representing
Angeles or NYC are not shown. Los Angeles or NYC are not shown.

60 miles) and for simplicity we assume latitude and longitudBefore that, we present in Fig. 21 line segment cuts ef 2
coordinates are projected directly e, y] pairs on the plane. Which minimize theAM F' performance measure. TheM F

We al