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Abstract— We consider a system consisting of N parallel
queues, served by one server. Time is slotted, and the server
serves one of the queues in each time slot, according to some
scheduling policy. In the first part of the paper, we characterize
the buffer overflow exponents and the likeliest overflow trajec-
tories under the Longest Queue First (LQF) scheduling policy.
Under statistically identical arrivals to each queue, we show
that the buffer overflow exponent can be simply expressed in
terms of the total system occupancy exponent of m parallel
queues, for some m ≤ N . We next turn our attention to the
rate of queue length information needed to operate a scheduling
policy, and its relationship to the buffer overflow exponents. It
is known that LQF scheduling has superior overflow exponents
compared to queue blind policies such as processor sharing (PS)
and random scheduling. However, we show that the overflow
exponent of the LQF policy can be preserved under arbitrarily
infrequent queue length information.

I. INTRODUCTION

Scheduling is an essential component of any queueing
system where the server resources need to be shared between
many queues. Perhaps the most basic requirement of a
scheduling algorithm is to ensure the stability of all queues in
the system, whenever feasible. Much research work has been
reported on “throughput optimal” scheduling algorithms that
achieve stability over the entire capacity region of a network
[1], [2]. While stability is an important and necessary first-
order metric, most practical queueing systems have more
stringent Quality of Service (QoS) requirements. For exam-
ple, streaming voice and video streams are delay sensitive.
Further, due to the finiteness of the buffers in practical
systems, maintaining a low buffer overflow probability is an
important objective.

In this paper, we consider a system consisting of N
parallel queues and a single server. A scheduling policy
decides which of the queues gets service in each time slot.
Our goal is to better understand the relation between the
buffer overflow probability and the amount of queue length
information required to operate a scheduling policy. The
scheduling decisions may take into account the current queue
lengths in the system, in which case we will call the policy
‘queue aware.’ If the scheduling decisions do not depend on
the current queue lengths, except to the extent of knowing
whether or not a queue is empty, we will call it a ‘queue
blind’ policy.

In the first part of this paper, we analyze the large deviation
behavior of the widely studied Longest Queue First (LQF)
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policy. We assume that the queues are fed by statistically
identical arrival processes. However, the input statistics could
otherwise be very general. Under such a symmetric traffic
pattern, we show that the buffer overflow exponent under
LQF scheduling is expressible purely in terms of the total
system occupancy exponent of an m queue system, where
m ≤ N is determined by the input statistics. We also show
that the likeliest overflow trajectories are straight lines.

In the second part of the paper, we turn our attention to
the rate of queue length information needed to operate a
scheduling policy, and its relationship to the buffer overflow
exponent. Although any work conserving policy (such as
LQF, processor sharing (PS) or random scheduling) will
achieve the same throughput region and total system occu-
pancy distribution, the LQF policy outperforms the queue
blind policies in terms of the buffer overflow probability.
Equivalently, this implies that the buffer requirements are
lower under LQF scheduling than under queue blind schedul-
ing, if we want to achieve a given overflow probability.
For example, our study indicates that under Bernoulli and
Poisson traffic, the buffer size required under LQF scheduling
is only about 55% of that required under random scheduling,
when the traffic is relatively heavy. On the other hand,
with LQF scheduling, the scheduler needs queue length
information in every time slot, which leads to a significant
amount of control signalling. Hence, we identify a “hybrid”
scheduling policy, which achieves the same buffer overflow
exponent as the LQF policy, with arbitrarily infrequent queue
length information.

A. Related Work

To our knowledge, Bertsimas et. al. [4] were among the
first to analyze the large deviations behavior of parallel
queues. They consider the case of two parallel queues,
and characterize the buffer overflow exponents under two
important service disciplines, namely Generalized Proces-
sor Sharing (GPS) and Generalized Longest Queue First
(GLQF). We also refer to the related papers [5], [6], [7]
where the authors analyze a system of parallel queues, with
deterministic arrivals and time-varying connectivity. In [8],
the authors study large deviations for the largest weighted
delay first policy, and [9] deals with large deviations of
max-weight scheduling for general convex rate regions. In
each case, the optimal exponent and the likeliest overflow
trajectory are obtainable by solving a variational control
problem. Often times, the optimal solution to the variational
problem can be found by solving a finite dimensional optimal
control problem [4], [8].
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Fig. 1. N parallel queues served by one server

The rest of this paper is organized as follows. In Section
II, we present the system description, and some preliminaries
on large deviations. Our main result on the large deviation
behavior of LQF scheduling is presented in Section III. Sec-
tion IV compares LQF scheduling to queue blind scheduling
in terms of the overflow probability. In Section V, we study
scheduling policies with infrequent queue length information.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Fig. 1 depicts a system consisting of N parallel queues,
served by one server. We assume that time is slotted, and
the server is capable of serving one packet per slot. Arrivals
occur according to a random process Ai(t), i = 1, . . . , N,
which denotes the number of packets that arrive at queue
i during slot t. The arrivals to the different queues are
independent. We assume a symmetric traffic pattern, i.e.,
the arrival processes to each queue are statistically identical
to each other. For ease of exposition, let us assume that
the arrivals are independent across time slots, although our
results hold under more general assumptions1. The average
arrival rate to a queue is E [Ai[t]] = λ packets/slot for each i.
For stability, we assume that the condition λ < 1

N is satisfied.
Let us also define

Si[t1, t2] =
t2∑

τ=t1

Ai[τ ], t1 ≤ t2

as the number of arrivals to queue i between time slots t1
to t2.

The log-moment generating function of the input process2

to each queue is assumed to exist, and is given by

Λ(θ) = logE [exp(θAi[t])] .

The convex dual of Λ(θ) is defined by

Λ∗(x) = sup
θ

[θx− Λ(θ)].

Λ∗(x) is referred to as the rate function of the large deviation
principle (LDP) satisfied by each input process.

We are interested in the probability of a buffer overflow,
i.e., P{maxi=1,...,N Qi[0] ≥ M}, under a given scheduling
policy Π, where, Qi[0] is the queue length at time slot 03.

1We only need the input processes to satisfy a sample path large deviation
principle (LDP), as detailed in [4].

2This definition applies when the inputs are independent across time.
If the inputs are correlated across time slots, we define Λ(θ) =
limn→∞ 1

n
logE

[
exp(θ

∑n
t=1 Ai[t])

]
.

3The queues are assumed to be initialized such that Qi[−MT ] = 0, 1 ≤
i ≤ N for some T > 0. As M → ∞ with T fixed, Qi[0] will approach
the steady-state.

More specifically, we are interested in the exponent of the
above probability under the large-buffer scaling, which is
defined as

EΠ
N = lim

M→∞
− 1

M
lnP{ max

i=1,...,N
Qi[0] ≥ M}. (1)

We emphasize that this exponent depends on the scheduling
policy Π, as well as the system size N and the input statistics.
We also define the exponent corresponding to the total system
occupancy exceeding a certain limit:

ΘN = lim
q→∞

−1
q

lnP{
N∑

i=1

Qi[0] ≥ q}. (2)

As we shall see, the system occupancy exponent in (2) plays
an important role in our analysis of the buffer overflow
exponent (1). The following well-known lemma asserts that
ΘN is the same for all work-conserving scheduling policies.

Lemma 1: All work conserving policies achieve the same
steady-state system occupancy distribution (and hence the
same system exponent ΘN ).
In fact, the above result holds at a sample-path level, since
one packet would leave the system every time slot if the
system is not empty, under any work conserving policy.

We mainly analyze the Longest Queue First (LQF)
scheduling policy, which, as the name states, serves the
longest queue in each slot, with an arbitrary tie-breaking
rule. We also consider two other work-conserving policies:
random scheduling (RS), which serves a random occupied
queue in each slot (each with equal probability), and proces-
sor sharing (PS), which divides the server capacity equally
between all occupied queues. Note that LQF scheduling is
queue-aware, while RS and PS are queue-blind.

III. LARGE DEVIATION ANALYSIS OF LQF SCHEDULING

In this section, we present our main results regarding
the buffer overflow exponents and trajectories under LQF
scheduling. We begin by characterizing the system occu-
pancy exponent ΘN for a work conserving policy.

Proposition 1: Under any work conserving policy, the
system occupancy exponent is given by

ΘN = inf
a>0

1
a
Λ∗(a +

1
N

) (3)
Proof: (Outline) The result is a consequence of the fact

that the total system occupancy distribution is the same as
the queue length distribution of a single queue, served by
the same server, but fed by the sum process

∑
i Ai(t). Since

the input processes to the different queues are independent
and identically distributed (i.i.d), the log-moment generating
function of the sum process is NΛ(θ). From the definition
of the convex dual, the rate function of the sum process can
be expressed as NΛ∗(x/N). Once the rate function of the
input process is known, the overflow exponent of a single
server queue can be easily computed; see [10]. 2

Let us denote by a∗N the optimizing value of a in (3).
We now define scaled processes for the arrivals and queue

lengths, which are often used to study sample path large
deviations in the large buffer regime. For every sample path



that leads to a buffer overflow at time slot 0, there exists a
time −n ≤ 0 for which both queues are empty. Since we
are interested in large M asymptotics, we let T = − n

M , and
define the sequence of scaled processes4

qi(t) =
Qi[bMtc]

M
, i = 1, . . . , N, t ∈ [−T, 0],

and
Si(t) =

Si[−MT, bMtc]
M

,

where b·c denotes the floor function. The initial condition
implies that qi(−T ) = 0, i ≤ N, and qi(0) = 1 implies
the overflow of queue i at time 0. We say that the input
process on queue i has empirical rate xi(t) ≥ 0 in the
interval [−T, 0] if the following is satisfied for any ε > 0
and large enough M :

∣∣∣∣Si(t)−
∫ 0

−T

xi(t)dt

∣∣∣∣ < ε, ∀t ∈ [−T, 0]

The exponent corresponding to the input process on queue
i exhibiting an empirical rate xi(t), t ∈ [−T, 0] is given by
Mogulskii’s theorem [11]:

∫ 0

−T

Λ∗(xi(t))dt. (4)

We remark that Mogulskii’s theorem applies only to arrivals
processes which are independent across time. If the arrivals
are correlated in time, the results in this paper will still apply,
if we take equation (4) as a starting point. That is, we need
to assume that the arrival process to each queue satisfies a
sample path LDP with rate function given by (4).

We now specify the evolution of the scaled queue lengths
qi(t) under LQF scheduling. Let I be any non-empty subset
of {1, 2, . . . , N}. We define RI as the subset of [0, 1]N , such
that (q1(t), . . . , qN (t)) ∈ RI iff qi(t) = qj(t) ∀i, j ∈ I, and
for any k /∈ I, j ∈ I, qk(t) < qj(t). Intuitively, in region
RI , the queues in the index set I ‘grow together’, and all
other queues are smaller. It is clear that the regions RI are
convex, and constitute a partition of the set [0, 1]N as I
ranges over all non-empty index sets. The queue evolution
equation in region RI is given by

∑

i∈I
q̇i =

∑

i∈I
xi(t)− 1;

q̇k = xk(t), ∀k /∈ I (5)

We now state the main result regarding the large deviations
behavior of LQF scheduling.

Theorem 1: Under statistically independent and identical
arrival processes to each queue, the LD behavior of LQF
scheduling is given as follows
(i) The exponent is given by

ELQF
N = min

k=1,...,N
kΘk, (6)

4We suppress the dependence on M for simplicity of notation.

where Θk is the system occupancy exponent for k
parallel queues, given by (3).

(ii) For a given λ, suppose that a unique j ≤ N minimizes
(6), i.e.,

j = arg min
k=1,...,N

kΘk.

Then, for that λ, the likeliest overflow trajectory consists
of j queues reaching overflow. More specifically, the
likeliest overflow trajectory5 (in the (q1(t), . . . , qN (t))
space) is the line segment joining the origin to the point
(q1(0) = 1, . . . , qj(0) = 1, qj+1(0) = λ

a∗j
, . . . , qN (0) =

λ
a∗j

), where λ
a∗j

< 1
The proof of the theorem follows a rather elaborate

sample path large deviations argument that involves solving
a variational problem. We relegate the proof to the appendix,
and discuss the theorem intuitively.

The first part of the theorem states that the buffer overflow
exponent under LQF scheduling is only a function of the
system occupancy exponents Θk for k ≤ N. The second
part of the theorem assets that if ELQF

N equals jΘj for a
unique j ≤ N, then the likeliest overflow scenario consists
of j queues overflowing, and the other N − j queues grow
approximately to M λ

a∗j
, which is less than M . In particular,

the queues that do not overflow are never the longest, and
hence get no service at all. The service is shared equally
among the j queues that overflow, and a∗j denotes the likeliest
rate at which the j queues overflow in spite of getting
all the service. On the other hand, the queues that do not
overflow get to keep all their arrivals, which occur at the
average rate λ. The exponent for this case is given by jΘj ,
which corresponds to all the queues in a j-queue system
overflowing together. This is because the other N−j queues
which do not get service, get arrivals at the average rate, and
hence do not contribute to the exponent.

A. Illustrative Examples with Bernoulli Traffic

In this section, we obtain the LQF exponents explicitly for
a system with symmetric Bernoulli inputs to each queue. We
deal with N = 2 and N = 3, since these cases are easily
visualized, and elucidate the nature of the solution partic-
ularly well. We begin by making the following elementary
observation regarding LQF scheduling and Bernoulli arrivals

Proposition 2: Under Bernoulli arrivals and LQF schedul-
ing, the system evolves such that the two longest queues
never differ by more than two packets.
Next, we state a well known result regarding the rate function
Λ∗(·) for a Bernoulli process.

Proposition 3: For a Bernoulli process of rate λ, the rate
function is given by

Λ∗(x) = D(x||λ) := x log
x

λ
+ (1− x) log

1− x

1− λ
,

where D(x||λ) is the Kullback-Liebler (KL) divergence (or
the relative entropy) between x and λ.

5The symmetry allows us to only present the case where the first j queues
overflow.



The result is a consequence of Sanov’s theorem for finite
alphabet [10].

Let us now consider a two queue system with Bernoulli
arrivals. For this simple system, it turns out that the exponent
can be computed from first principles, without resorting to
sample path large deviations. First, the system exponent Θ2

under Bernoulli arrivals can be computed directly from the
system occupancy Markov chain, yielding

Θ2 = 2 ln
1− λ

λ
.

Proposition 4: Under LQF scheduling and Bernoulli ar-
rivals, the following statements hold for the case N = 2 :
(i) The likeliest overflow trajectory is along the diagonal,

(q1 = q2)
(ii) ELQF

2 = 2Θ2 = 4 ln 1−λ
λ .

Proof: Part (i) of the result is a simple consequence of
proposition 2. Specifically, suppose that one of the queues
(say Q1) overflows, so that Q1 ≥ M. From proposition 2, it
follows that Q2 ≥ M −2. Thus, when an overflow occurs in
one queue, the other queue is also about to overflow, so that
the only possible (and thus the likeliest) overflow trajectory
is along the diagonal.

In order to show part (ii), we first argue that ELQF
2 ≥

2Θ2. Indeed, when a buffer overflow occurs, the total system
occupancy is at least 2M − 2. Thus, the buffer overflow
probability is upper-bounded by the probability of the total
system occupancy being at least 2M − 2 :

P{Q1 ≥ M} ≤ P{Q1 + Q2 ≥ 2M − 2}.
We thus have,

ELQF
2 = lim

M→∞
− 1

M
lnP{Q1 ≥ M}

≥ lim
M→∞

− 1
M

lnP{Q1 + Q2 ≥ 2M − 2} = 2Θ2,

where the last equality follows from the definition of Θ2. To
show a matching upper bound, note that when the system
occupancy is 2M or greater, at least one of the queues
will necessarily overflow. We can then argue as above that
ELQF

2 ≤ 2Θ2. 2

Let us now analyze a system with three queues, fed
by symmetric Bernoulli traffic. In this case, although the
longest two queues grow together, it is not immediately
clear how the third queue behaves during overflow. Once the
system exponent Θ3 is computed from (3), we can invoke
the theorem 1, and conclude that the exponent is given by
min(2Θ2, 3Θ3). Note that Θ1 is infinite in this case, since a
single queue fed by Bernoulli input cannot overflow. Fig. 2
shows a plot of 2Θ2 and 3Θ3 as functions of the input rate λ
on each queue. It is clear from the figure that for small values
of λ, the exponent 2Θ2 dominates the overflow behavior. In
this regime, the likeliest manner of overflow involves two
queues reaching overflow, while the third queue grows to
approximately M λ

1/2−λ . For larger values of λ (> 0.07),
the exponent is 3Θ3, and all three queues overflow together.
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Fig. 2. Exponent behavior for N = 3 under Bernoulli traffic.

IV. LQF VS. QUEUE BLIND POLICIES

In this section, we compare the performance of LQF
scheduling with that of queue-blind policies. We only con-
sider a two queue system, since the large deviation behavior
of PS and RS is difficult to characterize for N > 2. The
following result for processor sharing follows from [4].

Proposition 5: The buffer overflow exponent for a two
queue system under PS is given by

EPS
2 = inf

a>0

1
a

[
Λ∗(a +

1
2
) + Λ∗(

1
2
)
]

. (7)

The likeliest manner of overflow under processor sharing is
as follows. Suppose it is the first queue that overflows. The
second queue receives traffic at rate 1/2, which is also its
service rate. Thus, the second queue grows to at most o(M).
The first queue receives service at rate 1/2 and input traffic
at rate a∗ps + 1/2, where a∗ps optimizes (7). Thus, a∗ps is the
rate of overflow of the first queue.

Next, we present the exponent for random scheduling.
Proposition 6: The buffer overflow exponent for a two

queue system under RS is given by

ERS
2 = inf

a>0

1
a

inf
φ∈(0,1)

[
Λ∗(a + 1− φ) + Λ∗(φ) + D(φ||1

2
)
]

.

(8)
The proof is outlined in the appendix. We now describe

the most likely overflow event. Suppose queue 1 overflows.
The parameter φ that appears in the inner infimization in (8)
denotes the empirical fraction of service received by queue
2. In other words, the ‘fair’ coin tosses that decide which
queue to serve when both queues are nonempty, ‘misbehave’
statistically. The exponent corresponding to this event is
given by D(φ|| 12 ). If φ∗ is the optimal value of φ in (8),
the second queue receives traffic at rate φ∗, and therefore
grows to an o(M) level. The first queue receives traffic at
rate a∗rs + 1− φ∗, where a∗rs is the optimizing value of a in
(8).

Proposition 7: It holds that ERS
2 ≤ EPS

2 ≤ ELQF
2 .

Proof: To see the first inequality ERS
2 ≤ EPS

2 , note that
substituting φ = 1/2 in the RS exponent (8) yields the PS
exponent. To prove the second inequality, it suffices to show
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Fig. 3. Comparison of LQF, PS and RS exponents for a two queue system,
under (a) Bernoulli arrivals (b) Poisson arrivals

that EPS
2 ≤ Θ1 and EPS

2 ≤ 2Θ2. First note that for all
a ≥ 0, we have Λ∗(a + 1/2) ≥ Λ∗(1/2) since the input rate
λ is less than 1/2. Thus, for all a ≥ 0,

2
a
Λ∗(a + 1/2) ≥ 1

a
[Λ∗(a + 1/2) + Λ∗(1/2)].

Taking inf on both sides, we have EPS
2 ≤ 2Θ2. Similarly,

for all a > 0, it can be shown that Λ∗(a + 1) ≥ Λ∗(a +
1/2) + Λ∗(1/2), using the fact that Λ∗()̇ is an increasing
convex function, for arguments greater than λ. Dividing the
preceding inequality by a and taking infimum, it follows that
EPS

2 ≤ Θ1. 2

In Fig. 3, we plot the exponents corresponding to LQF,
PS and random scheduling for a two queue system, as a
function of the arrivals rate λ. Fig. 3(a) corresponds to
having Bernoulli arrivals in each time slot, while in Fig.
3(b), the number of arrivals in each slot is a Poisson random
variable. The first observation we make from Fig. 3 is that,
for a given arrival rate, the exponent values for a given
policy are generally larger under Bernoulli traffic. This is
because Poisson arrivals have a larger potential for being
more bursty, and hence the overflow probability is larger
(and the exponent smaller) for a given average rate. Next,
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Fig. 4. Ratio of LQF exponent to PS and RS exponents for (a) Bernoulli
arrivals (b) Poisson arrivals.

notice that the LQF exponent under Poisson traffic (Fig.
3(b)) exhibits a cusp at λ ≈ 0.27. This is because under
Poisson traffic, we have two competing exponents Θ1 and
2Θ2, corresponding respectively to one queue and both the
queues overflowing. For λ below the cusp, Θ1 dominates,
and vice-versa. On the other hand, under Bernoulli traffic,
Θ1 is infinite. Thus, the LQF exponent is given by 2Θ2,
which is a smooth curve as shown in Fig. 3(a).

In Fig. 4, we plot the ratio of the LQF exponent to
the PS and RS exponents. This ratio is directly related to
the savings in the buffer size that results from using LQF
scheduling, as opposed to using one of the queue blind
policies. For example, consider the ratio of the LQF exponent
to the RS exponent, when the traffic is relatively heavy
(say λ > 0.3). This is the regime where overflows are
most likely to occur. We see that under both Bernoulli and
Poisson traffic, the LQF exponent is roughly 1.8 times the
RS exponent. This implies that in order to achieve a certain
overflow probability, the LQF policy requires only 55% of
the buffer size required under random scheduling in heavy
traffic. A similar comparison can also be made between the
LQF and PS exponents.



V. SCHEDULING WITH INFREQUENT QUEUE LENGTH
INFORMATION

We have seen that the LQF policy has a superior queue
overflow performance compared to queue blind policies. This
is because it can discern and mitigate large queue build-up
on one of the queues. On the other hand, the scheduler needs
to know queue length information in every slot in order to
perform LQF scheduling. In this section, we will show that
the buffer overflow performance of LQF scheduling can be
maintained even if we allow for arbitrarily infrequent queue
length information to be conveyed to the scheduler.

The basic idea is that it is sufficient to serve the longest
queue only when the queues are large. When the queue
lengths are all small, we can save on the queue length
information by adopting a work conserving, but queue-blind
scheduling strategy. To achieve this, we suggest the following
scheduling policy which is a ‘hybridized’ version of the
queue-blind RS, and the LQF policy.

Hybrid Scheduling: Let K < M be a given queue length
threshold. In each slot, if all queues are smaller than K,
then serve any random occupied queue. If at least one queue
exceeds K, serve the longest queue in that slot.

The following theorem asserts that the hybrid policy
asymptotically achieves the same buffer overflow exponent
as LQF scheduling, while requiring queue length information
in a vanishingly small fraction of slots.

Theorem 2: Suppose K increases sub-linearly in the
buffer size M (i.e., K(M) = o(M)) such that K(M) →∞
as M →∞. Then,
(i) The buffer overflow exponent of hybrid scheduling is

equal to ELQF
N

(ii) The fraction of slots in which queue length information
is required approaches zero

We provide a heuristic explanation of the result due to
space constraints. Observe that queue length information
is required only in time slots when the longest queue in
the system is longer than K. Since RS is a stabilizing
policy, the steady state probability that the longest queue
exceeds K approaches zero as K becomes large. (In fact,
this probability goes to zero exponentially in K.) Therefore,
the fraction of slots in which queue length information is
required can be made arbitrarily small. On the other hand,
the overflow exponent remains the same as in the LQF case.
This is because when we consider the scaled queue lengths
as M becomes large, the hybrid policy differs from LQF
scheduling only in an infinitesimal neighborhood around the
origin.
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APPENDIX

A. Proof of Theorem 1

The proof can be divided into two parts. The first part
involves showing that the queue length process under LQF

scheduling satisfies an LDP, whose rate function is given
by the solution to a variational problem. The second step
involves solving the variational problem in the case of
symmetric arrivals, and proving that the optimal solution to
the variational problem takes a simple form, as given by the
theorem.

The existence of an LDP for the queue length was shown
in [8] for longest weighted waiting time as well as longest
weighted queue length scheduling. Assuming without loss
of generality that the first queue overflows, the exponent is
given by the following variational problem

min
∫ 0

−T

[
N∑

i=1

Λ∗(xi(t))

]
dt (9)

subject to
qi(−T ) = 0, ∀i

q1(0) = 1,

T : free,

qj(0) : free for j > 1,

and the queue length trajectories qi(t) evolve according to
(5).

Our emphasis is on solving the above variational problem
under the symmetric traffic scenario. In (9), the empirical
rates xi(t) are the control variables, and the cost function is
the exponent corresponding to the control variables, as given
by Mogulskii’s theorem. In words, the variational problem is
to find the set of empirical rates which leads to the smallest
exponent, and results in the overflow of at least one queue.
Note that the above is a free time problem, i.e., the time
T over which overflow occurs is not constrained. Also, it
is possible for queues other than the first queue to reach
overflow.

An important property which helps us solve (9) is given by
the following lemma, which states that when the scaled queue
lengths are within one of the regions RI , the empirical rates
xi(t) can be taken as constants, without loss of optimality.

Lemma 2: Fix a time interval [−T1,−T2] and consider
a control trajectory xi(t), i = 1, . . . , N, t ∈ [−T1,−T2],
such that the scaled queue lengths qi(t), i = 1, . . . , N, t ∈
[−T1,−T2] stay within a particular region RI . Define the
average control trajectory x̄i in the interval [−T1,−T2] as

x̄i(τ) =
1

T1 − T2

∫ −T2

−T1

xi(t)dt

for i = 1, . . . , N and τ ∈ [−T1,−T2]. Then, the queue
lengths under the average control trajectory x̄i(t) lie entirely
within RI , and satisfy the same initial and final conditions
at t = −T1 and t = −T2 respectively. Furthermore, the cost
achieved under the (constant) control trajectory x̄i(t) is not
larger than the cost achieved under xi(t).

The above result follows from the convexity of Λ∗(·) and
of the sets RI , and the proof is akin to the two dimensional
case treated in [4, Lemma 5.1]. Using Lemma 2, we next
compute the exponents corresponding to overflow trajectories



that stay entirely within a particular region RI . Later, we
will show that overflow trajectories that traverse more than
one region cannot have a strictly smaller exponent than
trajectories that stay within exactly one of the regions. This
will give us the result we want.

Consider an overflow trajectory that lies entirely within
RIj

, where |Ij | = j for some 1 ≤ j < N. In this case,
the j queues in the index set Ij reach overflow, while the
other N−j queues are strictly smaller, and hence receive no
service. Due to the symmetry of arrivals, we can compute
the exponent assuming that Ij = {1, . . . , j}, i.e., the first j
queues overflow. Lemma 2 implies that the optimal empirical
rates can be restricted to constant values6 xi, i = 1, . . . , N
for this particular overflow event. Let a = 1/T denote the
rate at which the first j queues overflow. Since each queue
k ∈ {1, . . . , j} overflows at rate a, the empirical input rate
xk must be of the form xk = a + φk, where φk ≥ 0 can be
thought of as the rate at which queue k receives service in
the overflow interval. Since the first j queues receive all the
service, we have

∑j
k=1 φk = 1. Next, for l > j, we need

xl ≤ a, since these queues are never the longest, and hence
get no service.

The optimization in (9) takes the following form when the
first j queues reach overflow.

inf
a>0

1
a

inf
φk≥0;

∑j
k=1 φk=1

xl≤a, ∀ l>j

j∑

k=1

Λ∗(a + φk) +
N∑

l=j+1

Λ∗(xk) (10)

Let us now perform the inner minimization in (10). It is
obvious that the minimization over φk, k ≤ j and xl, l > j
can be performed independently. Due to convexity of the rate
function, we have

1
j

j∑

k=1

Λ∗(a + φk) ≥ Λ∗(
1
j

j∑

k=1

(a + φk)) = Λ∗(a +
1
j
).

Therefore, the optimal value of the φks is given by φk =
1/j, k ≤ j. Next, consider optimizing over xl for l > j. We
distinguish two cases:
(i) a > λ: In this case, it is optimal to choose xl = λ for

each l > j, since Λ∗(λ) = 0.
(ii) a ≤ λ: In this case, the constraint xl ≤ a has to be

active, since for x < λ, Λ∗(x) is decreasing in x. Thus,
we have xl = a.

Putting the two cases together, we get from (10) the exponent
Ej corresponding to exactly j queues overflowing, while the
trajectory stays inside RIj .

Ej = min(χj , ξj) (11)

with

χj = inf
0<a≤λ

1
a

[
jΛ∗(a +

1
j
) + (N − j)Λ∗(a)

]
, and

ξj = inf
a>λ

j

a
Λ∗(a +

1
j
). (12)

6For simplicity of notation, we henceforth use xi in place of x̄i.

The above expression holds for 1 ≤ j < N. The exponent
for all the N queues overflowing is simpler to obtain; it is
given by

EN = inf
a>0

N

a
Λ∗(a +

1
N

) = NΘN , (13)

where the last equality follows by recalling (3). The optimal
exponent considering the set of all overflow trajectories that
stay inside any one of the regions RI , I ⊂ {1, . . . , N} is
obtained by minimizing Ej over j = 1, . . . , N.

At this point, we are two steps away from obtaining the
result. The first step involves showing that there is nothing
further to be gained by considering paths that traverse more
than one of the partitioning regions. This would imply that
the optimal exponent is given by min1≤j≤N Ej . The second
step involves showing that min1≤j≤N Ej = min1≤j≤N jΘj ,
where Θj is the system occupancy exponent of j parallel
queues, defined in (3). The following two lemmas establish
what is needed.

Lemma 3: For every queue overflow trajectory that tra-
verses more than one of the regions RI , I ⊂ {1, . . . , N},
there exists an overflow trajectory that lies entirely within
one of the regions, while achieving an exponent that is no
larger.

Proof: We only rule out overflow trajectories that traverse
two regions; similar arguments can be used for trajectories
that visit more than two regions. Consider a queue trajectory
that starts out in a region RI but reaches overflow in region
RJ , while staying in one of the two regions at every instant
in between. Note that the region RI is a convex set of
dimension N − |I| + 1. That is, regions that involve a
larger number of queues growing together, have a smaller
dimension and vice-versa.

We will consider two cases, I ⊃ J and I ⊂ J . Brief
reflection should make it clear that if one of the above two
containments is not satisfied, the trajectory has to necessarily
traverse more than two regions. The arguments that follow
are easier to understand if visualized in two dimensions.

Suppose I ⊂ J . Consider a trajectory that starts out at the
origin at t = −T, and stays inside RI until time t = −T1,
when it enters RJ . The trajectory stays in RJ until overflow
at t = 0. Intuitively, the queues qi, i ∈ I start out growing
together. At time −T1, the queues qi, i ∈ J − I ‘catch
up’, and overflow occurs in all the queues in the index set
J . Since constant empirical input rates are optimal inside
each partition region (Lemma 2), the arbitrary trajectory in
RI can be replaced at no further cost by a straight segment
that has the same initial and final values (qi(−T ) = 0, and
qi(−T1) ∈ RJ for each i). This segment lies entirely in
RI , but is arbitrarily close to the region RJ . (Note that RJ
forms one of the ‘boundaries’ of RI). However, the cost of
this replaced segment is clearly not lower than the optimal
trajectory in RJ with the same initial and final conditions.
The part of the trajectory from t = −T1 until over flow at
t = 0, can again be replaced by the optimal trajectory in RJ
with the corresponding end points. Thus, overall, the cost of
the original trajectory is greater than or equal to that of the



optimal trajectory in RJ .
Now consider the case I ⊃ J . Intuitively, this case

corresponds to the queues qi, i ∈ I starting to grow together.
At some time instant, the queues qi, i ∈ I − J start
‘losing out’, and overflow occurs within RJ . The arbitrary
trajectories in each of the regions can be replaced with
an optimal segment in each of the regions, with the same
boundary conditions at no added cost. The cost of this
replaced trajectory, is a convex combination of the optimal
overflow trajectories in regions RJ and RI , and hence
cannot be smaller than the smaller of the two costs. Thus, a
strictly smaller cost cannot be obtained by a trajectory that
traverses two regions. 2

Lemma 4: min1≤j≤N Ej = min1≤j≤N jΘj .
Proof: We first prove that χj ≥ EN for all j < N. First,
using convexity, we can write

j

N
Λ∗(a +

1

j
) +

N − j

N
Λ∗(a) ≥ Λ∗

(
j

N
(a +

1

j
) +

N − j

N
a

)

= Λ∗(a +
1

N
). (14)

We now have

χj = inf
0<a≤λ

1
a

[
jΛ∗(a +

1
j
) + (N − j)Λ∗(a)

]

≥ inf
a>0

1
a

[
jΛ∗(a +

1
j
) + (N − j)Λ∗(a)

]

(a)

≥ inf
a>0

N

a
Λ∗(a +

1
N

) = EN .

The inequality (a) follows from (14). It is now clear that the
χjs are irrelevant, as they are always dominated by EN =
NΘN . We next write the following series of equalities that
imply the lemma.

min
1≤j≤N

Ej = min(ξ1, . . . , ξN−1, NΘN )

= min
1≤j<N

min(ξj , NΘN )

(b)
= min

1≤j<N
min(jΘj , NΘN )

= min
1≤j≤N

jΘj

In the above, equality (b) is shown as follows. Consider
min(ξj , NΘN ). The definition of ξj (12) involves the in-
fimum of a convex function of a over a > λ. If the convex
function attains its global minimum for 0 < a < λ, then
the infimum in (12) will be obtained at a = λ. In this case,
it is easy to show that NΘN ≤ ξj . Thus, if ξj has to be
smaller than NΘN , the infimum in (12) must be obtained at
the global minimum, which lies at a > λ.7 Thus, whenever
min(ξj , NΘN ) = ξj , we necessarily have

ξj = inf
a>λ

j

a
Λ∗(a +

1
j
) = inf

a>0

j

a
Λ∗(a +

1
j
) = jΘj ,

so that equality (b) follows, and we are done. 2

7It follows that λ/a∗j < 1, which proves the claim made in part (ii) of
theorem 1.

B. Proof Outline of Proposition 6

Let Bi[t] ∈ {0, 1} denote the i.i.d fair ‘coin tosses’ that
decide which queue to serve when both the queues are
occupied. If Bi[t] = 1, then the second queue is served if
occupied in slot t; if Bi[t] = 0, the first queue is served
if occupied. If one of the queues is not occupied in slot t,
the occupied queue is served, and Bi[t] becomes irrelevant.
Let φ(t) be the empirical fraction of coin tosses in favor of
the second queue, defined analogously to the empirical input
rates in Section III. The dynamics of the scaled queue length
processes under RS is given by

q̇1(t) = x1(t)− (1− φ(t))
q̇2(t) = x2(t)− φ(t),

whenever q1(t) and q2(t) are non-zero. If either q1(t) = 0
or q2(t) = 0, then

q̇1(t) + q̇2(t) = x1(t) + x2(t)− 1.

Here, x1(t) and x2(t) are the empirical rates of the input
processes.

Using a result analogous to Lemma 2, we can prove that
constant empirical rates for the inputs as well as the coin
tosses is optimal, within each of the regions (i) q1(t) >
0, q2(t) > 0 (ii) q1(t) > 0, q2(t) = 0, and (iii) q1(t) =
0, q2(t) > 0. The problem can now be mapped to an instance
of generalized processor sharing with variable service rate,
as treated in [4]. The result follows by applying the GPS
exponent results to our symmetric case, and noting that the
rate function corresponding to the fair coin tosses is given
by D(·||1/2).

REFERENCES

[1] L. Tassiulas, A. Ephremides, Dynamic server allocation to parallel
queues with randomly varying connectivity. IEEE Transactions on
Information Theory, Vol. 39, No. 2, pp. 466-478, March 1993.

[2] M. J. Neely, E. Modiano, C. E. Rohrs, Power and server allocation in
a multi-beam satellite with time varying channels, IEEE Infocom, New
York, NY, June 2002.

[3] M. J. Neely, Delay analysis for max-weight opportunistic scheduling in
wireless systems, 46th Allerton Conference, Monticello, IL 2008.

[4] D. Bertsimas, I. C. Paschalidis, and J. N. Tsitsiklis, Asymptotic Buffer
Overflow Probabilities in Multiclass Multiplexers: An Optimal Control
Approach, IEEE Transactions on Automatic Control. Vol. 43, No. 3,
March 1998, pp. 315-335.

[5] S. Shakottai, Effective Capacity and QoS for Wireless Scheduling, IEEE
Transactions on Automatic Control, Volume 53, Issue 3, April 2008
pp.749 - 761.

[6] L. Ying, R. Srikant, A. Eryilmaz and G. Dullerud. A Large Deviations
Analysis of Scheduling in Wireless Networks. IEEE Transactions on
Information Theory, Vol. 52, No. 11, November 2006.

[7] V. J. Venkataramanan and X. Lin, On Wireless Scheduling Algo-
rithms for Minimizing the Queue-Overflow Probability, submitted to
IEEE/ACM Transactions on Networking, 2008.

[8] A. L. Stolyar and K. Ramanan Largest Weighted Delay First Schedul-
ing: Large Deviations and Optimality, The Annals of Applied Proba-
bility 2001, Vol. 11, No. 1, pp. 148.

[9] V. G. Subramanian, Large Deviations Of Max-Weight Scheduling On
Convex Rate Regions Proceedings of ITA 2008, UCSD, La Jolla, CA.

[10] A. Ganesh, N. O’Connel, D. Wischik, Big Queues, Springer-Verlag,
2004.

[11] A. Dembo and O. Zeitouni, Large Deviation Techniques and Applica-
tions, Second Ed., Springer Verlag, 1998, pp. 176.


