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Abstract—We study the reliability maximization problem in
WDM networks with random link failures. Reliability in thes e
networks is defined as the probability that the logical network
is connected, and it is determined by the underlying lightpath
routing, network topologies and the link failure probabili ty. By
introducing the notion of lexicographical ordering for lig htpath
routings, we characterize precise optimization criteria for maxi-
mum reliability in the low failure probability regime. Base d on
the optimization criteria, we develop lightpath routing algorithms
that maximize the reliability, and logical topology augmentation
algorithms for further improving reliability. We also stud y the
reliability maximization problem in the high failure proba bility
regime.

I. I NTRODUCTION

Modern communication networks are constructed using a
layered approach, with one or more electronic layers (e.g.,
IP, ATM, SONET) built on top of an optical fiber network.
The survivability of such networks under fiber failures largely
depends on how the logical electronic topology is embedded
onto the physical fiber topology. In the context of WDM
networks, this is known aslightpath routing. However, finding
a reliable lightpath routing is rather challenging becauseit
must take into account the sharing of physical fibers by
logical links and its impact on the connectivity of the logical
topology. Hence, the survivability of a layered network is
a complex function of logical topology, physical topology,
lightpath routing, and link failure probability. In this paper, we
study reliable layered network design assuming that physical
links fail at random with some probability, where multiple
links may fail simultaneously.

The probabilistic failure model represents a snapshot of a
network where links fail and are repaired after a certain time
as in many practical scenarios [1]. Hence, the link failure
probability can be viewed as the average fraction of time that a
link is in a failed state. This random failure model is somewhat
general in that it can be used to model both networks with
rare link failures as well as more frequent failures. It thus
enables thorough understanding of network survivability in
various failure regimes. For this reason, several works in the
literature study survivable network design under the random
failure model [1]–[4].

In the context of layered networks with random physical
link failures, a natural survivability metric is the probability
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that given a lightpath routing, the logical topology remains
connected; we call this probability thecross-layer (network)
reliability. The cross-layer reliability reflects the survivability
performance achieved by the layered network. Hence, it is
desirable to design a layered network that maximizes the
reliability. Although the single-layer network design prob-
lem has been extensively studied [5]–[12], the layered
network reliability problem remains largely unexplored.
Existing work in the area [13]–[22] has mostly focused on
finding a lightpath routing that survives a single physical
link failure, rather than finding the one with maximum
reliability. Our work in [32] was the first study to maximize
the tolerance of such physical failures for a lightpath
routing, and cross-layer reliability was introduced in [23]
to generalize this notion. In particular, we extended the
polynomial expression for single-layer network reliability
to the layered setting, and developed approximation algo-
rithms for reliability computation. We also demonstrated a
positive correlation between the reliability and Min Cross
Layer Cut (MCLC; The precise definition of MCLC is
presented in Section II) in the low failure probability
regime, and experimented with MCLC as the objective in
our lightpath routing algorithm to approximate reliabilit y
maximization.

Our goal is to fully characterize the structures that
contribute to the reliability in a layered network. This
gives us the precise optimization criterion for maximizing
the reliability. Although optimizing the exact criterion i s
infeasible in practice, the insight allows us to develop a
new objective that better approximates reliability maxi-
mization.

Typically, real-world networks experience very low link fail-
ure probabilities, and are designed accordingly. For instance,
the failure probability of a 1000-mile cable in the Bellcore
network is estimated to be about 0.006 [24]. However, in
recent years there has been an increased concern about the
impact of natural disasters or physical attacks on network
survivability. Natural disasters, such as earthquakes andhur-
ricanes or floods can lead to a large number of (possibly
localized) link failures that cannot be survived by networks
designed to deal only with isolated failures [25], [26]. Worse
yet, a physical attack on the network by weapons of mass
destruction, such as an Electromagnetic Pulse (EMP), can lead
to widespread failures throughout large geographical areas
[26]–[28]. Such an attack can have a disastrous effect on
telecommunication links that rely on electronic components
from fiber amplifiers to regenerators, switches and routers
for their operation. Worse yet, such an attack is likely to
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disrupt the power grid [29], [30], which can in-turn lead to
significant additional (cascading) failures of communication
links, as was recently observed during a blackout event in
Italy [31]. Thus, while typically one may expect extremely low
failure probabilities, and design networks accordingly, such
designs may not be robust to widespread failures that may
result from a natural disaster or attack. Furthermore, it may
be worthwhile to strengthen networks of critical importance
so that they can withstand such scenarios.

Our primary focus in this work is on the low failure
probability regime, as that is the regime that networks are
typically designed for. However, to account for the increasing
concerns with large scale failures, we also characterize net-
work survivability in higher failure probability regimes.While
such designs may not be applicable to most networks, they
may prove valuable to the design of networks with stringent
survivability requirements.

One of the major challenges in the area of cross-layer
survivability is the inherent complexity of the problems.
For example, in [32], we proved that the MCLC, a
critical component in layered network reliability, is NP-
hard to compute and approximate with within a O(log n)
factor. Therefore, problems for maximizing cross-layer
reliability is likely to be intractable. The common approach
in existing lightpath routing algorithms involves finding
the physical routes of all logical links jointly, typically
by solving an ILP that captures the routing decision of
all the logical links, which is often infeasible for large
networks. In this paper, we consider a different approach
by incrementally improving the layered network, one
logical link at a time. Such an approach has the advantages
over the existing algorithms:

1) Scalability: Routing the logical links incrementally
reduces the problem space significantly. As a result,
it is more applicable to large networks.

2) Solution Quality: The incremental approach allows
us to use a more sophisticated objective function
that better approximates the cross-layer reliability.
As a result, the lightpath routings given by the
new algorithm result in much higher reliability than
existing algorithms.

We also apply a similar idea to a different setting where
the logical topology can be augmented to improve relia-
bility. We develop an augmentation algorithm to find a
good placement of a new logical link, and observe that
reliability can be improved significantly, especially when
the augmentation increases the MCLC.

Our contributions can be summarized as follows:

– We show that in general the optimal lightpath routing
depends on the link failure probability.

– We show that for given logical and physical topologies,
if there exists a uniformly optimal lightpath routing,
then any locally optimal lightpath routing is uniformly
optimal.

– We develop a novel ”lexicographical ordering” for light-
path routing and derive precise optimality conditions in
both the low and high failure probability regimes.

– We develop lightpath rerouting algorithms for maximiz-
ing reliability in the low failure probability regime.

– We develop a logical topology augmentation algorithm
for improving the reliability of a given layered network.

The rest of the paper is organized as follows: In Section
II, we present the network model, and introduce the polyno-
mial expression for the cross-layer reliability and important
connectivity parameters related to reliability. In Section III,
we study the properties of optimal lightpath routings in the
low failure probability regime. In Section IV, we develop
lightpath rerouting and logical topology augmentation algo-
rithms for reliability maximization, and in Section V, we
present extensive simulation results. In Section VI, we discuss
the optimality conditions for maximum reliability in the high
failure probability regime.

II. M ODEL AND BACKGROUND

We consider a layered networkG that consists of the logical
topologyGL = (VL, EL) built on top of the physical topology
GP = (VP , EP ) through a lightpath routing, whereV andE
are the set of nodes and links respectively. In the context of
WDM networks, a logical link is called alightpath, and each
lightpath is routed over the physical topology. Thislightpath
routing is denoted byf = [f st

ij , (i, j) ∈ EP , (s, t) ∈ EL],
wheref st

ij takes the value 1 if logical link(s, t) is routed over
physical link (i, j), and 0 otherwise.

Each physical link fails independently with probability
p1. This probabilistic failure model represents a snapshot of
a network where links fail and are repaired according to
some Markovian process. Hence,p represents the steady-state
probability that a physical link is in a failed state. This model
has been adopted by several previous works [1]–[4].

If a physical link (i, j) fails, all of the logical links(s, t)
carried over(i, j) (i.e.,(s, t) such thatf st

ij = 1) also fail. A set
S of physical links is called across-layer cutif the failure of
the links inS causes the logical network to be disconnected.
We also define thenetwork stateas the subsetS of physical
links that failed. Hence, ifS is a cross-layer cut, the network
stateS represents adisconnectednetwork state. Otherwise, it
is a connectedstate.

A. Failure Polynomial and Connectivity Parameters

Assume that there arem physical links, i.e.,|EP | = m. The
probability associated with a network stateS with exactly i
physical link failures (i.e.,|S| = i) is pi(1 − p)m−i. Let Ni

be the number of cross-layer cutsS with |S| = i, then the
probability that the network is disconnected is simply the sum
of the probabilities over all cross-layer cuts, i.e.,

F (p) =

m
∑

i=0

Nip
i(1− p)m−i. (1)

Therefore, the failure probability of a multi-layer network can
be expressed as a polynomial inp. The functionF (p) will be

1Although we assume uniform link failure probability throug hout the
paper, our results can be readily extended to the case of non-uniform link
failure probability by replacing each link with multiple li nks in series
that fail with the same probability. See [23] for more details.
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called thecross-layer failure polynomialor simply thefailure
polynomial. The coefficientsNi’s contain the information on
the structure of a layered graph, determined by the underlying
lightpath routing. Below we introduce some important coeffi-
cients related to connectivity.

EachNi represents the number of cross-layer cuts of sizei
in the network. Define aMin Cross Layer Cut (MCLC)as a
smallest set of physical links needed to disconnect the logical
network. Denote byd the size of an MCLC, thend is the
smallesti such thatNi > 0, meaning that the logical network
will not be disconnected by fewer thand physical link failures.
The MCLC is a generalization of single-layer min-cut to the
multi-layer setting [32]. It was shown in [23] that maximizing
the MCLC has the effect of maximizing the reliability in the
low failure probability regime.

B. Motivation for Lightpath Rerouting and Logical Topology
Augmentation

(a) Initial routing (b) After rerouting

Fig. 1. Example showing that lightpath rerouting can improve the reliability.
Physical topology is solid line, logical topology is the rectangle formed by
the 4 corner nodes and 4 edges, and lightpath routing is dashed line.

Although the MCLC criterion is useful for finding a light-
path routing with better reliability, it is not sufficient for
fully characterizing reliable lightpath routings. For example,
consider the two lightpath routings in Fig 1. The two lightpath
routings have the same MCLC value of 2. However, for every
value ofp, the routing in Fig. 1(b) yields better reliability than
the one in Fig. 1(a). This example shows that there are more
precise conditions for optimal lightpath routings, beyondthe
MCLC maximization criterion. In Section III, we develop new
optimization criteria that characterize in greater detailoptimal
lightpath routings in the low failure probability regime.

Furthermore, the routing in Fig. 1(b) can be obtained by
rerouting one lightpath from the routing in Fig. 1(a). Hence,
this example also demonstrates that one may be able tofind
a more reliable lightpath routing by simply rerouting some
existing lightpathsfrom a given lightpath routing. In Section
IV, we study lightpath rerouting algorithms that use the new
optimization criteria to find a lightpath routing with better
reliability given an initial lightpath routing.

(a) AugmentedGL (b) Lightpath routing

Fig. 2. Example showing that the reliability can be further improved via
logical topology augmentation: in (a), dashed lines are added lightpaths.

In addition to the lightpath rerouting approach, the new
optimization criteria can also be used to further enhance the
reliability in a different manner. In particular, we consider
logical topology augmentation. For instance, suppose thattwo
(diagonal) logical links are added to the logical topology in
the example of Fig. 1 (see Fig. 2(a)). Fig. 2(b) is an example
of routing the two new lightpaths. The new network has far
better reliability than the old one in the low failure probability
regime since the MCLC value has been raised from 2 to 3.
This example shows that augmenting the logical topology can
significantly improve the reliability. In Section IV-B, using the
new optimization criteria, we study how to choose the new
logical link that achieves maximum reliability improvement.

III. PROPERTIES OFOPTIMAL L IGHTPATH ROUTINGS

We first study the properties of optimal lightpath routings.
These properties will give insight on how routings should be
designed for better reliability. Since the failure probability
p is typically small in many practical scenarios, we mainly
focus on the low failure probability regime. The propertiesof
optimal lightpath routings for largep will be briefly discussed
in Section VI.

A. Uniformly and Locally Optimal Routings

We start with a discussion of routings that are most reliable
for all failure probabilities. The observations in this section
will motivate a local (inp) optimization approach to the design
of lightpath routing, which is relatively easy compared with
an optimization over all the values ofp. We begin with the
following definition:

Definition 1: For given logical and physical topologies, a
lightpath routing is said to beuniformly optimalif its reliability
is greater than or equal to that of any other lightpath routing
for every value ofp.

Therefore, a uniformly optimal lightpath routing yields the
best reliability for allp ∈ [0, 1]. Based on the failure poly-
nomial of a lightpath routing, one can immediately develop a
sufficient condition for a uniformly optimal lightpath routing:

Observation 1:Given a lightpath routingR, let NR
i be the

number of cross-layer cuts with sizei. ThenR is a uniformly
optimal lightpath routing if, for any other lightpath routingR

′

,
NR

i ≤ NR
′

i for all i ∈ {0, . . . ,m}, wherem is the number
of physical links.

While it is desirable to design a uniformly optimal routing,
such a routing does not always exist. Intuitively, for small
p, only a small number of links are likely to fail simulta-
neously, and hence for better reliability it is important to
remain connected after a small number of failures. In contrast,
for large p, it is likely that a large number of links fail
simultaneously, and thus it is important to withstand a large
number of failures. These two objectives conflict because the
former prefers disjoint lightpath routing whereas the latter
prefers shortest lightpath routing.

For example, Fig. 3 shows two different lightpath routings.
In Fig. 3(a), the logical links are routed over physically disjoint
paths, and its reliability is given by3(1 − p)4 − 2(1 − p)6.
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(a) Optimal Routing
in Low Regime

(b) Optimal Routing
in High Regime

Fig. 3. Example showing that optimal routings depend on the value of p.
Physical topology is solid line, logical topology is the triangle formed by the
3 corner nodes and 3 edges, and lightpath routing is dashed line.

In contrast, in Fig. 3(b), every pair of logical links share a
physical link, and its reliability is(1 − p)3. While disjoint
path routing is considered to be more reliable, it is easy to see
that in this example the disjoint routing has better reliability
only for small values ofp whereas for largep (e.g.,p > 0.7)
the non-disjoint routing is more reliable.

Since uniformly optimal lightpath routings are not always
attainable, we are motivated to focus onlocally optimal rout-
ings, where the probability regime of optimality is restricted
to a subrange within[0, 1]. A locally optimal lightpath routing
is defined as follows:

Definition 2: For given logical and physical topologies, a
lightpath routing is said to belocally optimal if there exists
0 ≤ a < b ≤ 1, such that its reliability is greater than or
equal to that of any other lightpath routing for every value of
p ∈ [a, b]. In addition, the interval[a, b] is called theoptimality
regimefor the lightpath routing.

Note that a uniformly optimal lightpath routing is also
locally optimal with optimality regime[0, 1]. Theorem 1 below
is a crucial result to this study; namely, it reveals a connection
between local optimality and uniform optimality.

Theorem 1:Consider a pair of logical and physical topolo-
gies(GL, GP ) for which there exists a uniformly optimal rout-
ing. Then, any locally optimal lightpath routing for(GL, GP )
is also uniformly optimal.

Proof: Denote byF ∗(p) the failure polynomial of a
uniformly optimal lightpath routing. By definition,F ∗(p) is
no greater than any other failure polynomial forp ∈ [0, 1].
Consider a locally optimal lightpath routingL with optimality
regime[p1, p2], and letFL(p) be its failure polynomial.

The polynomial equationFL(p)−F ∗(p) = 0 has degree at
mostm and thus has at mostm roots unless the polynomial
FL(p) − F ∗(p) is trivially zero. However, by the definitions
of local optimality and uniform optimality, the equation has
an infinite number of solutions over the interval[p1, p2].
Consequently,FL(p) is identical toF ∗(p), which implies that
lightpath routingL is also uniformly optimal.

Motivated by this result, we study locally optimal light-
path routings. In particular, we develop the conditions fora
lightpath routing to be optimal for the low failure probability
regime (smallp).

B. Low Failure Probability Regime

It is easy to see that in the failure polynomial, the terms
corresponding to small cross-layer cuts dominate whenp is

small. Hence, for reliability maximization in the low failure
probability regime, it is desirable to minimize the number
of small cross-layer cuts. We use this intuition to derive the
properties of optimal routings for smallp. We begin with the
following definition:

Definition 3: Consider two lightpath routings1 and2. Rout-
ing 1 is said to bemore reliable than routing2 in the low
failure probability regimeif there exists a positive numberp0
such that the reliability of routing1 is higher than that of
routing 2 for 0 < p < p0. A lightpath routing is said to be
locally optimal in the low failure probability regimeif it is
more (or equally) reliable than any other routing in the low
failure probability regime.

In the following, we characterize the impact of small cuts on
the reliability. Letdj be the size of the MCLC under routing
j(= 1, 2). Let Ni andMi be the numbers of cross-layer cuts
of sizei under routings1 and2 respectively. We call the vector
N = [Ni, ∀i] the cut vector. The following is an example of
cut vectorsN andM with d1 = 4 andd2 = 3:

i 0 1 2 3 4 5 · · · m
Ni 0 0 0 0 20 26 · · · 1
Mi 0 0 0 9 19 30 · · · 1.

Using cut vectors of lightpath routings, we definelexicograph-
ical ordering as follows:

Definition 4: Routing 1 is lexicographically smaller than
routing 2 if Nd < Md where d is the smallesti at which
Ni andMi differ.
Note that a lightpath routing with a larger MCLC size is
lexicographically smaller by Definition 4. In the above ex-
ample, we haved = 3 and Nd < Md, hence routing1
is lexicographically smaller. Therefore, if a lightpath routing
is lexicographically smaller than another, it has fewer small
cross-layer cuts and thus yields better reliability for small p.

Theorem 2:Given two lightpath routings 1 and 2 with cut
vectors[Ni|i = 0, . . . ,m] and[Mi|i = 0, . . . ,m] respectively,
where m is the number of physical links, if routing1 is
lexicographically smaller than routing2, then routing1 is more
reliable than routing2 in the low failure probability regime. In
particular, letd = min

0≤i≤m
{i : Mi 6= Ni} be the index where the

elements in the cut vectors first differ. Then, lightpath routing
1 is more reliable than routing 2 forp < p0 = (d+1)(Md−Nd)

2m(md )
.

Proof: This is implied by Theorem 3, which will be
discussed in Section III-C.

Clearly, Theorem 2 leads to a local optimality condition;
that is, if a lightpath routing minimizes the cut vector lex-
icographically, then it is locally optimal in the low failure
probability regime. An interesting case is when routing1 has
larger MCLC than routing2 (as in the above example). In this
case, routing1 is lexicographically smaller than routing2, and
Theorem 2 implies the following corollary.

Corollary 1: If d1 > d2, then routing1 is more reliable
than routing2 in the low failure probability regime.

Consequently, a lightpath routing with the maximum size
MCLC yields the best reliability for smallp. We note that the
same result was shown in [23]. Similarly, routing1 is also
lexicographically smaller than routing2 when they have the
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same size of MCLC but routing1 has fewer MCLCs. This
leads to the following result:

Corollary 2: If d1 = d2 andNd1
< Md2

, then routing1 is
more reliable than routing2 in the low probability regime.

The expression forp0 given in Theorem 2 also provides
some insight into how the difference of the cut vectors affects
the guaranteed regime. For example, ifd is small andMd−Nd

is large, the guaranteed regime is larger. In other words, if
one lightpath routing has fewer small cross-layer cuts thanthe
other, it will achieve higher reliability for a larger rangeof p
in the low probability regime.

Therefore, for reliability maximization in the low failure
probability regime, it is desirable to maximize the size of the
MCLC while minimizing the number of such MCLCs. This
condition will be used to develop the algorithms in Section
IV.

C. Extension of Optimal Probability Regimes

The expressions in Theorem 2 only consider the first el-
ement in the two cut vectors that are different. As a result,
the guaranteed regime is rather conservative. For instance,
the expression fails to capture the uniform optimality for a
lightpath routing that satisfies the condition in Theorem 1.In
this section, we will develop a more general expression for the
regime bound that includes other elements in the cut vectors.

Consider two lightpath routings1 and2. Let Fj(p) be the
failure polynomial of routingj (= 1, 2), andNi’s andMi’s
be the coefficients inF1(p) andF2(p) respectively. Define the
following vector of partial sums:

−→
N =

[

k
∑

i=0

Ni|k = 0, ...,m

]

The vector
−→
M is defined similarly. Note that thei-th element

−→
N i of vector

−→
N is the total number of cross-layer cuts of size

at most i. We first extend the definition oflexicographical
ordering as follows:

Definition 5: Lightpath routing 1 is said to be k-
lexicographically smaller than lightpath routing2 if

k = max
{

j :
−→
N i ≤

−→
M i, ∀i < d+ j

}

andk ≥ 1,

whered is the position of the first element where the two cut
vectors differ.

Therefore, a lightpath routing is lexicographically smaller
(in the original sense) if and only if it isk-lexicographically
smaller for somek ≥ 1. The k-lexicographical ordering thus
compares two lightpath routings based on structures beyond
the smallest cuts, making it possible to establish a larger
optimality regime. Roughly speaking, the value ofk reflects
the degree of dominance of a lightpath routing in the low prob-
ability regime: ak-lexicographically smaller lightpath routing
means that it has fewer “small” cuts, where the definition for
“small” is broader ifk is larger.

It is obvious that whenp ≤ 0.5, the failure probability of
a cross-layer cut is a non-increasing function of the cut size,
becausepi(1 − p)m−i ≥ pi+1(1 − p)m−(i+1) for p ≤ 0.5.
Suppose that routing1 has smaller total number of cuts of

size up toi than routing2, i.e.,
−→
N i ≤

−→
M i. To compare cross-

layer cuts of size at mosti+1, suppose further that the relative
incrementNi+1−Mi+1 in the number of larger cuts does not
exceed the surplus

−→
M i −

−→
N i from smaller cuts, i.e.,

−→
N i+1 ≤−→

M i+1. Then, with respect to cut size at mosti+ 1, routing1
will have smaller failure probability than routing2, provided
that the same was true for cut size up toi. This observation
leads to the following theorem on the relationship between
lexicographical ordering and probability regime.

Theorem 3:Given two vectorsN=[Ni|i = 0, . . . ,m] and
M=[Mi|i = 0, . . . ,m], let F1(p) =

∑n
i=0 Nip

i(1 − p)m−i

and F2(p) =
∑n

i=0 Mip
i(1 − p)m−i. For any j, let

−→
∆j =

j
∑

i=0

(Mi−Ni) and
−→
δ j = max

j+1≤i≤m

{

Ni−Mi

(mi )

}

. If the vectorN

is k-lexicographically smaller thanM , then

F1(p) ≤ F2(p) for p ≤ pl0 = min

{

0.5, max
d≤j≤d+k−1

Bj

}

whered = min {i : Ni < Mi} and

Bj =

{

0.5, if j = m
1

m
j+1

+
−→
δ j( m

j+1)/
−→
∆j

, otherwise.

Proof: See Appendix A.
Therefore, the probability regime boundpl0 in Theorem 3 is

a non-decreasing function ofk, which means that a lightpath
routing with smaller number of cuts over a larger size range
will be more reliable over a larger probability regime. This
is consistent with the conclusion in Section III-B, that the
lightpath routing design should minimize the lexicographical
ordering of the cut vector.

Theorem 2 follows from Theorem 3. For a lexicographi-
cally smaller lightpath routing, the termBd is given by:

1
m

d+1 +
−→
δ d

(

m
d+1

)

/
−→
∆d

=
1

m
d+1 +

−→
δ d

(

m
d+1

)

/(Md −Nd)

≥
(d+ 1)(Md −Nd)

m(Md −Nd) + (d+ 1)
(

m
d+1

) ,

≥
(d+ 1)(Md −Nd)

m
(

m
d

)

+ (m− d)
(

m
d

)

≥
(d+ 1)(Md −Nd)

2m
(

m
d

) ,

where the first inequality is due to
−→
δ d ≤ 1.

An interesting special case is whend + k − 1 = m, that
is,
−→
M j ≥

−→
N j for all j = 0, . . . ,m. In that case, the term

Bd+k−1 = Bm = 0.5, implying that the optimality regime is
[0, 0.5]. We summarize this as the following corollary:

Corollary 3: If
−→
N j ≤

−→
M j for all j = 0, . . . ,m, then

lightpath routing1 is at least as reliable as lightpath routing
2 for p ≤ 0.5, i.e.,F1(p) ≤ F2(p) for p ≤ 0.5.

Note that the condition in Corollary 3 requires every partial
sum in the vectorM to be at least the corresponding partial
sum in the vectorN, which is a stronger condition than
the lexicographic comparison in Theorem 2. This stronger
condition allows the better optimality regime to be established
in Corollary 3.
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IV. M AXIMIZING RELIABILITY BY IMPROVING

L IGHTPATH ROUTING AND LOGICAL CONNECTIVITY

In this section, we explore ways to improve the reliability
of a layered network. Typically, the physical topology is static
and difficult to change. Therefore, the reliability of a layered
network can be improved by one of two ways: (i) improving
the lightpath routing, or (ii) improving the logical topology.

We have shown in Section III that when physical link
failures are rare, the lightpath routing that minimizes the
lexicographical ordering will maximize the reliability. This
new observation gives us an exact optimization criterion for
designing reliable layered networks.

As discussed in Section I, the traditional approach of
jointly routing all logical links is often too complex, which
makes it infeasible for larger networks. This motivates the
incremental approach introduced in this section, where the
layered network is improved one logical link at a time. This
significantly reduces the problem space and allows us to
use a more sophisticated objective function based on the
optimziation criterion we studied in Section III.

Within this context, we study two optimization problems
that are fundamental to improving the lightpath routing
and logical connectivity:

1) Lightpath Rerouting : Given the physical, logical
topologies and a lightpath routing, find a logical link to
reroute, such that the resulting reliability is maximized.

2) Logical Topology Augmentation: Given the physical,
logical topologies and a lightpath routing, find a pair
of logical nodes, as well as a physical path between the
nodes, such that the addition of the corresponding logical
link will provide maximum reliability improvement.

The above two problems are basic building blocks for
designing reliable layered networks. For example, given an
existing layered network, we can iteratively reroute existing
lightpaths in the network until no further improvement is
possible (e.g. Figure 4).Hence, given the physical and
logical topologies, the iterative rerouting algorithm canbe
described as follows:

1) Generate an arbitrary initial lightpath routing.
2) Reroute a logical link using ILP/approximation al-

gorithm introduced in Section IV.
3) Repeat Step 2 until no further improvement can be

made by rerouting a single lightpath.

Similarly, if it is feasible to add new logical links, we
can iteratively augment the logical topology to further
improve the reliability; and studying the Logical Topology
Augmentation problem allows us to select such new logical
links effectively. These iterative rerouting and augmenta-
tion algorithms will be used for performance evaluation in
Section V.

In this section, we present algorithms for the rerouting and
augmentation problems. In the next section, we will evaluate
the effectiveness of rerouting and augmentation on improving
cross-layer reliability.

(a) d = 1, Nd = 3 (b) d = 1, Nd = 1

(c) d = 2, Nd = 5 (d) d = 2, Nd = 3

Fig. 4. Improving reliability via lightpath rerouting. Thephysical topology
is in solid lines, and the lightpath routing of the logical topology is in dashed
lines. The MCLC value and the number of MCLCs in the lightpathroutings
are denoted byd andNd.

A. Lightpath Rerouting

Given a layered network and its lightpath routing, the
objective of theLightpath Reroutingproblem is to find the best
way to reroute a lightpath, so that the reliability improvement
is maximized. Recall that with low link failure probability, the
reliability of a network is maximized when the lexicographical
ordering of its cut vector is minimized. Therefore, the most
effective reroute should maximize the MCLC of the resulting
lightpath routing, and also minimize the number of MCLCs.

In the following sections, we first analyze the effect of
rerouting a lightpath and characterize conditions where such
a rerouting is beneficial. This provides the groundwork for
our rerouting algorithms. Based on these observations, we
develop an ILP to find the optimal lightpath to reroute.
Next, we propose an approximation algorithm that computes
a near-optimal solution in much shorter time. This gives us a
scalable algorithm that can be used for designing large layered
networks.

1) Effects of Rerouting a Lightpath:Let d be the size of the
MCLC under the initial routing. When the physical route of a
logical link changes, some cross-layer cuts will be converted
into non-cuts, and some non-cuts will be converted into cross-
layer cuts. In the low failure probability regime, the reliability
will be improved by the rerouting if the following is true:

1) The conversion of cross-layer cuts with sized to non-
cuts outnumbers the conversion in the opposite direction.

2) The MCLC value does not decrease.

Therefore, we can formulate the lightpath rerouting as an
optimization problem to maximize the reduction in the number
of MCLCs, subject to the constraint that no non-cuts of size
smaller thand is converted to cross-layer cuts. The exact
conditions for the conversion between cuts and non-cuts are
described as follows, which will be used as the basis of the
ILP formulation as well as the approximation algorithm.

Given the physical topologyGP = (VP , EP ) and the logical
topology GL = (VL, EL), we model a lightpath routing as
a set of binary constants

{

f st
ij

}

, where f st
ij = 1 if and

only if logical link (s, t) uses physical link(i, j) in the
lightpath routing. For a given set of physical linksS, we
define thelogical residual graphfor S, denoted asGS

L, to be
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{

(s, t) ∈ EL :
∑

(i,j)∈S

f st
ij = 0

}

. In other words, the residual

graph consists of logical links that use none of the physical
links in S. By definition, the setS is a cross-layer cut if and
only if its logical residual graph is disconnected. Given a cross-
layer cutS, it is called ak-way cross-layer cutif its logical
residual graph hask connected components. In addition, given
a cross-layer non-cutT for a lightpath routing, we call a
logical link (s, t) critical to T if (s, t) is a cut edge of the
residual graphGT

L , that is, it is an edge inGT
L whose removal

will disconnect the residual graph.
The following theorems describe the conditions for a light-

path rerouting that results in conversions between cross-layer
cuts and non-cuts. The proofs can be found in [33].

Theorem 4:Let S be a cross-layer cut for a lightpath
routing. Rerouting logical link(s, t) from physical pathP1

to P2 turns S into a non-cut if and only if the following
conditions are true:

1) S is a 2-way cross-layer cut.
2) s and t are disconnected in the residual graph forS.
3) P2 does not use any physical links inS.

Proof: Suppose all the above conditions are true. Since
the new routeP2 does not use any physical links inS, the
logical link (s, t) will be in the logical residual graph forS
under the new lightpath routing. Other logical links that are in
the original residual graph will remain, because none of their
physical routes have changed. Therefore, the residual graph
will become connected now that(s, t) is added to it, which
impliesS becomes a non-cut. It can be easily verified that the
residual graph will remain disconnected if any of the above
conditions do not hold.

Theorem 5:Let T be a cross-layer non-cut for a lightpath
routing. Rerouting logical link(s, t) from physical pathP1 to
P2 turnsT into a cross-layer cut if and only if the following
conditions are true:

1) (s, t) is critical to T .
2) P2 uses some physical link inT .

Proof: Suppose both conditions are true. SinceP2 uses
some physical fiber inT , the logical link will be removed from
the residual graph forT under the new lightpath routing. Since
(s, t) is critical to the non-cutT , its removal will disconnect
the residual graph, which means thatT will become a cross-
layer cut. It can be easily verified that the residual graph will
remain connected if any of the two conditions do not hold.

Therefore, the optimal rerouting should maximize the num-
ber of cross-layer cuts satisfying Theorem 4 and minimize
the number of non-cuts satisfying Theorem 5. However, it is
also important to ensure that none of the non-cuts with size
smaller thand is converted to cross-layer cuts by the rerouting,
since otherwise the MCLC value will decrease. The following
theorem states that only non-cuts with size at leastd−1 can be
converted into a cross-layer cut by rerouting a single lightpath.

Theorem 6:Let d be the Min Cross Layer Cut value of a
lightpath routing and letNC be the set of cross-layer non-
cuts that can be converted into cross-layer cuts by rerouting a
single logical link. Then|T | ≥ d− 1 for all T ∈ NC.

Proof: SupposeNC contains a convertible non-cutS with

size less thand−1. SinceS is convertible, there exists a logical
link (s, t) that is critical toS. Now let l be a fiber used by
(s, t), then the fiber setS ∪ {l} would disconnect the logical
residual graph and is therefore a cross-layer cut. However,
such a set contains at mostd − 1 fibers, contradicting thatd
is the Min Cross Layer Cut.

Therefore, when rerouting a lightpath, we need to make sure
that none of the non-cuts with sized − 1 get converted into
cuts in order to prevent the MCLC value from decreasing.
Based on these observations, we next develop an ILP for the
lightpath rerouting problem.

2) ILP for Lightpath Rerouting:For the given lightpath
routing, letd be the MCLC value, and letCd,NCd andNCd−1
be the sets of 2-way cross-layer cuts with sized, non-cuts with
sized, and non-cuts with sized−1 respectively. The lightpath
rerouting problem can be formulated as an ILP that finds the
logical link, and its new physical route, that maximizes thenet
reduction in MCLCs.In other words, the optimal reroute
should result in the minimum number of cross-layer cuts
with size d, without creating any cross-layers cuts with size
d− 1.

The ILP can be considered as a path selection problem
on an auxiliary graphG

′

P = (V
′

P , E
′

P ), where V
′

P =
VP ∪ {u, v}, with u and v being the additional source
and sink nodes in the auxiliary graph; andE

′

P = EP ∪
{(u, x), (x, v) : x ∈ VP }. Figure 5 illustrates the construction
of the auxiliary graph.

Fig. 5. Construction of the auxiliary graph for the ILP.u and v are the
additional source and sink nodes, and the dashed lines are the additional
links in the auxiliary graph.

We first define the following variables and parameters:

1) Variables:

• {gst : (s, t) ∈ EL}: 1 if logical link (s, t) is
rerouted, and 0 otherwise.

•

{

fij : (i, j) ∈ E
′

P

}

: Flow variables describing a

path inG
′

P from nodeu to nodev.
• {yc : c ∈ Cd}: 1 if the cross-layer cutc is converted

into a non-cut by the lightpath rerouting, and 0
otherwise.

• {zc : c ∈ NCd}: 1 if the non-cutc is converted into
a cross-layer cut by the lightpath rerouting, and 0
otherwise.

2) Parameters:

• {hc
st : c ∈ Cd, (s, t) ∈ EL}: 1 if logical nodess and

t are disconnected by the 2-way cutc, and 0
otherwise.

• {qcst : c ∈ NCd ∪NCd−1, (s, t) ∈ EL}: 1 if logical
link (s, t) is critical to the non-cutc, and 0 other-
wise.

•
{

lcij : ∀c ∈ Cd ∪ NCd ∪ NCd−1, (i, j) ∈ EP

}

: 1 if
physical link (i, j) is in setc, and 0 otherwise.
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The lightpath rerouting can be formulated as follows:

REROUTE : Maximize
∑

c∈Cd

yc −
∑

c∈NCd

zc, subject to:

gst ≤ (fus + ftv)/2, ∀(s, t) ∈ EL (2)
∑

(s,t)∈EL

gst = 1 (3)

lcijfij +
∑

(s,t)∈EL

qcstgst ≤ 1, ∀c ∈ NCd−1, (i, j) ∈ EP (4)

lcijfij +
∑

(s,t)∈EL

qcstgst ≤ zc + 1, ∀c ∈ NCd, (i, j) ∈ EP (5)

yc ≤
∑

(s,t)∈EL

hc
stgst, ∀c ∈ Cd (6)

yc ≤ 1− lcijfij , ∀(i, j) ∈ EP , ∀c ∈ Cd (7)

{(i, j) : fij = 1} forms an(u, v)-path inG
′

P (8)

fij , gst ∈ {0, 1} , 0 ≤ yc, zc ≤ 1

The formulation can be interpreted as a path selection
problem on the auxiliary graphG

′

P . Constraint (8), which
requires that the variablesfij describe a path fromu to v, can
be expressed by the standard flow conservation constraints.As
a result, in a feasible solution to the formulation, the variables
fij represent a pathu → s ❀ t → v, which corresponds
to the new physical route for the logical link(s, t) after the
rerouting.

Constraint (2) ensures thatgst can be set to 1 only iffij
represents the pathu → s ❀ t → v, and Constraint (3)
makes sure that the chosen(s, t) is indeed a logical link in
EL. Therefore, exactly one logical link(s, t) can havegst = 1,
and a feasible solution to this ILP corresponds to a rerouting
of the logical link.

In Constraint (4), the two terms correspond to the conditions
in Theorem 6. The constraint makes sure that at most one
of the conditions is satisfied, thereby disallowing the non-
cuts of sized − 1 to be converted into a cross-layer cut.
Similarly, Constraint (5) makes surezc = 1 for any non-cut
c ∈ NCd that is converted into a cut by the rerouting.

Finally, Constraints (6) and (7) describe conditions 2) and
3) of Theorem 4 respectively. Therefore,yc can be 1 only if
both conditions are satisfied. Sincec also satisfies condition
1) by definition ofCd, this implies that cross-layer cutc is
converted into a non-cut whenyc = 1.

Since the objective is to maximizeyc and minimizezc, in
an optimal solutionyc = 1 if and only if cross-layer cutc is
converted into a non-cut, andzc = 1 if and only if non-cutc
is converted into a cross-layer cut. As a result, the objective
function reflects the net reduction in the number of MCLCs.

Finally, note that the variablesyc andzc will take on binary
values in an optimal solution even if they are not constrained
to be integral. This observation helps to reduce the number of
binary variables in the formulation.

The ILP REROUTE approximates the lexicographical or-
dering minimization by minimizing the number of MCLCs
in the network. It can be extended to consider cross-
layer cuts of size larger than d, thus achieving a better
approximation. In this case, the set of cross layer cuts and

non-cutsCd and NCd will be replaced by sets that include
the cut and non-cuts up to sizek > d, denoted asC≤k and
NC≤k. The objective function will be changed to

Maximize
∑

c∈C≤k

ycwc −
∑

c∈NC≤k

zcwc, (9)

where wc is a weight constant assigned to each cutc so
that a smaller cut will have weight that dominates cuts of
larger size. In particular, if k is set to |EP |, the extended
ILP will return the optimal solution that minimizes the
lexicographical ordering. However, such a formulation will
contain an exponential number of variablesyc and zc,
and is generally not feasible for practical use. Therefore,
in the rest of the paper, we will focus on the problem of
minimizing the number of MCLCs, though the techniques
discussed in this paper are also be applicable to the more
general setting.

3) Approximation Algorithm for Lightpath Rerouting:For
larger networks, however, solving the rerouting ILP may still
be infeasible. Therefore, in this section, we present an ap-
proximation algorithm for the rerouting problem that provides
near-optimal solutions within a much shorter time.

We focus on the following question: Given the lightpath
routing, and a logical link(s, t), what is the best way to reroute
(s, t) assuming the routes for all other logical links are fixed?
A solution to this problem will allow us to solve the lightpath
rerouting problem, since we can run the algorithm once for
each logical link, and return the best solution.

Similar to the previous section, letCd,NCd andNCd−1
be the set of cross-layer cuts of sized, non-cuts of size
d and non-cuts of sized − 1 respectively. Now supposeQ
is a new physical route for logical link(s, t). Let NCstd
andNCstd−1 be the subsets ofNCd andNCd−1 that satisfy
condition (1) of Theorem 5. These two sets represent the non-
cuts that can potentially be converted into a cut by rerouting
(s, t). It immediately follows that any(s, t) path that uses
a physical link in∪T∈NCst

d−1
T will create a cross-layer cut

with size d − 1, which should be forbidden for the new
physical route. In addition, for any physical link(i, j), the
setLNCij =

{

T ∈ NCstd : (i, j) ∈ T
}

represents the non-cuts
with sized that will be converted into cross-layer cuts if the
new routeQ contains the physical link(i, j).

Similarly, let Cstd ⊆ Cd be the set of cross-layer cuts
that do not satisfy conditions (1) or (2) of Theorem 4.
This represents the set that will continue to be cross-layer
cuts regardless of the new physical routeQ for (s, t). In
addition, for each(i, j) ∈ EP , the cross-layer cuts in the
setLCij = {S ∈ Cd − C

st
d : (i, j) ∈ S} will also continue to be

cross-layer cuts if the new routeQ contains the physical link
(i, j), as they do not satisfy condition 3) of Theorem 4.

Now, for each physical link(i, j), let Lij = LCij ∪ L
NC
ij .

If a physical link (i, j) is used by the logical link(s, t) in
the new routeQ, it will cause the setLij ∪ Cstd to become
cross-layer cuts. Since every set of physical links inCstd will
be cross-layer cuts regardless of the physical route taken by
(s, t), the lightpath rerouting problem for logical link(s, t)
can be formulated as choosing the(s, t)-path Q in G

′

P =
(VP , EP − ∪T∈NCst

d−1
T ) that minimizes|L(Q)| = | ∪(i,j)∈Q
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Lij |. Although this is an instance of the NP-HardMinimum
Color Path[34] problem, a simpled-approximation algorithm
exists, as described below:

Algorithm 1 REROUTE SP(s, t)

1: Construct a weighted graph onG
′

P = (VP , EP −
∪T∈NCst

d−1
T ), where each edge(i, j) is assigned with

weightw(i, j) = |Lij |.
2: Run Dijkstra’s algorithm to find the shortest(s, t)-path in

the weighted graph.

Theorem 7:Let Q∗ be the optimal physical route for(s, t)
that results in the minimum number of MCLCs, and letQSP

be the new route for(s, t) returned byREROUTE SP. For
any (s, t)-path Q, let Nd(Q) be the number of cross-layer
cuts with sized after rerouting(s, t) with Q, whered is the
size of the MCLC. ThenNd(Q

SP) ≤ d ·Nd(Q
∗).

Proof: See Appendix B.
Therefore, the number of cross-layer cuts of sized given by

REROUTE SP is at mostd times the optimal reroute. Note
that if the optimal new route for(s, t) eliminates every MCLC
of size d, i.e., Nd(Q

∗) = 0, the approximation algorithm
will find a new route that achieves that as well. We state this
observation as the following corollary.

Corollary 4: REROUTE SP(s, t) will return a new route
for (s, t) that increases the size of MCLC of the layered
network, if such a new route exists.

We can extend algorithmREROUTE SP, which is based
on the Dijkstra’s shortest path algorithm, by using thek-
shortest path algorithm [35] to successively compute the next
shortest path inG

′

P and keep track of the pathQ with the
minimum value of |L(Q)|. The valuek reflects a tradeoff
between running time and quality of the solution. As we will
see in Section V, by picking a good value ofk, we can obtain
a lightpath routing within a much shorter time than solving
the ILP without sacrificing much in solution quality.

A Note on Complexity:The setsCd and NCd can be con-
structed by enumerating all the

(

|EP |
d

)

subsets of physical
links and each of them can be classified as a cut or non-cut
in O(|E|L) time by running a breath-first search on the
logical topology. Similarly, for each subsetS ∈ Cd ∪ NCd,
we can decide whether each of its member(i, j) is in Lij
and NCstd−1 by breath-first search. Therefore, the time to
compute all Lij is O(

(

|EP |
d

)

(|EL| + d)) = O(|EP |d|EL|).
Overall, the time complexity to construct the graphG

′

P is
O(|EP |d|EL|). The k-shortest path algorithm on G

′

P can
be run in O(k|VP |(|EP |+ |VP | log |VP |)) time [35]. There-
fore, the overall time complexity of REROUTE SP(s, t) is
O(|EP |d|EL|+ k|VP |(|EP |+ |VP | log |VP |)).

B. Logical Topology Augmentation

TheLogical Topology Augmentationproblem involves find-
ing the best way to augment the logical topology with a single
logical link, in order to maximize the reliability improvement.
Even though the augmentation problem has been extensively
studied for single-layer networks, [36]–[40], this has notbeen

studied before in the context of multi-layer networks. In
addition to theplacementaspect of finding the end points for
the new link as for the single-layer networks, there is also
the routing aspect for the layered networks. This adds a new
dimension of complexity to the augmentation problem.

As it turns out, the insights from our study of the lightpath
rerouting problem are largely applicable to the logical topol-
ogy augmentation problem. In the following sections, we will
first discuss the similarity between the augmentation problem
and the lightpath rerouting problem, and then develop a similar
ILP formulation and approximation algorithm.

1) Effects of a Single-Link Augmentation:Similar to the
rerouting problem, the new logical link chosen by the aug-
mentation algorithm should maximize the reduction in the
number of MCLCs. However, unlike rerouting, adding a new
link never converts a non-cut into a cross-layer cut. Therefore,
in augmentation we only need to consider the effect of the new
logical link on the existing cross-layer cuts.

Suppose that an initial lightpath routing is given for the
physical topologyGP = (VP , EP ) and the logical topology
GL = (VL, EL). Let d be the size of the MCLC under the
initial routing. Let GS

L be the logical residual graph for any
cross-layer cutS, that is, the logical subgraph in which the
logical links do not use any physical links inS. The following
theorem characterizes the effect of a single-link augmentation:
The proof can be found in [33].

Theorem 8:Let S be a cross-layer cut for a lightpath
routing. Augmenting the network with a new logical link(s, t)
over physical routeP converts a cross-layer cutS into a non-
cut if and only if:

1) S is a 2-way cross-layer cut.
2) s and t are disconnected in the residual graph forS.
3) P does not use any physical links inS.

Proof: The proof is the same as Theorem 4. The new
logical link will make the residual graph connected if and
only if the above conditions are true.

Note that the characterizations for augmentation (Theo-
rem 8) and rerouting (Theorems 4 and 5) differ only in
that the conditions in Theorem 5 are no longer applicable
to augmentation, because augmentation never converts any
non-cut into a cross-layer cut. Therefore, we can revise the
ILP REROUTE accordingly to formulate an ILP for the
augmentation problem.

2) ILP for Logical Topology Augmentation:We will revise
the ILPREROUTE presented in Section IV to develop the ILP
for the augmentation problem. InREROUTE, the variables
{zc = 1 : c ∈ NCd} correspond to the set of non-cuts that
will be converted into cuts by the rerouting, and Constraints
(4) and (5) describe the conditions for such conversion. As
previously discussed, such conversion is not applicable in
augmentation and therefore these variables and constraints
can be removed from the ILP. In addition, unlike rerouting
where we choose from the set of existing logical links, in
augmentation we can pick any two logical nodes for the
new logical link. Therefore, we will replace the variable set
{gst : (s, t) ∈ EL} in REROUTE by {gst : (s, t) ∈ VL × VL}
and remove Constraint (3). This gives us the following ILP
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for augmentation:

AUGMENT : Maximize
∑

c∈Cd

yc, subject to:

gst ≤ (fus + ftv)/2, ∀(s, t) ∈ VL × VL (10)

yc ≤
∑

(s,t)∈VL×VL

hc
stgst, ∀c ∈ Cd (11)

yc ≤ 1− lcijfij , ∀(i, j) ∈ EP , ∀c ∈ Cd (12)

{(i, j) : fij = 1} forms an(u, v)-path inG
′

P (13)

fij , gst ∈ {0, 1} , 0 ≤ yc ≤ 1

Similar to the interpretation ofREROUTE, in a feasible
solution to AUGMENT, the variablesfij represent a path
u → s ❀ t → v, as described by Constraint (13). This
corresponds to the new logical link to be added, along with
its physical route. Constraint (10) ensures thatgst = 1 if and
only if (s, t) is the new logical link selected. Constraints (11)
and (12) describe the conditions in Theorem 8. In particular,
the variableyc describes whether the cross-layer cutc is
converted into non-cut by the augmentation. Therefore, theILP
maximizes the number of such conversions, which translates
to maximizing the improvement in reliability.

3) Approximation Algorithm For Logical Topology Aug-
mentation: One can also design an approximation algorithm
similar to REROUTE SP introduced in Section IV-A3 for
the logical topology augmentation problem. We will again
focus on the following question: Given a layered network,
and a new logical link(s, t), find the physical route for(s, t)
such that the resulting number of cross-layer cuts of sized is
minimized. We can then apply the algorithm for this problem
for every possible pair of logical nodess andt, to find out the
new logical link that would result in the maximum reliability
improvement.

Let d be the size of the MCLC of the layered network
and Cstd be the set of 2-way cross-layer cuts of sized that
separate the logical nodess and t. Then by Theorem 8, the
set Lij = {S ∈ Cstd : (i, j) ∈ S} represents the sets inCstd
that will remain to be cross-layer cuts if the physical link
(i, j) is used by the(s, t) pathQ. We can then develop an
approximation algorithm for the augmentation problem similar
to REROUTE SP:

Algorithm 2 AUGMENT SP(s, t)

1: Construct a weighted graph onGP = (VP , EP ), where
each edge(i, j) is assigned with weightw(i, j) = |Lij |.

2: Run Dijkstra’s algorithm to find the shortest(s, t)-path in
the weighted graph.

Since each cross-layer cutS in Cstd has sized, there are
exactlyd physical links(i, j) such thatS ∈ Lij . As a result,
AUGMENT SP is ad-approximation algorithm, with the same
proof as Theorem 7.

V. SIMULATION RESULTS

The single-link rerouting and augmentation methods devel-
oped in the previous section can be used as a building block for

improving the reliability of an existing layered network. For
example, by iteratively rerouting the logical links for a given
lightpath routing until no further improvement is possible,
we can obtain to a locally optimal solution. In this section,
we study the effectiveness of such approach via extensive
simulation studies.

A. Iterative Rerouting for Survivable Lightpath Routing

We first apply iterative rerouting to solve the Survivable
Lightpath Routing problem, whose objective is to obtain
a lightpath routing that maximizes the reliability for given
physical and logical topologies. The Survivably Lightpath
Routing has been previously studied in the literature, where
the best known algorithmn [32] is based on an ILP fomulation
that maximizes the MCLC of the network. In contrast, the
objective for lightpath rerouting algorithm is based on the
lexicographical ordering of the cut vector, which capturesmore
precisely the survivability characteristics of the network. As
we will learn from the result, using this improved objective
significantly improves the quality of the solution.

In this study, we use the NSFNET (Figure 6), extended
with new links to raise its connectivity to 4, as the physical
topology. For logical topologies, we generate 350 random
graphs with connectivity 4, ranging from 6 to 12 nodes; and 13
to 38 links. For each algorithm under evaluation, we compute
a lightpath routing for each pair of physcial and logical
topologies. The average reliability among the 350 lightpath
routings will be presented as the performance metric.
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Fig. 6. The extended NSFNET. The dashed lines are the new links.

We will first study the effect of the different initial lightpath
routings on the reliability of the final solution. Next, we’ll
compare the performance of the rerouting algorithm variants
based on ILP and the approximation algorithm. Throughout
these studies, we also compare the solutions generated by
these algorithms with the solution generated by the best known
lightpath routing algorithm in the literature,MCFLF [32]
(denoted asMCF in this paper for simplicity), as well as the
simple shortest path algorithmSP.

1) Performance of ILP-Based Rerouting:We first evaluate
the reliability performance of the ILP-based lightpath rerouting
approach introduced in Section IV-A2, with initial lightpath
routings generated by two different algorithms:

• RRSP: The initial lightpath routing is generated by the
Shortest-Path algorithmSP, which routes each lightpath
with minimum number of physical hops.

• RRMCF: The initial lightpath routing is generated by the
algorithmMCF introduced in [32].

Compared withSP, MCF provides initial lightpath routings
with much higher reliability at the expense of longer running
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time. Given the initial lightpath routing, the rerouting algo-
rithm repeatedly solves the rerouting ILP in Section IV-A2 to
improve the reliability, until it reaches a local optimum.

Figure 7 illustrates the average unreliability of the different
algorithms. Even with initial lightpath routings generated by
the best known lightpath routing algorithmMCF, the rerouting
algorithm RRMCF is able to further reduce the unreliability
of the lightpath routings. In fact, while only 50% of the
lightpath routings generated byMCF has MCLC 4, which
is the connectivity of the logical topologies and is therefore
the highest MCLC value achievable, the rerouting algorithm
RRMCF is able to archieve this maximum MCLC value 98% of
the time. This means that the lightpath rerouting approach is
able to produce lightpath routings that are much more reliable
than existing algorithms.

In addition, even though the initial lightpath routings gen-
erated bySP andMCF differ significantly in reliability, the
iterative rerouting eliminates most of the difference. This sug-
gests that the rerouting approach is robust to initial routings,
and we can use a simple algorithm, such as Shortest-Path,
to generate the initial lightpath routing and rely on iterative
rerouting to obtain a reliable solution.
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Fig. 7. UnReliability performance by different algorithms.

Table I shows the average physical path length by
the lightpaths generated by the different algorithms. The
higher reliability of the rerouting algorithms comes with
a cost of longer paths, as the algorithms often select
the longer physical routes in order to achieve higher
reliability. This reflects the tradeoff between the reliability
and bandwidth resource used by the lightpath routings.

Number of Average Path Length
Logical Nodes SP MCF RRSP RRMCF

6 1.93 2.32 2.60 2.57
7 1.90 2.28 2.58 2.57
8 1.89 2.30 2.68 2.62
9 1.88 2.29 2.57 2.60
10 1.91 2.34 2.68 2.64
11 1.90 2.32 2.60 2.64
12 1.86 2.22 2.51 2.51

TABLE I
AVERAGE PATH LENGTH OF THESHORTEST-PATH ALGORITHM SP,

LIGHTPATH ROUTING ALGORITHMMCF, AS WELL AS THE REROUTING

ALGORITHMS USINGSHORTEST-PATH (RRSP) AND MCF (RRMCF) TO

GENERATE THE INITIAL LIGHTPATH ROUTINGS.

Table II shows the average running times of the rerouting
algorithms, (not including the time to generate the initial
routings), as well as the average number of rerouting iterations.
Compared with the lightpath routing algorithmMCF, the
rerouting algorithms are able to terminate faster with a better
solution. This is because this iterative rerouting approach
effectively decomposes the joint lightpath routing problem into
simpler single-link rerouting steps, where the ILP in each step
is much smaller than the lightpath routing formulation inMCF.

Between the two rerouting variants,RRSP requires more
iterations thanRRMCF to reach the local optimum, because
it starts with a much less reliable initial lightpath routing.
However, the difference in total running time is less significant.
This is because the size of the rerouting ILP formulation is
larger when the MCLC of the lightpath routing is large, and
thus takes longer to solve. In most cases,RRSP starts with
an initial lightpath routings with a lower MCLC value. As a
result, most of the additional rerouting steps consist of solving
the smaller ILPs to bring up the MCLC value. Therefore, these
additional steps take much shorter time.

Number of Running Time (seconds) Number of Iterations
Logical Nodes MCF RRSP RRMCF RRSP RRMCF

6 1652 265 164 7.0 3.0
7 1655 314 257 8.9 4.2
8 1732 500 365 10.3 5.0
9 1838 745 525 11.6 6.2
10 2032 1238 824 14.1 7.3
11 2219 1389 1280 14.0 8.0
12 2716 1268 1104 14.1 8.2

TABLE II
RUNNING TIMES OF THE LIGHTPATH ROUTING ALGORITHMMCF, AS

WELL AS THE REROUTING ALGORITHMS USINGSHORTEST-PATH (RRSP)
AND MCF (RRMCF) TO GENERATE THE INITIAL LIGHTPATH ROUTINGS;
AND THE NUMBER OF ITERATIONS OF THE REROUTING ALGORITHMS.

2) Performance of Approximation Algorithm:Next, we
compare the performance of the approximation algorithm
introduced in Section IV-A3 with the ILP counterpart. As
discussed, the approximation algorithm is based on thek-
shortest-path algorithm, where the parameterk reflects a
tradeoff between running time and reliability performance. We
evaluate this algorithm,Shortestk, with k =1, 10 and 100.

We use the lightpath routings generated by the Shortest
Path algorithm as the initial routings. Figure 8 shows the
average unreliability of the lightpath routings produced by
the algorithms. WhileShortest1 brings in the majority of the
improvement, increasing the value ofk is able to further
reduce the unreliability. In particular, whenk = 100, the
approximation algorithm performs almost as well as solving
the rerouting ILP.

Table III compares the running time of the algorithms. As
shown in the table, the approximation algorithms are signifi-
cantly faster than the ILP-based algorithm. This suggests that
the approximation algorithm is promising rerouting alternative
to the ILP for improving the reliability of large networks,
without the need to solve complex mathematical programs.
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Fig. 8. Lightpath rerouting: performance of approximationalgorithm.

Number of Running Time (seconds)
Logical Nodes RRSP Shortest1 Shortest10 Shortest100

6 265 12 14 24
7 314 20 26 43
8 500 32 43 79
9 745 45 55 123
10 1238 68 91 199
11 1389 83 104 254
12 1268 113 135 344

TABLE III
RUNNING TIMES OF THE REROUTING ALGORITHMS BASED ONILP (RRSP)

AND k-SHORTEST PATHS.

B. Effects of Logical Topology Augmentation

Next, we study the effect of augmenting the logical topology
on the network reliability. We study a 10-node and a 14-node
logical ring on the augmented NFSNET, as shown in Figure 9,
and incrementally augment the rings to study the reliability
improvement from the addition of new logical links.

(a) 10 Node Logical Ring

(b) 14 Node Logical Ring

Fig. 9. Logical rings on extended NSFNET.

The cross-layer reliability of the networks after each aug-
mentation step is shown in Figure 10. With link failure
probability p = 0.01, the unreliability declines as we add
more logical links to the rings. The key observation from these
figures is that the improvement in reliability is most prominent
when the augmentation increases the MCLC of the network.
This suggests that networks with a small number of MCLCs
have a greater potential to significantly improve the reliability

by augmentation, as it is more likely to improve their MCLC
values by a small number of new logical links.

In the case where the additional link does not cause an
MCLC increase, the marginal reliability improvement de-
creases with the current MCLC value. This means that aug-
mentation is more effective when the MCLC value is lower.

(a) 10 Node Logical Ring

(b) 14 Node Logical Ring

Fig. 10. Impact on reliability by augmenting logical rings.

C. Case Study: A Real-World IP-over-WDM Topology

Finally, we evaluate the performance of the rerouting and
augmentation algorithms on a large layered network based on
a real-world IP-over-WDM network. The physical and logical
topologies, shown in Figure 11, are constructed based on the
network maps available from Qwest Communications [41].
Both the physical and logical topologies are extended with
new links so that the graphs have connectivity 4. The physical
topology has 39 nodes and 72 links, and the logical topology
has 20 nodes and 101 links.

The study on larger networks allows us to reevaluate the
performance of the lightpath algorithms, both in terms of scal-
ability and solution quality. In this study, we run the following
lightpath routing algorithms and compare their solutions:

1) MCF: The multi-commodity flow algorithm introduced
in [32]. As in Section V-A, the algorithm is evaluated
as the performance baseline.

2) REROUTE: The iterative lightpath rerouting algorithm,
based on thek-shortest path algorithm presented in Sec-
tion IV-A3, wherek is set to 5000 in our experiment.
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(a) WDM (physical) network.

(b) IP/MPLS (logical) network. The numbers
indicate the number of parallel logical links
between the logical nodes.

Fig. 11. Physical and logical topologies.

3) AUGMENTn: The logical topology augmentation algo-
rithm, based on thek-shortest path algorithm presented
in Section IV-B3, wherek is set to 5000 in our exper-
iment. The augmentation algorithm is run successively
to addn new edges on the lightpath routing given by
REROUTE, wheren = 1, . . . , 9.

The MCLC values and the number of MCLCs of the light-
path routings generated by each algorithm are shown in Ta-
ble IV. These numbers are compared against the lower bound,
which is computed by counting the number of minimum sized
physical fiber sets whose removal willphysicallydisconnect
some logical nodes. These sets of physical links are cross-
layer cuts regardless of the lightpath routing, and therefore
will provide a lower bound on the number of MCLCs.

It was observed in [32] that the survivability performance
of the multi-commodity flow formulationMCF declines as the
network size increases. In this case, the solution producedby
the algorithm only has MCLC value 2. On the other hand,
the rerouting algorithmREROUTE continues to produce a
lightpath routing with the maximum possible MCLC value
4. Augmenting the logical topology can further improve the
reliability of the layered network by reducing the number of
MCLCs, though the incremental effect declines as more logical
links are added to the network. The number of MCLCs hits
the lower bound when the logical topology is augmented with
9 additional logical links.

Figure 12 compares the algorithms in terms of the cross-
layer reliability in the low failure probability regime. As
suggested by Table IV, the iterative algorithms achieve signif-
icantly higher reliability than the existing algorithmMCF (by
about 3 orders of magnitude). In particular, the majority ofthe
improvement is achieved by the lightpath rerouting algorithm

REROUTE. This is because the lightpath rerouting method
alone is able to achieve the maximum MCLC value. As we
observed in Section V-B, adding logical links is more effective
only if the new links can raise the MCLC of the network.
In other words, even without adding new logical links, we
can obtain a near optimal solution by improving the existing
lightpath routing via the iterative rerouting method.

Algorithm MCLC Number of MCLCs
MCF 2 5

REROUTE 4 216
AUGMENT1 4 84
AUGMENT3 4 34
AUGMENT5 4 25
AUGMENT9 4 20

Lower Bound 4 20

TABLE IV
MCLC VALUES AND MCLC COUNTS OF DIFFERENT LIGHTPATH

ROUTINGS. THE LIGHTPATH ROUTING ON A LOGICAL TOPOLOGY
AUGMENTED WITH n NEW LOGICAL LINKS IS DENOTED BYAUGMENTn .
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Fig. 12. Unreliability of different lightpath routings.

VI. H IGH FAILURE PROBABILITY REGIME

As discussed in Section I, natural disasters or physical
attacks can lead to widespread network link failures. While
such events may be extremely rare, certain networks that are
of critical importance to national security and our day to day
lives may need to be designed so that they can withstand such
rare events. Moreover, certain “specialized” networks, such as
those onboard an aircraft or a ship may need to be designed to
withstand very high link failure probabilities that resultfrom
a catastrophic failure event (e.g., well over 50% link failures)
[42]. In this section, we briefly discuss network design in this
high failure probability scenario.

In Section III-B, we showed that whenp is small, it is
important to minimize the number of small cuts. Analogously,
for large p, large cuts are dominant, and hence, minimizing
the number of large cuts would result in maximum reliability.
In other words, the cut vector should be minimized for large
cuts for better reliability in the high failure probabilityregime.
Similar to the case of low probability regime, we define the
following vector of partial sums:

←−
N =

[

m
∑

i=m−k

Ni|k = 0, ...,m

]

.
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The vector
←−
M is defined similarly. Note that thei-th element

←−
N i is the total number of cross-layer cuts of size at least
m − i. We will use these vectors to develop the conditions
that incrementally include larger cuts and characterize the
probability regime where one lightpath routing is more reliable
than any other for largep.

First, the k-colexicographical ordering (an analogy tok-
lexicographical ordering in Section III-C) is defined as follows:

Definition 6: Lightpath routing 1 is said to be k-
colexicographically smaller than lightpath routing2 if

k = max
{

j :
←−
N i ≤

←−
M i, ∀i > c− j

}

andk ≥ 1,

where c is the position of last element where the two cut
vectors differ.

In contrast to thek-lexicographical ordering, this colexico-
graphical ordering starts from the largest cuts, and incremen-
tally includes the smaller cuts. The following result is similar
to Theorem 3:

Theorem 9:Given two vectors N=[Ni|i = 0, . . . ,m]

and M=[Mi|i = 0, . . . ,m]. For any j, let
←−
∆j =

m
∑

i=m−j
(Mi − Ni) and

←−
δ j = max

0≤i≤m−j−1

{

Ni−Mi

(mi )

}

. If N is

k-colexicographically smaller thanM , then

F1(p) ≤ F2(p) for p ≥ ph0 = 1−max

{

0.5, min
c≤j≤c+k−1

Cj

}

,

wherec = min {i : Nm−i < Mm−i} and

Cj =

{

0.5, if j = m
1− 1

m
j+1

+
←−
δ j( m

j+1)/
←−
∆j

, otherwise.

Proof: See Appendix C.
The following corollary is analogous to Corollary 3 for the

high failure regime:
Corollary 5: If

←−
N j ≤

←−
M j for all j = 0, . . . ,m, then

routing 1 is at least as reliable as routing2 for p ≥ 0.5, i.e.,
F1(p) ≤ F2(p) for p ≥ 0.5.
Combining Corollaries 3 and 5 gives a condition for uniformly
optimal lightpath routing:

Corollary 6: If
−→
N j ≤

−→
M j and

←−
N j ≤

←−
M j for all j =

0, . . . ,m, then lightpath routing 1 is uniformly optimal.
Theorems 3 and 9 provide a single optimality regime

expression for lightpath routings that exhibit different degrees
of dominance. Note that the conditions of (co)lexicographical
ordering in Corollary 6 are satisfied by the uniform optimality
condition Ni ≤ Mi, ∀i given in Theorem 1. Therefore,
this unified theorem allows for a broader class of uniformly
optimal lightpath routings.

More importantly, Theorem 9 can be used to derive practical
conditions for optimal lightpath routings in the high failure
probability regime. We begin with the following definitions:

Definition 7: Consider two lightpath routings1 and2. Rout-
ing 1 is said to bemore reliablethan routing2 in the high
failure probability regimeif there exists a numberp0 < 1 such
that the reliability of routing1 is higher than that of routing
2 for p0 < p < 1.

Definition 8: A cross-layer spanning treeis a minimal set
of fibers whose survival keeps the logical network connected.

Hence, ifT is a cross-layer spanning tree, then the survival
of just T \ {(i, j)} renders the logical network disconnected
for any fiber(i, j) ∈ T .

Note that the cross-layer spanning tree is a generalization
of the single-layer spanning tree. However, unlike a single-
layer graph where all spanning trees have the same size, in a
layered graph, spanning trees can have different sizes. Thus,
we define aMin Cross Layer Spanning Tree (MCLST)as a
spanning tree with minimum number of physical links.

In the high failure probability regime, it is likely that there
are a large number of failures. Hence, the MCLST is an
important parameter in the high failure probability regime
because logical networks with small MCLST may remain
connected even if only a small number of physical links
survive. This intuition together with Theorem 9 leads to
practical conditions for optimal routings in the high failure
probability regime.

Note that in the failure polynomial,Ni ≤
(

m
i

)

. Letm−c be
the size of MCLST. Then,c is the largesti such thatNi <

(

m
i

)

,
and we haveNi =

(

m
i

)

, ∀i > c, meaning that more than
c failures would always disconnect the logical network. Let
m − cj be the size of MCLST for routingj. It is obvious
that if c1 > c2 or c1 = c2 & Nc1 < Mc2 , then routing1 is
k-colexicographically smaller than routing2. This observation
leads to the corollaries similar to the low regime case:

Corollary 7: If c1 > c2 (i.e., if routing 1 has smaller
MCLST than routing2), then routing1 is more reliable than
routing 2 in the high failure probability regime.

Corollary 8: If c1 = c2 andNc1 < Mc2 (i.e., routings1
and2 have the same size of MCLST, but routing1 has more
MCLSTs), then routing1 is more reliable than routing2 in
the high failure probability regime.

Therefore, for reliability maximization in the high failure
probability regime, it is desirable to find a lightpath routing
that minimizes the size of MCLST and maximizes the number
of MCLSTs. This observation is similar to the single-layer
setting where maximizing the number of spanning trees maxi-
mizes the reliability for largep [8]. The major difference in the
multi-layer case is that, since spanning trees may have different
sizes, minimizing thesizeof the Min Cross-Layer Spanning
Tree becomes the primary objective. Moreover, computing the
size of the MCLST is NP-hard [23], and therefore, designing
a lightpath routing that minimizes the MCLST is likely to be
a difficult problem. We developed an ILP-based algorithm that
finds a lightpath routing with minimum-size MCLST, and its
details can be found in Appendix D.

VII. C ONCLUSION

We studied the reliability maximization problem in layered
networks with random link failures. We introduced the notion
of lexicographical ordering for lightpath routings, and fully
identified optimization criteria for maximum reliability in the
low failure probability regime. In particular, we showed that
a lightpath routing with the maximum size of Min Cross
Layer Cut (MCLC) and the minimum number of MCLCs
is most reliable in the low failure probability regime. Based
on this insight, we developed a novel lightpath rerouting
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approach to design reliable layered networks for the low
failure probability regime. By incrementally improving the
lightpath routing, this rerouting approach is able to achieve
a locally optimal solution. Our simulation results show that
the rerouting algorithms developed in this paper are able to
produce much more reliable lightpath routings than existing
algorithms (by about 3 orders of magnitude in real IP-over-
WDM Network), and are more scalable to large networks.
Using the optimization criteria, we also developed logical
topology augmentation algorithms that can further improvethe
reliability of a given layered network.

We also showed that the high failure probability regime
requires different optimization criteria that a routing with the
minimum size of Min Cross Layer Spanning Tree (MCLST)
and the maximum number of MCLSTs maximizes reliability.
Our results in the high failure probability regime lay the
foundation for the design of networks facing increased concern
about large scale failures due to natural disasters or attacks.

APPENDIX A
PROOF OFTHEOREM 3

We first prove the following lemma.
Lemma 1: If vector N is k-lexicographically smaller than

vector M , then for all j ≤ d + k − 1, where d =
min {d : Nd < Md}, and for0 ≤ p ≤ 0.5,

j
∑

i=0

(Mi −Ni)p
i(1− p)m−i ≥

−→
∆jp

j(1 − p)m−j . (14)

Proof: We prove, by induction onj, that (14) holds for
all j ≤ d+ k − 1. Since

−→
∆0 = M0 −N0, we have forj = 0,

j
∑

i=0

(Mi −Ni)p
i(1 − p)m−i =

−→
∆0(1− p)m

Therefore, (14) holds forj = 0. Now suppose (14) holds for
all i ≤ j for somej < d+ k − 1. Then, we have:

j+1
∑

i=0

(Mi −Ni)p
i(1 − p)m−i

=

j
∑

i=0

(Mi −Ni)p
i(1 − p)m−i + (Mj+1 −Nj+1)p

j+1(1− p)m−(j+1)

≥
−→
∆jp

j(1 − p)m−j + (Mj+1 −Nj+1)p
j+1(1− p)m−(j+1)

≥
−→
∆jp

j+1(1 − p)m−(j+1) + (Mj+1 −Nj+1)p
j+1(1− p)m−(j+1)

=
−→
∆j+1p

j+1(1 − p)m−(j+1),

where the first inequality is due to the induction hypothesis,
and the second inequality is becausep/(1−p) ≤ 1. Therefore,
by induction, (14) is true for allj ≤ k.

Lemma 2:Given a fixedk, if
−→
∆i ≥ 0 for all i ≤ d+k−1,

then for anyd ≤ j ≤ d+ k − 1:

F1(p) ≤ F2(p),

for 0 ≤ p ≤ min {0.5, Bj}, where:

Bj =

{

0.5, if j = m
1

m
j+1

+
−→
δ j( m

j+1)/
−→
∆j

, otherwise.

Proof: First, note that by definition of
−→
δ j , for anyi ≥ j:

−→
δ j

(

m

i

)

≥ Ni −Mi. (15)

If k = m− d+ 1, then Lemma 1 implies that, forp ≤ 0.5:
m
∑

i=0

(Mi −Ni)p
i(1 − p)m−i ≥

−→
∆mpm ≥ 0.

Therefore, the lemma is true fork = m−d+1. Now suppose
k < m − d + 1. If

−→
δ j ≤ 0 for somej ≤ k, this implies for

any d+ k ≤ l ≤ m:

−→
∆ l =

−→
∆d+k−1 +

l
∑

i=d+k

(Mi −Ni)

≥
−→
∆d+k−1 −

l
∑

i=d+k

−→
δ j

(

m

i

)

≥ 0,

where the first inequality is due to (15). The second inequality
is due to the fact that

−→
δ j ≤ 0, and that

−→
∆d+k−1 ≥ 0, sinceN

is k-lexicographically smaller thanM . Therefore, in this case,
the vectorN is also(m−d+1)-lexicographically smaller than
M , and the lemma is true as proved above. Therefore, in the
rest of the proof, we assume that

−→
δ j > 0.

Sincep ≤ 0.5 and
−→
∆i ≥ 0 for all i ≤ d+k−1, by Lemma 1

we have, for allj ≤ d+ k − 1:
j
∑

i=0

(Mi −Ni)p
i(1− p)m−i ≥

−→
∆jp

j(1− p)m−j . (16)

Next, we will use the following result to bound the tail
probability of the Binomial distribution:

Lemma 3 ( [?]): For r > mp,
m
∑

i=r

(

m

i

)

pi(1 − p)m−i ≤

(

m

r

)

pr(1− p)m−r ·
r(1 − p)

r −mp
.

Therefore, sincep ≤ 1
m

j+1
+
−→
δ j( m

j+1)/
−→
∆j

< j+1
m , by Lemma 3,

we have:

m
∑

i=j+1

(

m

i

)

pi(1− p)m−i (17)

≤

(

m

j + 1

)

pj+1(1 − p)m−(j+1) ·
(j + 1)(1− p)

j + 1−mp

=

(

m

j + 1

)

pj(1− p)m−j ·
(j + 1)p

j + 1−mp
. (18)

In addition, sincep ≤ 1
m

j+1
+
−→
δ j( m

j+1)/
−→
∆j

, we have:

(j + 1)p

j + 1−mp
=

1
1
p −

m
j+1

≤
1

−→
δ j( m

j+1)
−→
∆j

+ m
j+1 −

m
j+1

=

−→
∆j

−→
δ j

(

m
j+1

)

. (19)

It follows that:
m
∑

i=0

(Mi −Ni)p
i(1− p)m−i
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=

j
∑

i=0

(Mi −Ni)p
i(1 − p)m−i +

m
∑

i=j+1

(Mi −Ni)p
i(1− p)m−i

≥

j
∑

i=0

(Mi −Ni)p
i(1 − p)m−i −

m
∑

i=j+1

−→
δ j

(

m

i

)

pi(1 − p)m−i

≥
−→
∆jp

j(1 − p)m−j −
−→
δ j

(

m

j + 1

)

pj(1− p)m−j ·
(j + 1)p

j + 1−mp

=pj(1 − p)m−j
−→
δ j

(−→
∆j
−→
δ j

−

(

m

j + 1

)

·
(j + 1)p

j + 1−mp

)

≥pj(1 − p)m−j
−→
δ j





−→
∆j
−→
δ j

−

(

m

j + 1

)

·

−→
∆j

−→
δ j

(

m
j+1

)



 = 0.

The first inequality is due to (15), the second inequality is
due to (16) and (18), and the last inequality is due to (19).

As a result of Lemma 2, we can pick thed ≤ j ≤ d+k−1
such thatBj is maximized to obtain the largest upper bound
for p, and Theorem 3 follows.

APPENDIX B
PROOF OFTHEOREM 7

Given any (s, t) path Q, defineL(Q) = ∪(i,j)∈QLij , it
follows thatNd(Q) = |L(Q)| + |Cstd | = |L(Q)| + K, where
K = |Cstd | is a constant. In addition, letw(Q) be the total
weight sum of the pathQ in the weighted graph constructed
by REROUTE SP(s, t).

Since each set of physical linksS ∈ L(Q) has sized, we
have| {(i, j) : S ∈ Lij} | ≤ d, which implies:

w(Q) =
∑

(i,j)∈Q

|Lij |

≤
∑

S∈L(Q)

| {(i, j) : S ∈ Lij} |

≤ d · |L(Q)| = d · (Nd(Q)−K) (20)

Now, sinceQSP is the minimum weight(s, t) path in the
graph, it follows that:

Nd(Q
SP) = |L(QSP)|+K

≤ w(QSP) +K

≤ w(Q∗) +K

≤ d · (Nd(Q
∗)−K) +K, by Equation (20)

≤ d ·Nd(Q
∗).

APPENDIX C
PROOF OFTHEOREM 9

Let N
′

i = Nm−i and M
′

i = Mm−i, for i = 0, . . . ,m;

and let
−→
N

′

k =
∑k

i=0 N
′

i and
−→
M

′

k =
∑k

i=0 M
′

i . It follows that

the vector
−→
N

′

:=

[−→
N

′

i |i = 0, . . . ,m

]

is k-lexicographically

smaller than the vector
−→
M

′

:=

[−→
M

′

i |i = 0, . . . ,m

]

. Let q =

1− p. Then, by Theorem 3,
m
∑

i=0

(Mi −Ni)p
i(1− p)m−i =

m
∑

i=0

(M
′

i −N
′

i )q
i(1− q)m−i ≥ 0,

for q ≤ min

{

0.5, max
d≤j≤d+k−1

Bj

}

, where:

Bj =

{

0.5, if j = m
1

m
j+1

+
−→
δ

′

j(
m

j+1)/
−→
∆

′

j

, otherwise

In the above expression, we have:

−→
∆

′

j =

j
∑

i=0

M
′

i −N
′

i =
←−
∆j , and

−→
δ

′

j = max
j+1≤i≤m

{

N
′

i −M
′

i
(

m
i

)

}

=
←−
δ j .

Note thatBj = 1 − Cj for d ≤ j ≤ d + k − 1. Therefore,
routing 1 is at least as reliable as routing 2 for

p = 1− q ≥1−min

{

0.5, max
d≤j≤d+k−1

Bj

}

=max

{

0.5, min
d≤j≤d+k−1

Cj

}

.

This completes the proof.

APPENDIX D
L IGHTPATH ROUTING ILP TO M INIMIZE M INIMUM CROSS

LAYER SPANNING TREE (MCLST) SIZE

As discussed in Section VI, lightpath routings with smaller
MCLST size will be more reliable in the high failure prob-
ability regime. In this section, we present an ILP for the
lightpath routing formulation that minimizes the MCLST.that
are optimized for the high failure probability regime. We first
define the following variables:

•
{

f st
ij |(s, t) ∈ EL, (i, j) ∈ EP

}

: Flow variables represent-
ing the lightpath routing.

• {yij |(i, j) ∈ EP }: 1 if fiber (i, j) survives, 0 otherwise.
• {zst|(s, t) ∈ EL}: 1 if lightpath (s, t) survives, 0 other-

wise.
• {xst|(s, t) ∈ EL}: Flow variables on the logical topology.

MCLST : Minimize
∑

(i,j)∈EP

yij , subject to:

∑

t∈VL

xst −
∑

t∈VL

xts =

{

|VL| − 1, if s = 0
−1, if s ∈ VL − {0}

(21)

(VL − 1) · zst ≥ xst, ∀(s, t) ∈ EL (22)

yij ≥ zst + f st
ij − 1 ∀(s, t) ∈ EL, ∀(i, j) ∈ EP (23)

{(i, j) : f st
ij = 1} forms an(s, t)-path inGP , ∀(s, t) ∈ EL

0 ≤ yij ≤ 1; 0 ≤ xst; zij , f
st
ij ∈ {0, 1}

The variablesxst represent a flow on the logical topology
where 1 unit of flow is sent from logical node 0 to every other
logical node, as described by Constraint (21). Constraint (22)
requires these flows to be carried only on the surviving
logical links, which implies that the surviving links form
a connected logical subgraph. Constraint (23) ensures the
survival of physical links that are used by any surviving logical
links. Since the objective function minimizes

∑

(i,j)∈EP

yij , the
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optimal solution will represent a minimum set of physical links
whose survival will allow the logical link to be connected.

Therefore, the set of physical links(i, j) with yij = 1 forms
a cross-layer spanning tree. As a result, the optimal solution
to the above ILP yields a lightpath routing that minimizes the
size of the MCLST.
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