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Abstract—We study the reliability maximization problem in  that given a lightpath routing, the logical topology rensin
WDM networks with random link failures. Reliability in thes e  connected; we call this probability theoss-layer (network)
networks is defined as the probability that the logical netwek  a|iapijity. The cross-layer reliability reflects the survivability
is connected, and it is determined by the underlying lightp#h . 2
routing, network topologies and the link failure probability. By perfprmance ach.|eved by the layered network. H.enlce, It is
introducing the notion of lexicographical ordering for lightpath ~ desirable to design a layered network that maximizes the
routings, we characterize precise optimization criteria br maxi-  reliability. Although the single-layer network design prob-
mum reliability in the low failure probability regime. Based on |em has been extensively studied [5]=[12], the layered
the optimization criteria, we develop lightpath routing algorithms network reliability problem remains largely unexplored.

that maximize the reliability, and logical topology augmertation - .
algorithms for further improving reliability. We also stud y the Existing work in the area [13]-[22] has mostly focused on

reliability maximization problem in the high failure proba bility ~ finding a lightpath routing that survives a single physical
regime. link failure, rather than finding the one with maximum

reliability. Our work in [32]lwas the first study to maximize
the tolerance of such physical failures for a lightpath

o ~routing, and cross-layer reliability was introduced in [23]
Modern communication networks are constructed using@ generalize this notion. In particular, we extended the

layered approach, with one or more electronic layers (€.golynomial expression for single-layer network reliabiliy
IP, ATM, SONET) built on top of an optical fiber network., the |ayered setting, and developed approximation algo-
The survivability of such networks under fiber failures BI5g yithms for reliability computation. We also demonstrated a
depends on how the logical electronic topology is embeddggsitive correlation between the reliability and Min Cross
onto the physical fiber topology. In the context of WD ayer Cut (MCLC; The precise definition of MCLC is
networks, this is known dightpath routing However, finding presented in Section[T) in the low failure probability
a reliable Iightpath routing is rath_er challenging bgcailse regime, and experimented with MCLC as the objective in
must take into account the sharing of physical fibers Ry, |ightpath routing algorithm to approximate reliabilit y
logical links and its impact on the connectivity of the lo@ic aximization.

topology. Hence, the survivability of a layered network is g goal is to fully characterize the structures that
a complex function of logical topology, physical topologyeontribute to the reliability in a layered network. This
lightpath routing, and link failure probability. In this per, we  gives us the precise optimization criterion for maximizing
study reliable layered network design assuming that paysi¢he rejiability. Although optimizing the exact criterion i s
links fail at random with some probability, where multiplenfeasible in practice, the insight allows us to develop a

links may fail simultaneously. new objective that better approximates reliability maxi-
The probabilistic failure model represents a snapshot of,&,ation.

network where links fail and are repaired after a certairetim Typically, real-world networks experience very low linkifa

as in many practical scenarios [1]. Hence, the link failurg e probabilities, and are designed accordingly. For iresta
probability can be viewed as the average fraction of imédahae fajlure probability of a 1000-mile cable in the Bellcore
link is in a failed state. This random failure model is somawh atwork is estimated to be about 0.006 [24]. However, in

general in that it can be used to model both networks Witicent years there has been an increased concern about the
rare link failures as well as more frequent failures. It thugynact of natural disasters or physical attacks on network
enables thorough understanding of network survivability igrivability. Natural disasters, such as earthquakeshamd
yarious failure regim_es. For this reason, several worké tricanes or floods can lead to a large number of (possibly
literature study survivable network design under the randQqcaized) link failures that cannot be survived by netweork
failure model [1]-[4]. _ _ designed to deal only with isolated failurés [25],1[26]. \&kr

In the context of layered networks with random physm@t}et, a physical attack on the network by Wea{pons of mass
link failures, a natural survivability metric is the prohity destruction, such as an Electromagnetic Pulse (EMP), eah le
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disrupt the power grid [29],.[30], which can in-turn lead to — We develop lightpath rerouting algorithms for maximiz-

significant additional (cascading) failures of commurimat ing reliability in the low failure probability regime.
links, as was recently observed during a blackout event in — We develop a logical topology augmentation algorithm
Italy [31]. Thus, while typically one may expect extremeiy for improving the reliability of a given layered network.

failure probabilities, and design networks accordinglycts  The rest of the paper is organized as follows: In Section

designs may not be robust to widespread failures that mHlywe present the network model, and introduce the polyno-

result from a natural disaster or attack. Furthermore, iy manial expression for the cross-layer reliability and impoit

be worthwhile to strengthen networks of critical importancconnectivity parameters related to reliability. In Sewtil]

so that they can withstand such scenarios. we study the properties of optimal lightpath routings in the
Our primary focus in this work is on the low failurelow failure probability regime. In Sectioh 1V, we develop

probability regime, as that is the regime that networks alightpath rerouting and logical topology augmentationoalg

typically designed for. However, to account for the inciegs rithms for reliability maximization, and in Section]V, we

concerns with large scale failures, we also characterite ngresent extensive simulation results. In Sedfioh VI, weukis

work survivability in higher failure probability regime®vhile the optimality conditions for maximum reliability in thedti

such designs may not be applicable to most networks, thigjlure probability regime.

may prove valuable to the design of networks with stringent

survivability requirements. [I. MODEL AND BACKGROUND

One of the major challenges in the area of cross-layer  \ye consider a layered netwotkthat consists of the logical
survivability is t_he _mherent complexity of the problems. topologyG, = (V7 Ey,) built on top of the physical topology
For example, in [32], we proved that the MCLC, a ¢, — (v, Ep) through a lightpath routing, wheré and E
critical component in layered network reliability, is NP- 56 the set of nodes and links respectively. In the context of
hard to compute and approximate with within a O(logn)  \WpM networks, a logical link is called lghtpath, and each

factor. Therefore, problems for maximizing cross-layer |ightpath is routed over the physical topology. Thightpath
reliability is likely to be intractable. The common approach routing is denoted byf = [f,(i,j) € Ep,(s,t) € Ey)
in existing lightpath routing algorithms involves finding wheref3¢ takes the value 1 if 'Ijogicél links, t) is routed over
the physical routes of all logical links jointly, typically 7

/ ’ P! physical link (i, ), and 0 otherwise.
by solving an ILP that captures the routing decision of ~ gach physical link fails independently with probability
all the logical links, which is often infeasible for large

) . - ]ﬂ This probabilistic failure model represents a snapshot of
networks. In this paper, we consider a different approach 5 npetwork where links fail and are repaired according to

by incrementally improving the layered network, one gome Markovian process. Hengetepresents the steady-state
logical link at a time. Such an approach has the advantages propapility that a physical link is in a failed state. This deb

over the existing algorithms: has been adopted by several previous warks [1]-[4].

1) Scalability: Routing the logical links incrementally If a physical link (i, j) fails, all of the logical links(s,t)
reduces the problem space significantly. As a result, carried over(, j) (i.e., (s, t) such that fjt = 1) also fail. A set
it is more applicable to large networks. S of physical links is called &ross-layer cuif the failure of

2) Solution Quality: The incremental approach allows the links in.S causes the logical network to be disconnected.
us to use a more sophisticated objective function We also define th@etwork stateas the subse$ of physical
that better approximates the cross-layer reliability. links that failed. Hence, if5 is a cross-layer cut, the network
As a result, the lightpath routings given by the stateS represents disconnectedhetwork state. Otherwise, it
new algorithm result in much higher reliability than  is a connectedstate.
existing algorithms.

We also apply a similar idea to a different setting where A. Failure Polynomial and Connectivity Parameters

the logical topology can be augmented to improve relia-  Assume that there are physical links, i.e.|Ep| = m. The
bility. We develop an augmentation algorithm to find a probability associated with a network stagewith exactly i
good placement of a new logical link, and observe that physical link failures (i.e.)S| = i) is p'(1 — p)™~°. Let N;

reliability can be improved significantly, especially when pe the number of cross-layer cugswith |S| = i, then the

the augmentation increases the MCLC. probability that the network is disconnected is simply thens
Our contributions can be summarized as follows: of the probabilities over all cross-layer cuts, i.e.,
— We show that in general the optimal lightpath routing m ‘ .
depends on the link failure probability. F(p) = ZNipl(l —p)" Q)
— We show that for given logical and physical topologies, i=0

if there exists a uniformly optimal lightpath routing,Therefore, the failure probability of a multi-layer netwasan
then any locally optimal lightpath routing is uniformlybe expressed as a polynomialjinThe functionF'(p) will be
optimal.
— We develop a novel "lexicographical ordering” for light- 1Although we assume uniform link failure probability throug hout the
h i d deri . timality conditions i aper, our results can be readily extended to the case of namiform link
path routing and derive precise optimality co ilure probability by replacing each link with multiple li nks in series
both the low and high failure probability regimes. that fail with the same probability. See [23] for more detaik.



called thecross-layer failure polynomiadr simply thefailure In addition to the lightpath rerouting approach, the new
polynomial The coefficientsV,’s contain the information on optimization criteria can also be used to further enhanee th
the structure of a layered graph, determined by the unaeylyireliability in a different manner. In particular, we consid
lightpath routing. Below we introduce some important ceefflogical topology augmentation. For instance, supposetttat
cients related to connectivity. (diagonal) logical links are added to the logical topology i
EachNV; represents the number of cross-layer cuts of sizeéhe example of Fid.11 (see Fig. 2(a)). Hig. 2(b) is an example
in the network. Define aMin Cross Layer Cut (MCLChs a of routing the two new lightpaths. The new network has far
smallest set of physical links needed to disconnect theébgi better reliability than the old one in the low failure proliip
network. Denote byl the size of an MCLC, thenrl is the regime since the MCLC value has been raised from 2 to 3.
smallesti such thatN; > 0, meaning that the logical network This example shows that augmenting the logical topology can
will not be disconnected by fewer thaphysical link failures. significantly improve the reliability. In Sectidn TViB, usj the
The MCLC is a generalization of single-layer min-cut to theew optimization criteria, we study how to choose the new
multi-layer setting[[3R]. It was shown i [23] that maximigi logical link that achieves maximum reliability improventen

IIl. PROPERTIES OFOPTIMAL LIGHTPATH ROUTINGS

We first study the properties of optimal lightpath routings.
These properties will give insight on how routings should be
designed for better reliability. Since the failure probipi
p is typically small in many practical scenarios, we mainly
focus on the low failure probability regime. The propertids
optimal lightpath routings for large will be briefly discussed

? 4 in Section V.
A. Uniformly and Locally Optimal Routings
< M T > We start with a discussion of routings that are most reliable
(b) After rerouting for all failure probabilities. The observations in this e

Fig. 1. Example showing that lightpath rerouting can imprtive reliability.  Will motivate a local (inp) optimization approach to the design
Physical topology is solid line, logical topology is the teegle formed by of lightpath routing, which is relatively easy compared hwit
the 4 corner nodes and 4 edges, and lightpath routing is ddste an optimization over all the values (pf, We begin with the
Although the MCLC criterion is useful for finding a light- following definition:
path routing with better reliability, it is not sufficient fo  Definition 1: For given logical and physical topologies, a
fully characterizing reliable lightpath routings. For exale, lightpath routing is said to beniformly optimalif its reliability
consider the two lightpath routings in Hi§ 1. The two lightpa is greater than or equal to that of any other lightpath rautin
routings have the same MCLC value of 2. However, for evefgr every value ofp.
value ofp, the routing in Fig[ I(B) yields better reliability than Therefore, a uniformly optimal lightpath routing yieldseth
the one in Fig[ I(@). This example shows that there are mayest reliability for allp € [0,1]. Based on the failure poly-
precise conditions for optimal lightpath routings, beydhd nomial of a lightpath routing, one can immediately develop a
MCLC maximization criterion. In Sectidnlll, we develop newsufficient condition for a uniformly optimal lightpath roog:
optimization criteria that characterize in greater detptimal
lightpath routings in the low failure probability regime. Observation 1:Given a lightpath routing?, let N/* be the
Furthermore, the routing in Fi§. I{b) can be obtained byumber of cross-layer cuts with sizeThen R is a uniformly
optimal Iightpath routing if, for any other lightpath rong R,
N < NF forall i € {0,...,m}, wherem is the number
of physical links.
While it is desirable to design a uniformly optimal routing,
. such a routing does not always exist. Intuitively, for small
p, only a small number of links are likely to fail simulta-
neously, and hence for better reliability it is important to
remain connected after a small number of failures. In cehtra
for large p, it is likely that a large number of links fail
simultaneously, and thus it is important to withstand adarg
number of failures. These two objectives conflict because th
former prefers disjoint lightpath routing whereas the datt
prefers shortest lightpath routing.
G (b) Lightpath routing For example, Fid.]3 shows two different lightpath routings.

Fig. 2. Example showing that the reliability can be furthewmproved via In Flg.@, .the 'OQ'C"?", I|n!<s a_re routed overfhysmallyjdlgt
logical topology augmentation: in (a), dashed lines areeddiphtpaths. paths, and its reliability is given bg(1 — p)* — 2(1 — p)°.
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small. Hence, for reliability maximization in the low faik
probability regime, it is desirable to minimize the number
of small cross-layer cuts. We use this intuition to derive th
properties of optimal routings for small We begin with the
following definition:
Definition 3: Consider two lightpath routinglsand2. Rout-
(a) Optimal Routing (b) Optimal Routing ing 1 is said to bemore reliablethan routing2 in the low
in Low Regime in High Regime failure probability regimeif there exists a positive numbey
Eir?'s?éal E)X%T;ple i:hs%vﬁyﬂntgaltoo%grz)l foolgtingiz ?hzgghfefigrr?:gff%e such that the reliability of routing is higher than that of
3 c)(l)rner n(?desggnd 3 edges,’ang Iightpgth rgguting is dgashed li y routing 2 fqr 0 < p < po- A I_ightpath rou_t_ing is _Sa_id _tO_ be
locally optimal in the low failure probability regimé it is
more (or equally) reliable than any other routing in the low
In contrast, in Fig[ 3(B), every pair of logical links share &ilure probability regime.
physical link, and its reliability is(1 — p)3. While disjoint In the following, we characterize the impact of small cuts on
path routing is considered to be more reliable, it is easyet sthe reliability. Letd; be the size of the MCLC under routing
that in this example the disjoint routing has better religbi j(= 1,2). Let N; and M; be the numbers of cross-layer cuts
only for small values op whereas for large (e.g.,p > 0.7)  of sizei under routingd and2 respectively. We call the vector
the non-disjoint routing is more reliable. N = [N,, Vi] the cut vector The following is an example of
Since uniformly optimal lightpath routings are not alwaysut vectorsN and M with d; = 4 andd; = 3:
attainable, we are motivated to focus lmeally optimal rout-

ings, where the probability regime of optimality is resteit ¢t 01 234 5 - m
to a subrange withirf0, 1]. A locally optimal lightpath routing No O 0 0 0 20 26 --- 1
is defined as follows: M; 0 0 0 9 19 30 --- L

_ Definition 2: For given logical and physical topologies, jsing cut vectors of lightpath routings, we deflegicograph-
lightpath routing is said to béocally optimalif there exists -5 ordering as follows:
0 < a <b <1, such that its reliability is greater than or pefinjtion 4: Routing 1 is lexicographically smaller than
equal to that of any other lightpath routing for every valdie Gouting 2 if Ny < M, whered is the smallest at which
p € [a,b]. In addition, the intervala, b] is called theoptimality N, and M; differ.
regimefor the lightpath routing. o Note that a lightpath routing with a larger MCLC size is
Note that a uniformly optimal lightpath routing is alsQeyjcographically smaller by Definitiofll 4. In the above ex-
locally optimal with optimality regimé0, 1]. Theoreni 1L below ample, we havel = 3 and N; < M,, hence routingl
is a crucial result to this study; namely, it reveals a COliDBC g |exicographically smaller. Therefore, if a lightpathuting
between local optimality and uniform optimality. is lexicographically smaller than another, it has fewer lkma
_Theorem 1:Consider a pair of logical and physical topoloygss-layer cuts and thus yields better reliability for Brpa
gies(G'r,, G p) for which there exists a uniformly optimal rout-  hegrem 2:Given two lightpath routings 1 and 2 with cut
ing. Then,. any Iocally optimal lightpath routing o€/, Gp) vectors[N;|i = 0, . ..,m] and[M;|i = 0, ..., m] respectively,
is also uniformly optlmal.* _ _ where m is the number of physical links, if routing is
_ Proof: Denote by F*(p) the failure PP'ynomLal of @ |exicographically smaller than routirgy then routingl is more
uniformly optimal lightpath routing. By definition™ (p) is  ygliaple than routing in the low failure probability regime. In

no greater than any other failure polynomial ferc [0, 1]. particular, letd = min {i: M; # N;} be the index where the
0<i<m

Consider a locally optimal lightpath routingwith optimality elements in the cut vectors first differ. Then, lightpathtimo

regime[ps, p2], and letF'>(p) be its failure polynomial. ) . . ~ldt1) (Ma—Ny)
The polynomial equatio®” (p) — F*(p) = 0 has degree at 1is more reha_blej th.an r_outlng 2 for<po = Cooom(y)

mostm and thus has at most roots unless the polynomial  Proof: This is implied by Theoreni]3, which will be

FL(p) — F*(p) is trivially zero. However, by the definitions discussed in Sectidn IITiC. u

of local optimality and uniform optimality, the equationsha Clearly, TheoreniI2 leads to a local optimality condition;
an infinite number of solutions over the interval;, ps). that is, if a lightpath routing minimizes the cut vector lex-
ConsequentlyFZ (p) is identical toF™ (p), which implies that icographically, then it is locally optimal in the low failer
lightpath routingL is also uniformly optimal. m probability regime. An interesting case is when routinbas

Motivated by this result, we study locally optimal light-larger MCLC than routing (as in the above example). In this
path routings. In particular, we develop the conditions dor case, routing is lexicographically smaller than routirgg and
lightpath routing to be optimal for the low failure probatyil Theoreni2 implies the following corollary.
regime (smallp). Corollary 1: If d; > da, then routingl is more reliable

than routing2 in the low failure probability regime.
. . ) Consequently, a lightpath routing with the maximum size

B. Low Failure Probability Regime MCLC yields the best reliability for smap. We note that the

It is easy to see that in the failure polynomial, the termsame result was shown in_[23]. Similarly, routingis also
corresponding to small cross-layer cuts dominate whaa lexicographically smaller than routing when they have the



same size of MCLC but routing has fewer MCLCs. This size up toi than routing2, i.e.,ﬁi < ]\7Z To compare cross-

leads to the following result: layer cuts of size at most-1, suppose further that the relative
Corollary 2: If dy = ds and Ny, < Mg,, then routingl is incrementV;; — M1 in the number of larger cuts does not
more reliable than routing in the low probability regime.  exceed the surpluad/; — N; from smaller cuts, i.e.ﬁiﬂ <

The expression fop, given in Theoreni]2 also provides],,,. Then, with respect to cut size at mast 1, routing 1
some insight into how the difference of the cut vectors affeawill have smaller failure probability than routirgy provided
the guaranteed regime. For examplef i6 small andM;—Nq  that the same was true for cut size upitdThis observation
is large, the guaranteed regime is larger. In other words,léfads to the following theorem on the relationship between
one lightpath routing has fewer small cross-layer cuts than |exicographical ordering and probability regime.
other, it will achieve higher reliability for a larger rangé p Theorem 3:Given two vectorsN=[N;|i = 0,...,m] and
in tr;]e I0¥v pro;)abilitly rbelgime. e low fai M=[M;|i = 0,...,m], let Fi(p) = 37, Nipi(1 — p)™~*

Therefore, for reliability maximization in the low failure _ \n (1 — p\m—i : -
probability regime, it is desirable to maximize the size o t ajnd F(p) 2ico Mip(1 = p) . For anyj, let 4,
MCLC while minimizing the number of such MCLCs. This>_ (Mi — ;) and 3 ; = | max {%} If the vectorN
condition will be used to develop the algorithms in SECtiOié:(}f-lexicographically smaller thai, then
\Y4]

Fi(p) < Fy(p) for p < p}, = min {0.5, o max Bj}
C. Extension of Optimal Probability Regimes SIsarRe

The expressions in Theoref 2 only consider the first ehered = min {i : N; < M;} and
ement in the two cut vectors that are different. As a result, 0.5,
the guarantged r(_egime is rather cons_ervative._For_ instance B; = { . otherwise.
the expression fails to capture the uniform optimality for a j%+3j(jTl)/Aj
Iightpath_ routing that satisfies the condition in Theorrhnl. Proof: See AppendifA. -
this section, we will develop a more general expressionHer t
regime bound that includes other elements in the cut vectogs

Consider two lightpath routings and2. Let F;(p) be the
failure polynomial of routingj (= 1,2), and N;'s and M,’s
be the coefficients if; (p) and F»>(p) respectively. Define the
following vector of partial sums:

if j=m
1

Therefore, the probability regime boupf in TheoreniB is
non-decreasing function &f which means that a lightpath
routing with smaller number of cuts over a larger size range
will be more reliable over a larger probability regime. This
is consistent with the conclusion in Sectibn TlI-B, that the
lightpath routing design should minimize the lexicogragathi
k ordering of the cut vector.
N = [Z Nilk =0, ,m] Theoren2 follows from Theorefd 3. For a lexicographi-
i=0 cally smaller lightpath routing, the ter, is given by:

The vectorM is defined similarly. Note that theth element 1 _ 1

; of ve_ctorN) is the total number of cross-layer cuts of size _m_ ?d( IRy ey ?d(dTl)/(Md ~ Ny
at mosti. We first extend the definition olexicographical (d +1)(Mg — N
ordering as follows: > d d —,

Definition 5: Lightpath routing 1 is said to be k- m(Ma — Na) + (d + 1)(d+1)
lexicographically smaller than lightpath routigif < (d+1)(Mg— Na)

= () + = ()
(d+1)(Mg — Ng)

dTl)

k:max{j:ﬁi S]\—/}i, Vi<d+j} andk > 1,

whered is the position of the first element where the two cut - 2m(")) ’
vectors differ. o o ?
Therefore, a lightpath routing is lexicographically sreall Where the first inequality is due t6 4 < 1.

(in the original sense) if and only if it ié-lexicographically ~ An interesting special case is wheht k — 1 = m, that
smaller for some: > 1. The k-lexicographical ordering thusis, M; > N for all j = 0,...,m. In that case, the term
compares two lightpath routings based on structures beyoBdr—1 = B, = 0.5, implying that the optimality regime is
the smallest cuts, making it possible to establish a largés 0.5]. We summarize thiias the following corollary:
optimality regime. Roughly speaking, the value fofeflects Corollary 3: If ﬁj < Mj for al j = 0,...,m, then
the degree of dominance of a lightpath routing in the low prolightpath routingl is at least as reliable as lightpath routing
ability regime: ak-lexicographically smaller lightpath routing2 for p < 0.5, i.e., F1(p) < Fx(p) for p < 0.5.
means that it has fewer “small” cuts, where the definition for Note that the condition in Corollafyl 3 requires every péartia
“small” is broader ifk is larger. sum in the vectoM to be at least the corresponding partial
It is obvious that wherp < 0.5, the failure probability of sum in the vectorN, which is a stronger condition than
a cross-layer cut is a non-increasing function of the cut,sizhe lexicographic comparison in Theordth 2. This stronger
becausep’(1 — p)™~* > pt1(1 — p)™~ 0+ for p < 0.5. condition allows the better optimality regime to be eststisid
Suppose that routing has smaller total number of cuts ofin Corollary[3.



IV. MAXIMIZING RELIABILITY BY IMPROVING
LIGHTPATH ROUTING AND LOGICAL CONNECTIVITY

In this section, we explore ways to improve the reliability
of a layered network. Typically, the physical topology iatit
and difficult to change. Therefore, the reliability of a lege
network can be improved by one of two ways: (i) improving
the lightpath routing, or (ii) improving the logical top@y.

We have shown in Sectiopllll that when physical link
failures are rare, the lightpath routing that minimizes the
lexicographical ordering will maximize the reliability. his
new observation gives us an exact optimization criterian fo ©d=2,N;=5 (dd=2,Ng=3

designing reliable layered networks. . . o . .
. ] . . Fig. 4. Improving reliability via lightpath rerouting. Thghysical topology
As discussed in Sectiofill, the traditional approach of isin solid lines, and the lightpath routing of the logicapttogy is in dashed

joinﬂy routing all |Ogica| links is often too Comp|ex' which lines. The MCLC value and the number of MCLCs in the lightpaihtings
makes it infeasible for larger networks. This motivates the ' denoted byl and N.
incremental approach introduced in this section, where the
layered network is improved one logical link at a time. This
significantly reduces the problem space and allows us to Given a layered network and its lightpath routing, the
use a more sophisticated objective function based on the objective of thelightpath Reroutingroblem is to find the best
optimziation criterion we studied in Section[IIT] way to reroute a Iightpath, so that the reliability improvmn
Within this context, we study two optimization problems 1S maximized. Recall that with low link failure probabiljtthe

that are fundamental to improving the lightpath routing reliability of a network is maximized when the lexicogragdi
and logical connectivity: ordering of its cut vector is minimized. Therefore, the most

effective reroute should maximize the MCLC of the resulting
1) Lightpath Rerouting: Given the physical, logical |ightpath routing, and also minimize the number of MCLCs.
topologies and a lightpath routing, find a logical link to |y the following sections, we first analyze the effect of
reroute, such that the resulting reliability is maximizederouting a lightpath and characterize conditions whe su
2) Logical Topology Augmentation Given the physical, 3 rerouting is beneficial. This provides the groundwork for
logical topologies and a lightpath routing, find a paipyr rerouting algorithms. Based on these observations, we
of logical nodes, as well as a physical path between tg@yelop an ILP to find the optimal lightpath to reroute.
nodes, such that the addition of the corresponding logiqdkxt, we propose an approximation algorithm that computes
link will provide maximum reliability improvement. 3 near-optimal solution in much shorter time. This gives us a

The above two problems are basic building blocks ficalable algorithm that can be used for designing largerdalye
designing reliable layered networks. For example, given &§WOrks. _ . _
existing layered network, we can iteratively reroute engst 1) Effects of Rerouting a Lightpattietd be the size of the
lightpaths in the network until no further improvement id/CLC under the initial routing. When the physical route of a
possible (e.g. Figur€l4)Hence, given the physical and !0gical link changes, some cross-layer cuts will be coredert
logical topologies, the iterative rerouting algorithm canbe iNto non-cuts, and some non-cuts will be converted intosros
described as follows: layer cuts. In the low failure probability regime, the réliéty

will be improved by the rerouting if the following is true:

1) The conversion of cross-layer cuts with sizé¢o non-
cuts outnumbers the conversion in the opposite direction.
2) The MCLC value does not decrease.

Therefore, we can formulate the lightpath rerouting as an
optimization problem to maximize the reduction in the numbe
Similarly, if it is feasible to add new logical links, we of MCLCs, subject to the constraint that no non-cuts of size
can iteratively augment the logical topology to further smaller thand is converted to cross-layer cuts. The exact
improve the reliability; and studying the Logical Topology conditions for the conversion between cuts and non-cuts are
Augmentation problem allows us to select such new logical described as follows, which will be used as the basis of the
links effectively. These iterative rerouting and augmenta |LP formulation as well as the approximation algorithm.
tion algorithms will be used for performance evaluationin  Given the physical topolog§t» = (Vp, Ep) and the logical
Section[\. topology G, = (Vi, Er), we model a lightpath routing as

In this section, we present algorithms for the rerouting aral set of binary constant:{ ff} where ff = 1 if and
augmentation problems. In the next section, we will evauabnly if logical link (s,¢) uses physical link(i,j) in the
the effectiveness of rerouting and augmentation on impigvilightpath routing. For a given set of physical links we
cross-layer reliability. define thelogical residual graphfor S, denoted a7, to be

A. Lightpath Rerouting

1) Generate an arbitrary initial lightpath routing.

2) Reroute a logical link using ILP/approximation al-
gorithm introduced in Section V]

3) Repeat Step 2 until no further improvement can be
made by rerouting a single lightpath.



) st : size less thad—1. SinceS is convertible, there exists a logical

(5,1) € B : (i7%65 ij =0 In other words, the re5|duallink (s,t) that is critical toS. Now let ! be a fiber used by
graph consists of logical links that use none of the physic@,?), then the fiber ses U {/} would disconnect the logical
links in S. By definition, the sefS is a cross-layer cut if and residual graph and is therefore a cross-layer cut. However,
only if its logical residual graph is disconnected. Giver@ss- such a set contains at most- 1 fibers, contradicting thad
layer cutsS, it is called ak-way cross-layer cuif its logical is the Min Cross Layer Cut. [}
residual graph hak connected components. In addition, given Therefore, when rerouting a lightpath, we need to make sure
a cross-layer non-cuf’ for a lightpath routing, we call a that none of the non-cuts with sizé— 1 get converted into
logical link (s,t) critical to T if (s,t) is a cut edge of the cuts in order to prevent the MCLC value from decreasing.
residual graplGZ, that is, it is an edge i’ whose removal Based on these observations, we next develop an ILP for the
will disconnect the residual graph. lightpath rerouting problem.

The following theorems describe the conditions for a light- 2) ILP for Lightpath Rerouting:For the given lightpath
path rerouting that results in conversions between cragsrl routing, letd be the MCLC value, and lét;, NCq andNCy_4
cuts and non-cuts. The proofs can be found.in [33]. be the sets of 2-way cross-layer cuts with sizeon-cuts with

Theorem 4:Let S be a cross-layer cut for a lightpathsized, and non-cuts with sizé— 1 respectively. The lightpath
routing. Rerouting logical link(s,t) from physical pathP, rerouting problem can be formulated as an ILP that finds the
to P, turns S into a non-cut if and only if the following logical link, and its new physical route, that maximizes tie¢

conditions are true: reduction in MCLCs.In other words, the optimal reroute
1) S is a 2-way cross-layer cut. should result in the minimum number of cross-layer cuts
2) s andt are disconnected in the residual graph for with size d, without Creating any CI‘OSS—layeI‘S cuts with size
3) P, does not use any physical links d—1.

Proof: Suppose all the above conditions are true. SinceThe ILP can be considered as a path selection problem

the new routeP, does not use any physical links ), the on an auxmary graphGp = _(VP’EP)’ Wh_ere Vp =
logical link (s, t) will be in the logical residual graph fos VP U {v,v}, with u and v being the additional source
under the new lightpath routing. Other logical links that ar and sink nodes in the "?‘“X"'afy_ graph; a'ElP = EBp Y
the original residual graph will remain, because none oif thd (1> ©), (,v) = x € Vp}. Figurel$ illustrates the construction
physical routes have changed. Therefore, the residuahgraﬂg the auxiliary graph.
will become connected now that, ¢) is added to it, which

implies S becomes a non-cut. It can be easily verified that the

residual graph will remain disconnected if any of the above %} -
conditions do not hold. [ |

Theorem 5:Let T' be a cross-layer non-cut for a lightpath
routing. Rerouting logical linKs, t) from physical pathP; to Fig. 5. Construction of the auxiliary graph for the IL®.and v are the
P, turnsT into a cross-layer cut if and only if the following additional source and sink nodes, and the dashed lines aradtitional
conditions are true: links in the auxiliary graph.

1) (s,t) is critical to T. We first define the following variables and parameters:
2) P, uses some physical link i. 1) Variables:
Proof: Suppose both conditions are true. SinBe uses e {gst:(s,t) € Er}: 1 if logical link (s,¢) is
some physical fiber iff’, the logical link will be removed from rerouted, and O otherwise.
the residual graph fdf' under the new lightpath routing. Since . {fij :(i,7) € E}p}: Flow variables describing a

(s,t) is critical to the non-cufl’, its removal will disconnect
the residual graph, which means tiatwill become a cross-
layer cut. It can be easily verified that the residual graph wi
remain connected if any of the two conditions do not haid.
Therefore, the optimal rerouting should maximize the num-
ber of cross-layer cuts satisfying Theoréin 4 and minimize
the number of non-cuts satisfying Theorein 5. However, it is
also important to ensure that none of the non-cuts with size
smaller thand is converted to cross-layer cuts by the rerouting,

path inG'p from nodeu to nodev.

o {y°:c ey} 1if the cross-layer cut is converted
into a non-cut by the lightpath rerouting, and 0
otherwise.

o {2°:c € NCq4}: 1if the non-cute is converted into
a cross-layer cut by the lightpath rerouting, and 0
otherwise.

2) Parameters:

since otherwise the MCLC value will decrease. The following o {hg :c€Ca,(s,t) € EL}: 1if logical nodess and
theorem states that only non-cuts with size at ldast can be t are disconnected by the 2-way cuf and O
converted into a cross-layer cut by rerouting a single pgttt. otherwise.

Theorem 6:Let d be the Min Cross Layer Cut value of a o {5 :c€ NC4UNCy-1,(s,t) € Er}: 1if logical
lightpath routing and letVC be the set of cross-layer non- link (s,?) is critical to the non-cut, and O other-
cuts that can be converted into cross-layer cuts by rergain wise.
single logical link. ThenT| > d — 1 for all T € NC. o {lf;:VeeCadUNCGUNCy 1, (i,j) € Ep}: 1 if

Proof: SupposeVC contains a convertible non-ctwith physical link (¢, j) is in setc, and O otherwise.



The lightpath rerouting can be formulated as follows: non-cutsC, and N'C,; will be replaced by sets that include
o . . _ the cut and non-cuts up to sizek > d, denoted asC<;, and
REROUTE:  Maximize Z U Z 2%, subjecttor  arc_,. The objective function will be changed to

ceCq CEch ) )
gst < (fus + fr)/2, V(s,t) € EL (2) Mazimize 3 yw'— > 2w, ©)
Z Gor = 1 (3) ceCcp cE/\/CSk
st —
(s.)EEL where w° is a weight constant assigned to each cut so

. . . that a smaller cut will have weight that dominates cuts of
ifi+ Y @9 <1, Ve€NCa1,(i,j) € Ep ( ) larger size. In particular, if k is set to |Ep|, the extended
(s,t)€BL ILP will return the optimal solution that minimizes the
I3 fij + Z G595t < 2°+1,Ye € NCy, (i,5) € Ep (5) lexicographical ordering. However, such a formulation wil
(s,t)EEL contain an exponential number of variablesy® and z¢,
e < Z he,gsr, VeeCa (6 gnd is generally not feasible fpr practical use. Therefore,
(s.)e By m_the_rt_ast ?r]: the pfgper, fWI\jCVI\iI(I'IZ fo;:#s OE ;[rr]\e tprohbltlam of
¢ ¢ S minimizing the number o s, thou e techniques
ye <1 =lifi VG.j) € Ep, Ve e /C‘i (7) discussedgin this paper are also be apSIicabIe to th: more
{(i,7) : fi = 1} forms an(u,v)-path inGp  (8) general setting.
fijsgst €{0,1},0 <y 2¢ <1 3) Approximation Algorithm for Lightpath Reroutindgzor
larger networks, however, solving the rerouting ILP mail sti
The formulation can be interpreted as a path selectig infeasible. Therefore, in this section, we present an ap-
problem on the auxiliary grapl,. Constraint [(B), which proximation algorithm for the rerouting problem that pres
requires that the variable; describe a path from to v, can  near-optimal solutions within a much shorter time.
be expressed by the standard flow conservation constrasits. We focus on the following question: Given the lightpath
a result, in a feasible solution to the formulation, the @Bles routing, and a logical linKs, ), what is the best way to reroute
fij represent a pathh — s ~ t — v, which corresponds (s,t) assuming the routes for all other logical links are fixed?
to the new physical route for the logical linfs, ) after the A solution to this problem will allow us to solve the lightpat
rerouting. rerouting problem, since we can run the algorithm once for
Constraint [[2) ensures that; can be set to 1 only iff;; each logical link, and return the best solution.
represents the path — s ~ ¢ — v, and Constraint[{3) Similar to the previous section, l&;, N'Cy; and NC4_;
makes sure that the chosés t) is indeed a logical link in be the set of cross-layer cuts of sizk non-cuts of size
Er. Therefore, exactly one logical linls, t) can havey;: = 1,  d and non-cuts of sizel — 1 respectively. Now suppos€
and a feasible solution to this ILP corresponds to a rergutiis a new physical route for logical linKs,t). Let NC5
of the logical link. and N'C3', be the subsets ok/'C,; and N'C,4_; that satisfy
In Constraint[(#), the two terms correspond to the conditiomondition (1) of Theorerh]5. These two sets represent the non-
in Theorem[B. The constraint makes sure that at most on@s that can potentially be converted into a cut by rergutin
of the conditions is satisfied, thereby disallowing the norfs,¢). It immediately follows that any(s,¢) path that uses
cuts of sized — 1 to be converted into a cross-layer cuta physical link inUzc s T will create a cross-layer cut
Similarly, Constraint[(b) makes sur& = 1 for any non-cut with size d — 1, which should be forbidden for the new
c € NCy that is converted into a cut by the rerouting. physical route. In addition, for any physical link, j), the
Finally, Constraints[{6) and(7) describe conditions 2) arskt E{}fc = {T e NC} : (i,j) € T} represents the non-cuts
3) of Theoren ¥ respectively. Thereforg, can be 1 only if with size d that will be converted into cross-layer cuts if the
both conditions are satisfied. Sineealso satisfies condition new route@ contains the physical linki, 7).
1) by definition ofC4, this implies that cross-layer cutis Similarly, let C5* C C, be the set of cross-layer cuts
converted into a non-cut wheyt = 1. that do not satisfy conditions (1) or (2) of Theordm 4.
Since the objective is to maximizg and minimizez¢, in  This represents the set that will continue to be cross-layer
an optimal solution;© = 1 if and only if cross-layer cut is cuts regardless of the new physical rouefor (s,t). In
converted into a non-cut, and = 1 if and only if non-cutc  addition, for each(i,j) € Ep, the cross-layer cuts in the
is converted into a cross-layer cut. As a result, the objectisetﬁfj ={SeCy—C5:(i,j) € S} will also continue to be
function reflects the net reduction in the number of MCLCscross-layer cuts if the new rout@ contains the physical link
Finally, note that the variablag andz¢ will take on binary (7, j), as they do not satisfy condition 3) of Theorin 4.
values in an optimal solution even if they are not constrine Now, for each physical linki, j), let £;; = Efj U Eé\jfc.
to be integral. This observation helps to reduce the numberlba physical link (¢, j) is used by the logical links,t) in
binary variables in the formulation. the new routeQ, it will cause the setC;; U C5' to become
The ILP REROUTE approximates the lexicographical or- cross-layer cuts. Since every set of physical link€jh will
dering minimization by minimizing the number of MCLCs  be cross-layer cuts regardless of the physical route taken b
in the network. It can be extended to consider cross- (s,t), the lightpath rerouting problem for logical links, )
layer cuts of size larger thand, thus achieving a better can be formulated as choosing tie t)-path Q in Gp =
approximation. In this case, the set of cross layer cuts and (Ve, Ep — Upepes | T) that minimizes|£(Q)| = | Uq jeq



L;;]. Although this is an instance of the NP-Haktinimum studied before in the context of multi-layer networks. In
Color Path[34] problem, a simplel-approximation algorithm addition to theplacementspect of finding the end points for

exists, as described below: the new link as for the single-layer networks, there is also
the routing aspect for the layered networks. This adds a new
Algorithm 1 REROUTE_SP(s, t) dimension of complexity to the augmentation problem.
1. Construct a weighted graph OG/P — (Vp,Ep — As it turns out, the insights from our study of the lightpath

Urenes: T), where each edgéi, ;) is assigned with rerouting problem are largely applicable to the logicaldiep
weightiz;(lz' ) = Ly] ogy augmentation problem. In the following sections, wd wil
) - 17 |

2: Run Dijkstra’s algorithm to find the shorte@t, t)-path in first disc?‘ss the similar?ty between the augmentation W‘b'.
; and the lightpath rerouting problem, and then develop daimi
the weighted graph. ' L )
ILP formulation and approximation algorithm.
_ _ 1) Effects of a Single-Link Augmentatio®imilar to the
Theorem 7:Let Q" be the optimal physical route fQB,tP) rerouting problem, the new logical link chosen by the aug-
that results in the minimum number of MCLCs, and @t°  mentation algorithm should maximize the reduction in the
be the new route fofs, ¢) returned byREROUTE_SP. For nymper of MCLCs. However, unlike rerouting, adding a new
any (s,t)-path @, let N4(Q) be the number of cross-layerjink never converts a non-cut into a cross-layer cut. Theresf
cuts with sized after reroutln%(Ps,t) with @, whered is the iy augmentation we only need to consider the effect of the new
size of the MCLC. ThenVy(Q>") < d- Na(Q"). logical link on the existing cross-layer cuts.
Proof: See AppendikB. _ u Suppose that an initial lightpath routing is given for the
Therefore, th_e number of (_:ross-layer Cl_Jts of gsizgven by physical topologyGp = (Vp, Ep) and the logical topology
REROUTE_SP is at mostd times the optimal reroute. NoteGL = (V1,EL). Let d be the size of the MCLC under the
that if the optimal new route fofs, ¢) eliminates every MCLC initial routing. Let GS be the logical residual graph for any
of size d, i.e., No(Q") = 0, the approximation algorithm cross-layer cuts, that is, the logical subgraph in which the
observation as the following corollary. theorem characterizes the effect of a single-link augntiemta
Corollary 4: REROUTE_SP(s,t) will return a new route The proof can be found ir [33].
for (s,t) that increases the size of MCLC of the layered Theorem 8:Let S be a cross-layer cut for a lightpath

network, if such a new route exists. o routing. Augmenting the network with a new logical lifk ¢)
We can extend algorithiREROUTE_SP, which is based oyer physical route? converts a cross-layer cstinto a non-
on the Dijkstra’s shortest path algorithm, by using the ¢yt if and only if:

shortest path algorithm [85] to successively compute thé ne
shortest path irG/P and keep track of the pat§ with the
minimum value of |£(Q)|. The valuek reflects a tradeoff
between running time and quality of the solution. As we will
see in SectiofV, by picking a good value/afwe can obtain Proof: The proof is the same as Theoréin 4. The new
a lightpath routing within a much shorter time than solvinipgical link will make the residual graph connected if and
the ILP without sacrificing much in solution quality. only if the above conditions are true. =

A Note on ComplexityThe setsC; and NC4 can be con- Note that the characterizations for augmentation (Theo-
structed by enumerating all the (/“7!) subsets of physical rem[8) and rerouting (Theorenis 4 afdl 5) differ only in
links and each of them can be classified as a cut or non-cut that the conditions in Theorefd 5 are no longer applicable
in O(|E|r) time by running a breath-first search on the to augmentation, because augmentation never converts any
logical topology. Similarly, for each subsetS € C; UNCy, NON-cut into a cross-layer cut. Therefore, we can revise the
we can decide whether each of its membefi, j) is in £;; ILP REROUTE accordingly to formulate an ILP for the
and NC% | by breath-first search. Therefore, the time to augmentation problem.
compute all £;; is O((‘%P')(|EL| +d)) = O(|Ep|*|EL)). 2) ILP for Logical Topology AugmentationVe will revise
Overall, the time complexity to construct the graph G’ is  the ILPREROUTE presented in Sectidn 1V to develop the ILP
O(|Ep|?|EL|). The k-shortest path algorithm on G’P can for the augmentation problem. IREROUTE, the variables
be run in O(k|Vp|(|Ep|+ |Vp|log|Ve|)) time [35]. There- {z¢=1:ce€ NCq4} correspond to the set of non-cuts that
fore, the overall time complexity of REROUTE_SP(s, t) is will be converted into cuts by the rerouting, and Constsaint

O(Ep|YEL| + k|Vp|(|Ep| + [Vp|log |Vp])). (@) and [®) describe the conditions for such conversion. As
previously discussed, such conversion is not applicable in

augmentation and therefore these variables and constraint
can be removed from the ILP. In addition, unlike rerouting
The Logical Topology Augmentatigoroblem involves find- where we choose from the set of existing logical links, in
ing the best way to augment the logical topology with a singeugmentation we can pick any two logical nodes for the
logical link, in order to maximize the reliability improveent. new logical link. Therefore, we will replace the variabld se
Even though the augmentation problem has been extensivgly; : (s,t) € Er} in REROUTE by {g.: : (s,t) € VL x V. }
studied for single-layer networks, [36]=]40], this has heen and remove Constrainf](3). This gives us the following ILP

1) S is a 2-way cross-layer cut.
2) s andt are disconnected in the residual graph for
3) P does not use any physical links #

B. Logical Topology Augmentation
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for augmentation: improving the reliability of an existing layered networkorF
o _ example, by iteratively rerouting the logical links for avem
AUGMENT . Maximize Z y%, subject to: lightpath routing until no further improvement is possible
c€Ca we can obtain to a locally optimal solution. In this section,
gst < (fus + fr0)/2, V(s,t) €V x Ve (10) we study the effectiveness of such approach via extensive

y° < Z he,gst, Ve € Cy (11) simulation studies.
(s,t)eVL XV

y <1105 fi, V(i,j) € Ep,Vc € Ca (12) A, iterative Rerouting for Survivable Lightpath Routing

{(@,5) : fij = 1} forms an(u, v)-path inGp (13)  we first apply iterative rerouting to solve the Survivable
fijr 95t €{0,1},0 <y <1 Lightpath Routing problem, whose objective is to obtain

a lightpath routing that maximizes the reliability for give

_ . physical and logical topologies. The Survivably Lightpath

solution to AUGMENT, the variablesf;; represent a path Routing has been previously studied in the literature, wher

u — s~ t — v, as described by Constraifl {13). Th'ﬁﬁe best known algorithmin [32] is based on an ILP fomulation

corresponds to the new logical link to be added, along W'E at maximizes the MCLC of the network. In contrast, the
its physical route. Constraint (1LO) ensures that= 1 if and '

. . X . : bjective for lightpath rerouting algorithm is based on the
only if (s, ) is the new logical link selected. ConstrawiE_](ll exicographical ordering of the cut vector, which capturese

%rrecisely the survivability characteristics of the netkoAs

: i : ) !
the vaila:jb_lety descr[[bbe sthwhether trlet_cros_rshlay?r gllj_:; we will learn from the result, using this improved objective
convertednto non-cutby In€ augmentation. theretore;ne significantly improves the quality of the solution.

maximizes the number of such conversions, which translate n this study, we use the NSFNET (Figu® 6), extended

0 3n)1 a;'m'rz'n.?n;hfo'nmzor:'.?]emm;grr?—l?pgg' Tooloav A ‘with new links to raise its connectivity to 4, as the physical
bproximati gor gl bology Aug topology. For logical topologies, we generate 350 random

mentation: One can also design an approximation algorithm . L .
similar to REROUTE SP intro%luced iEpSectiomg for graphs with connectivity 4, ranging from 6 to 12 nodes; and 13
the logical topology_augmentation problem. We wil agaiFlO 38 links. For each algorithm under evaluation, we compute
focus on the following question: Given a Iéyered network. Iightpath routing for each P".ﬂr of physcial and .Iogical
and a new logical links, ), find tﬁe physical route fots, t) Opqlogles: The average reliability among the 350_I|gh1pat
such that the resulting number of cross-layer cuts of gike routings will be presented as the performance metric.
minimized. We can then apply the algorithm for this problem
for every possible pair of logical nodesandt, to find out the
new logical link that would result in the maximum reliabjlit
improvement.

Let d be the size of the MCLC of the layered network
and C3' be the set of 2-way cross-layer cuts of size¢hat ) )
separate the Iogical nodesand . Then by Theorerfil8, the Fig. 6. The extended NSFNET. The dashed lines are the new. link
set£;; = {Se€Ci:(i,j) €S} represents the sets iy’ . ) L
that will remain to be cross-layer cuts if the physical link We will first study the effect of the different initial lighgth
(i,4) is used by the(s,t) path Q. We can then develop an routings on the reliability of the final solution. Next, we’l
approximation algorithm for the augmentation problem &imi compare the performance of the rerouting algorithm vasiant

Similar to the interpretation oREROUTE, in a feasible

to REROUTE_SP: based on ILP and the approximation algorithm. Throughout
these studies, we also compare the solutions generated by
Algorithm 2 AUGMENT_SP(s, t) these algorithms with the solution generated by the bestvkno

lightpath routing algorithm in the literatureViCF ¢ [32]
(denoted asvVICF in this paper for simplicity), as well as the
simple shortest path algorithGP.

1) Performance of ILP-Based ReroutingVe first evaluate
the reliability performance of the ILP-based lightpatiorging
approach introduced in Sectign IV-A2, with initial lightjha

Since each cross-layer cit in C5' has sized, there are routings generated by two different algorithms:
exactly d physical links(, ) such thatS € £;;. As aresult, | pp..: The initial lightpath routing is generated by the
AUGMENT_SP is ad-approximation algorithm, with the same Shortest-Path algorithr8P, which routes each lightpath
proof as Theorernl 7. with minimum number of physical hops.

o RRmce: The initial lightpath routing is generated by the
V. SIMULATION RESULTS algorithm MCF introduced in[[32].

The single-link rerouting and augmentation methods devel-Compared witt5P, MCF provides initial lightpath routings
oped in the previous section can be used as a building black fath much higher reliability at the expense of longer rumnin

1: Construct a weighted graph afip = (Vp, Ep), where
each edgéyi, j) is assigned with weight (¢, j) = |L;;].

2: Run Dijkstra’s algorithm to find the shortegt, t)-path in
the weighted graph.
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time. Given the initial lightpath routing, the reroutinggat Table[l shows the average running times of the rerouting
rithm repeatedly solves the rerouting ILP in Secfion [V-AR2 talgorithms, (not including the time to generate the initial
improve the reliability, until it reaches a local optimum. routings), as well as the average number of rerouting iterat
Figure[T illustrates the average unreliability of the difiet Compared with the lightpath routing algorithtdCF, the
algorithms. Even with initial lightpath routings generhtey rerouting algorithms are able to terminate faster with debet
the best known lightpath routing algorithiCF, the rerouting solution. This is because this iterative rerouting appnoac
algorithm RRycr is able to further reduce the unreliabilityeffectively decomposes the joint lightpath routing probiato
of the lightpath routings. In fact, while only 50% of thesimpler single-link rerouting steps, where the ILP in eaeips
lightpath routings generated bylICF has MCLC 4, which is much smaller than the lightpath routing formulatioMiCF.

is the connectivity of the logical topologies and is therefo geatween the two rerouting variant8Rsp requires more
the hig_hest MCLC va_llue aqhievaple, the rerouting algorithifrations thanRRucr to reach the local optimum, because
RRmcr is able to archieve this maximum MCLC value 98% of; starts with a much less reliable initial lightpath rowin
the time. This means that the lightpath rerouting approachyjgyeyer, the difference in total running time is less siguifit.
able to produce lightpath routings that are much more rgliabrps s pecause the size of the rerouting ILP formulation is
than existing algorithms. larger when the MCLC of the lightpath routing is large, and
In addition, even though the initial lightpath routings genthus takes longer to solve. In most casBRsp starts with
erated bySP and MCF differ significantly in reliability, the an initial lightpath routings with a lower MCLC value. As a
iterative rerouting eliminates most of the difference.sT8ilg- result, most of the additional rerouting steps consist bfisg
gests that the rerouting approach is robust to initial r@sj the smaller ILPs to bring up the MCLC value. Therefore, these
and we can use a simple algorithm, such as Shortest-Pajifigitional steps take much shorter time.
to generate the initial lightpath routing and rely on itessat
rerouting to obtain a reliable solution.

Number of Running Time (seconds)|[ Number of Iterations
Logical Nodes|| MCF | RRsp | RRmcr RRsp RRMcE
1¢ 6 1652 265 164 7.0 3.0
0.1 E 7 1655 314 257 8.9 4.2
0.01 8 1732 500 365 10.3 5.0
’ r 9 1838 745 525 11.6 6.2
> 0.001 10 2032 | 1238 824 14.1 7.3
= 0.0001 E 11 2219 | 1389 | 1280 || 140 8.0
% i 12 2716 | 1268 1104 14.1 8.2
x le-05 [
~  1e-06 | TABLE Il
1e-07 L RUNNING TIMES OF THE LIGHTPATH ROUTING ALGORITHMMCF, AS
WELL AS THE REROUTING ALGORITHMS USINGSHORTESFPATH (RRsp)
1e-08 ¢ AND MCF (RRycE) TO GENERATE THE INITIAL LIGHTPATH ROUTINGS,
1e-00 | L L L L AND THE NUMBER OF ITERATIONS OF THE REROUTING ALGORITHMS
0.01 0.02 0.03 0.04
Link Failure Probability (p)
Fig. 7. UnReliability performance by different algorithms

2) Performance of Approximation AlgorithmNext, we
compare the performance of the approximation algorithm
introduced in Sectiof TV-A3 with the ILP counterpart. As
discussed, the approximation algorithm is based on ithe
shortest-path algorithm, where the parametereflects a
tradeoff between running time and reliability performantée
evaluate this algorithm§hortesty, with £ =1, 10 and 100.

We use the lightpath routings generated by the Shortest

Table [l shows the average physical path length by
the lightpaths generated by the different algorithms. The
higher reliability of the rerouting algorithms comes with
a cost of longer paths, as the algorithms often select
the longer physical routes in order to achieve higher
reliability. This reflects the tradeoff between the reliablity
and bandwidth resource used by the lightpath routings.

AVERAGE PATH LENGTH OF THESHORTESTFPATH ALGORITHM SP,
LIGHTPATH ROUTING ALGORITHM MCF, AS WELL AS THE REROUTING
ALGORITHMS USING SHORTESTFPATH (RRgp) AND MCF (RRycp) TO

GENERATE THE INITIAL LIGHTPATH ROUTINGS.

Path algorithm as the initial routings. Figuré 8 shows the

Number of Average Path Length [ average unreliability of the lightpath routings produced b
Logical Nodes|[ SP | MCF [ RRsp | RRwmcr the algorithms. WhileéShortest; brings in the majority of the
? i'gg ggg g'gg gg; improvement, increasing the value &fis able to further
3 189 230 | 268 | 262 reduce the unreliability. In particular, whelh = 100, the
9 188 229 | 257 2.60 approximation algorithm performs almost as well as solving
10 191 2.34 2.68 2.64 the rerouting ILP.
11 190 | 232 | 260 | 2.64
12 186 | 2.22 | 251 251 Table[ll compares the running time of the algorithms. As
TABLE | shown in the table, the approximation algorithms are signifi

cantly faster than the ILP-based algorithm. This suggésts t
the approximation algorithm is promising rerouting altgive

to the ILP for improving the reliability of large networks,
without the need to solve complex mathematical programs.
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by augmentation, as it is more likely to improve their MCLC

i sp —— 1 . ;
01f  Shorest E values by a small number of new logical links.
0.01 | Shortestgg — + . In the case where the additional link does not cause an
i RRop ] . . SO
> 0.001 £ L MCLC increase, the marginal reliability improvement de-
% 0.0001 | ] creases with the current MCLC value. This means that aug-
e 1e-05 L mentation is more effective when the MCLC value is lower.
i E
= 1e-06
N P 0.01 g
1e-07 . ﬂ. 1 1 1 1 1 1 p::] 01 I__ql_
08 L Al
te 086 £ oo001f w &
1e-09 : . . . ﬁ Fom
0.01 0.02 0.03 0.04 -E B 'g
Link Failure Probability (p) f{é 0.0001 E vicLom \'\. MCLG=3 MCLG=4 3
Fig. 8. Lightpath rerouting: performance of approximategorithm. r—Eu E a‘a_a
re 1e-05 | 4
Number of Running Time (seconds) = i - w‘g
Logical Nodes || RRsp | Shortest; | Shortest;y | Shortestigg g \9-.\
6 265 12 14 24 2 deosf | -
7 314 20 26 43 Sag
8 500 32 43 79 veor — 0 v Fea ]
9 745 45 55 123 0 2 4 6 8 10 12 14 16 18 20
10 1238 68 91 199 Number of Logical Links Added
11 1389 83 104 254 _ _
12 1268 113 135 344 (a) 10 Node Logical Ring
TABLE Il 0.01 4 . : . .
RUNNING TIMES OF THE REROUTING ALGORITHMS BASED ONLP (RRgp) Fe p=0.01 —&—
AND k-SHORTEST PATHS - M
£ 0.001  ®_ o
@ - L
: . B b
B. Effects of Logical Topology Augmentation © 00001 E yice | moices MCLOod
Next, we study the effect of augmenting the logical topology E 3 g
. - & 1e-05 | g E
on the network reliability. We study a 10-node and a 14-node £ o
logical ring on the augmented NFSNET, as shown in Fi§lire 9, £  zel | ]
and incrementally augment the rings to study the reliagbilit z . . g
. . . . | z !
improvement from the addition of new logical links. — : . : Teaag
9] 5 10 15 20 25

Fig. 9.

(b) 14 Node Logical Ring

Logical rings on extended NSFNET.

Number of Logical Links Added

(b) 14 Node Logical Ring

Fig. 10. Impact on reliability by augmenting logical rings.

C. Case Study: A Real-World IP-over-WDM Topology

Finally, we evaluate the performance of the rerouting and
augmentation algorithms on a large layered network based on
a real-world IP-over-WDM network. The physical and logical
topologies, shown in Figufe L1, are constructed based on the
network maps available from Qwest Communications [41].
Both the physical and logical topologies are extended with
new links so that the graphs have connectivity 4. The physica
topology has 39 nodes and 72 links, and the logical topology
has 20 nodes and 101 links.

The study on larger networks allows us to reevaluate the
performance of the lightpath algorithms, both in terms afl-sc

The cross-layer reliability of the networks after each au@pility and solution quality. In this study, we run the faiimg
mentation step is shown in Figufgé]10. With link failur ightpath routing algorithms and compare their solutions:

probability p = 0.01, the unreliability declines as we add 1) MCF: The multi-commaodity flow algorithm introduced

more logical links to the rings. The key observation fronsthe
figures is that the improvement in reliability is most proerit

in [32]. As in Section V-A, the algorithm is evaluated
as the performance baseline.

when the augmentation increases the MCLC of the network.2) REROUTE: The iterative lightpath rerouting algorithm,

This suggests that networks with a small number of MCLCs
have a greater potential to significantly improve the réliighb

based on thé&-shortest path algorithm presented in Sec-
tion [V-A3] wherek is set to 5000 in our experiment.
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REROUTE. This is because the lightpath rerouting method
alone is able to achieve the maximum MCLC value. As we
observed in Sectidn VB, adding logical links is more effiext
only if the new links can raise the MCLC of the network.
In other words, even without adding new logical links, we
can obtain a near optimal solution by improving the existing
lightpath routing via the iterative rerouting method.

Algorithm MCLC | Number of MCLCs
MCF 2 5
REROUTE 4 216
AUGMENT; 4 84
AUGMENT 4 34
AUGMENT 4 25
AUGMENT, 4 20
[ Lower Bound | 4 ] 20

TABLE IV
MCLC VALUES AND MCLC COUNTS OF DIFFERENT LIGHTPATH
ROUTINGS. THE LIGHTPATH ROUTING ON A LOGICAL TOPOLOGY
AUGMENTED WITH 1 NEW LOGICAL LINKS IS DENOTED BY AUGMENT,.

REROUTE —+—

(b) IP/MPLS (logical) network. The numbers 01
indicate the number of parallel logical links
between the logical nodes.

Fig. 11. Physical and logical topologies.

3) AUGMENT,: The logical topology augmentation algo-s o
rithm, based on thé-shortest path algorithm presented  icos
in SectionIV-B3, wherek is set to 5000 in our exper-
iment. The augmentation algorithm is run successively
to addn new edges on the lightpath routing given by o
REROUTE, wheren =1,...,9. 1e00 oot 002 003 002

The MCLC values and the number of MCLCs of the light- re——
path routings generated by each algorithm are shown in Tg- 12. Unreliability of different lightpath routings.
ble[[Vl These numbers are compared against the lower bound,
which is computed by counting the number of minimum sized VI. HIGH FAILURE PROBABILITY REGIME
physical fiber sets whose removal wihysicallydisconnect ~ As discussed in Sectiofl |, natural disasters or physical
some logical nodes. These sets of physical links are crosstacks can lead to widespread network link failures. While
layer cuts regardless of the lightpath routing, and theesfosuch events may be extremely rare, certain networks that are
will provide a lower bound on the number of MCLCs. of critical importance to national security and our day ty da
It was observed in[[32] that the survivability performancives may need to be designed so that they can withstand such
of the multi-commodity flow formulatioMCF declines as the rare events. Moreover, certain “specialized” networkshsas
network size increases. In this case, the solution prodhyedthose onboard an aircraft or a ship may need to be designed to
the algorithm only has MCLC value 2. On the other handyithstand very high link failure probabilities that resélbm
the rerouting algorithmREROUTE continues to produce aa catastrophic failure event (e.g., well over 50% link fegls)
lightpath routing with the maximum possible MCLC valud42]. In this section, we briefly discuss network design iis th
4. Augmenting the logical topology can further improve thaigh failure probability scenario.
reliability of the layered network by reducing the number of In Section[IlI-B, we showed that whep is small, it is
MCLCs, though the incremental effect declines as more &gidmportant to minimize the number of small cuts. Analogously
links are added to the network. The number of MCLCs hifer large p, large cuts are dominant, and hence, minimizing
the lower bound when the logical topology is augmented withe number of large cuts would result in maximum reliability
9 additional logical links. In other words, the cut vector should be minimized for large
Figure[12 compares the algorithms in terms of the crossuts for better reliability in the high failure probabilitggime.
layer reliability in the low failure probability regime. As Similar to the case of low probability regime, we define the
suggested by Table]V, the iterative algorithms achievaisig following vector of partial sums:
icantly higher reliability than the existing algorithMCF (by m
about 3 orders of magnitude). In particular, the majorityref ﬁ - Z Nilk=0,...m| .
improvement is achieved by the lightpath rerouting aldponit i~

le-07

k

2



The vectorﬁ is defined similarly. Note that theth element
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Hence, if T is a cross-layer spanning tree, then the survival

; is the total number of cross-layer cuts of size at leaef just T\ {(4, )} renders the logical network disconnected
m — i. We will use these vectors to develop the conditiorfer any fiber(i, j) € T.
that incrementally include larger cuts and characterize th Note that the cross-layer spanning tree is a generalization

probability regime where one lightpath routing is moreakle
than any other for large.
First, the k-colexicographical ordering (an analogy &e
lexicographical ordering in Sectign I} C) is defined adduls:
Definition 6: Lightpath routing 1 is said to be k-
colexicographically smaller than lightpath routiggf

k:max{j:ﬁi Sﬁi, Vi>c—j} andk > 1,

of the single-layer spanning tree. However, unlike a single
layer graph where all spanning trees have the same size, in a
layered graph, spanning trees can have different sizess, Thu
we define aMin Cross Layer Spanning Tree (MCLS@3 a
spanning tree with minimum number of physical links.

In the high failure probability regime, it is likely that the
are a large number of failures. Hence, the MCLST is an
important parameter in the high failure probability regime

where ¢ is the position of last element where the two Cl}gecause logical networks with small MCLST may remain

vectors differ.

In contrast to the:-lexicographical ordering, this colexico-

connected even if only a small number of physical links
survive. This intuition together with Theorefd 9 leads to

graphical ordering starts from the largest cuts, and inerem practical conditions for optimal routings in the high fagu

tally includes the smaller cuts. The following result is g&n
to TheoreniB:

Theorem 9:Given two vectorsN=[N;|i = 0,<;..,m]
and M=[M;li = 0,...,m]. For any j, let A, =
S (M — N 5. = Ni—M; :
i:;ﬁ-(Mz N;)and ¢ ; = ngénw?i(j—l o[ If Nis

k-colexicographically smaller thakl, then
< >ph=1- . i ;
F) < Fa(p) for p > g =1 - max {05, _min €},
wherec = min {i : N,,,—; < M,,—;} and
0.5, if j=m
Ci=q 1-— ———, otherwise.
05 () /85

Proof: See AppendiXC. [ |

probability regime.

Note that in the failure polynomialy; < (). Letm—c be
the size of MCLST. Then; is the largest such thatV; < (77),
and we haveN; = (7),Vi > ¢, meaning that more than
¢ failures would always disconnect the logical network. Let
m — ¢; be the size of MCLST for routing. It is obvious
that if ¢4 > co Or ¢4 = co & N, < M,,, then routingl is
k-colexicographically smaller than routireg This observation
leads to the corollaries similar to the low regime case:

Corollary 7: If ¢4 > ¢ (i.e., if routing 1 has smaller
MCLST than routing2), then routingl is more reliable than
routing 2 in the high failure probability regime.

Corollary 8: If ¢ = ¢ and N, < M., (i.e., routingsl
and2 have the same size of MCLST, but routihghas more
MCLSTSs), then routingl is more reliable than routing in
the high failure probability regime.

The following corollary is analogous to Corolldry 3 for the therefore, for reliability maximization in the high faiker

high failure regime:

Corollary 5: If Wj < ﬁj for all j = 0,...,m, then
routing 1 is at least as reliable as routigfor p > 0.5, i.e.,
Fi(p) < Fy(p) for p > 0.5.

probability regime, it is desirable to find a lightpath ragi
that minimizes the size of MCLST and maximizes the number
of MCLSTs. This observation is similar to the single-layer
setting where maximizing the number of spanning trees maxi-

Combining Corollarie§]3 arld 5 gives a condition for unifoyml mizes the reliability for large [8]. The major difference in the

optimal lightpath routing:_)
Corollary 6: If ﬁj < M; and Wj < Mj for all j =
0,...,m, then lightpath routing 1 is uniformly optimal.

multi-layer case is that, since spanning trees may haverdiit
sizes, minimizing thesize of the Min Cross-Layer Spanning
Tree becomes the primary objective. Moreover, computieg th

Theorems[B and]9 provide a single optimality regimgize of the MCLST is NP-hard [23], and therefore, designing

expression for lightpath routings that exhibit differeegdees 3 Jightpath routing that minimizes the MCLST is likely to be
of dominance. Note that the conditions of (co)lexicographi 3 difficult problem. We developed an ILP-based algorithnt tha
ordering in Corollary b are satisfied by the uniform optirali finds a lightpath routing with minimum-size MCLST, and its
condition N; < M;, Vi given in Theorem[Jl. Therefore,details can be found in AppendixX D.
this unified theorem allows for a broader class of uniformly
optimal lightpath routings.

More importantly, Theoref|9 can be used to derive practical
conditions for optimal lightpath routings in the high fatu  We studied the reliability maximization problem in layered

VII. CONCLUSION

probability regime. We begin with the following definitians

Definition 7: Consider two lightpath routingisand2. Rout-
ing 1 is said to bemore reliablethan routing2 in the high
failure probability regimdf there exists a number, < 1 such

networks with random link failures. We introduced the notio
of lexicographical ordering for lightpath routings, andiju
identified optimization criteria for maximum reliabilityithe
low failure probability regime. In particular, we showedath

that the reliability of routingl is higher than that of routing a lightpath routing with the maximum size of Min Cross

2 forpo <p< 1.
Definition 8: A cross-layer spanning treis a minimal set

Layer Cut (MCLC) and the minimum number of MCLCs
is most reliable in the low failure probability regime. Bdse

of fibers whose survival keeps the logical network connectezh this insight, we developed a novel lightpath rerouting
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approach to design reliable layered networks for the low Proof: First, note that by definition oﬁj, for anyi > j:
failure probability regime. By incrementally improving eh m

lightpath routing, this rerouting approach is able to achie ?,( ) > N; — M. (15)
a locally optimal solution. Our simulation results showttha !

the rerouting algorithms developed in this paper are able ok =m —d + 1, then Lemmall implies that, fgr < 0.5:
produce much more reliable lightpath routings than existin m _ N

algorithms (by about 3 orders of magnitude in real IP-over- > (Mi = Njp'(1 = p)™ " = K,p™ > 0.

WDM Network), and are more scalable to large networks. i=0

Using the optimization criteria, we also developed logicalherefore, the lemma is true fér= m — d+ 1. Now suppose
topology augmentation algorithms that can further imprthvee k < m — d + 1. If ?j < 0 for some; < k, this implies for

reliability of a given layered network. anyd+k <1< m:
We also showed that the high failure probability regime .
requires different optimization criteria that a routingtlwthe Zz _ szrk_l + Z (M; — N;)

minimum size of Min Cross Layer Spanning Tree (MCLST)
and the maximum number of MCLSTs maximizes reliability. .
Our results in the high failure probability regime lay the > szrk_l _ Z ?7(m) >0,
foundation for the design of networks facing increased eomc AN

i=d+k

. ) i=d+k

about large scale failures due to natural disasters orksttac where the first inequality is due tEﬂlS_)). The second inegual
APPENDIX A is due to the fact thad ; < 0, and thatA 44,1 > 0, sinceN

PROOF OFTHEOREMEA is k-lexicographically smaller tham. Therefore, in this case,

the vecto is also(m — d+ 1)-lexicographically smaller than

We first prove the following lemma. . )
b g M, and the lemma is true as proved above. Therefore, in the

Lemma 1:If vector N is k-lexicographically smaller than

vector M, then for all j < d + k — 1, whered = rest_of the proof, we assume that; > 0.
min {d : Ny < My}, and for0 < p < 0.5, Sincep < 0.5andA; > 0forall i < d+k—1, by Lemmdl
; we have, for allj < d+ k — 1:
S (M= Nop' 1 —p)™ ' = Kjp'(1—p)™ . (14) J _ L .
=0 > (M= Np'(1—p)" " > Kjp/(1—p)" . (16)
Proof: We prove, by induction orj, that [14) holds for =0
all j <d+k—1. SinceXo = My — Ny, we have forj = 0, Next, we will use the following result to bound the tail
B p probability of the Binomial distribution:
Z(Ml _ Ni)pi(l _p)mfi _ Xo(l _p)m Lemma 3 ( P]) For r > mp,

=0 m i m—i m r m—r ’f‘(l B p)
Therefore, [[IW) holds fof = 0. Now supposel(14) holds for Z (Z )p 1-p) < (T)p (1-p) r—mp
all i < j for somej < d + k — 1. Then, we have: = _

Therefore, since < ﬁtmﬁ)— < % by Lemma[3,

et 65 ( Aj
g+l _ » we have: " s
> (M= Nyp'(1—p)™ "
=0 m
j _ _ | > ( . >pz(1 —p)" (17)
=> (M; = N)p'(1 = p)™ " + (M1 — Njy)p/ 7' (1 = p) =0 7, i
=0 mo\ 4y G+ DA —p)
— i . (i < J+lq _ pym—G+1) M T A B
>Ap (1= p)™ 7 4 (Mysr — Ny )p (1 — p)m U +D) = (j + 1>p (1=p) J+1—mp
% . (a . m— - .
>N A= p)" U 4 (Mg = Npp)p P (=)0 ( i )p'j(l - U DP (18)
:Kj+lpj+l(1 _p)mf(j+1)7 Jj+1 Jj+1—mp

it i 1 .
where the first inequality is due to the induction hypoth,esig1 addition, sincep < j%Jr? ()& we have:

and the second inequality is becapgé¢l —p) < 1. Therefore, a

by induction, [T#) is true for aig k. [} ,(] Ir Dp =5 1 —
Lemma 2:Given a fixedk, if A; >0forall:i <d+k—1, JA+1=mp p J+L
then for anyd < j <d+k — 1 . 1 B Zj 19
— ? m - ] m
Fi(p) < Fa(p), ﬁi_> pom om0

< p < mi . ; .
for 0 < p < min {0.5, B;}, where It follows that:

5 { 0.5, if j=m m
i = L , otherwise. M; — N;)p'(1 —p)™*
g A+§j(m)/Aj Z( )p( p)

J+1 j4+1 :
i+ i+ i=0



W Y (M Nl )

:0 i=j+1
J m
_ m 7 m—1
2 —_Z 7j<i)p(1—p)
z:O i=j+1
_) Vi j . m ¥ _ m—j . (.7 + 1)p
>Kp(1-p) -8, i1 P (1-p) R —

G+ Dp
j+1—mp
%

(5 ()
Aj

>p/(1—p)" 78, (% - (jTI) W) =0.

j+1
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for ¢ < min {0.5, max Bj}, where:
d<j<d+k—1 -
0.5, if j=m
B; = ﬁl—_v, otherwise
FEa (J+1)/A
In the above expression, we have:
j
= e
A;=> M;—N,=A,;, and
1=0
7 N
J 7+H1<i<m (T) 7

Note thatB; =1 — C; for d < j < d+ k — 1. Therefore,

The first inequality is due td(15), the second inequality #&uting 1 is at least as reliable as routing 2 for

due to [I6) and(18), and the last inequality is dud fd (18).

As a result of Lemmf]2, we can pick the< j < d+k—1

such thatB; is maximized to obtain the largest upper bound

for p, and Theoreril3 follows.

APPENDIXB
PROOF OFTHEOREMI[7|
Given any (s,t) path Q, define £L(Q) = U jyeqLij, it
follows that Nq(Q) = [£(Q)] + |C5t| = |£(Q)| + K, where
= |C5'| is a constant. In addition, leb(Q) be the total

weight sum of the patld) in the weighted graph constructed

by REROUTE_SP(s, t).
Since each set of physical link$ € £(Q) has sized, we
have|{(i,7) : S € L;;}| < d, which implies:

w@) = Y |L]
(i,5)€Q

< Y MG, S €Ly}

SEL(Q)
<d-|L(Q) =d- (Na(Q) (20)

Now, since@>P is the minimum weight(s, ¢) path in the
graph, it follows that:

_K)

Na(QF) = |£(@Q°")| + K
<w(Q®)+ K
<w(@")+ K
<d-(N4(Q*)— K)+ K, by Equation[(2D)
<d-Ny(Q").
APPENDIXC
PROOF OFTHEOREM[

LetN = Ny_; and M, = M,,_;, fori = 0,...,m;
and IetNk = ZZ ON and]\?,i =%, M;. It follows that
the vectorN = {N i =0,...,m| is k-lexicographically

— —
smaller than the vectoM := |M;|i =0,... Jn} Letg =
1 —p. Then, by Theorerml3,

> (M = Np'(1

=0

-p)""

=0

=1—¢g>1—mi . i
p=1—¢q¢>1—min {0 5, dgj?gfk—l BJ}
min

:max{0.5, i Cj} .
d<j<dik—1 -

This completes the proof.

APPENDIXD
LIGHTPATH ROUTING ILP TO MINIMIZE MINIMUM CROSS
LAYER SPANNING TREE (MCLST) SizE

As discussed in Sectidn VI, lightpath routings with smaller

MCLST size will be more reliable in the high failure prob-

ability regime. In this section, we present an ILP for the

lightpath routing formulation that minimizes the MCLSTath

are optimized for the high failure probability regime. Wesfir

define the following variables:

o {f(s,t) € EL,(i,j) € Ep}: Flow variables represent-
ing the lightpath routing.

o {yi;|(3,5) € Ep}: 1if fiber (¢, 7) survives, O otherwise.

o {2%(s,t) € Er}: 1 if lightpath (s, ¢) survives, O other-
wise.

o {x°'|(s,t) € Fr}: Flow variables on the logical topology.

MCLST: Minimize Yy, subjectto:
(t.5)€EEP
|VL 1, if s=0
doat =N ot v B (21)
tevy tevy { 1 it € VL {0}
(Vi —1)- 2% > 2% V(s,t) € B, (22)

y” 2 2P f3 =1 Y(s,t) € E,V(i,j) € Ep (23)
= 1}f0rms an(s,t)-path inGp, ¥(s,t) € EL,
0<wyi; <1; 0<a™; =z, [ €{0,1}

The variablesr®! represent a flow on the logical topology
where 1 unit of flow is sent from logical node O to every other
logical node, as described by Constralnfl (21). Constr&#} (
requires these flows to be carried only on the surviving
logical links, which implies that the surviving links form
a connected logical subgraph. Constraint] (23) ensures the
survival of physical links that are used by any survivingitad

{(i,4) :

Z(M — N;)q'(1 —¢)™ " > 0,links. Since the objective function minimizes >~  y;;, the

(i,j)€EP



optimal solution will represent a minimum set of physicaki [26]
whose survival will allow the logical link to be connected.

Therefore, the set of physical links ;) with y;; = 1 forms 127

a cross-layer spanning tree. As a result, the optimal swiuti

to the above ILP yields a lightpath routing that minimizes th
size of the MCLST.
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