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Abstract—We consider the problem of throughput-optimal
packet dissemination, in the presence of an arbitrary mix of
unicast, broadcast, multicast and anycast traffic, in a general
wireless network. We propose an online dynamic policy, called
Universal Max-Weight (UMW), which solves the above problem
efficiently. To the best of our knowledge, UMW is the first
throughput-optimal algorithm of such versatility in the context
of generalized network flow problems. Conceptually, the UMW
policy is derived by relaxing the precedence constraints associated
with multi-hop routing, and then solving a min-cost routing and
max-weight scheduling problem on a virtual network of queues.
When specialized to the unicast setting, the UMW policy yields a
throughput-optimal cycle-free routing and link scheduling policy.
This is in contrast to the well-known throughput-optimal Back-
Pressure (BP) policy which allows for packet cycling, resulting
in excessive latency. Extensive simulation results show that the
proposed UMW policy incurs a substantially smaller delay as
compared to the BP policy. The proof of throughput-optimality
of the UMW policy combines ideas from stochastic Lyapunov
theory with a sample path argument from adversarial queueing
theory and may be of independent theoretical interest.

I. INTRODUCTION

The Generalized Network Flow problem involves efficient
transportation of messages, generated at source node(s), to a
set of designated destination node(s) over a multi-hop network.
Depending on the number of destination nodes associated with
each source node, the problem is known either as unicast
(single destination node), broadcast (all node are destination
nodes), multicast (some nodes are destination nodes) or any-
cast (several choices for a single destination node). Over the
last few decades, a tremendous amount of research effort has
been directed to address each of the above problems in dif-
ferent networking contexts. However, despite the increasingly
diverse mix of internet traffic, to the best of our knowledge,
there exists no universal solution to the general problem,
only isolated solutions that do not interoperate, and are often
suboptimal. In this paper, we provide the first such universal
solution: A throughput optimal dynamic control policy for the
generalized network flow problem.

We start with a brief discussion of the above networking
problems and then survey the relevant literature.

In the Broadcast problem, packets generated at a source
need to be distributed among all nodes in the network. In
the classic paper of Edmonds [1], the broadcast capacity of
a wired network is derived and an algorithm is proposed to
compute the maximum number of edge-disjoint spanning trees,
which together achieve the maximum broadcast throughput.

The algorithm in [1] is combinatorial in nature and does
not have a wireless counterpart, with associated interference-
free edge activations. Following Edmonds’ work, a variety
of different broadcast algorithms have been proposed in the
literature, each one targeted to optimize different metrics
such as delay [2], energy consumption [3] and fault-tolerance
[4]. In the context of optimizing throughput, [5] proposes
a randomized broadcast policy, which is optimal for wired
networks. However, extending this algorithm to the wireless
setting proves to be difficult [6]. The authors of [7] propose
an optimal broadcast algorithm for a general wireless network,
albeit with exponential complexity. In a recent series of papers
[8] [9], a simple throughput-optimal broadcast algorithm has
been proposed for wireless networks with an underlying DAG
topology. However, this algorithm does not extend to non-DAG
networks.

The Multicast problem is a generalization of the broadcast
problem, in which the packets generated at a source node needs
to be efficiently distributed to a subset of nodes in the network.
In its combinatorial version, the multicast problem reduces to
finding the maximum number of edge-disjoint trees, spanning
the source node and destination nodes. This problem is known
as the Steiner Tree Packing problem, which is NP-hard [10].
Numerous algorithms have been proposed in the literature for
solving the multicast problem. In [11] [12], back-pressure
type algorithms are proposed for multicasting over wired
and wireless networks respectively. These algorithms forward
packets over a set of pre-computed distribution trees, and are
limited to the throughput obtainable by these trees. Moreover,
computing and maintaining these trees is impractical in large
and time-varying networks. We note that because of the need
for packet duplications, the Multicast and Broadcast problems
do not satisfy standard flow conservation constraints, and thus
the design of throughput-optimal algorithms is non-trivial.

The Unicast problem involves a single source and a single
destination. The celebrated Back-Pressure (BP) algorithm [13]
was proposed for the unicast problem. In this algorithm, the
routing and scheduling decisions are taken based on local
queue length differences. As a result, BP explores all possible
paths for routing and usually takes a long time for conver-
gence, resulting in considerable latency, especially in lightly
loaded networks. Subsequently, a number of refinements have
been proposed to improve the delay characteristics of the BP
algorithm. In [14] BP is combined with hop-length based
shortest path routing for faster route discovery, and [15]
proposes a second order algorithm using the Hessian matrix

ar
X

iv
:1

61
1.

08
64

1v
1 

 [
m

at
h.

O
C

] 
 2

6 
N

ov
 2

01
6



2

to improve delay.
The Anycast problem involves routing from a single source

to any one of the several given destinations. Anycast is increas-
ingly used in Content-Distribution Networks (CDNs) with
geo-replicated contents [16]. However, despite its immense
commercial importance, to the best of our knowledge, no
throughput-optimal algorithm is known for this problem.

Our proposed solution uses a virtual network of queues -
one virtual queue per link in the network. We solve the routing
problem dynamically using a simple “weighted-shortest-route”
computation on the virtual network and using the correspond-
ing route on the physical network. Optimal link scheduling is
performed by a max-weight computation, also in the virtual
network, and then using the resulting activation in the phys-
ical network. The overall algorithm is dynamic, cycle-free,
and solves the generalized routing and scheduling problem
optimally (i.e., maximally stable or throughput optimal). In
addition to this, the proposed UMW policy has the following
advantages:

1) Generalized Solution: Unlike the BP policy, which
solves only the unicast problem, the proposed UMW
policy efficiently addresses all of the aforementioned
network flow problems in both wired and wireless
networks in a very general setting.

2) Delay Reduction: Although the celebrated BP policy
is throughput-optimal, its average delay performance is
known to be poor due to occurrence of packet-cycling
in the network [14] [17]. In our proposed UMW policy,
each packet traverses a dynamically selected acyclic
route, which drastically reduces the average latency.

3) State-Complexity Reduction: Unlike the BP policy,
which maintains per-flow queues at each node, the
proposed UMW policy maintains only a virtual-queue
counter and a priority queue per link, irrespective of the
number and type of flows in the network. This reduces
the amount of overhead that needs to be maintained for
efficient operation.

4) Efficient Implementation: In the BP policy, routing
decisions are made hop-by-hop by the intermediate
nodes. This puts a considerable amount of computational
overhead on the individual nodes. In contrast, in the
proposed UMW policy, the entire route of the packets
is determined at the source (similar to dynamic source
routing [18]). Hence, the entire computational require-
ment is transferred to the source, which often has higher
computational/energy resources than the nodes in the
rest of the network (e.g., wireless sensor networks).

The rest of the paper is organized as follows: In section II we
discuss the basic system model and formulate the problem. In
section III we give a brief overview of the proposed UMW
policy. In section IV we discuss the structure and dynamics
of the virtual queues, on which UMW is based. In section
V we prove its stability property in the multi-hop physical
network. In section VI we discuss implementation details. In
section VII we provide extensive simulation results, comparing
UMW with other competing algorithms. In section VIII we
conclude the paper with a few directions for further research.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a wireless network with arbitrary topology,
represented by the graph G(V,E). The network consists of
|V | = n nodes and |E| = m links. Time is slotted. A link,
if activated, can transmit one packet per slot. Due to wireless
interference constraints, only certain subsets of links may be
activated together at any slot. The set of all admissible link
activations is known as the activation set and is denoted by
M ⊆ 2E . We do not impose any restriction on the structure
of the activation set M. As an example, in the case of node-
exclusive or primary interference constraint [19], the activation
set Mprimary consists of the set of all matchings [20] in the
graph G(V,E). Wired networks are a special case of the above
model, where the activation set Mwired = 2E . In other words,
in wired networks, packets can be transmitted over all links
simultaneously. See Figure 1 for an example of a wireless
network with primary interference constraints.

r a

b c

(a) a wireless network

r a

b c

(b) activation vector s1

r a

b c

(c) activation vector s2

Fig. 1: A wireless network and its two maximal feasible link
activations under the primary interference constraint.

B. Traffic Model

In this paper, we consider the Generalized Network Flow
problem, where incoming packets at a source node are to
be distributed among an arbitrary set of destination nodes in
a multi-hop fashion. Formally, the set of all distinct classes
of incoming traffic is denoted by C. A class c traffic is
identified by its source node s(c) ∈ V and the set of its
required destination nodes D(c) ⊆ V . As explained below,
by varying the structure of the destination set D(c) of class c,
this general framework yields the following four fundamental
flow problems as special cases:

• UNICAST: All class c packets, arriving at a source
node s(c), are required to be delivered to a single
destination node D(c) = {t(c)}.
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• BROADCAST: All class c packets, arriving at a
source node s(c), are required to be delivered to all
nodes in the network, i.e., D(c) = V .

• MULTICAST: All class c packets, arriving at a
source node s(c), are required to be delivered to a
proper subset of nodes D(c) = {t(c)1 , t

(c)
2 , . . . , t

(c)
k } (

V .
• ANYCAST: A Packet of class c, arriving at a source

node s(c), is required to be delivered to any one of
a given set of k nodes D(c) = t

(c)
1 ⊕ t

(c)
2 ⊕ . . .⊕ t

(c)
k .

Thus the anycast problem is similar to the unicast
problem, with all destinations forming a single
super destination node.

Arrivals are i.i.d. at every slot, with A(c)(t) packets from
class c arriving at the source node s(c) at slot t. The mean rate
of arrival for class c is EA(c)(t) = λ(c). The arrival rate to the
network is characterized by the vector λ = {λ(c), c ∈ C}. The
total number of external packet arrivals to the entire network
at any slot t is assumed to be bounded by a finite number
Amax.

C. Policy-Space

An admissible policy π for the generalized network flow
problem executes the following two actions at every slot t:
• LINK ACTIVATIONS: Activating a subset of interference-

free links s(t) from the activation set M.
• PACKET DUPLICATIONS AND FORWARDING: Possibly

duplicating 1 and forwarding packets over the activated
links. Due to the link capacity constraint, at most one
packet may be transmitted over an active link per slot.

The set of all admissible policies is denoted by Π. The set Π
is unconstrained otherwise and includes policies which may
use all past and future packet arrival information.
A policy π ∈ Π is said to support an arrival rate-vector λ if,
under the action of the policy π, the destination nodes of any
class c receive distinct class c packets at the rate λ(c), c ∈ C.
Formally, let R(c)(t) denote the number of distinct class-c
packets, received in common by all destination nodes i ∈ D(c)

2, under the action of the policy π, up to time t.

Definition 1. [Policy Supporting Rate-Vector λ]: A policy π ∈
Π is said to support an arrival rate vector λ if

lim inf
t→∞

R(c)(t)

t
= λ(c), ∀c ∈ C, w.p.1 (1)

The network-layer capacity region Λ(G, C) 3 is defined to
be the set of all supportable rates, i.e.,

Λ(G, C) def
= {λ ∈ R|C|+ : ∃π ∈ Π supporting λ} (2)

1In order to transmit a packet over multiple downstream links (e.g. in
Broadcast or Multicast), the sender must duplicate the packet and send the
copies to the respective downstream link buffers.

2To be precise, the super-destination node in case of Anycast.
3Note that, Network-layer capacity region is, in general (e.g. multicast),

different from the Information-Theoretic capacity region [21].

Clearly, the set Λ(G, C) is convex (using the usual time-sharing
argument). A policy π∗ ∈ Π, which supports any arrival rate
λ in the interior of the capacity region Λ(G, C), is called a
throughput-optimal policy.

D. Admissible Routes of Packets

We will design a throughput-optimal policy, which delivers
a packet p to any node in the network at most once.4 This
immediately implies that the set of all admissible routes T (c)

for packets of any class c, in general, comprises of trees rooted
at the corresponding source node s(c). In particular, depending
on the type of class c traffic, the topology of the admissible
routes T (c) takes the following special forms:

• UNICAST TRAFFIC: T (c) = set of all s(c) − t(c)

paths in the graph G.
• BROADCAST TRAFFIC: T (c) = set of all spanning

trees in the graph G, rooted at s(c).
• MULTICAST TRAFFIC: T (c) = set of all Steiner

trees [10] in G, rooted at s(c) and spanning the
vertices D(c) = {t(c)1 , t

(c)
2 , . . . , t

(c)
k }.

• ANYCAST TRAFFIC: T (c) = union of all s(c)− t(c)i
paths in the graph G, i = 1, 2, . . . , k.

E. Characterization of the Network-Layer Capacity Region

Consider any arrival vector λ ∈ Λ(G, C). By definition,
there exists an admissible policy π ∈ Π, which supports the
arrival rate λ by means of storing, duplicating and forwarding
packets efficiently. Taking time-averages over the actions of
the policy π, it is clear that there exist a randomized flow-
decomposition and scheduling policy to route the packets such
that none of the edges in the network is overloaded. Indeed, in
the following theorem, we show that for every λ ∈ Λ(G, C),
there exist non-negative scalars {λ(c)i }, indexed by the admis-
sible routes T (c)

i ∈ T (c) and a convex combination of the link
activation vectors µ ∈ conv(M) such that,

λ(c) =
∑

T
(c)
i ∈T (c)

λ
(c)
i , ∀c ∈ C (3)

λe
(def.)
=

∑
(i,c):e∈T (c)

i ,T
(c)
i ∈T (c)

λ
(c)
i ≤ µe, ∀e ∈ E. (4)

Eqn. (3) denotes decomposition of the average incoming flows
into different admissible routes and Eqn. (4) denotes the fact
that none of the edges in the network is overloaded, i.e. arrival
rate of packets to any edge e under the policy π is at most the
rate allocated by the policy π to the edge e to serve packets.
To state the result precisely, define the set Λ to be the set of all
arrival vectors λ ∈ R|C|+ , for which there exists a randomized
activation vector µ ∈ conv(M) and a non-negative flow

4This should be contrasted with the popular throughput-optimal unicast
policy Back-Pressure [13], which does not satisfy this constraint and may
deliver the same packet to a node multiple times, thus potentially degrading
its delay performance.
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decomposition {λ(c)i }, such that Eqns. (3) and (4) are satisfied.
We have the following theorem:

Theorem 1. The network-layer capacity region Λ(G, C)
is characterized by the set Λ, up to its boundary.

Proof of Theorem 1 consists of two parts: converse and
achievability. Proof of the converse is given in Appendix
IX-A, where we show that all supportable arrival rates
must belong to the set Λ. The main result of this paper, as
developed in the subsequent sections, is the construction of
an efficient admissible policy, called Universal Max-Weight
(UMW), which achieves any arrival rate in the interior of the
set Λ.

III. OVERVIEW OF THE UMW POLICY

In this section, we present a brief overview of our
throughput-optimal UMW policy, designed and analyzed in
the subsequent sections. Central to the UMW policy is a
global state vector, called virtual queues Q̃(t), used for
packet routing and link activations. Each component of the
virtual queues is updated at every slot according to a one-
hop queueing (Lindley) recursion, corresponding to a relaxed
network, described in detail in section IV. Unlike the well-
known Back-Pressure algorithm for the unicast problem [13],
in which packet routing decisions are made hop-by-hop using
physical queue-lengths Q(t), the UMW policy prescribes an
admissible route to each incoming packet immediately upon its
arrival (dynamic source routing). This route selection decision
is dynamically made by solving a suitable min-cost routing
problem (e.g., shortest path, MST etc.) at the source with
edge costs given by the current virtual-queue vector Q̃(t).
Link activation decisions at each slot are made by a Max-
Weight algorithm with link-weights set equal to Q̃(t). Having
fixed the routing and activation policy as above, in section
V we design a packet scheduling algorithm for the physical
network, which efficiently resolves contention among multiple
packets that wait to cross the same (active) edge at the same
slot. We show that the overall policy is throughput-optimal.
One significantly new feature of our algorithm is that it is
entirely oblivious to the length of the physical queues of the
network and utilizes the auxiliary virtual-queue state variables
for stabilizing the former.
Our proof of throughput-optimality of UMW leverages ideas
from deterministic adversarial queueing theory and combines
it effectively with the stochastic Lyapunov-drift based tech-
niques and may be of independent theoretical interest.

IV. GLOBAL VIRTUAL QUEUES: STRUCTURES,
ALGORITHMS, AND STABILITY

In this section, we introduce the notion of virtual queues
5, which is obtained by relaxing the dynamics of the physical

5Note that our notion of virtual-queues is completely different from and
unrelated to the notion of shadow-queues proposed earlier in [17], [12] and
virtual-queues proposed in [22].

Arrival

A(t)
sinkdeparture|Q1(t)

Q1(t) Q2(t)

Fig. 2: A Multihop network with precedence constraints.

µ1(t)

µ2(t)

Arrival

A(t)

A1(t)

A2(t)

Q̃1(t)

Q̃2(t)

Source

virtual sinks

Fig. 3: Construction of the Virtual Queue process corresponding to
the multi-hop network in Fig. 2.

queues of the network in the following intuitive fashion.

A. Precedence Constraints

In a multi-hop network, if a packet p is being routed along
the path T = l1 − l2 − . . . − lk, where li ∈ E is the ith

link on its path, then by the principle of causality, the packet
p cannot be physically transmitted over the jth link lj if it
has not already been transmitted by the first j − 1 links
l1, l2, . . . , lj−1. This constraint is known as the precedence
constraint in the network scheduling literature [23]. See Figure
2. In the following, we make a radical departure by relaxing
this constraint to obtain a simpler single-hop virtual system,
which will play a key role in designing our policy and its
optimality analysis.

B. The Virtual Queue Process {Q̃(t)}t≥1
The Virtual queue process Q̃(t) =

(
Q̃e(t), e ∈ E

)
is an

|E| = m dimensional controlled stochastic process, imitating
a fictitious queueing network without the precedence con-
straints. In particular, when a packet p of class c arrives at
the source node s(c), a dynamic policy π prescribes a suitable
route T (c)(t) ∈ T (c) to the packet. Denoting the set of all
edges in the route T (c)(t) by {l1, l2, . . . , lk}, this incoming
packet induces a virtual arrival simultaneously at each of the
virtual queues

(
Q̃li
)
, i = 1, 2, . . . , k, right upon its arrival

to the source. Since the virtual network is assumed to be
relaxed with no precedence constraints, any packet present in
the virtual queue is eligible for service. See Figure 3 for an
illustration.

The (controlled) service process allocated to the virtual-
queues is denoted by {µπ(t)}t≥1. We require the service
process to satisfy the same activation constraints as in the
original system, i.e., µπ(t) ∈M,∀t ≥ 1.
Let Aπe (t) is the total number of virtual packet arrival (from
all classes) to the queue Q̃e at time t under the action of the
policy π, i.e.,

Aπe (t) =
∑
c∈C

A(c)(t)1
(
e ∈ T (c)(t)

)
, ∀e ∈ E. (5)
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Hence, we have the following one-step evolution (Lindley
recursion) of the virtual queue-process {Q̃e(t)}t≥1:

Q̃e(t+ 1) =
(
Q̃e(t) +Aπe (t)− µπe (t)

)+
, ∀e ∈ E, (6)

We emphasize that Aπe (t) is a function of the routing tree
T (c)(t) that the policy chooses at time t, from the set of all
admissible routes T (c). This is discussed in the following.

C. Dynamic Control and Stability of the Virtual Queues

Next we design a dynamic routing and link activation policy
for the virtual network, which stabilizes the virtual queue
process {Q̃(t)}t≥1, for all arrival rate-vectors λ ∈ int(Λ).
This policy is obtained by minimizing the one-step drift of a
quadratic Lyapunov-function of the virtual queue-lengths (as
opposed to the real queue lengths used in the Back-Pressure
policy [13]). In the following section, we will show that when
this dynamic policy is used in conjunction with a suitable
packet scheduling policy in the physical network, the overall
policy is throughput-optimal for the physical network.
To derive a stabilizing policy for the virtual network, consider
a quadratic Lyapunov function L(Q̃(t)) defined in terms of
the virtual queue-lengths:

L(Q̃(t)) =
∑
e∈E

Q̃2
e(t)

From the one-step dynamics of the virtual queues (6), we have:

Q̃e(t+ 1)2 ≤ (Q̃e(t)− µπe (t) +Aπe (t))2

= Q̃2
e(t) + (Aπe (t))2 + (µπe (t))2 + 2Q̃e(t)A

π
e (t)

− 2Q̃e(t)µ
π
e (t)− 2µπe (t)Aπe (t)

Since µπe (t) ≥ 0 and Aπe (t) ≥ 0, we have

Q̃2
e(t+ 1)− Q̃2

e(t) ≤ (Aπe (t))2 + (µπe (t))2

+ 2Q̃e(t)A
π
e (t)− 2Q̃e(t)µ

π
e (t)

Hence, the one-step Lyapunov drift ∆π(t), conditional on the
current virtual queue-lengths Q̃(t), under the operation of any
admissible Markovian policy π ∈ Π is upper-bounded by

∆π(t)
def
= E

(
L(Q̃(t+ 1))− L(Q̃(t))|Q̃(t)

)
≤ B + 2

∑
e∈E

Q̃e(t)E
(
Aπe (t)|Q̃(t)

)
− 2

∑
e∈E

Q̃e(t)E
(
µπe (t)|Q̃(t)

)
(7)

where B is a constant, bounded by
∑
e(E(Aπe (t))2 +

E(µπe (t))2) ≤ A2
max +m.

The upper-bound on the drift, given by (7), holds good for
any admissible policy in the virtual network. In particular,
by minimizing the upper-bound point wise, and exploiting
the separable nature of the objective, we derive the following
decoupled dynamic routing and link activation policy for the
virtual network:

Dynamic Routing Policy: The optimal route for each class c,
over the set of all admissible routes, is selected by minimizing

the following cost function, appearing in the middle of Eqn.
(7)

RoutingCostπ ≡
∑
e∈E

Q̃e(t)A
π
e (t),

where we remind the reader that Aπe (t) are the routing policy
dependent arrivals to the virtual-queue corresponding to the
link e at time t.
Using Eqn. (5), we may rewrite the objective-function as

RoutingCostπ =
∑
c∈C

A(c)(t)

(∑
e∈E

Q̃e(t)1
(
e ∈ T (c)(t))

)
(8)

Using the separability of the objective (8), the above opti-
mization problem decomposes into following min-cost route-
selection problem T

(c)
opt(t) for each class c:

T
(c)
opt(t) ∈ arg min

T (c)∈T (c)

(∑
e∈E

Q̃e(t)1
(
e ∈ T (c))

)
(9)

Depending on the type of flow of class c, the optimal route-
selection problem (9) is equivalent to one of the following
well-known combinatorial problems on the graph G, with its
edges weighted by the virtual queue-length vector Q̃:

• UNICAST TRAFFIC: T (c)
opt(t) = The shortest s(c) −

t(c) path in the weighted-graph G.
• BROADCAST TRAFFIC: T (c)

opt(t) = The minimum
weight spanning tree rooted at the source s(c), in the
weighted-graph G.

• MULTICAST TRAFFIC: T
(c)
opt(t) = The mini-

mum weight Steiner tree rooted at the source
s(c) and spanning the destinations D(c) =

{t(c)1 , t
(c)
2 , . . . , t

(c)
k }, in the weighted-graph G.

• ANYCAST TRAFFIC: T (c)
opt(t) = The shortest of the

k shortest s(c) − t
(c)
i paths, i = 1, 2, . . . , k in the

weighted-graph G.

Thus, the routes are selected according to a dynamic source
routing policy [18]. Apart from the minimum weight Steiner
tree problem for the multicast traffic (which is NP-hard with
several known efficient approximation algorithms [24]), all of
the above routing problems on the weighted virtual graph may
be solved efficiently using standard algorithms [25].

Dynamic Link Activation Policy: A feasible link activation
schedule µ∗(t) ∈ M is dynamically chosen at each slot by
maximizing the last term in the upper-bound of the drift-
expression (7), given as follows:

µ∗(t) ∈ arg max
µ∈M

(∑
e∈E

Q̃e(t)µe

)
(10)

This is the well-known max-weight scheduling policy, which
can be solved efficiently under various interference models
(e.g., Primary or node-exclusive model [26]).
In solving the above routing and scheduling problems, we
tacitly made the assumption that the virtual queue vector
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Q̃(t) is globally known at each slot. We will discuss practical
distributed implementation of our algorithm in section VI.
Next, we establish stability of the virtual queues under
the above policy, which will be instrumental for proving
throughput-optimality of the overall UMW policy:

Theorem 2. Under the above dynamic routing and link
scheduling policy, the virtual-queue process {Q̃(t)}t≥0 is
strongly stable for any arrival rate λ ∈ int(Λ), i.e.,

lim sup
T→∞

1

T

T−1∑
t=0

∑
e∈E

E(Q̃e(t)) <∞.

Proof. The proof involves a Lyapunov drift-argument. See
Appendix IX-B for details.

As a consequence of the strong stability of the virtual-
queues {Q̃e(t), e ∈ E}, we have the following sample-path
result, which will be the key to our subsequent analysis:

Lemma 1. Under the action of the above policy, we have
for any λ ∈ int(Λ̄):

lim
t→∞

Q̃e(t)

t
= 0, ∀e ∈ E, w.p. 1.

In other words, the virtual queues are rate-stable [27].

Proof. See Appendix IX-D.

The sample path result of Lemma 1 may be interpreted as
follows: For any given realization ω of the underlying sample
space Ω, define the function

F (ω, t) = max
e∈E

Q̃e(ω, t).

Note that, for any t ∈ Z+, due to the boundedness of arrivals
per slot, the function F (ω, t) is well-defined and finite. In view
of this, Lemma (1) states that under the action of the UMW
policy, F (ω, t) = o(t) almost surely. 6 This result will be
used in our sample pathwise stability analysis of the physical
queueing process {Q(t)}t≥0.

D. Consequence of the Stability of the Virtual Queues

It is apparent from the virtual-queue evolution equation (6),
that the stability of the virtual queues under the UMW policy
implies that the arrival rate at each virtual queue is at most
the service rate offered to it under the UMW routing and
scheduling policy. In other words, effective load of each edge
e in the virtual system is at most unity. This is a necessary
condition for stability of the physical queues when the same
routing and link activation policy is used for the multi-hop
physical network. In the following, we make the notion of
“effective-load” mathematically precise.

6g(t) = o(t) if limt→∞
g(t)
t

= 0.

Skorokhod Mapping: Iterating on the system equation (6),
we obtain the following well-known discrete time Skorokhod-
Map representation [28] of the virtual queue dynamics

Q̃e(t) =

(
sup

1≤τ≤t

(
Aπe (t− τ, t)− Sπe (t− τ, t)

))+

, (11)

where Aπe (t1, t2)
def
=
∑t2−1
τ=t1

Aπe (τ), is the total number of
arrivals to the virtual queue Q̃e in the time interval [t1, t2)

and Sπe (t1, t2)
def
=
∑t2−1
τ=t1

µπe (τ), is the total amount of service
allocated to the virtual queue Q̃e in the interval [t1, t2). For
reference, we provide a proof of Eqn. (11) in Appendix IX-C.
Combining Equation (11) with Lemma 1, we conclude that
under the UMW policy, almost surely for any sample path
ω ∈ Ω, for each edge e ∈ E and any t0 < t, we have

Ae(ω; t0, t) ≤ Se(ω; t0, t) + F (ω, t), (12)

where F (ω, t) = o(t).
Implications for the Physical Network: Note that, every

packet arrival to a virtual queue Q̃e at time t corresponds to a
packet in the physical network, that will eventually cross the
edge e. Hence the loading condition (12) implies that under
the UMW policy, the total number of packets injected during
any time interval (t0, t], willing to cross the edge e, is less
than the total amount of service allocated to the edge e in that
time interval up to an additive term of o(t). Thus informally,
the “effective load” of any edge e ∈ E is at most unity.
By utilizing the sample-path result in Eqn. (12), in the follow-
ing section we show that there exists a simple packet schedul-
ing scheme for the physical network, which guarantees the
stability of the physical queues, and consequently, throughput-
optimality.

V. OPTIMAL CONTROL OF THE PHYSICAL NETWORK

With the help of the virtual queue structure as defined
above, we next focus our attention on designing a throughput-
optimal control policy for the multi-hop physical network.
As discussed in Section II, a control policy for the physical
network consists of three components, namely (1) Routing, (2)
Link activations and (3) Packet scheduling. In the proposed
UMW policy, the (1) Routing and (2) Link activations for
the physical network is done exactly in the same way as in
the virtual network, based on the current values of the virtual
queue state variables Q̃(t), described in Section IV-C. There
exist many possibilities for the third component, namely the
packet scheduler, which efficiently resolves contention when
multiple packets attempt to cross an active edge e at the
same time-slot t. Popular choices for the packet scheduler
include FIFO, LIFO etc. In this paper, we focus on a particular
scheduling policy which has its origin in the context of
adversarial queueing theory [29]. In particular, we extend the
Nearest To Origin (NTO) policy to the generalized network
flow setting, where a packet may be duplicated. This policy
was proposed in [30] in the context of wired networks for
the unicast problem. Our proposed scheduling policy is called
Extended NTO (ENTO) and is defined as follows:
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e4
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p2p1

Qe3

priority[p1]e3 = −2

priority[p2]e3 = −1

p1

p2

Fig. 4: A schematic diagram showing the scheduling policy ENTO in
action. The packets p1 and p2 originate from the sources S1 and S2.
Part of their assigned routes are shown in blue and red respectively.
The packets contend for crossing the active edge e3 at the same
time slot. According to the ENTO policy, the packet p2 has higher
priority (having crossed a single edge e4 from its source) than p1
(having crossed two edges e1 and e2 from its source) for crossing
the edge e3. Note that, although a copy of p1 might have already
crossed the edge e5, this edge does not fall in the path connecting
the source S1 to the edge e3 and hence does not enter into priority
calculations.

Definition 2 (Extended NTO). If multiple packets attempt
to cross an active edge e at the same time slot t, the
Extended Nearest To Origin (ENTO) policy gives priority
to the packet which has traversed the least number of hops
along its path from its origin up to the edge e.

The Extended NTO policy may be easily implemented by
maintaining a single priority queue [25] per edge. The initial
priority of each incoming packet at the source is set to zero.
Upon transmission by any edge, the priority of a transmitted
packet is decreased by one. The transmitted packet is then
copied into the next-hop priority queue(s) (if any) according to
its assigned route. See Figure 4 for an illustration. The pseudo
code for the full UMW algorithm is provided in Algorithm 1.

We next state the following theorem which proves stability
of the physical queues under the ENTO policy:

Theorem 3. Under the action of the UMW policy with
ENTO packet scheduling, the physical queues are rate-
stable [27] for any arrival vector λ ∈ int(Λ), i.e.,

lim
t→∞

∑
e∈E Qe(t)

t
= 0, w.p.1

Proof. This theorem is proved by extending the argument of
Gamarnik [30] and combining it with the sample path loading
condition in Eqn. (12). See Appendix IX-E for the detailed
argument.

As a direct consequence of Theorem 3, we have the main

Algorithm 1 Universal Max-Weight Algorithm (UMW) at slot
t for the Generalized Flow Problem in a Wireless Network

Require: Graph G(V,E), Virtual Queue-Lengths {Q̃e(t), e ∈
E} at the slot t.

1: [Edge-Weight Assignment] Assign each edge of the
graph e ∈ E a weight We(t) equal to Q̃e(t), i.e.

W (t)← Q̃(t)

2: [Route Assignment] Compute a Minimum Weight Route
T (c)(t) ∈ T (c)(t) for a class c incoming packet in the
weighted graph G(V,E), according to Eqn. (9).

3: [Link Activations] Choose the activation µ(t) from the
set of all feasible activations M, which maximizes the
total activated link-weights, i.e.

µ(t)← arg max
s∈M

s ·W (t)

4: [Packet Forwarding] Forward physical packets from the
physical queues over the activated links according to the
ENTO scheduling policy.

5: [Virtual Queue-Counter Update] Update the virtual
queues assuming a precedence-relaxed system, i.e.,

Q̃e(t+ 1)←
(
Q̃e(t) +Ae(t)− µe(t)

)+

, ∀e ∈ E

result of this paper:

Theorem 4. The UMW policy is throughput-optimal.

Proof. For any class c ∈ C, the number of packets R(c)(t),
received by all nodes i ∈ D(c) may be bounded as follows:

A(c)(0, t)−
∑
e∈E

Qe(t)
(∗)
≤ R(c)(t) ≤ A(c)(0, t), (13)

where the lower-bound (∗) follows from the simple observa-
tion that if a packet p of class c has not reached all destination
nodes D(c), then at least one copy of it must be present in some
physical queue.
Dividing both sides of Eqn. (13) by t, taking limits and using
SLLN and Theorem 3, we conclude that w.p. 1

lim
t→∞

R(c)(t)

t
= λ(c)

Hence from the definition (1), we conclude that UMW is
throughput-optimal.

VI. DISTRIBUTED IMPLEMENTATION

The UMW policy in its original form, as given in Algorithm
1, is centralized in nature. This is because the sources need
to know the topology of the network and the current value
of the virtual queues Q̃(t) to solve the shortest route and the
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Fig. 5: The wired network topology used for unicast simulation

Max-Weight problems at steps (2) and (3) of the algorithm.
Although the topology of the network may be obtained effi-
ciently by topology discovery algorithms [31], keeping track
of the virtual queue evolution (Eqn. (6)) is subtler. Note that,
in the special case where all packets arrive only at a single
source node, no information exchange is necessary and the
virtual queue updates (Step 5) may be implemented at the
source locally. In the general case with multiple sources, it is
necessary to periodically exchange packet arrival information
among the sources to implement Step 5 exactly. To circum-
vent this issue, a heuristic version of UMW policy (referred
to as UMW (heuristic) in the following) may be used in
practice where physical queue-lengths Q(t) are used as a
surrogate for the virtual queue-lengths Q̃(t) for weight and
cost computations in Algorithm 1. Routing based on physical
queue-lengths still requires the exchange of queue-length-
information. However, this can be implemented efficiently
using the standard distributed Bellman-Ford algorithm. The
simulation results in section VII-B show that the heuristic
policy works well in practice and its delay performance is
substantially better than the virtual queue based optimal UMW
policy in wireless networks.

VII. NUMERICAL SIMULATION

A. Delay Improvement Compared to the Back Pressure Policy
- the Unicast Setting

To empirically demonstrate superior delay performance of
the UMW policy over the Back-Pressure policy in the unicast
setting, we simulate both policies in the wired network shown
in Figure 5. All links have a unit capacity. We consider
two concurrent unicast sessions with source-destination pairs
given by (s1 = 1, t1 = 8) and (s2 = 5, t2 = 2) respec-
tively. It is easy to see that Max-Flow(s1 → t1) = 2 and
Max-Flow(s2 → t2) = 1 and there exist mutually disjoint
paths to achieve the optimal rate-pair (λ1, λ2) = (2, 1).
Assuming Poisson arrivals at the sources s1 and s2 with
intensities λ1 = 2ρ and λ2 = ρ, 0 ≤ ρ ≤ 1, where ρ denotes
the “load factor”, Figure 6 shows a plot of total average queue-
lengths as a function of the load factor ρ under the operation
of the BP, UMW (optimal) and UMW (heuristic) policy.

From the plot, we conclude that both the optimal and
heuristic UMW policies outperforms the BP policy in terms of
average queue-lengths, and hence (by Little’s Law), end-to-end
delay, especially in low-to-moderate load regime. The primary
reason being, the BP policy, in principle, explores all possible
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Fig. 6: Comparing the delay performances of the BP and UMW
(optimal and heuristic) policies in the unicast setting of Fig. 5.

paths to route packets to their destinations. In the low-load
regime, the packets may also cycle in the network indefinitely,
which increases their latency. The UMW policy, on the other
hand, transmits all packets along “optimal” acyclic routes. This
results in substantial reduction in end-to-end delay.

B. Using the Heuristic UMW policy for Improved Latency in
the Wireless Networks - the Broadcast Setting

Next, we empirically demonstrate that the heuristic UMW
policy that uses physical queue-lengths Q(t) (instead of vir-
tual queues Q̃(t) as in the optimal UMW policy) not only
achieves the full broadcast capacity but yields better delay
performance in this particular wireless network. As discussed
earlier, the heuristic policy is practically easier to implement in
a distributed fashion. We simulate a 3×3 wireless grid network
shown in Figure 7, with primary interference constraints [19].
The broadcast capacity of the network is known to be λ∗ = 2

5
[7]. The ENTO policy is used for packet scheduling. The
average queue-length is plotted in Figure 8 as a function of
the packet arrival rate λ under the operation of the (a) UMW
(optimal) and (b) UMW (heuristic) policies. The plot shows
that the heuristic policy results in much smaller queue-lengths
than the optimal policy. The reason being that physical queues
capture the network congestion “more accurately” for proper
link activations.

VIII. CONCLUSION

In this paper, we have proposed a new, efficient and
throughput-optimal policy, named Universal Max-Weight
(UMW), for the Generalized Network Flow problem. The
UMW policy can simultaneously handle mix of Unicast,
Broadcast, Multicast and Anycast traffic in arbitrary networks
and is empirically shown to have superior performance com-
pared to the existing policies. The next step would be to
investigate whether the UMW policy still retains its optimality
when implemented with physical queue-lengths, instead of the
virtual queue-lengths. An affirmative answer to this question
would imply a more efficient implementation of the policy.
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IX. APPENDIX

A. Proof of Converse of Theorem 1

Proof. Consider any admissible arrival rate vector λ ∈
Λ(G, C). By definition, there exists an admissible policy π ∈ Π
which supports the arrival vector λ in the sense of Eqn. (1).
Without any loss of generality, we may assume the policy π
to be stationary and the associated DTMC to be ergodic. Let
A

(c)
i (t) denote the total number of packets from class c that

have finished their routing along the route T (c)
i ∈ T (c) up to

time t. Note that, each packet is routed along one admissible
route only. Hence, if the total number of arrival to the source
s(c) of class c up to time t is denoted by the random variable
A(c)(t), we have

A(c)(t)
(a)

≥
∑

T
(c)
i ∈T (c)

A
(c)
i (t)

(b)
= R(c)(t). (14)

In the above, the inequality (a) follows from the observation
that any packet p which has finished its routing along some
route T (c)

i ∈ T (c) by the time t, must have arrived at the source
by the time t. The equality (b) follows from the observation
that any packet p which has finished its routing by time t along
some route T

(c)
i ∈ T (c), has reached all of the destination

nodes D(c) of class c by time t and vice versa.
Dividing both sides of equation (14) by t and taking limit as
t→∞, we have w.p.1

λ(c)
(d)
= lim

t→∞

A(c)(t)

t
≥ lim inf

t→∞

1

t

∑
T

(c)
i ∈T (c)

A
(c)
i (t)

= lim inf
t→∞

R(c)(t)

t
(f)
= λ(c),

where equality (d) follows from the SLLN, and equality (f)
follows from the Definition (1).
From the above inequalities, we conclude that w.p. 1

lim
t→∞

1

t

∑
T

(c)
i ∈T (c)

A
(c)
i (t) = λ(c), ∀c ∈ C (15)

Now we use the fact that the policy π is stationary and the
associated DTMC is ergodic. Thus the time-average limits
exist and they are constant a.s.. For all T (c)

i ∈ T c and c ∈ C,
define

λ
(c)
i

def
= lim

t→∞

1

t
A

(c)
i (t) (16)

Hence, from the above, we get

λ(c) =
∑

T
(c)
i ∈T (c)

λ
(c)
i (17)

Now consider any edge e ∈ E in the graph G. Since the
variable A

(c)
i (t) denotes the total number of packets from

class c, that have completely traversed along the tree T
(c)
i ,

the following inequality holds good for any time t∑
(i,c):e∈T (c)

i ,T
(c)
i ∈T (c)

A
(c)
i (t) ≤

t∑
τ=1

µe(τ), (18)

where the left-hand side denotes a lower-bound on the number
of packets that have crossed the edge e and the right hand side
denotes the amount of service that have been provided to edge
e up to time t by the policy π.
Dividing both sides by t and taking limits of both side, and
noting that the limit on the left-hand side exists w.p. 1, we
have ∑

(i,c):e∈T (c)
i ,T

(c)
i ∈T c

λ
(c)
i ≤ µe, (19)

where µ = limt→∞
1
t

∑t
τ=1 µ(τ). Since µ(τ) ∈ M,∀τ and

the set conv(M) is closed, we conclude that µ ∈ conv(M).
Eqns. (17) and (19) concludes the proof of the theorem.

B. Proof of Theorem 2

Proof. Consider an arrival rate vector λ ∈ int(Λ). Thus, from
Eqns. (3) and (4), it follows that there exists a scalar ε > 0
and a vector µ ∈ conv(M), such that we can decompose the
total arrival for each class c ∈ C into a finite number of routes,
such that

λe
(def.)
=

∑
(i,c):e∈T (c)

i ,T
(c)
i ∈T (c)

λ
(c)
i ≤ µe − ε, ∀e ∈ E (20)

By Caratheodory’s theorem [32], we can write

µ =

m+1∑
i=1

pisi, (21)

for some activation vectors si ∈ M,∀i and some probability
distribution p.
Now consider the following auxiliary stationary randomized
routing and link activation policy RAND ∈ Π for the virtual
queue system {Q̃(t)}, which will be useful in our proof.
The randomized policy RAND randomly selects the activation
vector sj with probability pj , j = 1, 2, . . . ,m + 1 and routes
the incoming packet of class c along the route T (c)

i ∈ T (c),

with probability λ
(c)
i

λ(c) , ∀i, c. Hence the total expected arrival
rate to the virtual queue Q̃e at time slot t, due to the action
of the stationary randomized policy RAND is given by

EARAND
e (t) = λe =

∑
(i,c):e∈T (c)

i ,T
(c)
i ∈T (c)

λ
(c)
i , ∀e ∈ E (22)

and the expected total service rate to the virtual server for the
queue Q̃e is given by

EµRAND
e (t) =

m+1∑
i=1

pisi(e) = µe (23)

Since our Max-Weight policy, UMW, maximizes the RHS of
the drift expression in Eqn. (7) from the set of all feasible
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policies Π, we can write

∆UMW(t) ≤ B + 2
∑
e∈E

Q̃e(t)E
(
ARAND
e (t)|Q̃(t)

)
− 2

∑
e∈E

Q̃e(t)E
(
µRAND
e (t)|Q̃(t)

)
(a)
= B + 2

∑
e∈E

Q̃e(t)

(
EARAND

e (t)− EµRAND
e (t)

)
(b)
= B + 2

∑
e∈E

Q̃e(t)
(
λe − µe

)
(c)

≤ B − 2ε
∑
e∈E

Q̃e(t),

where (a) follows from the fact that the randomized policy
RAND is memoryless and hence, independent of the virtual
queues Q̃(t), (b) follows from Eqns. (22) and (23) and finally
(c) follows from Eqn. (20).
Taking expectation of both sides w.r.t. the virtual queue-
lengths Q̃(t), we bound the expected drift at slot t as

EL
(
Q̃(t+ 1)

)
− EL

(
Q̃(t)

)
≤ B − 2ε

∑
e∈E

E(Q̃e(t)) (24)

Summing Eqn. (24) from t = 0 to T − 1 and remembering
that L(Q(T )) ≥ 0 and L(Q̃(0)) = 0, we conclude that

1

T

T−1∑
t=0

∑
e∈E

E(Q̃e(t)) ≤
B

2ε
(25)

Taking lim sup of both sides proves the claim.

C. Proof of the Skorokhod Map Representation in Eqn. (11)

Proof. From the dynamics of the virtual queues in Eqn. (6),
we have for any t ≥ 1

Q̃e(t) ≥ Q̃e(t− 1) +Ae(t− 1)− µe(t− 1). (26)

Iterating (26) τ times 1 ≤ τ ≤ t, we obtain

Q̃e(t) ≥ Q̃e(t− τ) +Ae(t− τ, t)− Se(t− τ, t),

where Ae(t1, t2) =
∑t2−1
τ=t1

Ae(τ) and Se(t1, t2) =∑t2−1
τ=t1

µe(τ), as defined before. Since each of the virtual-
queue components are non-negative at all times (viz. (6)), we
have Q̃e(t− τ) ≥ 0. Thus,

Q̃e(t) ≥ Ae(t− τ, t)− Se(t− τ, t).

Since the above holds for any time 1 ≤ τ ≤ t and the queues
are always non-negative, we obtain

Q̃e(t) ≥
(

sup
1≤τ≤t

(
Ae(t− τ, t)− Se(t− τ, t)

))
+

(27)

To show that Eqn. (27) holds with equality, we consider
two cases.

Case I: Q̃e(t) = 0
Since the RHS of Eqn. (27) is non-negative, we immediately
obtain equality throughout in Eqn (27).

Case II: Q̃e(t) > 0 Consider the latest time
t − τ ′, 1 ≤ τ ′ ≤ t, prior to t, at which Q̃e(t − τ ′) = 0.
Such a time t − τ ′ exists because we assumed the system
to start with empty queues at time t = 0. Hence Qe(z) > 0
throughout the time interval z ∈ [t− τ ′ + 1, t]. As a result, in
this time interval the system dynamics for the virtual-queues
(6) takes the following form

Q̃e(z) = Q̃e(z − 1) +Ae(z − 1)− µe(z − 1),

Iterating the above recursion in the interval z ∈ [t− τ ′+ 1, t],
we obtain

Q̃e(t) = Ae(t− τ ′, t)− Se(t− τ ′, t) (28)

We conclude the proof upon combining Eqns. (27) and (28).

D. Proof of Lemma 1
Proof. We will establish this result by appealing to the Strong
Stability Theorem (Theorem 2.8) of [27]. For this, we first
consider an associated system {Q̂(t)}t≥0 with a slightly
different queueing recursion, as considered in [27] (Eqn. 2.1,
pp-15). For a given sequence {A(t),µ(t)}t≥0, define the
following recursion for all e ∈ E,

Q̂e(t+ 1) = (Q̂e(t)− µe(t))+ +Ae(t), (29)
Q̂e(0) = 0.

Recall the dynamics of the virtual queues (Eqn. (6)):

Q̃e(t+ 1) = (Q̃e(t) +Ae(t)− µe(t))+, (30)
Q̃e(0) = 0.

We next prove the following proposition:

Proposition 5. For all e ∈ E

Amax + Q̃e(t)
(∗)
≥ Q̂e(t)

(∗∗)
≥ Q̃e(t), ∀t ≥ 0.

Proof. We first prove the second inequality (**) by inducting
on time.
Base Step t = 0:
Holds with equality since Q̂e(0) = Q̃e(0) = 0.
Induction Step:
Assume that Q̂e(t) ≥ Q̃e(t) for some t ≥ 0. From the
dynamics (29), we can write

Q̂e(t+ 1) = max
(
Q̂e(t)− µe(t) +Ae(t), Ae(t)

)
(a)

≥ max
(
Q̂e(t)− µe(t) +Ae(t), 0

)
(b)

≥ max
(
Q̃e(t)− µe(t) +Ae(t), 0

)
(c)
= Q̃e(t+ 1),

where Eqn. (a) follows from the fact that Ae(t) ≥ 0, Eqn. (b)
follows from the induction assumption and Eqn. (c) follows
from the dynamics (30). This completes the induction step
and the proof of the second inequality (**) of the proposition.
Proof of the first inequality (*) may also be carried out
similarly.
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Taking expectation throughout the first inequality (*) of
Proposition 5 for any e ∈ E, we have for each t ≥ 0

E(Q̂e(t)) ≤ E(Q̃e(t)) +Amax

Thus,

lim sup
T→∞

1

T

T−1∑
t=0

E(Q̂e(t)) ≤ lim sup
T→∞

1

T

T−1∑
t=0

E(Q̃e(t)) +Amax

(a)
< ∞,

where (a) follows from the strong stability of the virtual queues
under UMW. This shows that, the associated queue-process
{Q̂(t)}t≥0 is also strongly stable under UMW.
Since the total external arrival A(t) =

∑
eAe(t) at slot t is

assumed to be bounded w.p. 1, applying Theorem 2.8, part (b)
of [27], we conclude that for any e ∈ E

lim
t→∞

Q̂e(t)

t
= 0, w.p.1

Using the second inequality (**) of Proposition 5 and the non-
negativity of the virtual queues, we conclude that for any e ∈
E

lim
t→∞

Q̃e(t)

t
= 0, w.p.1

Finally, using the union bound we conclude that

lim
t→∞

Q̃e(t)

t
= 0, ∀e ∈ E w.p.1

E. Proof of Theorem 3

Throughout this proof, we will fix a sample point ω ∈ Ω,
giving rise to a sample path satisfying the condition (12). All
random processes 7 will be evaluated at this sample path. For
the sake of notational simplicity, we will drop the argument
ω for evaluating any random variable X at the sample point
ω, e.g., the deterministic sample-path X(ω, t) will be simply
denoted by X(t). We now establish a simple analytical result
which will be useful in the main proof of the theorem:

Lemma 2. Consider a non-negative function {F (t), t ≥
1} defined on the set of natural numbers, such that F (t) =
o(t) . Define M(t) = sup0≤τ≤t F (τ). Then
1. M(t) is non-decreasing in t.
2. M(t) = o(t)

Proof. That M(t) is non-decreasing follows directly from the
definition of M(t) = sup0≤τ≤t F (t). We now prove the claim
(2).
Case I: The function F (t) is bounded
In this case, the function M(t) is also bounded and the claim
follows immediately.

7Recall that, a discrete-time integer-valued random process X(ω; t) is a
measurable map from the sample space Ω to the set of all integer-sequences
Z∞ [33], i.e., X : Ω → Z∞.

Case II: The function F (t) is unbounded
Define the subsequence {rk}k≥1, corresponding to the time
of maximums of the function M(t) up to time t. Formally the
sequence {rk}k≥1 is defined recursively as follows,

r1 = 1 (31)
rk = {min t > rk−1 : F (t) > max

τ≤t−1
F (τ)} (32)

Since the function F (t) is assumed to be unbounded, we have
rk → ∞ as k → ∞. In the literature [34], the sequence
{rk} is also known as the sequence of records of the function
F (t). With this definition, for any t ≥ 1 and for rk ≤ t
corresponding to the latest record up to time t, we readily
have

M(t) = F (rk) (33)

Hence,

M(t)

t
=
F (rk)

t

(a)

≤ F (rk)

rk
, (34)

where Eqn. (a) follows from the fact that rk ≤ t. Thus for any
sequence of natural numbers {ti}∞1 , we have a corresponding
sequence {rki}∞i=1 such that for each i, we have

M(ti)

ti
=
F (rki)

t

(a)

≤ F (rki)

rki

This implies,

lim sup
t→∞

M(t)

t
≤ lim sup

t→∞

F (t)

t

(b)
= 0, (35)

where Eqn (b) follows from our hypothesis on the function
F (t). Also since M(t) ≥ F (t), from Eqn. (35) we conclude
that

lim
t→∞

M(t)

t
= 0 (36)

As a direct consequence of Lemma 2 and the property of
the sample-point ω under consideration, we have:

Ae(t0, t) ≤ Se(t0, t) +M(t), ∀e ∈ E, ∀t0 ≤ t (37)

for some non-decreasing non-negative function
M(t) = o(t). Equipped with Eqn. (37), we return to
the proof of the Theorem 3.

Proposition 6. ENTO is rate-stable.

Proof. We generalize the argument by Gamarnik [30] to prove
the proposition. We remind the reader that we are analyzing the
time-evolution of a fixed sample point ω ∈ Ω, which satisfies
Eqn. (37).
Let Re(0) denote the total number of packets waiting to cross
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the edge e at time t = 0. Also, let Rk(t) denote the total
number of packets at time t, which are exactly k hops away
from their respective sources. Such packets will be called
“layer k” packets in the sequel. If a packet is duplicated along
its assigned route T (which is, in general, a tree), each copy
of the packet is counted separately in the variable Rk(t), i.e.,

Rk(t) =
∑
T∈T

R(eTk ,T )(t), (38)

where the variable R(e,T )(t) denotes the number of packets
following the routing tree T , that are waiting to cross the
edge e ∈ T at time t. The edge eTk is an edge located kth hop
away from the source in the tree T . If there are more than one
such edge (because the tree T has more than one branch), we
include all these edges in the summation (38). We show by
induction that Rk(t) is almost surely bounded by a function,
which is o(t).
Base Step k = 0: Fix an edge e and time t. Let t0 ≤ t be
the largest time at which no packets of layer 0 (packets which
have not crossed any edge yet) were waiting to cross e. If
no such time exists, set t0 = 0. Hence, the total number of
layer 0 packets waiting to cross the edge e at time t0 is at
most Qe(0). During the time interval [t0, t], as a consequence
of the UMW control policy (37), at most Se(t0, t) + M(t)
external packets have been admitted to the network, that want
to cross the edge e in future. Also, by the choice of the time t0,
the edge e was always having packets to transmit during the
entire time interval [t0, t]. Since ENTO scheduling policy is
followed, layer 0 packets have priority over all other packets.
Hence, it follows that the total number of packets at the edge
e at time t satisfies∑
T :e∈eT0

R(e,T )(t) ≤ Re(0) + Se(t0, t) +M(t)− Se(t0, t)

≤ Re(0) +M(t) (39)

As a result, we have R0(t) ≤
∑
eRe(0) + |E|M(t), for all t.

Let B0(t)
def
=
∑
eRe(0) + |E|M(t). Since M(t) = o(t), we

have B0(t) = o(t). Note that, since M(t) is monotonically
non-decreasing by definition, so is B0(t).

Induction Step: Suppose that, for some monotonically non-
decreasing functions Bj(t) = o(t), j = 0, 1, 2, . . . , k − 1,
we have Rj(t) ≤ Bj(t), for all time t. We next show that
Rk(t) ≤ Bk(t) for all t, where Bk(t) = o(t).
Again, fix an edge e and an arbitrary time t. Let t0 ≤ t denote
the largest time before t, such that there were no layer k
packets waiting to cross the edge e. Set t0 = 0 if no such
time exists. Hence the edge e was always having packets
to transmit during the time interval [t0, t] (packets in layer
k or lower). The layer k packets that wait to cross edge e
at time t are composed only of a subset of packets which
were in layers 0 ≤ j ≤ k − 1 at time t0 or packets that
arrived during the time interval [t0, t] and have edge e as
one of their kth edge on the route followed. By our induction
assumption, the first group of packets has a size bounded by∑k−1
j=0 Bj(t0) ≤

∑k−1
j=0 Bj(t), where we have used the fact

(from our previous induction step) that the functions Bj(·)’s
are monotonically non-decreasing. The size of the second

group of packets is given by
∑
T :e∈eTk

AT (t0, t). We next
estimate the number of layer k packets that crossed the edge
e during the time interval [t0, t]. Since ENTO policy is used,
layer k packets were not processed only when there were
packets in layers up to k−1 that wanted to cross e. The number
of such packets is bounded by

∑k−1
j=0 Bj(t0) ≤

∑k−1
j=0 Bj(t),

which denotes the total possible number of packets in layers
up to k − 1 at time t0, plus

∑k−1
j=0

∑
T :e∈eTj

AT (t0, t), which
is the number of new packets that arrived in the interval [t0, t]
and intend to cross the edge e within first k − 1 hops. Thus,
we conclude that at least

max

{
0, Se(t0, t)−

k−1∑
j=0

Bj(t)−
k−1∑
j=0

∑
T :e∈eTj

AT (t0, t)

}
(40)

packets of layer k crossed e during the time interval [t0, t].
Hence,

∑
T :e∈eTk

R(e,T )(t) ≤
k−1∑
j=0

Bj(t) +
∑

T :e∈eTk

AT (t0, t)

−
(
Se(t0, t)−

k−1∑
j=0

Bj(t)−
k−1∑
j=0

∑
T :e∈eTj

AT (t0, t)
)

= 2

k−1∑
j=0

Bj(t) +

k∑
j=0

∑
T :e∈eTj

AT (t0, t)− Se(t0, t)

(a)

≤ 2

k−1∑
j=0

Bj(t) +M(t),

where Eqn. (a) follows from the arrival condition (37). Hence
the total number of layer k packets at time t is bounded by

Rk(t) ≤ 2|E|
k−1∑
j=0

Bj(t) +M(t)|E| (41)

Define Bk(t) to be the RHS of the above equation, i.e.

Bk(t)
(def)
= 2|E|

k−1∑
j=0

Bj(t) +M(t)|E| (42)

Using our induction assumption and Eqn. (42), we conclude
that Bk(t) = o(t) and it is monotonically non-decreasing. This
completes the induction step.
To conclude the proof of the proposition, notice that total size
of the physical queues at time t may be alternatively written
as ∑

e∈E
Qe(t) =

n−1∑
k=1

Rk(t) (43)

Since the previous inductive argument shows that for all k, we
have Rk(t) ≤ Bk(t) where Bk(t) = o(t) a.s., we conclude
that

lim
t→∞

∑
e∈E Qe(t)

t
= 0, w.p. 1, (44)

This implies that the physical queues are rate stable [27],
jointly under the operation of UMW and ENTO.
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