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Integrative Complexity:
An Alternative Measure
for System Modularity
Complexity and modularity are important inherent properties of the system. Complexity
is the property of the system that has to do with individual system elements and their con-
nective relationship, while modularity is the degree to which a system is made up of rela-
tively independent but interacting elements, with each module typically carrying an
isolated set of functionality. Modularization is not necessarily a means of reducing intrin-
sic complexity of the system but is a mechanism for complexity redistribution that can be
better managed by enabling design encapsulation. In this paper, the notion of integrative
complexity (IC) is proposed, and the corresponding metric is proposed as an alternative
metric for modularity from a complexity management viewpoint. It is also demonstrated
using several engineered systems from different application domains that there is a
strong negative correlation between the IC and system modularity. This leads to the con-
clusion that the IC can be used as an alternative metric for modularity assessment of sys-
tem architectures. [DOI: 10.1115/1.4039119]

Introduction

One of the fundamental tenets of system design is to keep the
system architecture as simple as possible. However, contrary to
basic design rules, architectures of latest engineering systems are
becoming more complex due to ever-increasing complexity of
new technologies and infrastructures to accommodate them. Engi-
neering systems across domains have adopted significant techno-
logical and architectural changes to meet the forever increasing
demand for higher performance. This has led to increased system
complexity and higher development effort in realizing such sys-
tems [1].

In a complex engineered system, multiple components and
interfaces are designed together to perform one or more over-
arching set of functions. The pattern of connections and their
physical behavior cannot be thought of as truly regular or fully
predictable, and understanding the system behavior requires
understanding of system elements and their pattern of connections
[2]. This overall trend necessitates an important need for proper
system architecture complexity management process. Without the
smart complexity management, the system’s overall architecture
may become unmanageable, leading to undesirable results, such
as longer development period, higher R&D and lifecycle costs,
and possible increase in system’s postlaunch maintenance cost.

There are two high-level categories of system complexity,
which are internal and external complexity. The internal complex-
ity is closely related to overall system design and is further
divided into structural complexity, dynamic complexity, and
organizational complexity [3,4], as shown in Fig. 1. The external
complexity is related to factors, which are not subject to control
by system architects, such as market dynamics, political complex-
ities, and institutional complexities. In this study, the primary
focus of the research is on the aspect of structural complexity and
its distribution across the system.

Structural complexity of a system is closely related to the com-
plexity of individual system elements and degree of connectivity
of the underlying system architecture. As a result, the structural
complexity has strong impact on the effort (and cost) of system
design, development, and operation [6–8]. Even though the

primary goal of the system design organization is to optimize the
overall cost related to the system being developed and operated
by designing the system architecture as simple as possible, there
is a need to incorporate essential complexity in the system to
deliver the required level of system performance [9]. To this
extent, the system architect must balance the tradeoffs between
system design, development, and operation efforts, system per-
formance, and the amount of complexity incorporated.

To better manage architectural arrangements of complex sys-
tems, one of the widely used design strategy is modular design
strategy [3,10]. Modularity refers to the property of a system
where the system can be divided into different number of chunks
called modules, which have strong intraconnections within indi-
vidual module and weak interconnections between modules
[3,10]. In many instances, an individual module is responsible for
a specific function required by the system, such as data storage
function performed by computer hard drives and user input func-
tion performed by computer keyboard. Modular design strategy
refers to variety of methodologies that attempt to decompose com-
plex systems into manageable modules. In the context of complex
system design, modular design strategies can be viewed as ways
to manage the inherent complexity by effectively allocating them
to individual modules. System decomposition is essentially a sys-
tem organization principle and can be viewed as a means to
achieve a desirable distribution of total system complexity [11].

In this paper, the notion of integrative complexity (IC) is intro-
duced, and the corresponding metric is proposed as an alternative
metric for system modularity from complexity management view-
point. Integrative complexity is defined as the difference between
the total system complexity and the sum of complexities of indi-
vidual modules, as defined by the system decomposition. There-
fore, one can view integrative complexity as the complexity
associated with assembly or integration of a system from its con-
stituent modules or subsystems. It is also argued that the desirabil-
ity of system decomposition and the resulting complexity
distribution can be represented by reduction in integrative com-
plexity of the system. This notion of integrative complexity can
be easily extended to system-of-systems.

The formal mathematical description for integrative complexity
metric is introduced later in this paper. Using the proposed inte-
grative complexity metric and a modularity metric introduced in
previous literature, the relationship between integrative complex-
ity and system modularity is quantitatively explored by perform-
ing analyses of several real-life complex engineered systems.

1Corresponding author.
Contributed by the Design Theory and Methodology Committee of ASME for

publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received September
23, 2017; final manuscript received January 4, 2018; published online March 1,
2018. Assoc. Editor: Katja Holtta-Otto.

Journal of Mechanical Design MAY 2018, Vol. 140 / 051101-1Copyright VC 2018 by ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 03/19/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Result indicates a strong negative correlation between integrative
complexity and system modularity, which states that a smaller
value of integrative complexity implies higher modularity, both
within and across classes of real-world engineered systems.

This paper is structured as follows: The Literature Review sec-
tion presents the current state on quantification of system com-
plexity and modularity from a metric oriented viewpoint.
Subsequently, complexity quantification and complexity attribu-
tion methodology, given system decomposition, is presented. This
leads to formulation of integrative complexity as an alternative
metric for system modularity from complexity management view-
point. The Complexity Management and System Decomposition
section explores the relationship between integrative complexity
and the Q modularity metric [2]. In order to establish the relation-
ship between integrative complexity and modularity, empirical
validation across a swath of engineered complex systems is per-
formed in the Empirical Study section, with results demonstrating
a strong negative correlation between normalized integrative com-
plexity and Q metric of system modularity. Using the research
results, it is proposed that the integrative complexity metric can
be used as a surrogate for measuring the degree of system modu-
larity. This paper concludes with related discussion, research sum-
mary, and future work.

Literature Review

Complexity and modularity are important inherent properties of
complex engineering systems. As such, there has been a lot of
works published in the subject of system complexity and modular-
ity and its implication to the overall complex system design. In
the context of engineered system, complexity is defined as “the
property of having many interrelated, interconnected, or interwo-
ven elements and interfaces” [4,9]. There are many complexity
metrics proposed, with earlier works originating from the software
engineering [12,13]. Over time, several other metrics, based on
different characteristics of the system, were introduced. These
include complexity metrics based on system element count-based
measures [14–16], information and information transfer efficiency
[17,18], entity relationship graphs decomposition [19], hierarchy
extension [3], network structure heterogeneity [20], empirical
measure based on similar systems [21], solvability of design [22],
and graph energy of the system [23].

Complexity metrics have been used in wide variety of research
applications to assess and mange system complexity. Tamaskar
et al. [24] have proposed a framework for quantifying aerospace
system complexity. Min et al. [25], using the complexity metric

developed by Sinha [26], analyzed complexity values and sensi-
tivities of basic architecture structures, such as integral, modular,
and bus-modular structures. Sinha et al. applied their complexity
metric to quantify complexity of aircraft engines [26,27]. Kim
et al. [28] analyzed complexity of product family and platforms.
Kim et al. [29] established the relationship between module com-
plexity value and actual module design effort. Additionally, there
has been a recent research effort to optimize complex systems in
terms of its modularity and allocation of system complexity
among modules through Pareto-optimization [5].

As for modularity metrics, there are several metrics introduced
in academia. According to Holtta-Otto et al. [30], modularity met-
rics are divided into two different types. The first type of metric
measures the degree of coupling between modules, which is an
indication of module independence. To this extent, several metrics
were developed to measure the coupling density. Allen and
Carlson-Skalak [31], Martin and Ishii [32], Newman [2], Sosa
et al. [33], Guo and Gershenson [34], Holtta-Otto and de Weck
[35], Whitfield et al. [36], and Jung and Simpson [37] proposed
modularity metrics to measure the coupling density and demon-
strated usefulness of their metrics on vehicle console, video cas-
sette, jet engine, water cooler, camera, and computers. The second
type of metric identifies and measures similar features of modules,
from the perspective of materials used, manufacturing process
used, suppliers involved, and overall lifecycle issues. Proposed
metrics by Newcomb et al. [38] and Gershenson et al. [39] are
based on life cycle similarities. Siddique et al. [40] and Mikkola
and Gassman [41] proposed modularity metrics that measured
similarities in components, while Mattson and Magleby [42] pro-
posed metrics measuring similarities in functions.

Parallel to defining various modularity measuring metrics, there
have been works published that propose various modular design
algorithms. Yu et al. [43] and Helmer et al. [44] proposed module
clustering algorithm based on minimum description length theory
[45]. Van Beek et al. [46] proposed k-mean clustering algorithm
based on modularity metric proposed by Whitfield et al. [36]. Li
[47] proposed system decomposition method using matrix-based
two-phase approach. Borjesson and Holtta-Otto [48] proposed
clustering algorithms based on module function deployment.
Recently, Li et al. [49] proposed module partition methods based
on directed and weighted networks. Others include Idicula-
Gutierrez-Thebeau algorithm [50], Cambridge advanced modeler
[51], and community detection algorithm proposed by Blondel
et al. [52]. In addition, there is another strand of modularity detec-
tion algorithms based on random matrix theory and spectral
decomposition strategies [53]. It has been claimed that spectral

Fig. 1 Complexity typology for engineering systems (Reprinted with permission from Sinha
and Suh [5]. Copyright 2018 by Springer.)
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methods provide the best quality community (or module) detec-
tion technique [54]. It has been shown that there exists a funda-
mental resolution and detectability limit for all module detection
methods [54–56] and poses a significant theoretical and practical
challenge for community (or module) detection algorithms.

Until now, the literature efforts focused on solely measuring
and managing system complexity or system modularity in isola-
tion. Existing literature tends to equate increasing modularity with
reduction in complexity. What this means is that higher modular-
ity results in lower structural complexity [10]. It has been shown
that there is no causal relationship between the two [26,57], and
complexity reduction can be used to validate any proposed system
decomposition [57]. Since modularization is essentially a desira-
ble system organization principle that tries to encapsulate design
details by way of system decomposition, it cannot fundamentally
change the underlying complexity of the system. It is due to the
fact that modularization only organizes a system without modify-
ing the same. System decomposition does impact the distribution
of the total system. In this paper, it is claimed that a desirable dis-
tribution of complexity, achieved by way of system decomposi-
tion, is one that reduces integrative complexity of the system and
demonstrates a strong relationship between integrative complexity
and system modularity as measured by the Q metric.

Complexity Management and System Decomposition

Quantifying Complexity. There is a close relationship
between the engineering system’s structural complexity and the
“form” [9] of the system architecture, which depends on number
of elements in the system, their characteristics, and connectivity
between system elements. The metric adopted to measure struc-
tural complexity [23,26] in this paper captures complexity arising
from (i) individual system elements, (ii) individual connections
between system elements, and (iii) topology of connections for
the overall system. Following is the mathematical expression of
structural complexity metric for engineering systems, proposed by
Sinha et al. [23,26,27]:

structural complexity; C ¼ C1 þ C2C3 (1)

The overall structural complexity metric (C) shown in Eq. (1) is
composed of three major terms. The first term (C1) is the total
summation of individual element’s complexity. The second term
(C2) is the summation of complexities arising from individual
interaction between system elements. The last term (C3) repre-
sents the topological complexity of the system, resulting from the
interface arrangements between elements in the system.

The first term (C1) captures individual element’s complexity
and does not contain any system architecture information. It can
be rewritten as sum of individual element’s complexity (ai) as
shown below:

C1 ¼
Xn

i¼1

ai

The second term (C2) is the sum of complexities of each pair-
wise interaction, which is labeled as bij in the detailed representa-
tion of C2 below:

C2 ¼
Xn

i¼1

Xn

j¼1

bijAij

In the equation above, A � Mn�n is the binary adjacency matrix
which represents the connectivity structure of the system with fol-
lowing conditions:

Aij ¼
1 8½ði; jÞjði 6¼ jÞ and ði; jÞ 2 K�

0 otherwise

8<
:

where K represents the set of connected elements, and n is the
number of elements for the entire system.

Finally, the last term (C3) is the term that is directly related to
the topological arrangements of system interfaces. In more
detailed mathematical term, it is expressed as

C3 ¼
E Að Þ

n
; where E Að Þ ¼

Xn

i¼1

ri Að Þ

where ri (.) represents the ith singular value of binary adjacency
matrix (A) [26,58,59]. The C3 term is useful for quantifying topo-
logical complexity arising from different connectivity structure
within the system. This term is also related to the effort required
for system integration. One should also note that in order to calcu-
late C3, it is required to have the overall knowledge of connectiv-
ity structure of the system, since it must be mapped to the
adjacency matrix A. Using detailed terms introduced for C1, C2,
and C3, the complexity metric in Eq. (1) can be rewritten as

C ¼
Xn

i¼1

ai þ
Xn

i¼1

Xn

j¼1

bijAij

 !
E Að Þ

n
(2)

Figure 2 shows terms shown in Eq. (2), with brief explanation of
what each term represents in terms of system’s overall structural
complexity. For more detailed mathematical proof of the com-
plexity equation presented, readers can refer to the work by Sinha
[26]. Additionally, for estimating individual element’s complexity
(ai), Sinha [26] and Dobson [60] have proposed various estimation
guidelines.

Complexity Attribution and System Decomposition. Com-
plexity attribution is a method for consistent accounting of
complexity assigned to different modules or subsystems and con-
tribution of complexity from system integration. In essence, the
complexity attribution method describes how overall structural
complexity is distributed within the system, given a system
decomposition strategy. System decomposition strategy refers to
the decomposition of any system into smaller modules or subsys-
tems that are easier to manage [52,61]. There are other related def-
initions or point of view on system decomposition [10] that often
uses functional view of the system. Once system decomposition is
made available, the complexity attribution process performs
accounting of complexity of different modules and complexity
assigned to integration of modules.

The system decomposition can be defined by a map Gr(.),
which is an element to module map. Here each element is
assigned to a module, and this map is unique, meaning that an ele-
ment can be a member of a unique module. It is probably best to
use a motivating illustration shown in Fig. 3. The hypothetical
system shown in the figure has ten elements, and the system is
divided into two modules, with each module composed of five ele-
ments each. The binary symmetric adjacency matrix A for this
synthetic system representation can be written in terms of subma-
trices A1, A2, and K. Notice that submatrix K represents the inter-
module connectivity structure and is different from the number of
modules, k with k¼ 2 in this case. Here A1 and A2 represent the
binary adjacency matrices of module 1 and 2, respectively.

Expanding to the general case with k modules and given system
decomposition map Gr(.), the individual module complexity for
ith module can be expressed as

CðiÞ ¼ C
ðiÞ
1 þ C

ðiÞ
2 C

ðiÞ
3 (3)

where each term of the complexity metric is defined as

C ið Þ
1 ¼

Xni

p¼1

a ið Þ
p ; C ið Þ

2 ¼
Xni

p¼1

Xni

q¼1

b ið Þ
pqA ið Þ

pq ; C ið Þ
3 ¼

E A ið Þð Þ
ni
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The method described above is same as that of computing struc-
tural complexity metric for a module in isolation. Given the sys-
tem decomposition, the integrative complexity is defined as

integrative complexity; IC ¼ C�
Xk

i¼1

CðiÞ (4)

Hence, integrative complexity is the difference between total sys-
tem complexity (C) and the sum of individual modules complex-
ities. The modules are defined by the specific system
decomposition method used. Since the elements are divided into
modules, it can be said that C1 ¼

Pk
i¼1 C

ðiÞ
1 , and IC can be

expressed as

IC ¼ C2C3 �
Xk

i¼1

C
ðiÞ
2 C

ðiÞ
3 (5)

Note that IC is a function of system decomposition, in addition to
details of the system itself. It expresses the amount of complexity
required to integrate the system from its module or subsystem
constituents. This interpretation lends this metric directly applica-
ble in any system-of-systems context, where integrative complex-
ity can be interpreted as the amount of complexity required to
compose the system-of-systems from its constituent systems. Con-
versely, one can interpret integrative complexity as the “hidden”

complexity that remains invisible by looking at the complexity at
the aggregated level of modules alone.

As it can be seen from Eq. (5), integrative complexity is inde-
pendent of components, and what matters are the interfaces and
how they are topologically arranged. In order to compare different
systems from multiple domains, it is helpful to use the normalized
version of integrative complexity (ICn), defined as

ICn ¼ 1�

Xk

i¼1

C ið Þ
2 C ið Þ

3

C2C3

(6)

Note that the normalized integrative complexity is a ratio with ICn

� [0, 1] and therefore a dimensionless number.
As an illustrative example, the hypothetical system shown in

Fig. 3 is used. For simplicity, the assumption is that all elements
have unit complexity, ai¼ 1, 8 i, and all interfaces have complex-
ity bij¼ 0.1, 8 i 6¼ j. Each module has five elements and five
within-module interfaces. Notice that while module 1 has only
one module-bridging element that interfaces across module
boundary, module 2 has two module-bridging elements, namely,
elements 7 and 10. Applying the complexity quantification and
attribution process to this hypothetical system, following result is
obtained, as shown in Table 1.

Modularity and System Decomposition. For complex sys-
tems, modularity estimation is based on the given system

Fig. 3 A hypothetical system composed of two modules, ten elements, and ten bidirectional interfaces in network and binary
adjacency matrix form

Fig. 2 Explanation of individual terms of the structural complexity metric (Reprinted with per-
mission from Sinha and Suh [5]. Copyright 2018 by Springer.)
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decomposition adopted and distribution of intra- and intermodule
interfaces. Let yii represents fraction of intramodule interfaces,
while yij represents fraction of intermodule interfaces. For compu-
tation of modularity index Q [2], a module matrix e, also known
as community matrix, is constructed as

e ¼

y11 y12=2 :: :: y1k=2

y21=2 y22 :: :: y2k=2

:: :: :: :: ::

:: :: :: :: ::

yk1=2 :: :: :: ykk

2
666666664

3
777777775

For the module matrix e, the row sum is written as
ai ¼

Pk
j¼1 eij ¼ yii þ ð

Pk
j¼1 yijÞ=2, and the modularity metric Q is

defined as

Q ¼
XK

i¼1

ðeii � a2
i Þ ¼ TrðeÞ � jjeeT jj (7)

Here eii represents the fraction of edges with both end vertices in
the same module i, and ai is represents fraction of edges with at
least one end vertex inside module i. To illustrate the process,
consider the hypothetical system example shown in Fig. 3. In the
example, module has five elements and five within-module inter-
faces. Module 1 has only one module-bridging element (element
3), while module 2 has two module-bridging elements (elements 7
and 10). Applying the method described earlier, following module
matrix is obtained:

e ¼

5

12

1

12

1

12

5

12

2
664

3
775

Based on the module matrix above, the value of modularity metric
Q for the system is

a1 ¼ e11 þ e12 ¼
1

2

a2 ¼ e21 þ e22 ¼
1

2

Q ¼ e11 þ e22 � a2
1 þ a2

2

� �

¼ 5

6
� 2 � 1

2

� �2

¼ 1

3

One important issue here is to clarify the difference between inte-
grative complexity metric and the Q modularity metric. While Q
modularity metric is based only on the number of intermodule
interfaces, integrative complexity considers the internal connec-
tivity structure of modules in addition to characterization of indi-
vidual intermodule interfaces. The integrative complexity can be
viewed as an apparent loss of complexity due to aggregation of

system view through its modules or subsystems and represents the
amount of complexity involved in assembling the system from its
modules. This has direct relationship with complexity manage-
ment aspects of engineered systems.

Relationship Between Integrative Complexity and Modularity.
From the earlier discussion, integrative complexity can be inter-
preted as the complexity resulting from system integration, that is,
integration of modules as defined by the system decomposition
strategy. For a given level of total complexity, a lower value of
integrative complexity implies higher proportion of in-module
complexity. Hence, a lower value of integrative complexity
implies that a larger fraction of total system complexity has been
attributed to modules themselves and a smaller fraction of total
complexity is required to integrate those modules in order to com-
pose the system. It is argued that smaller value of normalized inte-
grative complexity (ICn) is desirable from a complexity
management viewpoint since it points to a reduced integration
efforts and aids divide-and-conquer paradigm. In this sense, lower
integrative complexity enables higher modularity, and it is
hypothesized that there exists a stronger relationship between
modularity and integrative complexity. To demonstrate the valid-
ity of this hypothesis, an empirical study over several real-life
complex engineering systems was performed, and the analysis
results are presented in the Empirical Study section.

Empirical Study

Overview. The focus of this section is to explore and establish
the relationship between integrative complexity and modularity
through empirical analyses of several real-life complex systems.
The empirical analysis was performed at two levels: (i) study the
relationship between normalized integrative complexity and mod-
ularity by using different system decomposition strategies for
each individual system and (ii) study the same relationship across
the set of systems, assuming the modularity index maximizing
decomposition for each system. The set of complex engineered
systems used in this study is listed in Table 2, shown with the size
of its binary adjacency matrix system model, also known as the
design structure matrix (DSM) [64]. As shown in the table, ana-
lyzed complex systems are primarily electromechanical systems,
which include a train undercarriage system, two printing systems
representing the industrial and office printing sectors, two aircraft
engines depicting a conventional two-spool turbofan and an
advanced geared turbofan, and an advanced hydrogen-enhanced
combustion engine (HECE). DSMs for complex systems shown in
the table are hardware-based DSMs, constructed using engineer-
ing drawings, actual system examination, system operation/main-
tenance manuals, and design expert interviews. For these DSMs,
connections between components are physical, meaning that they
are in direct contact or are connected using electrical wires or
other means.

Integrative Complexity: Modularity Relationship for Individual
Systems. As the first step, the relationship between the normalized
integrative complexity and modularity index is quantitatively
explored for each system using different system decompositions.
To this end, system decomposition strategies were varied, and

Table 1 Complexity quantification and attribution example
based on hypothetical system shown in Fig. 3

Quantity Value Description

C 11.49 Using Eqs. (1) and (2)
C2 * C3 1.49 Using Eq. (2)
C(i) {5.56, 5.58} Using Eq. (3)
IC 0.35 Using Eq. (4)
ICn 0.23 Using Eq. (6)

Table 2 Complex systems analyzed in this study

No. Analyzed systems DSM size

1 Train undercarriage [28] 149� 149
2 Industrial printing system [62] 84� 84
3 Office printing system 50� 50
4 Geared turbofan aircraft engine [26,27] 86� 86
5 Two-spool turbofan aircraft engine [26,27] 69� 69
6 HECE [63] 30� 30
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resulting behavior of normalized integrative complexity and mod-
ularity index was observed when system decomposition changes.
For each system listed in Table 2, a set of component-module
maps (i.e., a table that maps each component to a unique module)
for various system decomposition strategies is generated. The
suite of system decomposition strategies considered includes: (a)
system decomposition adopted by system design team for each
system, (b) multiple modularity maximization based decomposi-
tions techniques [2,50,52], and (c) decompositions that result in
optimal tradeoff between modularity and diversity of in-module
complexity distribution. Note that decomposition technique
described in Ref. [50] is stochastic in nature and produces differ-
ent decompositions based on input parameter ranges. The commu-
nity detection algorithm [52] also has stochastic characteristic
associated with it, while Newman algorithm [2] is deterministic.
Using these three types of system decomposition techniques, a
dataset of seven system decompositions, all of which aims to max-
imize modularity with some differences in their decomposition
paradigm, is generated. As an example, Table 3 shows ICn and the
modularity index (Q) values for a subset of seven decompositions
for train undercarriage system. Additionally, Fig. 4 shows the
original train undercarriage decomposition DSM and the modular-
ity (Q) maximized decomposition DSM.

In order to investigate statistical significance of the correlation
between normalized integrative complexity and modularity with a
larger set of data, the initial set of decompositions, suggested by
approaches (a)–(c) mentioned earlier, were augmented with ran-
dom permutation of system decompositions to arrive at a dataset
of approximately 100 different system decompositions for each
engineered system listed in Table 2. Figures 5–10 show ICn versus
Q regression plots for six systems in Table 2 with different system

decompositions. As it can observed from these plots, ICn and Q
have strong correlation.

As it can be observed from Figs. 5–10, a vast majority of these
randomly perturbed system decompositions happens to generate
low system modularity with Q< 0.25 and are densely clustered
around low modularity/high integrative complexity regime of the
distribution. Once these data points are obtained, rigorous statisti-
cal analysis was performed. The results are shown in Tables 4
and 5.

The reported estimates of parameters of the linear model were
obtained using the pseudovalue jackknife technique [65] to miti-
gate the problem of biased estimates and produce robust parame-
ter estimates. In this technique, the desired calculation for all the
data is made where the data are divided into subsamples. Then,
the computation is performed for each group of data obtained by
leaving out one subsample [66]. For all jackknife subsamples, the
estimated model parameters were found to lie within the 95% con-
fidence interval of the all-inclusive model, the model that includes
all sample points.

Results of this statistical analysis in terms of model quality
indicators (R2, t-statistics) and parameter estimation indicate a
highly significant and stable linear relationship between normal-
ized integrative complexity and modularity index Q.

From the results shown, it is observed that within each individ-
ual system, normalized integrative complexity and modularity
index have strong negative correlation that is statistically signifi-
cant and lends credence to the use of integrative complexity as a
surrogate for modularity. This result is not surprising since the
notion of high modularity tends to emphasize higher in-module

Table 3 Value of IC, Q, and the total number of modules
defined for train undercarriage under different system decom-
position configurations

Train undercarriage
decomposition

Integrative
complexity (ICn)

Modularity
(Q)

Number of
modules

1 0.32 0.39 19
2 0.24 0.57 17
3 0.16 0.64 14
4 0.15 0.68 12
5 0.13 0.71 10
6 0.12 0.73 10
7 0.11 0.74 11

Fig. 4 Original train undercarriage decomposition and the modularity (Q) maximized decomposition in DSM format (Q-maxi-
mized decomposition from Ref. [5])

Fig. 5 Regression plots for ICn and Q of train undercarriage
system with decompositions
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complexity, and this leads to lower integrative complexity with a
higher proportion of total complexity being embedded within
modules. Therefore, integrative complexity and modularity are
likely to be negatively correlated, and this claim is substantiated
in this case study.

Integrative Complexity: Modularity Relationship for Across
a Set of Systems. Once the analysis on individual complex engi-
neered systems was completed, the relationship between ICn and
Q across the set of six systems was explored, since they are very
different in terms of their functionality and spans across different

Fig. 6 Regression plots for ICn and Q of industrial printing system with decompositions

Fig. 7 Regression plots for ICn and Q of office printing system with decompositions

Fig. 8 Regression plots for ICn and Q of geared turbofan aircraft engine with decompositions
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engineering domains. The values of ICn and Q corresponding to
their individual Q-maximizing decomposition [2] for all six sys-
tems are shown in Table 6, and these values are plotted in Fig. 11.

A detailed statistical analysis accounting for very small sample
size reveals a R2 value of 0.89 with small p value of 0.015, as
shown in Table 7.

Table 8 shows the linear coefficients for the regression plot
shown in Fig. 11 and related statistical analysis results.

It should be noted that the model parameters are dependent on
the data set used to build the parametric model and are themselves

random variables. Their estimates can vary depending on the data,
especially for small datasets. Again, the pseudovalue jackknife
technique [65] was applied, where the calculation is made for
each subgroup of data obtained by leaving out one sample from
the dataset [66]. Postapplication of the pseudovalue jackknife pro-
cess, the aggregated model parameter estimates and the model
quality estimates are shown in Table 9. For all jackknife subsam-
ples, the estimated model parameters were found to lie within the
95% confidence interval of all-inclusive model, the model with all
six sample points.

Results from the statistical analysis indicate a significant and
stable linear relationship between normalized integrative com-
plexity and modularity index across multiple engineered systems
from different application domains. This indicates that there is a
strong negative relationship between integrative complexity and
modularity index even across a set of different engineering sys-
tems in very different application domains, which can potentially
be generalizable.

The analysis shows that as the integrative complexity of the
system decreases, modularity of the system increases. This is
caused by allocation of larger fraction of total system complexity
to individual modules, thereby decreasing interactions between

Fig. 9 Regression plots for ICn and Q of two-spool turbofan aircraft engine with
decomposition

Fig. 10 Regression plots for ICn and Q of HECE with decomposition

Table 4 Model quality statistics for Q versus ICn relationship
for systems analyzed

System R2 R2
adj

Train undercarriage 0.92 0.92
Industrial printing system 0.97 0.97
Office printing system 0.95 0.95
Geared turbofan aircraft engine 0.89 0.89
Two-spool turbofan aircraft engine 0.95 0.95
HECE 0.92 0.91
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modules, resulting in increased modularity. It was also demon-
strated that this holds true for several different types of complex
systems as well, thus making the proposed analytical and empiri-
cal formulation more generalizable, which enables the method to
be easily extended to system-of-systems. Findings from this
research can be used to integrate system analysis for complexity
and modularity. System architects can assess the overall system
complexity while using the integrative complexity as a surrogate
measure for system modularity.

Conclusion and Future Work

In this paper, a complexity attribution approach that enables
consistent complexity accounting process for effective complexity
management across system representation levels, with explicit
accounting for system integration, is introduced. Proposed process
is based on quantification methodology described in Ref. [26] and

the newly introduced notion of integrative complexity. Systems
are deemed more modular if they have lower integrative complex-
ity. It should be noted that realized modularity is a function of sys-
tem decomposition strategy adopted, while system complexity is a

Table 5 Model parameter values and associated statistic for Q versus ICn relationship for systems analyzed (linear model of the
form: ICn 5 a 1 b * Q)

System (a, b) 95% confidence interval Standard error t-stat R2

Train undercarriage (0.50, �0.48) ({0.495, 0.504}; (0.002, 0.01) (235.54, �34.32) 0.92
{�0.50, �0.45})

Industrial printing system (1.14, �1.73) ({1.13, 1.15}; (0.005, 0.028) (212.2, �61.2) 0.97
{�1.79, �1.68})

Office printing system (1.73, �4.71) ({1.69, 1.77}; (0.01, 0.1) (90.5, �45.9) 0.95
{�4.91, �4.51})

Geared turbofan aircraft engine (1.26, �1.81) ({1.22, 1.29}; (0.02, 0.06) (78.4, �33.5) 0.89
{�1.93, �1.69})

Two-spool turbofan aircraft engine (1.48, �2.56) ({1.45, 1.51}; (0.02, 0.05) (87.53, �45.6) 0.95
{�2.67, �2.45})

HECE (1.15, �2.10) ({1.13, 1.17}; (0.01, 0.06) (99.6, �36.2) 0.92
{�2.22, �1.98})

Table 6 Value of ICn and Q for systems in Table 1 in its original
decomposition configuration

System ICn Q

Train undercarriage 0.17 0.74
Industrial printing system 0.50 0.28
Office printing system 0.58 0.24
Geared turbofan aircraft engine 0.21 0.44
Two-spool turbofan aircraft engine 0.36 0.46
HECE 0.56 0.29

Fig. 11 Plot of integrative complexity and modularity for systems shown in Table 2

Table 7 Model quality statistics for Q versus ICn relationship
across systems analyzed

R2 R2
adj p value

0.89 0.87 0.015

Table 8 Model parameter values and associated statistic for Q
versus ICn relationship across six systems analyzed (linear
model of the form: ICn 5 a 1 b * Q)

Coefficients Value
Standard

error t-stat
95%

confidence interval p value

a 0.94 0.10 9.18 {0.61, 1.27} 0.003
b �1.46 0.29 �5.04 {�2.38, �0.54} 0.015

Table 9 The aggregated model parameter and the model qual-
ity estimates from the pseudovalue jackknife process for data-
set shown in Table 6

a b R2 R2
adj

0.92 �1.39 0.90 0.87
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system property and is independent of system decomposition
strategy. In this work, Newman’s modularity index Q was used as
a measure of degree of modularity to investigate the relationship
between modularity and integrative complexity. Results indicate
that the integrative complexity and modularity index, as defined
by the Q metric, show strong negative correlation across a set of
different complex systems, one might use integrative complexity
as an alternative and representative measure of the degree of mod-
ularity, with a larger value indicating smaller degree of
modularity.

In the future, by analyzing relationships between integrative
complexity and other modularity metrics available in the litera-
ture, further insights into the relationship between complexity and
modularity can be gained. In order to accomplish this, more
exploratory studies linking integrative complexity and various
alternative modularity metrics published in academia must be
undertaken. In this work, the proposed complexity quantification
and complexity attribution method was applied to electromechani-
cal systems that can be modeled as a network. However, it is yet
to be tested for other types of systems, such as complex software
systems, which require additional research. Once these metric-
based complexity–modularity relationships are more deeply
understood, it can be used to further the knowledge in another
areas, such as generation of alternative system decomposition
strategies. Another future research topic is a study to create a
computational/virtual system architecting “sandbox” that will ena-
ble future studies on finding effective architectural patterns for
specified contexts.
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