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Abstract—The Takeoff Weight (TOW) of an aircraft is an
important aspect of aircraft performance, and impacts a large
number of characteristics, ranging from the trajectory to the fuel
burn of the flight. Due to its dependence on factors such as the
passenger and cargo load factors as well as operating strategies,
the TOW of a particular flight is generally not available to entities
outside of the operating airline. The above observations motivate
the development of accurate TOW estimates that can be used for
fuel burn estimation or trajectory prediction.

This paper proposes a statistical approach based on Gaussian
Process Regression (GPR) to determine both a mean estimate of
the TOW and the associated confidence interval, using observed
data from the takeoff ground roll. The predictor variables
are chosen by considering both their ease of availability and
the underlying aircraft dynamics. The model development and
validation are conducted using Flight Data Recorder archives,
which also provide ground truth data.

The proposed models are found to have a mean TOW error
of 3%, averaged across eight different aircraft types, resulting in
a nearly 50% smaller error than the models in the Aircraft
Noise and Performance (ANP) database. In contrast to the
ANP database which provides only point estimates of the TOW,
the GPR models quantify the uncertainty in the estimates by
providing a probability distribution.

Finally, the developed models are used to estimate aircraft
fuel flow rate during ascent. The TOW estimated by the GPR
models is used as an input to the fuel flow rate estimation. The
proposed statistical models of the TOW are shown to enable
a better quantification of uncertainty in the fuel flow rate as
compared to the deterministic ANP models, or to models that do
not use the TOW as an explicit input.

Index Terms—statistical modeling; Takeoff Weight (TOW); fuel
flow rate; Flight Data Recorder (FDR); takeoff ground roll

I. INTRODUCTION

The Takeoff Weight (TOW) of an aircraft is an essential
parameter for modeling or estimating its trajectory and fuel
consumption, as well as other aircraft performance charac-
teristics, such as, its rate of climb/descent, range, endurance,
ceiling, and takeoff distance [1]. However, it is not generally
available outside the operating carrier, due to its dependence
on proprietary information such as load factors and operational
strategies. The above facts motivate the development of models
to estimate the TOW of a flight from accessible information.

Aircraft design studies have traditionally estimated the TOW
by considering its components, namely, the payload weight,
stage length fuel weight, operating empty weight, reserve fuel
weight, and alternative fuel weight [2, 3, 4]. This approach is
effective for studies in which the payload weight is an input.
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It can also be used to estimate the average TOW of an aircraft
type over a set of operations for which the average passenger
load factor is available [5]; for example, average passenger
load factors for different origin-destination pairs are published
in the United States by the Department of Transportation [6].
However, this method cannot be easily extended to estimate
the TOW of a particular flight, as load factors of individual
flights are not publicly known.

Prior studies have estimated the TOW for a particular flight
using simulated or real aircraft trajectory information during
the climb phase [7, 8, 9, 10]. They typically estimate an
equivalent TOW such that the power in climb modeled using
the equivalent TOW matches the energy rate observed on past
trajectory points. They estimate the equivalent TOW using
either an adaptive mechanism or least squares algorithms.
Machine learning techniques have also been applied to radar
data to estimate the TOW in order to predict the future
aircraft trajectory [11]. The methods proposed in these studies
are shown to be superior to the EUROCONTROL’s Base
of Aircraft Data (BADA) method for trajectory modeling
[12]. However, due to the unavailability of ground truth data,
the accuracies of the TOW estimates in the studies are not
known. Instead, these models have been evaluated based on
the trajectory prediction accuracy.

Recent work has used runway ADS-B data during takeoff
to model the operational TOW, using analytical methods or
methods based on least squares [13]. However, the resultant
TOW estimates could not be validated due to the unavailability
of ground truth data. Moreover, these studies assume no dera-
tion in the takeoff thrust, and a standard coefficient of friction
for the ground roll, which result in approximate estimates of
the operational TOW.

A. Contributions of this Paper

We apply statistical machine learning techniques to model
the operational TOW by using flight data from the takeoff
ground roll. Random disturbances affecting an aircraft’s oper-
ation (for example, component manufacturing tolerances, tur-
bulence, fluctuations in ambient atmospheric conditions, and
component aging and deterioration) motivate the development
of a statistical model over a deterministic one [14]. Data from
the Flight Data Recorders (FDRs) of real flight operations of
a major airline allow us to validate our models using ground
truth data (the actual TOW for each flight). The proposed
machine learning techniques, based on Gaussian Process Re-
gression (GPR), enable the estimation of the mean TOW of
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a flight as well as the underlying uncertainty distribution.
The uncertainty distribution captures the cumulative effect of
unmodeled factors and random effects on the estimate of the
TOW.

Our key contribution is the development and validation
of models that map the trajectory variables during takeoff
ground roll to the TOW. Although the proposed models are
built using FDR data (which also enable validation of the
models), they can now be used to estimate the TOW and
operational fuel burn for flights given trajectory data, for
example, from ADS-B, ASDE-X, or other surface surveillance
sources. The proposed models are shown to have a mean error
of 3% (averaged across different aircraft types) in predicting
the TOW of flights in an independent test set, which is a
nearly 50% reduction in error compared to that given by
the Aircraft Noise and Performance (ANP) database [15].
The ANP database gives default TOWs for different aircraft
types based on the stage/trip length. In employing these TOW
estimates in a GPR model of the fuel flow rate of A321-111
flights in ascent, we show that the averaged mean error in
the fuel flow rate estimation is 4.4%, and the projected 95%
confidence interval contains 94% of the observations in the
independent test set on an average.

B. Outline

We start with briefly describing the dataset in Sec. II. In Sec.
III, we describe the features selected for the regression model
of the TOW. Section IV provides a brief primer on Gaussian
Process Regression. The application of GPR to the problem of
modeling the TOW is explained in Sec. V. Section VI presents
the evaluation of our models using an independent test dataset.
In this section, the model estimates are also compared to those
given by the Aircraft Noise and Performance (ANP) database
[15]. It is worth noting that the ANP database is used for TOW
estimation by the FAA’s Aviation Environmental Design Tool
(AEDT) [4], a widely used aircraft performance modeling tool.
In Sec. VII, we show how the TOW estimates given by our
models can be used to estimate fuel flow rates in climb/ascent.
Finally, we present the main conclusions of this study, and
directions for future research in Sec. VIII.

II. DESCRIPTION OF DATA

The operational flight data used in this study are obtained
from the Flight Data Recorders (FDRs) of a major airline.
The FDR records the values of aircraft and engine parameters
during flight and is therefore, an accurate source of operational
flight data.

The objective of our study is to use the limited amounts
of FDR data available in order to develop models to estimate
the TOW of a particular flight, given trajectory variables from
the takeoff roll, and other accessible parameters (such as, the
ambient weather conditions at the airport). The intent is that
the proposed models could then be used even in the absence
of FDR data, which are not generally available.

This study considers data from eight different aircraft types.
The details of the aircraft and engine types, the Maximum

Takeoff Weight (MTOW) specifications, and the number of
flights for each aircraft type in our dataset are shown in
Tab. I. The aircraft types included in this study represent a
wide range of MTOW, from 75.5 metric tons for the A319 to
365 metric tons for the A340. The FDR dataset includes the
aircraft trajectory, speeds, gross weight, acceleration, fuel flow
rate, engine temperatures, ambient pressure and temperature,
positions of auxiliary devices and control surfaces, etc. as a
function of time. Each trajectory is divided into different flight
phases [16]; this paper focuses only on the takeoff ground roll.

It is worth noting that as per the convention in aviation, the
term weight in this paper refers to the mass of the aircraft in
the physical sense.

TABLE I. FDR DATA: AIRCRAFT TYPES AND ENGINES.

Aircraft Type Engine Type MTOW #
(kg) Flts.

A319-112 2×CFMI CFM56-5B6/2 or 2P 75,500 130
A320-214 2×CFMI CFM56-5B4/2 or P/2P 77,000 169
A321-111 2×CFMI CFM56-5B1/2 or 2P 89,000 117
A330-202 2×GE CF6-80E1A4 217,000 84
A330-243 2×RR Trent 772B-60 233,000 100
A340-541 4×RR Trent 553 365,000 52
B767-300 2×GE CF6-80C2B7F 184,612 91

B777-3FX(ER) 2×GE GE90-115B1 351,534 131

III. MODEL VARIABLES

We use a physical understanding of aircraft dynamics during
takeoff ground roll in order to select the appropriate fea-
tures/variables to build our TOW models. Fig. 1 shows the
free-body diagram of an aircraft with the forces acting on it.

Figure 1. Schematic of airplane dynamics during takeoff ground roll.

The equations of motion during takeoff ground roll are as
follows:

L+N = mg (1)
Fn−D− fr = ma (2)

L = qSCL (3)
D = qSCD (4)
fr = µN (5)

a =
dV
dt

(6)

q =
1
2

ρV 2 (7)

Here, L is the lift on the aircraft, N is the normal reaction from
the ground, m is the aircraft TOW, g is the acceleration due to



gravity, Fn is the net thrust on the aircraft, D is the air drag on
the aircraft, fr is the frictional force from the ground, a is the
aircraft longitudinal acceleration, q is the dynamic pressure
on the aircraft, S is the wing reference area, CL and CD are
the coefficients of lift and drag, respectively during takeoff, µ

is the coefficient of friction, V is the aircraft velocity, t is the
time, and ρ is the ambient air density. Neglecting wind speeds
during takeoff ground roll, the aircraft airspeed is assumed to
be equal to the ground speed (V ). The mass of fuel consumed
during the takeoff ground roll is assumed to be small compared
to the aircraft mass, so that the aircraft weight is effectively
constant and equal to the TOW (m) during the takeoff ground
roll. The coefficients of lift and drag, governed by the aircraft
configuration, are also assumed to be constant during this flight
phase. The net thrust on the aircraft is the averaged net thrust
per engine times the number of engines (neng). The net thrust
per engine is assumed to be a function of the static thrust (F0)
and the aircraft velocity [13]. The static thrust is the net thrust
which would be produced by the engine if the aircraft were
at rest at the set throttle setting. During the takeoff roll, the
throttle setting does not change. The static thrust is assumed
to be a function of the thrust deration level (η), the ambient
air density during the takeoff roll (ρ) and the maximum sea
level, static engine thrust (F00). The net thrust on the aircraft
is therefore, governed by the following functional relation:

Fn = Fn(neng,V,η ,ρ,F00) (8)

The distance covered during takeoff roll (S) can be calculated
by the following equation:

S =
∫ V2

V1

V
dV
a

(9)

Here, V1 is the aircraft velocity at the start of the takeoff
ground roll and V2 is the aircraft velocity at wheels-off at the
end of the takeoff ground roll. Combining (1)–(9), the TOW
can be expressed by the following functional relation:

m = m(S,ρ,V1,V2,S ,F00,CL,CD,µ,η ,neng) (10)

S , F00, and neng are constant for a given aircraft/engine type.
We restrict our modeling variables to only those which

can be obtained or derived from easily accessible databases.
The ground roll distance and aircraft velocities during ground
roll can be derived from surface surveillance data, while the
ambient air density can be obtained from airport weather data.
By contrast, the values of the aircraft lift and drag coefficients,
coefficient of friction, and thrust deration level are difficult
to obtain, and are therefore, not included in the model. For a
particular aircraft type, our model uses the ground roll distance
(S, in m), the ambient air density (ρ , in kgm−3) during roll,
the aircraft velocity (ground speed) at the start of the takeoff
ground roll (V1, in ms−1), and the aircraft velocity (ground
speed) at the end of the takeoff ground roll (V2, in ms−1) as
the predictor/input variables. The predicted/output variable is
the aircraft TOW (m, in kg). In other words, we consider a
model of the form

m = m(S,ρ,V1,V2). (11)

The unmodeled variables will contribute to the uncertainty
of the TOW estimate, and will be reflected in the prediction
intervals provided by our statistical models.

IV. GAUSSIAN PROCESS REGRESSION

The models proposed in this paper employ a machine learn-
ing technique known as Gaussian Process Regression (GPR).
GPR is a powerful nonparametric Bayesian approach, with
a Gaussian probabilistic framework. It has been successfully
applied to diverse areas, including biomedical applications
and health care [17, 18, 19], remote sensing [20, 21], music
[22], robotics [23], cellular communications [24], and material
microstructure analysis [25].

As all the model variables of interest to us are metric and
continuous, the problem is well-suited to the use of regression.
In this section, we briefly describe the GPR methodology,
more details about which can be found in [26, 27].

A regression model is given by

y = f (x)+ ε, (12)

where, y is the predicted/output/dependent variable, x is the
predictor/input/independent vector, f (x) is the underlying re-
gression function that we wish to estimate, and ε is the noise
with which the dependent variable is distributed about the
regression function. Under GPR, we assume the regression
function to follow a Gaussian Process (GP) prior. A function
f (x) is said to follow a Gaussian Process if the function values
at any finite set of inputs x follow a joint Gaussian distribution
[26]. Under a GP then,

f (x)∼ GP(me(x),k(x,x′)), (13)

where, me(x) is the mean function, and k(x,x′) is the ker-
nel/covariance function over two inputs x and x′, which
governs the covariance among function values as k(x,x′) =
cov( f (x), f (x′)). Under GPR, the mean function is often
assumed to be the zero function. It is common to assume the
noise to be drawn independently from a Gaussian distribution,
ε ∼ N (0,σ2

n ), with mean 0 and noise variance σ2
n . Under

the assumption of a zero mean function for the GP governing
the regression function and independent Gaussian noise, the
dependent variable y also follows a GP with a zero mean
function and a ‘noisy’ kernel function knoise(xp,xq) over d-
dimensional input vectors xp andxq,

y∼ GP(0,knoise(xp,xq)). (14)

The noisy kernel function for the dependent variables
knoise(xp,xq) relates to the kernel function for the regression
function values k(xp,xq) as follows:

knoise(xp,xq) = k(xp,xq)+σ
2
n δpq (15)

Here, δ denotes the Kronecker delta.
The choice of different kernel functions affects the nature

of the regression functions used for modeling, and gives
GPR great modeling flexibility. Two commonly-used kernel
functions are the following:



• Dot Product Squared Exponential (DPSE) kernel: This
kernel function is used to model very smooth functions.
It is given by:

k(xp,xq) = σ
2
0 + xp

T
Σxq

+ σ
2
f exp

(
− 1

2

d

∑
i=1

(xp,i− xq,i)
2

`i
2

)
Σ = diag(σ2

1 ,σ
2
2 , . . . ,σ

2
d ) (16)

• Dot Product Exponential (DPE) kernel: This kernel func-
tion is used to model very rough functions. It is given
by:

k(xp,xq) = σ
2
0 + xp

T
Σxq

+ σ
2
f exp

(
−

√√√√ d

∑
i=1

(xp,i− xq,i)2

`i
2

)
Σ = diag(σ2

1 ,σ
2
2 , . . . ,σ

2
d ) (17)

In (16) and (17), xp and xq are d-dimensional input
column vectors, σ2

0 is the constant variance parameter,
σ2

1 ,σ
2
2 , . . . ,σ

2
d are the variance parameters for each of the

d input dimensions, σ2
f is a variance parameter governing

the magnitude of the exponential part of the kernel, `
is the d-dimensional vector of length scales (one for
each input dimension), and the subscript i refers to the
ith component of the vector. These kernel parameters
are referred to as hyperparameters in GPR. Thus, the
hyperparameter vector for both the DPSE and the DPE
kernels is [σ2

0 σ2
1 σ2

2 . . . σ2
d σ2

f `]T .

Numerous other kernel functions exist, details of which can
be found in [27].

The noisy kernel hyperparameter vector θ is the kernel hy-
perparameter vector mentioned above with the noise variance
σ2

n appended. It is estimated as the vector which maximizes the
log posterior probability of the hyperparameter vector, given
the matrix of input vectors X and the vector of dependent
variable values y,

θ̂ = argmax
θ

log p(θ |X,y)

= argmax
θ

{
log p(θ)− 1

2
yTK−1

y y− 1
2

log|Ky|−
n
2

log(2π)
}
.

(18)

Here, p(.) refers to the Probability Distribution Function
(PDF) over the argument, p(θ) is the prior distribution on
the hyperparameter vector, n is the number of observations,
X is the n×d matrix of d-dimensional inputs, y is the n×1
vector of the dependent variable values, and Ky is the n× n
covariance matrix derived from the noisy kernel function over
pairs of input variables (15).

In this paper, the aim of GPR is to make predictions on new
data points (and not hyperparameter inference, for example).
For GPR, the predictive distribution of the dependent variable
values y∗ at a set of new inputs X∗ is also a Gaussian

distribution, given by:

y∗|X∗,D ∼ N (µ,C )

µ = K(X∗,X)K−1
y y

C = K(X∗,X∗)−K(X∗,X)K−1
y K(X∗,X)T +σ

2
n In∗

(19)

Here, n∗ is the number of new inputs at which predictions
are desired, X∗ is the n∗×d matrix of the set of new inputs,
D = (X,y) is the set of training inputs and dependent variable
values (used for hyperparameter inference), N (µ,C ) refers
to a multivariate Gaussian distribution with mean vector µ

and covariance matrix C , K(X∗,X) is the n∗× n covariance
matrix derived from the noisy kernel function over pairs of
new and training input variables (15), K(X∗,X∗) is the n∗×n∗

covariance matrix derived from the noisy kernel function over
pairs of the new input variables, and In∗ is the n∗×n∗ identity
matrix.

The advantage of GPR lies in the fact that it is a nonpara-
metric method of regression, thereby doing away with the need
to choose basis functions suitable for the model. Moreover,
being probabilistic in nature, GPR directly gives the complete
predictive distribution as part of the model development.
This predictive distribution enables the easy quantification of
uncertainty in the predicted variable.

V. REGRESSION METHODOLOGY

In this section, the regression methodology used for TOW
model building is explained. The FDR dataset for each aircraft
type is divided into three sets, namely, the training, the
validation, and the test sets. 65% of the flights are randomly
chosen to constitute the training set which is used for model
building, 15% of the flights are randomly chosen to constitute
the validation set which is used for selection from a group of
candidate models, and the remaining 20% flights constitute the
test set which is used for testing the predictive performance
of the selected model. Each observation (data point) in the
training, validation and test sets corresponds to the takeoff
of one flight. All the variables chosen for regression in Sec.
III are standardized, that is, they are shifted by the sample
mean and then scaled by the sample standard deviation of
the respective variables in the training datasets. Although
different regression techniques including ordinary least squares
regression [28], Classification and Regression Trees (CART)
[29], Least Squares Boosting (LSB) using regression trees
[30], and GPR were investigated, the last of these performed
the best, and is therefore, presented in this paper.

The GPR starts with hyperparameter inference for the
different noisy kernel functions (described in Sec. IV) using
the training data. The hyperparameters, being all positive, are
given a broad gamma prior with mode 1 and variance 100 (for
lack of specific prior knowledge). The MATLAB R© [31] based
‘GPstuff Toolbox’ [32] is used for GPR in this study. Once
the models are trained and the hyperparameters are inferred,
they are used to determine the model predictive distribution
of the TOW for inputs in unseen data not used for training.



Under GPR, the predictive distribution is a normal/Gaussian
distribution.

VI. MODEL PERFORMANCE

The models are evaluated for their performance in predicting
(estimating) the TOW of flights in an independent dataset
not used for training. The mean TOW estimates and the
95% confidence (prediction) intervals are calculated using the
regression models developed in Sec. V. The 95% confidence
intervals are given by the 95% highest density intervals [33] 1

of the predictive distributions for the TOW. The metrics used
to evaluate the models are as follows:
• Mean Absolute Relative Prediction Error (MARPE)

or Mean Error (ME): This is the mean of the absolute
value of the relative prediction error on independent
prediction data (validation or test data).

ME =
1
n∗

n∗

∑
i=1

∣∣∣mi− m̂i

mi

∣∣∣ (20)

Here, n∗ is the number of observations in the prediction
dataset, mi is the actual TOW of flight i in the prediction
dataset, and m̂i is the mean estimate of the TOW of flight
i from the model. The ME indicates the L1-norm accuracy
of the mean prediction.

• Normalized Root Mean Squared Prediction Er-
ror (NRMSPE) or the Root Mean Squared Error
(RMSE): The RMSE indicates the L2-norm accuracy of
the mean prediction.

RMSE =

√
1
n∗ ∑

n∗
i=1 (mi− m̂i)2

sd(m̂)
(21)

Here, sd(m̂) is the standard deviation of the vector of the
mean predicted TOWs in the prediction dataset.

• Prediction Coverage (PC): This is the percentage of
the observations in the prediction set for which the
actual values of the TOW lie within the 95% confidence
intervals given by the model. The PC reflects the accuracy
of the predicted uncertainty estimates.

• Predictive Log Likelihood (PLL): For a probabilistic
model giving the complete predictive distribution, the
PLL calculates the log of the likelihood of the actual
TOW occurring under the predictive distribution given
by the model. PLL indicates the accuracy of the overall
predictive distribution given by the model. The approx-
imate PLL for the GPR models (where the predictive
distribution is a Gaussian) is calculated as follows:

PLL =
n∗

∑
i=1

[
− (mi− m̂i)

2

2σ2
i

− 1
2

logσ
2
i −

1
2

log(2π)
]

(22)

Here, σi is the standard deviation of the predictive distri-
bution of the TOW for flight i given by the model.

1A 95% highest density interval is an interval in the domain of a probability
distribution such that, (i) the probability mass within the interval is 0.95, and
(ii) every point inside the interval has a probability density not less than every
point outside it. The interval is unique and the shortest among all possible
95% confidence intervals for that distribution.

Models having low ME, low RMSE, high PC, and high PLL
are desired. These metrics are used for model selection (using
the validation dataset), as well as for evaluating the selected
model (using the test dataset). Different models are compared
in terms of these metrics using statistical multi-comparison
techniques. Among the various models developed in Sec. V
using different regression techniques, the GPR model with
the Dot Product Squared Exponential (DPSE) kernel is found
to statistically (at the 5% significance level) give the overall
best predictive performance on the validation datasets for the
different aircraft types. Hence, it is selected as the final model
for estimating the operational TOW.

A. Model Evaluation

Table II shows the performance of the GPR model with
DPSE kernel in estimating (or predicting) the TOW on the
test datasets for the different aircraft types. The table also
shows the performance of the TOW estimation model given
by the Aircraft Noise and Performance (ANP) database. A
part of FAA’s AEDT aircraft performance modeling tool,
the ANP database models the TOW as a piecewise constant
function of the flight stage/trip length [4]. We determine the
flight stage/trip length by calculating the great circle distance
between the flight origin and destination airports. Due to the
deterministic nature of the ANP model, the PC of the ANP
model is zero. The PLL of the ANP model is −∞, and while
the GPR model yields significantly higher values of PLL, we
do not present them in this paper due to limited space.

The metrics shown for the individual model performances
are calculated across all flights in the test dataset of a particular
aircraft type. Table II also shows the comparison of the
predictive performance of the GPR and the ANP models on
test data. The comparative study is undertaken by using a one-
sided Wilcoxon signed rank test [34]. This test is appropriate
because the performance of the GPR and the ANP models
are to be compared on the same set of flights in the test data
(matched data). The null hypothesis is that the GPR model
gives a similar (or worse) predictive performance as compared
to the ANP model in terms of a similar (or higher) ME, and a
similar (or lower) PC. The alternate hypothesis is that the GPR
model gives a better predictive performance than the ANP
model in terms of a lower ME (i.e., MEGPR < MEANP) and
a higher PC (i.e., PCGPR > PCANP). The ME and PC used
for this statistical comparison study are calculated on a per-
flight basis (and not across flights) for a particular aircraft type.
Table II shows the p-values 2 obtained through the Wilcoxon
test.

From Tab. II, it can be seen that the proposed GPR models
give a mean error of about 6% or less for all the aircraft
types. The average of the ME values across the different
aircraft types is 3% for the GPR models, as compared to
5.6% for the corresponding ANP models. The prediction
coverage given by the GPR models is 95% or more for all the

2The p-value is the probability of observing a value as, or more, extreme
than the calculated test statistic under the null hypothesis.



TABLE II. TOW ESTIMATION: PERFORMANCE METRICS OF THE GPR WITH DPSE KERNEL REGRESSION MODEL, AND THE ANP MODEL,
ON THE TEST DATASETS FOR DIFFERENT AIRCRAFT TYPES. ALL THE EVALUATION METRICS ARE CALCULATED ON

DESTANDARDIZED DATA (THAT IS, DATA AT THEIR ORIGINAL LOCATION AND SCALE, AND NOT SHIFTED BY THE MEAN AND SCALED
BY THE STANDARD DEVIATION OF THE TRAINING DATASET). THE P-VALUES INDICATING ACCEPTANCE OF THE ALTERNATE

HYPOTHESIS AT THE 5% SIGNIFICANCE LEVEL ARE HIGHLIGHTED IN BOLD.

Aircraft Type No. of Points GPR with DPSE Kernel ANP Model Comparison: p-values
Training Test ME (%) RMSE PC (%) ME (%) RMSE PC (%) MEGPR < MEANP PCGPR > PCANP

A319-112 85 26 4.57 1.99 96 5.47 7.88 0 0.041 4.4e-6
A320-214 110 34 3.58 1.39 100 4.72 2.80 0 0.019 1.8e-7
A321-111 76 23 6.15 1.80 96 6.73 1.9e14 0 0.303 1.4e-5
A330-202 55 17 2.22 0.43 100 5.97 2.33 0 0.004 1.5e-4
A330-243 65 20 1.85 0.32 95 3.60 0.89 0 0.017 4.8e-5
A340-541 34 10 1.67 0.31 100 4.61 0.82 0 0.011 0.003
B767-300 59 18 1.93 0.34 100 8.34 2.72 0 1.2e-4 9.8e-5

B777-3FX(ER) 85 26 1.99 0.39 96 5.48 0.96 0 0.001 4.4e-6

aircraft types. As indicated by the p-values, our GPR model
also performs statistically significantly (at the 5% significance
level) better than the ANP model, in terms of both the mean
error (indicative of the accuracy of the point estimate) and
the prediction coverage (indicative of the accuracy of the
uncertainty estimate) for nearly all the aircraft types in the
study. The only exception is the mean error for the A321,
where the models are similar in performance. Fig. 2 presents
a graphical depiction of the better predictive performance of
our GPR model over the ANP model for the B777 on its test
dataset.
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Figure 2. TOW estimation for the B777: Performance of the GPR and the
ANP models on the test dataset. The blue dots are the GPR mean

predictions and the red dots are the ANP model predictions. The light blue
region represents the 95% confidence (prediction) intervals given by the

GPR model. The black line is the y = x line on which the mean predictions
would lie for a perfect prediction of the mean TOW.

VII. APPLICATION OF THE TAKEOFF WEIGHT ESTIMATION
MODEL TO ESTIMATE THE FUEL FLOW RATE

As mentioned in Sec. I, the TOW is an essential parameter
for estimating the fuel consumption of an aircraft. In this
section, we show how our GPR models for TOW estimation
can be used for estimating the average fuel flow rate (that
is, the mass of fuel consumed per unit time) per engine. The
analysis is demonstrated for the A321-111 aircraft in the ascent
phase of flight (the phase just after wheels-off to top of climb),

but can be easily extended to other phases of flight and other
aircraft types.

A. Fuel Flow Rate Modeling

In previous research, we showed that the average fuel flow
rate per engine in ascent can be statistically estimated by
considering the aircraft dynamic pressure multiplied by the
wing reference area, the aircraft mass, the ratio of the vertical
speed to the ground speed, the ground speed, and the rate of
change of the ground speed with time as predictor variables
[35]. Using these variables (all in SI units), we develop a GPR
model for the fuel flow rate of the A321-111 in ascent, and
use the aircraft TOW in place of the instantaneous aircraft
mass as a predictor variable. Each point in the training,
validation, and test sets represents one FDR observation during
ascent in a particular flight. Each flight contributes to multiple
observations during ascent. All the observations in the ascent
phase of a particular flight belong to either the training, or the
validation, or the test sets. The total number of points in the
training, validation, and test sets is 18,261, 4,241, and 6,171,
respectively. The flights in each of the training, validation,
and test sets used in fuel flow rate modeling are the same as
those in the sets used for TOW modeling in Sec. V. The GPR
modeling methodology is the same as that explained in Secs.
IV and V. A GPR model with a DPSE kernel is built using
the training dataset.

The true values of the variables from the FDR data are used
to train the models. However, as before, we desire models
that can be used to estimate the fuel flow rate of operations
even in the absence of FDR data. Therefore, only variables
derivable through more accessible data (such as, ground-based
track data) are used as model features, and as inputs while
evaluating model performance. Subsequently, the air density
is assumed to be a function of the aircraft altitude according
to the International Standard Atmosphere (ISA) model [36].
The TOW, which is a predictor variable for the fuel flow rate
models, also needs to be estimated as its actual value for a
particular flight is not available. The accuracy of the fuel flow
rate estimation therefore, depends on the accuracy of the TOW
estimation. Fig. 3 shows the sensitivity of the fuel flow rate
to the TOW. The figure plots the Mean Error (ME) in the fuel
flow rate on the test dataset from the GPR model developed



for the A321-111 in ascent, as a function of the deviation of
the estimated TOW from the actual TOW. A positive deviation
means that the estimated TOW is greater than the actual TOW,
while a negative deviation implies that the estimated TOW is
less than the actual TOW [30]. Fig. 3 shows that as expected,
the ME is the least when the estimated TOW is close to the
actual TOW, and increases with the magnitude of the deviation
in TOW. The ME increases from 2.89% to 3.11% (a percentage
increase of 7.6%) for just a 2% deviation in the estimated
TOW from the actual value. This sensitivity of the ME in fuel
flow rate to the deviation in the estimated TOW motivates the
need to accurately estimate the TOW, in order to accurately
estimate the fuel flow rate.
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Figure 3. A321-111 in ascent: Sensitivity of the Mean Error (ME) in fuel
flow rate estimation to the deviation in the estimated TOW, for the test

dataset.

Using the TOW estimated by the ANP model as well as
by our GPR model (Sec. V) as inputs to a fuel flow rate
GPR model, their predictive performances on the flights in
the unseen test dataset are now evaluated. To incorporate
uncertainty in the estimated TOW, this predictive performance
is evaluated using the predictive distribution of the fuel flow
rate in ascent marginalized over the estimated values of TOW.
In other words, we are interested in computing the following:

p(ṁ f |x−m,φ ,D1,D2) =
∫

m
p(ṁ f |x−m,m,D1)p(m|φ ,D2)dm

(23)
Here, p refers to the Probability Distribution Function (PDF),
ṁ f is the fuel flow rate to be predicted, x−m is the vector of
predictor variables in the fuel flow rate GPR model excluding
the TOW (that is, the aircraft dynamic pressure multiplied by
the wing reference area, the ratio of the vertical speed to the
ground speed, the ground speed, and the rate of change of the
ground speed with time during ascent), m is the TOW, and D1
is the set of the training variables used for building the fuel
flow rate GPR model. p(ṁ f |x−m,m,D1) is the PDF of the
predictive distribution given by the fuel flow rate GPR model
and is thus, a Gaussian PDF. p(m|φ ,D2) is the distribution of
the estimated TOW parametrized by φ and D2.

The ANP model is a deterministic model giving a flight
stage length-based point estimate of the TOW, mANP. Under

the ANP model, (23) becomes

p(ṁ f |x−m,φ ,D1,D2) = p(ṁ f |x−m,mANP,D1) (24)

which is the PDF of a normal distribution under the GPR
formulation.

Our GPR models for TOW (Sec. V) give the complete
predictive distribution for the TOW (which is a normal dis-
tribution). Therefore, under our GPR models for TOW, (23)
becomes

p(ṁ f |x−m,φ ,D1,D2) =
∫

m
p(ṁ f |x−m,m,D1)p(m|φ ,D2)dm

(25)

≈ 1
ns

ns

∑
i=1

p(ṁ f |x−m,mi,D1). (26)

When our GPR models are used to estimate the TOW, φ

and D2 hold specific meanings. φ is the vector of predictor
variables used in the GPR models to estimate the TOW
(i.e., V1,V2,ρ , and S as mentioned in Sec. III). D2 is the
training set used to build the GPR models to estimate the
TOW. Equation (26) approximates (25) through a Monte Carlo
approximation with ns samples of the TOW drawn from its
Gaussian predictive distribution given by the GPR models for
TOW estimation. In this study, we choose ns to be 1000.
Equation (26) therefore, shows that the desired predictive
distribution of the fuel flow rate under a GPR model of the
TOW is approximately a Gaussian Mixture distribution with
ns equally weighted components.

A question that naturally arises is how well a GPR model for
the fuel flow rate in ascent that is built without using the TOW
explicitly as a predictor variable at all, would perform in terms
of prediction. To answer this question, a GPR model with the
DPSE kernel function is trained using the aircraft dynamic
pressure multiplied by the wing reference area during ascent,
the ratio of the vertical speed to the ground speed during
ascent, the ground speed during ascent, the rate of change
of the ground speed with time during ascent, and the aircraft
ground speed at the start of the takeoff ground roll, the aircraft
ground speed at wheels-off, the ambient air density during
takeoff, the takeoff ground roll distance as predictor variables
and the averaged fuel flow rate per engine as the predicted
variable (all in SI units). This set of predictor variables is a
combination of the predictor variables used to model the fuel
flow rate in Sec. VII-A (excluding the TOW), and the predictor
variables that were used to build the TOW models in Sec. V.
The predictive distribution for the fuel flow rate under this
model, p(ṁ f |ψ,D3), is also a Gaussian/normal distribution.
Here, ψ is the vector of predictor/input variables used in the
model, and D3 is the training set used to build the model. In
other words:

p(ṁ f |x−m,φ ,D1,D2) = p(ṁ f |ψ,D3) (27)

B. Evaluation of Fuel Flow Rate Model

Depending on how the TOW variable is estimated, there are
three variants of the GPR models developed in Sec. VII-A to



estimate the fuel flow rate:

1) Model 1: This variant estimates the TOW predictor
variable (an input to the GPR model for fuel flow rate)
using our GPR models for TOW;

2) Model 2: This variant estimates the TOW predictor
variable that is input into the GPR model for fuel flow
rate using the ANP model; and

3) Model 3: This variant employs a GPR model that does
not use the TOW as an explicit predictor variable at all.

The predictive distributions for the fuel flow rate marginal-
ized over the TOW for Model 1 (26), Model 2 (24) and Model
3 (27) are used to calculate the mean predictions and the 95%
highest density prediction intervals for the fuel flow rates.
Table III tabulates the predictive performance of these models
on the unseen test data in ascent for the A321-111, using
the evaluation metrics described in Sec. VI. Each evaluation
metric is calculated for each flight in the test dataset using
all the points in the ascent phase of that flight. In Table III,
the columns under ‘Individual Model Performance’ show the
mean and the standard deviation (within parentheses) of the
per-flight evaluation metrics, averaged across all the flights in
the test dataset.

Table III also shows the results of a study to compare
the predictive performance of Model 1 with that of Model
2 and Model 3. The comparison is done using a one-sided
Wilcoxon signed rank test on the flights in the test dataset. The
null hypotheses are that Model 1 gives a similar (or worse)
predictive performance as compared to Model 2 or Model
3. The alternate hypotheses are that Model 1 gives a better
predictive performance than Model 2 (Model 1 > Model 2),
or Model 3 (Model 1 > Model 3), in terms of a lower ME,
lower RMSE, higher PC, or higher PLL. The ME, RMSE, PC,
and PLL given by Model 1 are compared with those given by
Model 2 or Model 3, on the same set of flights in the test
data (matched data). Table III shows the p-values obtained
through the Wilcoxon test. Since two statistical tests are being
simultaneously performed (comparison of Model 1 with Model
2 and with Model 3), a Bonferroni correction is applied to get
a family significance level of atmost 5%, giving a per-test
significance level of 2.5%.

Table III shows that the p-values for ME and RMSE are
greater than 0.025 for a one-tailed Wilcoxon test. A two-
tailed Wilcoxon test is then conducted to test if the ME and
RMSE given by Model 1 are statistically significantly different
from those given by Model 2 or Model 3. The p-values of the
two-tailed test (not shown here) are also found to be greater
than 0.025. Therefore, in terms of the accuracy of the point
estimates of the fuel flow rates, Model 1 is statistically similar
in its predictive performance to Model 2 and Model 3 at a
family significance level of atmost 5%. However, Model 1
is statistically significantly better than Model 2 and Model
3 in terms of the accuracy of estimating the uncertainty of
the fuel flow rates (as the p-values for PC using a one-tailed
Wilcoxon test are less than 0.025). Model 1 is also statistically
significantly better than Model 2 in terms of the accuracy of

estimating the overall predictive distribution of the fuel flow
rates (as the p-value for PLL is less than 0.025). Thus, a
statistical model of TOW estimation (Model 1) which takes
the uncertainty in TOW into account is able to model the fuel
flow rate more accurately than the deterministic ANP model
of TOW estimation (Model 2) which does not consider the
uncertainty in TOW at all. The superior predictive performance
of Model 1 over Model 3 also shows that a model explicitly
incorporating the TOW as a predictor variable is able to
estimate the fuel flow rate more accurately than one not using
the TOW explicitly, even though the model might indirectly
capture the effect of the TOW through the inclusion of other
variables which govern the TOW. Using the GPR models to
estimate the TOW gives an averaged mean error in the fuel
flow rate of about 4.4%, and an averaged prediction coverage
of more than 90% on the A321-111 test data in ascent.

VIII. SUMMARY AND CONCLUSIONS

This paper presented a statistical approach to model aircraft
Takeoff Weight (TOW), given trajectory variables from the
takeoff roll and other data that are often available to analysts.
Gaussian Process Regression, a nonparametric probabilistic
method, was selected to build the regression models. By virtue
of being nonparametric, GPR does not need the assumption
of basis functions of the input/predictor variables (unlike
methods like least squares regression, where one has to assume
either linear, quadratic, or some other form of basis functions
prior to carrying out the regression). Being a probabilistic
method, GPR can provide the complete predictive distribution
of the TOW rather than just a point estimate. The uncertainty
estimates given by the predictive distribution quantify the
cumulative effect of unmodeled factors in TOW modeling
as well as random disturbances in aircraft operation. The
model variables or features were selected to reflect a physical
understanding of aircraft dynamics during ground roll, as well
as their ease of availability. The result of our research is, for
the first time, validated models that can provide a probabilistic
estimate of the TOW, given trajectory data from the takeoff
ground roll.

In contrast to prior methods proposed for TOW estimation,
we were able to validate and evaluate our models using an
independent test set of FDR data. Metrics were developed to
quantify the accuracy of both the point (i.e., mean) estimates
as well as the uncertainty estimates of the TOW. Our GPR
models gave a mean error of 3% (on average across all the
aircraft types), and a prediction coverage of more than 95%
on the test data for all the aircraft types studied. The model
performance was also compared with that of the Aircraft Noise
and Performance (ANP) model; the proposed GPR models
were shown to predict the TOW statistically significantly (at
the 5% significance level) more accurately than the ANP
model.

Finally, an application of the TOW models to estimate
aircraft engine fuel flow rates was also described. Fuel flow
rate is highly dependent on the weight of the aircraft; therefore
the TOW estimate is a valuable predictor/input variable of the



TABLE III. FUEL FLOW RATE ESTIMATION FOR THE A321-111 IN ASCENT: COMPARATIVE PERFORMANCE OF THREE DIFFERENT
MODELS. EACH ENTRY UNDER ‘INDIVIDUAL MODEL PERFORMANCE’ SHOWS THE MEAN AND THE STANDARD DEVIATION (WITHIN

PARENTHESES) OF THE PER-FLIGHT EVALUATION METRIC, AVERAGED ACROSS ALL THE FLIGHTS IN THE TEST DATA. ALL THE
EVALUATION METRICS ARE CALCULATED ON DESTANDARDIZED DATA (THAT IS, DATA AT THEIR ORIGINAL LOCATION AND SCALE

AND NOT SHIFTED BY THE MEAN AND SCALED BY THE STANDARD DEVIATION OF THE TRAINING DATASET). P-VALUES INDICATING
ACCEPTANCE OF THE ALTERNATE HYPOTHESIS AT THE 5% FAMILY SIGNIFICANCE LEVEL ARE HIGHLIGHTED IN BOLD.

Individual Model Performance Model Comparison: p-values
Model 1 Model 2 Model 3 Model 1 > Model 2 Model 1 > Model 3

ME (%) 4.40 (2.59) 5.16 (3.66) 4.04 (1.98) 0.092 0.644
RMSE 0.32 (0.15) 0.36 (0.21) 0.30 (0.10) 0.116 0.722
PC (%) 93.78 (10.04) 80.15 (21.09) 90.99 (8.78) 9.8e-5 0.007

PLL 427.73 (166.68) 180.25 (510.70) 388.36 (163.31) 2.7e-4 0.024

fuel flow rate estimate. We therefore, first estimated the TOW,
and further used it to estimate the fuel flow rate. As a result,
the accuracy of fuel rate estimate depended on the accuracy
of the TOW model. We investigated the impact of using two
different TOW models (our proposed GPR model and the ANP
model) as input to a GPR model for the fuel flow rate. In
addition, we developed a third GPR model of fuel flow rate
that did not require the TOW as an explicit predictor variable.
We showed that the fuel flow rate model that used the GPR
estimate of TOW (i.e., Model 1) performed similarly to the
other two models (Model 2: ANP+GPR and Model 3: TOW-
less GPR) in determining point estimates of the fuel flow rate
on the A321-111 test dataset studied. The averaged mean error
in predicting the fuel flow rate in ascent was shown to be
approximately 4.4%. However, we found that Model 1 gave a
statistically significantly better estimate of the uncertainty (as
reflected by the prediction coverage) in the fuel flow rate on
the A321-111 test dataset studied, as compared to the other
two methods. In short, a statistical model that accounts for the
uncertainty in TOW and propagates this uncertainty properly
to the fuel flow rate, is also able to quantify the uncertainty in
the fuel flow rate more accurately than a deterministic model
(like the ANP). Moreover, a fuel flow rate model that explicitly
includes the TOW as a predictor variable performs better than
a model that excludes the TOW.

It is worth noting that the amount of flight data used for
TOW model building was quite limited. The same method-
ology can be applied to more flight data from varied op-
erations to increase the accuracy of the TOW models. The
model accuracy can be further increased by including more
variables – for example, the takeoff thrust deration level and
the coefficient of friction during the takeoff ground roll, if
available – as predictors. Despite these limitations, this paper
has highlighted the potential of modern statistical methods to
estimate the TOW, and proposed a class of more accurate,
validated models that are capable of estimating the TOW of
an aircraft from its takeoff ground roll trajectory. Future work
will include the demonstration of our statistical models on
ASDE-X data corresponding to the takeoff roll, in order to
estimate the TOW of the flight being tracked.
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[32] J. Vanhatalo, J. Riihimäki, J. Hartikainen, P. Jylänki,
V. Tolvanen, and A. Vehtari, “GPstuff: Bayesian mod-
eling with Gaussian processes,” Journal of Machine
Learning Research, vol. 14, pp. 1175–1179, 2013.

[33] J. K. Kruschke, Doing Bayesian Data Analysis: A Tu-
torial with R, JAGS, and Stan, 2nd ed. San Diego,
California: Academic Press, 2015.

[34] F. Wilcoxon, “Individual comparisons by ranking meth-
ods,” Biometrics Bulletin, vol. 1, no. 6, pp. 80–83,
December 1945.

[35] Y. S. Chati and H. Balakrishnan, “A Gaussian process
regression approach to model aircraft engine fuel flow
rate,” in ACM/IEEE International Conference on Cyber-
Physical Systems, April 2017.

[36] J. D. Anderson, Jr., Introduction to Flight, 5th ed.
McGraw-Hill Higher Education, 2004.

AUTHOR BIOGRAPHIES

Yashovardhan S. Chati is a doctoral candidate in the De-
partment of Aeronautics and Astronautics, MIT. He applies
statistical methods and machine learning algorithms to develop
data-driven models of aircraft engine performance. He ob-
tained his Bachelor of Technology and Master of Technology
degrees from IIT Bombay. He has received the Institute Gold
Medal from IIT Bombay in 2012 for being the most outstand-
ing graduating student and a Graduate Research Award from
the Transportation Research Board’s Airport Cooperative Re-
search Program in 2016. Website: web.mit.edu/yschati/www
Hamsa Balakrishnan is an Associate Professor of Aeronau-
tics and Astronautics at MIT. Her research is in the design,
analysis, and implementation of control and optimization
algorithms for large-scale cyber-physical infrastructures, with
an emphasis on air transportation systems. She is a recipient of
the NSF CAREER Award in 2008, the Kevin Corker Award for
Best Paper of ATM-2011, the inaugural CNA Award for Oper-
ational Analysis in 2012, the AIAA Lawrence Sperry Award in
2012, and the American Automatic Control Council’s Donald
P. Eckman Award in 2014. Website: web.mit.edu/hamsa/www

web.mit.edu/yschati/www
web.mit.edu/hamsa/www

	Introduction
	Contributions of this Paper
	Outline

	Description of data
	Model variables
	Gaussian Process Regression
	Regression methodology
	Model performance
	Model Evaluation

	Application of the Takeoff Weight estimation model to estimate the fuel flow rate
	Fuel Flow Rate Modeling
	Evaluation of Fuel Flow Rate Model

	Summary and Conclusions

