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We show that new physics models without new flavor violating interactions can explain the recent
anomalies in the b → slþl− transitions. The b → slþl− arises from a Z0 penguin which automatically
predicts the V − A structure for the quark currents in the effective operators. This framework can either be
realized in a renormalizable Uð1Þ0 setup or be due to new strongly interacting dynamics. The dimuon
resonance searches at the LHC are becoming sensitive to this scenario since the Z0 is relatively light, and
could well be discovered in future searches by ATLAS and CMS.
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I. INTRODUCTION

Lepton flavor universality (LFU) of electroweak inter-
actions is one of the key predictions of the standard model
(SM). The electric charge is copied from one generation of
fermions to the other, so that the photon couples with the
same strength to the electron as it does to the muon and the
tau lepton. Similarly, the Z boson couples in the same way
to all three generations of leptons, a fact that has been tested
at the permille level for on-shell Z couplings at LEP [1,2].
Any deviation from LFU either in on-shell processes or
from off-shell exchanges would be a clear indication of new
physics (NP) (LFU violations from differing charged lepton
masses are usually negligibly small, but will be kept in our
discussion when needed).
In the past several years a number of measurements of

the b → slþl− transitions [3–11] have been showing a
pattern of deviations from the SM predictions [12–16] (for
most recent global fits see [17–22]). While none of the
deviations by themselves is yet statistically significant, and
some of them require precise control of hadronic uncer-
tainties, it is quite striking that the deviations appear also in
such clean observables as the ratios that probe LFU.

Currently there is a 2.6σ discrepancy with the SM in RK ¼
ðdΓðB → Kμþμ−Þ=dq2Þ=ðdΓðB → Keþe−Þ=dq2Þ [4],

RK;½1;6�GeV2 ¼ 0.745� 0.090; ð1Þ

and a 2.2 − 2.5σ discrepancy in the related mode
with the vector meson, RK� ¼ ðdΓðB → K�μþμ−Þ=dq2Þ=
ðdΓðB → K�eþe−Þ=dq2Þ [11],

RK�;½0.045;1.1�GeV2 ¼ 0.66þ0.11
−0.07 ;

RK�;½1.1;6�GeV2 ¼ 0.69þ0.12
−0.08 : ð2Þ

If confirmed, these would constitute a discovery of NP.
The NP models that have been put forward to explain the

b → slþl− anomalies fall into two categories. Most of
the analyses so far have focused on the case where the
b → slþl− transition receives a contribution from a tree
level exchange of a new heavy vector boson, Z0, with flavor
violating couplings to b and s quarks, as well as couplings
to either electrons [23] or muons [24–37] (in the case of
Ref. [38] the latter is generated at loop level), or through
tree level exchange of leptoquarks [39–44]. The other set of
models generates the b → slþl− through box loop dia-
grams with new heavy fields [45,46]. Both of these sets of
solutions require flavor changing couplings beyond those
present in the SM. One thus needs to make sure that the
generated flavor changing transitions are consistent with
other precision flavor observables such as Bs − B̄s, D − D̄
mixing, etc.
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In this paper we show that there is a third class of models
where all the NP couplings are flavor diagonal—but not
flavor universal. The simplest realization is in terms of a Z0
whose dominant couplings in the SM sector are to the right-
handed top quarks and to the muons; see Fig. 1. Other
realizations are possible, for example in strongly coupled
scenarios, as we briefly discuss below.
The NP models that we are proposing as possible

explanations of b → slþl− anomalies have several salient
features. They are examples of NP with (general) minimal
flavor violation (MFV) [47–51] and thus easily satisfy the
present experimental bounds from other flavor changing
neutral current transitions, beside b → slþl−. The b →
slþl− transition is generated via the exchange of the SM
W gauge boson in the loop. This class of models thus leads
automatically to the V − A structure of the quark current in
the NP operators, as preferred by the global fits to the data
[12–15]. There is more freedom in the structure of
couplings to muons, where both V − A and V þ A currents
are possible. Finally, since in this class of models the b →
slþl− transition is generated at the one-loop level, the Z0 is
quite light, with a mass of a few hundred GeV, and can be
searched for at the LHC in high pT processes.

II. GENERAL DISCUSSION

The effective weak Hamiltonian that describes the
b → slþl− transitions is given by

Heff ¼ −
4GFffiffiffi

2
p VtbV�

ts
e2

16π2
X
i

ðCl
i O

l
i þ C0l

i O
0l
i Þ þ H:c:;

ð3Þ
where e is the EM gauge coupling and the sum runs over
the dimension-five and dimension-six operators. Denoting
SM and NP contributions to the Wilson coefficients as
Cl
i ¼ Cl;SM

i þ Cl;NP
i , global analyses of all b → slþl−

indicate a nonvanishing Cμ;NP
9 , with some preference for a

NP solution with Cμ;NP
9 ¼ −Cμ;NP

10 ≃ 0.60ð15Þ; see, e.g.
[15]. Here the relevant four-fermion operators are Ol

9 ¼
ðs̄γμPLbÞðl̄γμlÞ and Ol

10 ¼ ðs̄γμPLbÞðl̄γμγ5lÞ. The data
thus imply the presence of NP contributions with a
V − A structure in the quark sector. However, additional

contributions of comparable magnitude but with a V þ A
structure from the NP operators O0l

9 ¼ ðs̄γμPRbÞðl̄γμlÞ,
O0l

10 ¼ ðs̄γμPRbÞðl̄γμγ5lÞ are still allowed by the cur-
rent data.
In the class of models we are considering only the Ol

9

and Ol
10 are generated at one loop; see Fig. 1. The V − A

current in the quark sector is a clear prediction of the
models, while the structure of the couplings to leptons
depends on the details of the model. For simplicity we
assume that NP predominantly affects the b → sμþμ−
transition and not the b → seþe−. This leads to LFU
violation when comparing b → sμþμ− with b → seþe−.
It also modifies the total rates in various b → sμþμ−
decays, in accordance with indications of global fits
[12–15]. On the other hand Bs, Bd and K0 mixing via
Z0 exchange arises only at the two-loop level and is well
within present experimental and theoretical precision.
Since the NP sector does not contain new sources of

flavor violation, this class of models respects the MFV
ansatz. In MFV, a shift to Cl

9;10 can be correlated with the
analogue contributions to rare kaon decays. For instance, the
Kþ → πþνν̄ðγÞ decay branching ratio is modified to [52]1

BðKþ→ πþνν̄ðγÞÞ¼ ð8.4�1.0Þ×10−11

×
1

3

X
l

����1þ s2WðCl;NP
9 −Cl;NP

10 Þ
XSM

����
2

; ð4Þ

where XSM ¼ Xt þ ðXc þ δXc;uÞV4
usVcsV�

cd=VtsV�
td ≃

2.10 þ 0.24i with Xi defined, e.g. in [53], and have written
for theweakmixing angle sW≡sinθW≃0.48, cW ≡ cos θW .
For values of Cμ;NP

9;10 that are preferred by current b → sll
data, the resulting effect in K → πνν̄ is small compared to
current experimental uncertainties, but could bewithin reach
of the ongoing NA62 experiment [54]. Similar comments
apply to the theoretically very clean KL → π0νν̄ decay. The
decay KL → π0μþμ− is modified at the level of Oð5%Þ by
such NP models. To observe these effects the experimental
sensitivity [55] would need to be improved by two orders
of magnitude in conjunction with some improvements in
theoretical precision [56]. The decay modesKþ → πþeþe−
and Kþ → πþμþμ− are dominated by long distance con-
tributions, while the NP contributions are expected to only
give effects below the permille level and thus be unobserv-
able. The same is true for the KL → μþμ− transition, where
again the NP contribution is drowned by the SM long
distance effects.

III. THE MINIMAL ALIGNED Uð1Þ0 MODEL

We discuss next the simplest realization of the above
framework. We restrict ourselves to the case where on the

FIG. 1. The NP contributions to the di → djll processes from
the exchange of a Z0 that couples to the top quark and a heavy top
partner T.

1This is for leptons in an isospin singlet state, while for an
isospin triplet combination, the NP contribution flips its sign.
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leptonic side only the muons are affected by NP. The
minimal model has a new Uð1Þ0 gauge symmetry that is
spontaneously broken through the vacuum expectation
value (VEV) of a scalar field, Φ, transforming as Φ ∼
ð1; 1; 0; q0Þ under SUð3ÞC × SUð2ÞL ×Uð1ÞY ×Uð1Þ0. The
model contains, in addition, a colored Dirac fermion
T 0 ∼ ð3; 1; 2=3; q0Þ. The SM is thus supplemented by the
Lagrangian

LUð1Þ0 ¼ jðDμΦÞj2 − m2
ϕ

2~v2

�
Φ2 −

~v2

2

�
2

þ T̄ 0ði=D −MTÞT 0 −
1

4
F02
μν; ð5Þ

where Dμ ⊃ i~gq0Z0
μ, the Uð1Þ0 part of the covariant

derivative, F0
μν ¼ ∂μZ0

ν − ∂νZ0
μ the field strength for the

gauge boson Z0, and Φ ¼ ðϕþ ~vÞ= ffiffiffi
2

p
. Here ~g is the Uð1Þ0

gauge coupling, ~v is the VEV that breaks theUð1Þ0, while ϕ
is the physical scalar boson that obtains mass mϕ after
spontaneous breaking of Uð1Þ0.
All the SM fields are singlets under Uð1Þ0. There are

only three renormalizable interactions between the SM and
the Uð1Þ0 sector: the Higgs portal coupling Φ to the SM
Higgs, H; the Uð1Þ0 kinetic mixing with the SM hyper-
charge, Bμν; and a Yukawa-type coupling of T and Φ to the
SM right-handed up-quarks uiR,

Lmix ¼ −λ0jΦj2jHj2 − ϵBμνF0
μν − ðyiTT̄ΦuiR þ H:c:Þ ð6Þ

The summation over generation index i ¼ 1, 2, 3, is implied.
While yiT can in general take any values, we assume it is
aligned with the right-handed up-quark Yukawa coupling,
i.e., that the two satisfy the basis independent condition
½y†TyT; y†uyu� ¼ 0. In the up-quark mass basis thus yiju ∼
diagð0; 0; ytÞ and yiT ∼ ð0; 0; ytTÞ, so that at leading order
ZðZ0Þ-couplings to light quarks remain exactly SM-like
(vanish); see Refs. [57,58] for more detailed discussion.
Such a structure is natural in flavor models of quark
masses where the commutator above does not vanish
exactly, but it is still sufficiently small to avoid dangerous
Z- and Z0-mediated flavor changing neutral currents. For
example, in Froggatt-Nielsen type models with horizontal
Uð1Þ symmetry [59] one has yT ∼ yyTðctλ3C; ccλC; 1Þ,
with λC ∼ 0.2 and cu;c ∼Oð1Þ. If Uð1Þ is gauged, the
charm mixing [60] bounds the corresponding Z0 to
mZ0 ≳ jReðcuc�cÞj × 250 GeV, for Oð1Þ gauge couplings
and large mixing between t and T, as in Fig. 2. While these
start to probe interesting parameter space they do not yet
exclude the above explanation of the b → sμþμ− anomaly.
In the rest of the paper we ignore the mixing of T with

the first two generations of quarks. For simplicity we also
assume that jytT j ≫ λ0; ϵ, and neglect the Higgs portal
and the kinetic mixing couplings. After electroweak
symmetry breaking the t − T 0 part of the mass matrix,
Mu, for up-type quarks and T 0 is given by

Mt−T 0
u ¼

�
ytv=

ffiffiffi
2

p
0

ytT ~v=
ffiffiffi
2

p
MT

�
; ð7Þ

where v≃ 246 GeV is the SM electroweak (EW) VEV.
The mass eigenstates, t, T, with massesmt ≃ 173 GeV and
mT , are an admixture of the interaction states with the
mixing angles for two chiralities, θL;R, given by

tanð2θLÞ ¼
ytytTv ~v

M2
T − ðytvÞ2=2þ ðytT ~vÞ2=2

; ð8Þ

tanð2θRÞ ¼
ffiffiffi
2

p
ytTMT ~v

M2
T − ðytvÞ2=2 − ðytT ~vÞ2=2

: ð9Þ

In the phenomenological analysis we will take
ytv; ytT ~v ≪ MT , in which case θR ∼ ytT ~v=MT and θL∼
θRv=MT . The two mass eigenstates, t, T, have masses
mt ≃ ytv=

ffiffiffi
2

p
, mT ≃MT , or more precisely,

mtmT ¼ MT
ytvffiffiffi
2

p ; ð10Þ

2ðm2
t þm2

TÞ ¼ 2M2
T þ ðytvÞ2 þ ðytT ~vÞ2: ð11Þ

The couplings to the massive gauge bosons are thus
given by

Lint ¼ −
gffiffiffi
2

p Vti½ðcLt̄þ sLT̄ÞWþPLdi� þ H:c:

−
g

2cW
½ðcLt̄þ sLT̄ÞZPLðcLtþ sLTÞ − 2s2WJ

μ
EMZμ�

− ~gq0½ðsLt̄ − cLT̄ÞZ0PLðsLt − cLTÞ
þ ðsRt̄ − cRT̄ÞZ0PRðsRt − cRTÞ�; ð12Þ

FIG. 2. The constraints in the ~g,mZ0 plane coming from dimuon
searches at the LHC for BrðZ0 → μþμ−Þ ¼ 0.25, 0.50, 1 (from
darker to lighter orange). The area above the dashed purple line is
disfavored by ν-trident production. The blue region shows the
parameter space preferred by the b → slþl− anomalies.
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where we used for shortness sL;RðcL;RÞ≡ sinθL;RðcosθL;RÞ.
The SM weak coupling constant is g≡2mW

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GF

ffiffiffi
2

pq
≃

0.65, Vij are the elements of the unitary 3 × 3 CKMmatrix,
and JμEM ≡ 2ðt̄γμtþ T̄γμTÞ=3 is the relevant EM current.
In the limit MT ≫ v; ~v the dominant effect is in the

new t̄Z0PRt interaction which is suppressed by 1=M2
T,

while modifications of W and Z couplings appear at
Oð1=M4

TÞ. The mixing angle θL is constrained by electro-
weak precision tests. The modification of the ρ parameter is
given by [58]

Δρ ¼ αNC

16πs2W

m2
t

m2
W
s2L

�
−ð1þ c2LÞ þ s2Lrþ 2c2L

r
r − 1

log r

�

þO
�
m2

Z

m2
T

�
; ð13Þ

where r≡m2
T=m

2
t . A comparison with the experi-

mental value Δρexp ¼ ð4þ3
−4Þ × 10−4 [1] yields sL ≲ 0.2 for

mT ≳ 1 TeV.
The renormalizable vector and axial muonic current

couplings to Z0 are in general given by

LðμÞ
eff ¼ −~g μ̄Z0ðq0l;V þ q0l;Aγ5Þμ: ð14Þ

We assume that the Z0 couplings to charged leptons
are flavor diagonal and focus on couplings to muons.
The effective couplings of Z0 to the muon, q0l;V ; q

0
l;A,

depend on the embedding of Uð1Þ0 in the UV theory.
For instance, if only μL couples to Z0, then q0l;V ¼ −q0l;A,
giving Cμ;NP

9 ¼ −Cμ;NP
10 . This possibility is somewhat pre-

ferred by present b → sll global fits. Such structure arises,
if the SM muon EW doublet, L ¼ ðμL; νμÞ, mixes with a
heavy Dirac fermion lepton, LT , through a Yukawa
interaction yμL̄ΦLT (a possibility of this type was first
discussed in [61]). The LT has the same electroweak
charges as L, but is in addition charged under the Uð1Þ0
with the opposite charge to Φ. The LT decays predomi-
nantly through LT → μZ; νW → μνν̄. Chargino searches at
the LHC in the dileptonþMET channel bound MLT

≳
600 GeV from LT pair production [62,63]. If there is in
addition a heavy Uð1Þ0 lepton with electroweak charges of
the right-handed muon then there is no fixed relation
between Cμ;NP

9 and Cμ;NP
10 . Furthermore, Z0 can also couple

to electrons and taus, a possibility we do not pursue in
detail, but may be important for LHC searches and their
relation to LFU violating observables in B decays, as well
as to K → πνν̄ decays. Depending on the details of how the
leptonic sector is extended one may also potentially explain
the g − 2 anomaly.
The leading Z0 effects in rare semileptonic B meson

decays are captured by the shifts to the Wilson coefficients
(see also [64])

Cμ;NP
9;10 ¼ 1

2
q0q0μ;V;A

m2
t

m2
Z0

~g2

e2
s2R log

�
m2

T

m2
W

�
þ � � � ; ð15Þ

where we have kept only the dominant, logarithmically
enhanced term. We observe that sufficiently large Cμ;NP

9;10 as
preferred by current data can be generated for Oð1Þ values
of the Uð1Þ0 charges and gauge coupling, provided mZ0 lies
below OðTeVÞ; see Fig. 2.
The searches at the LHC for dimuon resonances

could put important bounds on the Z0 couplings and its
mass or lead to its discovery [65,66]. The most important
production channels are the tree level pp → tt̄Z0, as well
as pp → ZZ0 and pp → jZ0 production through top and
T loops. The representative diagrams for these are shown
in Fig. 3 (see also [67]). For the calculation we use
MadGraph5_aMC@NLO [68] with a modified model file
[69] for the model of Ref. [70].
The Z0 boson decays to pairs of muons and, if it has a

mass above the 2mt threshold, also to top quarks. The
relevant fermionic widths are given by

ΓðZ0 → tt̄Þ≃ NC

24π
~g2q02ðs4L þ s4RÞmZ0 ; ð16Þ

ΓðZ0 → μþμ−Þ≃ 1

12π
~g2ðq02μ;V þ q02μ;AÞmZ0 ; ð17Þ

neglecting the m2
t =m2

Z0 suppressed terms. Similar expres-
sions apply to potential Z0 → νν̄ and/or Z0 → τþτ− decays,
with obvious replacements in the notation. For Z0 that
predominantly couples to one left-handed lepton flavor
(two lepton flavors with the same strength) one has
BrðZ0 → ll̄Þ ≈ 0.5ð0.25Þ for each charged lepton.
In Fig. 2 we show the constraint from the recent ATLAS

high-mass dilepton resonance search [65] in the ~gq0 and
m0

Z plane. We fix the heavy T top partner mass to be
mT ¼ 5mZ0 with sR ¼ 0.4 and taking q0μ;V ¼ −q0μ;A ¼ q0=3.

FIG. 3. Representative Feynman diagrams for pp → jZ0
production at the LHC (first row, in addition to the box
diagrams there are also triangle diagrams), and for pp → ZZ0 and
pp → tt̄Z0 production.
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The sL ∼ sRv=mT is small enough so that electroweak
precision tests are not constraining in the shown parameter
space. For the above parameter choice the branching ratios
to tt̄ and μþμ− are similar. Following ATLAS analysis we
use a 40% acceptance for the dominant Z0j production
channel and show the bounds derived for ΓZ0=mZ0 ¼ 0.08,
adjusting for the fact that ATLAS assumes equal decay
probabilities for Z0 → μþμ− and Z0 → eþe−. The regions
that are excluded by the dilepton resonance search [65], for
BrðZ0 → μμÞ ¼ 0.25, 0.50, 1, are shown in orange. The 1σ
region preferred by the b → slþl− transitions is shown in
blue. We see that existing dimuon searches are already
covering interesting parameter space. Still, it would be
important to gain another order of magnitude in the
sensitivity of the experimental searches as the precise value
of BrðZ0 → μμÞ is model dependent. For larger Z0 masses,
mZ0 ≳ 300 GeV, the tree level pp → tt̄Z0 cross section
becomes larger than the loop induced pp → Z0j process.
Thus, searches for dimuon resonances in association with tt̄
can provide an important additional handle on this model.
An important probe of Z0 coupling to left-handed muons

is the neutrino trident production [71]. The resulting upper
bound on ~gq0μ is given by the dashed purple line in Fig. 2.
This is much more constraining than the bounds from LFU
violation in leptonic Z couplings, induced at one loop,
because the Z0 couples to muons but not the electrons [72]
(see also [73]). Finally, since the heavy quark, T, or
vectorlike leptons, L, are charged under both Z0 and
hypercharge, one expects kinetic mixing between the Z0

and the SM B gauge field at the one-loop level, ϵ ∼ 10−3.
This is below present bounds in our preferred range of Z0
masses; see e.g. [74].

IV. BEYOND THE MINIMAL MODEL

The above minimal model can be extended in several
ways. For b → slþl− decays the only essential ingredient
is that the Z0 couples to top quarks and to muons. It is very
easy to deviate from this minimal assignment, and also
couple Z0 to τ leptons without significantly changing the
phenomenology. The main effect is on Z0 searches since in
that case the branching ratio for Z0 → μþμ− is reduced,
making the searches less sensitive, while on the other hand
opening a new search channel of Z0 → τþτ−.
The simplest model can also be viewed as a simplified

model for strongly interacting NP. In this case the Z0 is the
lightest resonance in the strongly interacting sector, while
the Φ field can be thought of as a condensate of the strong

dynamics that breaks dynamically the hidden Uð1Þ0 corre-
sponding to the Z0 vector. The couplings of Z0 to tops and
muons then depend on the compositeness fractions of these
two fermions. It is then also natural for the Z0 couplings to
the lighter quarks to be suppressed, since these are presum-
ably less composite, while one would expect the couplings
of Z0 to tau leptons and possibly b-quarks to be enhanced. In
this case the Z0 → μþμ− branching ratio can be significantly
smaller than in the minimal renormalizable model we
considered above, while searches for resonances in the ditau
channel can become more sensitive (see e.g. [75]).

V. CONCLUSIONS

In conclusion, we introduced a Z0 model, whose defining
feature is that the Z0 couples to the up-sector, and that can
explain the b → sμþμ− anomaly. The V − A structure of the
quark current in the b → s transition is a clear prediction of
such models. The b → sμþμ− decay is due to a Z0 coupling
to muons and top quarks, where the flavor changing
transition is predominantly due to a top-W penguin loop.
The flavor structure is of the minimal flavor violating type,
naturally leading to b → sμþμ− decays as the most impor-
tant precision flavor observables. The Z0 is expected to be
light, mZ0 ≲ TeV, and can be as light as a few 100 GeV. It
can be searched for in dimuon and ditop channels, either in
inclusive searches or in a production in association with Z, or
with a tt̄ pair.
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