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Abstract

In this paper, a discontinuous Galerkin method for a nonlinear shear-flexible shell theory is proposed that
is suitable for both thick and thin shell analysis. The proposed method extends recent work on Reissner-
Mindlin plates to avoid locking without the use of projection operators, such as mixed methods or reduced
integration techniques. Instead, the flexibility inherent to discontinuous Galerkin methods in the choice of
approximation spaces is exploited to satisfy the thin plate compatibility conditions a priori. A benefit of this
approach is that only generalized displacements appear as unknowns. We take advantage of this to craft the
method in terms of a discrete energy minimization principle, thereby restoring the Rayleigh-Ritz approach.
In addition to providing a straightforward and elegant derivation of the discrete equilibrium equations,
the variational character of the method could afford numerous advantages in terms of mesh adaptation
and available solution techniques. The proposed method is exercised on a set of benchmarks and example
problems to assess its performance numerically, and to test for shear and membrane locking.

Keywords: shells, discontinuous Galerkin, locking, variational

1. Introduction

Shell structures are perhaps the most challenging setting for numerical analysis in solid mechanics.
The primary difficulty encountered is locking, wherein the approximation power of the numerical method
diminishes as the shell thickness is reduced. The problem is similar to that faced in nearly incompressible
elasticity. Shear-flexible shell theories are generally formulated with two kinematic fields: the displacement
of the shell mid-surface, and some representation of the rotation of fibers originally transverse to the shell
surface. The root of the locking problem is that when standard finite element interpolations are used for
both fields, the pair of approximations spaces taken together do not represent the thin-shell limit well. In
particular, this incompatibility prevents the transverse shear strains from vanishing, leading to spurious
shear energy. The problem is exacerbated as the shell thickness t tends to zero, since the bending energy
is smaller than the transverse shear energy by a factor of t2, and the spurious shear energy caused by the
incompatibility of the discrete function spaces becomes dominant.

The goal for numerical analysis of shear-flexible plates and shells is a method that converges uniformly
with respect to the thickness, while remaining simple. These requests are somewhat antagonistic, and the
search for acceptable compromises has generated a large body of literature (see the review by [1] and the
references therein). Most approaches operate on the shear energy by replacing the rotations in the shear
strain term with some lower order projection. There are two main techniques applied to effect this projection:
one avenue followed has been mixed methods, in which the shear strain is added as an unknown, such as
[2, 3, 4, 5, 6] for Reissner-Mindlin plates, and the well-known MITC elements [7, 8, 9] that extend this idea
to curved shells. The other main approach, popular in commercial finite element codes, is to use a reduced
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integration rule [10, 11, 12] with some suitable stabilization of the attendant rank deficiency [13, 14, 15].
Both approaches have drawbacks: for mixed methods, the energy minimum problem is transformed into
a saddle point, which leads to indefinite stiffness matrices that are more difficult to invert. From the
perspective of formulation, mixed method elements must satisfy the Babuška-Brezzi (inf-sup) condition to
be convergent, and proving this for any element is not a simple task [16, 17, 6]. On the other hand, reduced
integration methods are simple to formulate and to implement, but are ad hoc, without rigorous stability and
accuracy guarantees.1 Furthermore, it can sometimes be difficult to detect when hourglass modes are excited
in complex engineering problems (e.g. high-rate dynamic problems with nonlinear constitutive behavior),
which can make the use of under-integrated elements unsafe.

The development of discontinuous Galerkin (DG) finite element methods has provided new means to
attack locking problems, as evidenced by the formulations in [19, 20, 21] for nearly and fully incompressible
elasticity and in [22] for Stokes flow. In particular, the last 10 years has seen the development of several
locking-free DG methods for Reissner plates [23, 24, 25, 26]. In [24, 25, 26], the flexibility in the choice
of the approximation spaces afforded by discontinuous Galerkin methods is exploited to ensure satisfaction
of the natural compatibility conditions of the thin plate limit. These families of elements are locking-free
without recourse to mixed methods or reduced integration. Notwithstanding these advances for plates, DG
methods have barely been explored for the analysis of curved shear-flexible shells. The notable exception is
the work of Güzey et al. on linear shells with their embedded discontinuous Galerkin method [27, 28].

In this article, the discontinuous Galerkin approach is extended to the nonlinear analysis of finitely
deforming, shear-flexible shells. In the proposed method, locking is alleviated without a projection operator
by extending the compatibility strategy of Arnold et al. [24] to shells. An advantage of this approach is that
locking is avoided without the introduction of generalized force unknowns. This paves the way to casting
the method in terms of a minimum principle. To this end, a discrete potential energy functional is proposed,
as in the DG method of Ten Eyck and Lew for nonlinear elasticity [20] (also related are the DG elasticity
methods in [29, 30] derived from three-field mixed variational principles). The discrete equilibrium equations
follow as the first variation of this functional, which furnishes an elegant means to derive the method. The
variational structure also confers numerous benefits. Symmetry of the bilinear form and hence the stiffness
matrix is guaranteed, since it is the second variation of a scalar potential, which is always symmetric.
The tools of mathematical optimization may be brought to bear for solution, including powerful existing
software libraries. The energy principle also provides a physically meaningful basis for error estimation for
mesh adaptation that applies even in nonlinear problems, in which there is no natural norm [31, 32, 33]. It
is worth noting that discontinuous Galerkin methods are particularly well-suited to hp-adaptation.

The structure of this paper is as follows. A review of the adopted shell theory, the classical directed
surface theory in the form developed by Simo and Fox [34], is given in Section 2. In Section 3, the new
nonlinear DG shell method is proposed. (In addition, the linearized kinematics version is provided for the
purposes of making normed error measurements and applying linear benchmarks in the next section). As in
any discontinuous Galerkin method, a key step is the projection of the derivative operator, sometimes called
the DG derivative. The character of the shell as a two dimensional surface embedded in three dimensional
space merits special attention; accordingly, a full derivation of this operator is given in Section 3.4. In
Section 4, details of an implementation strategy are provided to promote adoption of the proposed method
and further development. This includes the computation and storage strategy of the DG derivative. Explicit
forms of the nodal forces are provided. (Explicit forms of the element stiffness matrices are additionally
provided in Appendix A). Numerical studies are presented in Section 5 as a preliminary assessment of
the performance of the proposed method and to test for locking. These tests indicate that the method is
promising as an analysis tool for both thick and thin shells.

Throughout the paper, the notation of Simo and Fox [34] is largely used. Scalar quantities are indicated
by italic type, and vectors (in R3) are written in boldface type. Lower-case Greek letters are used to index
two-dimensional tensor components, while lower-case Roman letters will be reserved for three dimensional

1Under some restrictions, reduced integration approaches are equivalent to mixed methods [18, 12]. However, this equivalence
breaks down under nonlinear or anisotropic material behavior.
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components. A tensor index appearing twice in the same term implies summation over the range of the
index.

2. Shell formulation

The adopted shell formulation is that of a classical single director Cosserat surface, in the form developed
by Simo and Fox [34]. For completeness, and to fix notation, the theory is summarized in this section.

2.1. Kinematics

The parameterization of the shell mid-surface S is given by an injective map ϕ : A ⊂ R2 → R3.2 The
mid-surface is assumed to be orientable and compact, with the boundary indicated by ∂S. Material points
in the shell body are located relative to the mid-surface with the director vector field t : A → S2, where S2

is the unit sphere. The basic kinematic assumption of the theory is that points in the current placement of
the shell body B = S × (c−, c+) are given by

x = Φ(ξ1, ξ2, ξ3) := ϕ(ξ1, ξ2) + ξ3t(ξ1, ξ2), ξ3 ∈ (c−, c+) (1)

where t := c+ − c− is the thickness of the shell.
The reference configuration is taken to be the undeformed shell, which possesses its own mid-surface map

ϕ0 : A → R3 and director field t0 : A → S2. Material points in the reference configuration B0 = S0×(c−, c+)
are given by

x0 = Φ0(ξ1, ξ2, ξ3) := ϕ0(ξ1, ξ2) + ξ3t0(ξ1, ξ2), ξ3 ∈ (c−, c+) (2)

Here and in the following, kinematic quantities in the reference configuration are distinguished from their
counterparts in the current configuration by labeling them with a superscript 0.

The shell deformation is given by the composition χ : B0 → B,

χ := Φ ◦
(
Φ0
)−1

(3)

The kinematics of the shell configurations are illustrated in Figure 1. It follows from the choice of the unit
sphere as the director manifold and the invariance of h that the shell is assumed to be rigid in the thickness
direction.

A

S0

Sϕ
0

ϕ

χ
t
0

t

ξ1
ξ2

ξ

1

Figure 1: Reference and current configurations of the shell.

2In general, a collection of parameterizations will be needed to cover S, but for simplicity they are not indexed individually
here.
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The covariant basis vectors in S0 and S are

a0
α := ∂αϕ

0 aα := ∂αϕ, (4)

where the notation ∂α := ∂/∂ξα is used to indicate partial differentiation with respect to the parametric
coordinates.

The mid-surface measures in the reference and current configurations are dS0 = j̄0dA and dS = j̄dA,
with dA := dξ1dξ2 and

j̄0 = t0 ·
(
a0

1 × a0
2

)
j̄ = t · (a1 × a2)

The Jacobian of the mid-surface deformation is J̄ = j̄/j̄0 > 0.
The geometry of the shell is described by the surface tensors

aαβ = aα · aβ (5a)

γα := aα · t (5b)

καβ := aα · ∂βt (5c)

Identical definitions exist for the reference configuration. Equation (5a) gives the components of the metric
tensor; (5b) measures the deviation of the director from the surface normal, that is, the relative shearing
of the normal fiber; (5c) defines a curvature-like tensor. It is simple to prove that the kinematic tensors in
(5) are invariant with respect to changes in frame, which is a direct consequence of the use of convected
coordinates.

The components of the metric in the dual basis follow from the identity

aαβaβγ = δαγ

where the term on the right hand side is the Kronecker delta symbol. The contravariant basis vectors follow
as

aα = aβαaβ .

2.2. Admissible variations

The shell is subject to the essential boundary conditions

ϕ = ϕ, on ∂ϕA (6a)

t = t, on ∂tA (6b)

The shell configuration is determined uniquely by the pair (ϕ, t) ∈ X × S2 through (1). In a slight abuse
of notation, the pair will be written Φ = (ϕ, t). Any Φ in the set of admissible configurations X := X × S2

is required to satisfy (6).
Admissible variations δΦ of the kinematic fields are constructed by taking a curve of configurations

ε 7→ Φε = (ϕε, tε), with Φε|ε=0 = Φ, and taking δΦ = d(Φε)/dε|ε=0. Thus, the set of admissible variations
is

V =
{
δΦ = (δϕ, δt) : A → R3 × TtS

2 : δϕ|∂ϕA = 0, δt|∂tA = 0
}

where TtS
2 is the tangent space of the unit sphere. The unit sphere is not a linear space, so the structure of

the tangent space bears comment. A convenient description of TtS
2 follows from the unit length condition

in S2. Taking a curve of directors as defined above and differentiating the identity

tε · tε = 1
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gives (
tε ·

d

dε
tε

)∣∣∣∣
ε=0

= 0 (7)

which shows that members of TtS
2 are orthogonal to t (considering them as vectors in R3). That is,

TtS
2 =

{
w ∈ R3 : w · t = 0

}
(8)

A procedure for ensuring the satisfaction of this geometric constraint in the discrete setting is discussed in
Section 3.3.

2.3. Constitutive behavior

The generalized forces of the shell theory are stress resultants. Taking a set of variations (δϕ, δt) ∈ V,
the conjugate pairs are

• nα that performs virtual work through ∂αδϕ,

• mα that performs virtual work through ∂αδt,

• l that performs virtual work through δt.

Applying the usual terminology, nα is the stress resultant, mα is the stress couple resultant, and l is through-
thickness stress resultant. These can be related to the stress tensors of three dimensional continuum me-
chanics; see [34].

For an elastic material, there exists a free energy density function (per unit area in the reference mid-
surface)

ψ(∂αϕ, t, ∂αt; ∂αϕ
0, t0, ∂αt0).

The parametric dependence on {∂αϕ0, t0, ∂αt0} highlights the fact that stretching is measured relative to
the reference configuration. In the following, the explicit indication of this dependence will frequently be
omitted for brevity. Using the Coleman-Noll procedure, it can be shown that the resultants are given by

J̄nα =
∂ψ(∂βϕ, t, ∂βt)

∂(∂αϕ)
(9a)

J̄ l =
∂ψ(∂βϕ, t, ∂βt)

∂t
(9b)

J̄mα =
∂ψ(∂βϕ, t, ∂βt)

∂(∂αt)
(9c)

The above form of the stress resultant relations is useful for writing the equilibrium equations in weak
form. However, for building the constitutive framework, it is helpful to deduce the work conjugate pairs
in terms of tensors intrinsic to the shell manifold. In [34] it is shown that the stress resultants can be
decomposed in terms of effective stress resultants {ñαβ , q̃α, m̃αβ} in the form

nα = ñαβ∂βϕ+ m̃αβ∂βt + q̃αt (10a)

l = q̃α∂αϕ+ λαµm
3µ∂αϕ+ l3t︸ ︷︷ ︸

indeterminate

(10b)

mα = m̃βα∂βϕ+ m3αt︸ ︷︷ ︸
indeterminate

(10c)

where λαµ are components of the director in the decomposition ∂µt = λαµaα + λ3
µt. The effective membrane

resultant is required to be symmetric, ñαβ = ñβα, by the balance of angular momentum (or equivalently,
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by requiring that the internal power is invariant with respect to frame changes that are rotations). The
components labeled “indeterminate” are so in the sense that they perform no work; therefore, in the weak
form of the equilibrium equations they are irrelevant and may be ignored. In particular, the components of
the stress couple resultant about the director, m3α—the so-called drilling moments—are ruled out exactly
in this shell theory.

The utility of the effective stress resultants is that they are work conjugate to the variations of the
kinematic surface tensors in (5). The free energy density function may be further specified to depend on
the kinematics solely though the surface tensors, as in

ψ(∂αϕ, t, ∂αt; ∂αϕ
0, t0, ∂αt0) = ψ̂(aαβ , γα, καβ ; a0

αβ , γ
0
α, κ

0
αβ).

The stress relations then follow from the Coleman-Noll procedure as

J̄ ñαβ = 2
∂ψ̂(aαβ , γα, καβ)

∂aαβ
(11a)

J̄m̃αβ =
∂ψ̂(aαβ , γα, καβ)

∂καβ
(11b)

J̄ q̃α =
∂ψ̂(aαβ , γα, καβ)

∂γα
. (11c)

The effective stress resultants and the kinematic tensors are invariant with respect to changes in frame, thus
specifying the constitutive equations in this form guarantees frame indifference.

2.4. Equilibrium equations

Equilibrium positions of the shell are stationary points of the potential energy functional

J(Φ) =

∫
S0

ψ(∂αϕ, t, ∂αt) dS0 −Wext(Φ) (12)

The linear functional of the external work comprises body and boundary contributions:

Wext(Φ) =

∫
S

(f ·ϕ+ τ · t) dS +

∫
∂NA

¯̄n ·ϕ j̄ds+

∫
∂MA

¯̄m · t j̄ds. (13)

The source term f0 is an equivalent distributed force (per unit area in the current configuration) acting on
the mid-surface, which encapsulates volumetric body forces on the shell, as well as tractions on the top and
bottom surfaces. Similarly, τ is a distributed couple. The generalized forces ¯̄n and m̄ are prescribed resultant
tractions. To ensure well-posed problems, the regions of the essential and natural boundary conditions are
taken to satisfy

∂ϕA ∩ ∂NA = ∅, ∂ϕA ∪ ∂NA = ∂A

and

∂tA ∩ ∂MA = ∅, ∂tA ∪ ∂MA = ∂A

Futhermore, ∂ϕA is assumed to have positive Lebesgue measure to rule out rigid body motions.
Equilibrium positions are found by the vanishing of the first variation of the energy

0 = 〈DJ(Φ), δΦ〉 =
d

dε

∣∣∣∣
ε=0

J(Φε) (14)
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for all admissible variations δΦ = (δϕ, δt). Stable equilibrium positions constitute local minimizers of (12).
The variation of the energy functional is given explicitly by

〈DJ(Φ), δΦ〉 =

∫
S0

(nα · ∂αδϕ+ mα · ∂αδt + l · δt) J̄dS0︸ ︷︷ ︸
Wint(Φ;δΦ)

−Wext(δΦ) (15)

Equation (15) is the virtual work equation of the shell.
For the purposes of finite element discretization, the weak form of the equilibrium equations (14) is the

only object required. However, for completeness, the equilibrium equations in strong form are recorded here.
Assuming sufficient smoothness, the divergence theorem applied to the virtual work yields∫

A

{
[−∂α (j̄nα)− j̄f ] · δϕ+ [−∂α(j̄mα) + j̄l− j̄τ ] · δt

}
dξ1dξ2

+

∫
∂NA

(nανα − ¯̄n) · δϕ j̄ds+

∫
∂MA

(mανα − ¯̄m) · δt j̄ds = 0, ∀(δϕ, δt) ∈ V

where ν is the (in-plane) outward unit normal vector to ∂S, with components να = ν · aα. The Euler-
Lagrange equations are thus

∂α(j̄nα) + j̄f = 0

∂α(j̄m)− j̄l + j̄τ = 0

}
in A (16)

nανα = ¯̄n on ∂NA
mανα = ¯̄m on ∂MA (17)

which are supplemented by the essential boundary conditions. The first of (16) is the balance of linear
momentum, and the second is the balance of angular momentum.

2.5. Specification of the constitutive equations

In this paper, all examples are shown with a simple isotropic hyperelasticity model. Membrane, shear,
and bending strains are defined as

εαβ =
1

2

(
aαβ − a0

αβ

)
ζα = γα − γ0

α ραβ = καβ − κ0
αβ (18)

respectively. The free energy is taken as ψ = ψ(εαβ , ζα, ραβ), where

ψ(εαβ , ζα, ραβ) =
1

2

(
tεαβH

αβγδεγδ + tkµζαa
0αβζβ +

t3

12
ραβH

αβγδργδ

)
In the above, t is the shell thickness, µ is the shear modulus, k is the shear reduction coefficient (taken as
5/6), and Hαβγδ is the plane stress elastic tensor

Hαβγδ =
µ

2
(a0αγa0βδ + a0αδa0βγ) +

Eν

1− ν2
a0αβa0γδ.

The elastic modulus E, the Poisson’s ratio ν, and the shear modulus µ are of course related through
µ = E/[2(1 + ν)].
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According to (11), the effective stress resultants are

J̄ ñαβ = tHαβγδεγδ J̄ q̃α = tkµa0αβζβ J̄m̃αβ =
t3

12
Hαβγδργδ (19)

3. Discontinuous Galerkin discretization

In the following, function spaces of vector fields are indicated with bold typeface, e.g., X. Vector-
valued spaces are composed of Cartesian products of scalar spaces, which are indicated with the same letter
with italic typeface, e.g., X = [X]3. Let Th be a conforming collection of isoparametric triangle elements
interpolating the shell mid-surface, S ' Sh = ∪E∈ThE. The set of all edges in the triangulation is written
Γ = ∪E∈Th∂E. The symbol ΓI signifies the set of all internal edges, ΓI = Γ \ ∂S.

3.1. Mid-surface position interpolation

Each E ∈ Th is the image of a master element Ê ⊆ R2 under the position map E = ϕh(Ê) ∈ Xh. The
discontinuous Galerkin function space for the positions Xh is built up from a collection of smooth discrete
function spaces XE

h ⊆H1(Ê) as

Xh =
∏
E∈Th

XE
h

The element-wise spaces are taken to be XE
h = [Pk(Ê)]3, k ≥ 2, where Pk(Ê) is the set of polynomial of

degree at most k on the master element. Note that with this definition, the position vector can have jumps
on ΓI . In this work, boundary conditions are enforced strongly; consequently, functions in Xh are required
to satisfy the essential boundary conditions on ∂ϕA.

A standard Lagrange polynomial basis is taken. Writing NA for the basis functions, the interpolation of
the mid-surface position is written

ϕ(ξ1, ξ2) =

nx∑
A=1

NA(ξ1, ξ2)x̄A (20)

where nx = (k + 1)(k + 2)/2 is the number of position nodes per element. The symbol Nx will be used
to denote the number of position nodes in all Th. Because discontinuous Galerkin basis functions have
support only over a single element, it is natural to identify the global basis functions with the corresponding
elemental basis functions, and the same symbol NA is used for both subsequently. The reference mid-surface
map ϕ0

h ∈Xh is constructed identically.
Following the Galerkin prescription, variations of the position δϕ are given by

δϕ(ξ1, ξ2) =

nx∑
A=1

NA(ξ1, ξ2)δx̄A.

The set of discrete variations is written Vh. Due to the adopted strong enforcement of boundary conditions,
functions in Vh are required to vanish on ∂ϕA.

3.2. Interpolation of the director

Writing T h for the space of the directors, a discontinuous Galerkin space is constructed from element-wise
spaces TEh ⊆H1(Ê), according to

T h =
∏
E∈Th

TEh , TEh = [Pk−1(Ê)]3

The function spaces of the discrete kinematic fields thus satisfies the natural compatibility condition DXh ⊆
T h. This is a key step to preventing locking.
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A Lagrange polynomial basis is also taken for the representation of the discrete director field th. The
interpolation is written

th(ξ1, ξ2) =

nT∑
A

LA(ξ1, ξ2)tA (21)

where tA ∈ S2 are nodal director values and nT = k(k+1)/2 is the number of director nodes per element. In
the following, NT will signify the number of director nodes in the entire mesh. At points inside an element,
the linear interpolation does not guarantee ‖th‖ = 1 (and thus th /∈ S2), but the deviation is bounded by
the interpolation error. A kinematic update procedure is adopted (described in Section 3.8) that strictly
observes the unit length constraint of the nodal directors as the shell deforms.

The nodal values of the director field in the reference configuration is taken as

t0
A =

∂1ϕ
0
h × ∂2ϕ

0
h

‖∂1ϕ0
h × ∂2ϕ0

h‖
.

which is the surface normal vector (i.e., the out-of-plane normal). However, the piecewise polynomial
representation of the reference mid-surface S0

h is only C0 in general, and the surface normal vector suffers
jumps across element edges. When treating smooth shells, it is inconvenient to have jumps in the reference
configuration, as these jumps would need to be stored and subtracted out of the DG derivatives to avoid
inducing spurious strain energy in the reference configuration. To circumvent this problem, a unique value
is assigned to all spatially coincident director nodes on element boundaries by arbitrarily selecting one of the
nodal values. It bears emphasis that the orientation of the reference director field does not affect the response
of the shell, but rather only the deviation from it during the deformation. In our numerical implementation,
the nodal values from the element with the smallest global index are chosen for this purpose.

Non-manifold cases, such as finite kinks and T-junctions, can be detected and handled during this pre-
processing step; see, e.g., [35]. Such complications are not treated presently.

3.3. Interpolation of director variations

To preserve the essential geometric structure of S2 when constructing director variations in the discrete
shell, the parameterization of the unit sphere advocated by Simo, Fox, and Rifai in [36] is adopted. Recall
that director variations are members of TtS

2 (cf. (7)), which may be considered as vectors in the plane
tangent to S2 at t; see Figure 2. A rotation tensor Λ ∈ SO(3) is constructed with the property

Λ

S2

t

E3

E2

E1

TtS
2

δt

δT
TE3S

2

Figure 2: Parameterization of the unit sphere and its tangent space. The director t is the image of E3

under the rotation Λ.
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t = ΛE3 (22)

and where the rotation axis is orthogonal to E3. This rotation tensor is unique, and in fact has an explicit
representation using Rodrigues’ formula:

Λ = (t ·E3)1 + (Ê3 × t) +
1

1 + t ·E3
(E3 × t)⊗ (E3 × t) (23)

The operation •̂ : R3 → so(3) indicates the skew cross product tensor associated to a vector.3 The utility of
this rotation is that it allows a simple representation of δt ∈ TtS

2 with only 2 degrees of freedom. Referring
again to Figure 2, Λ takes vectors in TE3

S2 to TtS
2 along a great circle (i.e., a geodesic of S2). The space

TE3
S2 is a plane perpendicular to E3, and thus is isomorphic to R2. Taking advantage of this isomorphism,

any δT ∈ TE3
S2 can be represented as

δT = δT 1E1 + δT 2E2.

Then δt ∈ TtS
2 can be defined

δt = Λ̄δT (24)

where Λ̄ : R2 → R3 is the tensor formed from the first two columns of the matrix of Λ; that is,

Λ̄ = ΛiαEi ⊗Eα (25)

The 2 degree of freedom vector δT is referred to as the material director variation, and δt is called the
spatial director variation. This parameterization automatically guarantees t · δt = 0.

Discrete versions of the director variations and other members of TtS
2 are constructed as follows. Equa-

tion (24) is employed to construct nodal values of the director variation, viz.

δtA = Λ̄AδTA, δTA ∈ R2, A = 1, . . . , NT (26)

The nodal rotation tensors ΛA are computed from the Rodrigues formula above and stored for every node
of the director interpolation at the start of the simulation. A geometrically exact procedure for updating
ΛA as the shell deforms is given in Section 3.8.

Variations of the discrete director field δt are interpolated with the same basis as the directors, i.e.,

δt =

nt∑
A

LAδtA =

nt∑
A

LAΛ̄AδTA (27)

The set of discrete director variations is denoted by TthT h. The kinematic boundary conditions on the
director field are enforced strongly; members of TthT h are thus required to vanish on ∂tA.

The linearized corrections returned by iterative procedures, such as Newton’s method, are also admissible
variations, and are interpolated as elements of TthT h in the discrete setting as well. This implies that the
director field has two degrees of freedom at each node. The parameterization described above eliminates
drilling degrees of freedom identically. This is at variance with many other shell discretizations that rely on
additional assumptions and ad hoc numerical techniques to control drilling degrees of freedom.

3That is, for an arbitrary a ∈ R3, â is the tensor with the matrix representation in the canonical basis

[â] =

 0 −a3 a2

a3 0 −a1
−a2 a1 0
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In order to write subsequent equations more compactly, the notation

Xh := Xh × T h the trial solution space

Vh := V h × TthT h the variation space

is introduced.

3.4. Discontinuous Galerkin derivative operator

A common feature of discontinuous Galerkin methods is the projection of the gradient onto a discrete
function space. Following the primal formulation of DG methods in [37], the projection will be used to
define a discrete derivative operator. (Applying the terminology in [20], this operator will be called the
DG derivative). The DG derivative formulated here operates with respect to the convected coordinates
instead of the more common fixed Cartesian frame. An explicit derivation is given for the DG derivatives of
the discrete mid-surface position space Xh; the definition for the DG derivative operator over the discrete
director space T h is analogous and will be omitted to avoid being repetitious. At the close of the section,
the final result of the DG derivative operator of the director is given to fix the notation.

To begin, a DG piecewise polynomial function space, denoted by Wh, composed as the Cartesian product
of elemental spaces WE

h ⊆ H1(Ê), is chosen to approximate the derivatives of the position components with
respect to the convected coordinates. This space is required to satisfy DXh ⊆ Wh. Taking an arbitrary
smooth function u, the derivative

wα = ∂αu

can be written in a weak form by formally multiplying by a test function zα ∈ Wh, integrating over Ê, the
image of element E ∈ Th under the coordinate chart (i.e., the master element), and integrating by parts:∫

Ê

wαz
α dA = −

∫
Ê

u ∂αz
α dA+

∫
∂Ê

uzαµÊα ds

The vector µÊ = µÊαEα is the outward unit normal to ∂Ê. This identity, satisfied by any u ∈ H1(Ê),
serves as the motivation for the definition of the DG derivative. A function (wh)α ∈Wh approximating the
derivatives of uh ∈ Xh is sought by defining∫

Ê

(wh)αz
α dA = −

∫
Ê

uh∂αz
α dA+

∫
∂Ê

û(uh)zαµÊα ds, ∀zα ∈Wh (28)

where û : Xh → T (Γ) is a numerical trace, to be specified as part of the method, that approximates u on
∂Ê. Summing (28) over all the elements yields∫

Ê

(wh)αz
α dA = −

∫
Ê

uh∂hαz
α dA+

∑
E∈Th

∫
∂Ê

û(uh)zαµÊαds, ∀zα ∈Wh (29)

Here and in the following, a subscript h is attached to the differential operator to indicate that it is to be
applied in the piecewise sense, element by element in Th.

To proceed, some trace operators are defined. For each edge e ∈ ΓI , the two elements sharing the edge
are designated arbitrarily as E+ and E−. The jump J•K and average {•} operators are defined

J•K = •− − •+ {•} =
1

2

(
•+ + •−

)
(30)

where the superscript identifies which side of the edge the restriction of the field is taken, e.g., u− = u|∂E− .
A simple algebraic manipulation shows that∑

E∈Th

∫
∂Ê

abαµEα ds =

∫
ΓI

(JaK {bα}µα + {a} JbαKµα) ds+

∫
∂A

abαµα ds (31)
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Applying (31) to (29) gives∫
A

(wh)αz
α dA = −

∫
A
uh∂hαz

α dA+

∫
ΓI

(JûK {zα}µα + {û} JzαKµα) ds

+

∫
∂A

ûzαµα ds, ∀zα ∈Wh (32)

Integrating the first term on the right hand side by parts, element by element, and again using (31) yields∫
A

(wh)αz
α dA =

∫
A
∂hαuhz

α dA+

∫
ΓI

(Jû− uhK {zα}µα (33)

+ {û− uh} JzαKµα) ds+

∫
∂A

(û− uh)zαµα ds (34)

To obtain an explicit formula for (wh)α, we introduce lifting operators on the interior edges rα : L2(ΓI) →
Wh, lα : L2(ΓI) → Wh, and a boundary lifting operator r∂α : L2(∂S) → Wh. These are linear operators
defined by the identities ∫

A
rα(a)bα dA = −

∫
ΓI

a {bα}µα ds, ∀bα ∈Wh (35)∫
A
lα(a)bα dA = −

∫
ΓI

a JbαKµα ds, ∀bα ∈Wh (36)∫
A
r∂α(a)bα dA = −

∫
∂A

abαµα ds, ∀bα ∈Wh (37)

Applying these definitions to (33) gives∫
A

[
(wh)α − ∂hαuh + rα (Jû− uhK) + lα ({û− uh}) + r∂α (û− uh)

]
zα dA = 0, ∀zα ∈Wh (38)

Recalling that DXh ⊂Wh, and that the lifting operators themselves reside in Wh, the above holds only if

(wh)α = ∂DG
α uh = ∂hαuh − rα (Jû− uhK)− lα ({û− uh})− r∂α (û− uh) (39)

which yields the sought projection of the derivative of uh onto the space Wh, in the sense of (28).
The DG derivative on scalar fields defined above is extended to vector fields in the standard way, com-

ponent by component. Specifically, the DG derivative of Xh 3 ϕ = ϕiE
i is ∂DG

α ϕ := (∂DG
α ϕi)E

i. This leads
to trivial vector extensions of the lifting operator, such as rα(ϕ) = rα(ϕi)E

i. With the vector field DG
derivative thus defined, the DG derivative of the position map is then

∂DG
α ϕh = ∂hαϕh − rα (Jϕ̂−ϕhK)− lα ({ϕ̂−ϕh})− r∂α (ϕ̂−ϕh) (40)

Applying the same formulation in this section to the director field yields a DG derivative over the discrete
director space T h. By a slight abuse of notation, the same symbol ∂DG

α is used for the DG derivative of
the director field, although the underlying function spaces are different. The approximation space for the
director derivative (i.e., the director counterpart to Wh) is denoted Kh. The corresponding lifting operators
for the director field are written in a sans serif font: rα, lα, r

∂
α ∈ Kh. The DG derivative of the director is

∂DG
α : Th → Kh,

∂DG
α th = ∂hαth − rα

(r
t̂− th

z)
− lα

({
t̂− th

})
− r∂α

(
t̂− th

)
(41)

where the boldface type on the lifting operators indicates the same extension to vector fields, e.g., rα(t) =
rα(ti)E

i.
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The polynomial spaces of the DG derivative spaces Wh and Kh are chosen as follows. Extending the
strategy advocated by Arnold et al. [24], the polynomial space WE

h for the DG derivatives of the position
field is taken to be the same as the director space TEh , specifically, WE

h = Pk−1(E). With this choice,
∂DG
α ϕ ∈ T h for every ϕ ∈ Xh. This is essential to satisfy the thin shell compatibility condition and

therefore to prevent locking. The elemental director derivative space KE
h is not limited by locking concerns,

but for simplicity is also taken to be KE
h = Pk−1(E).

3.5. Specification of the numerical traces

The definition of the DG derivative is completed by choosing a numerical trace operator. The choice
of numerical trace affects the numerical properties of the method, including consistency, accuracy, and the
bandwidth of the stiffness matrix; a discussion of these issues is presented in [37]. In this work, simple
average traces are employed:

ϕ̂(ψ) =


{ψ} on ΓI

ϕ or 0 on ∂ϕA
ψ on ∂nA

t̂(s) =


{s} on ΓI

t or 0 on ∂tA
s on ∂mA

(42)

The kinematic boundary conditions are enforced strongly, hence the boundary trace is taken to be the
prescribed value on the essential boundary to eliminate the boundary lifting operator. That is, on ∂ϕA, the
numerical trace of the displacement is ϕ̂(ϕh) = ϕ and the numerical trace of the virtual displacement is
ϕ̂(δϕ) = 0. With these choices the DG derivatives become

∂DG
α ϕh = ∂hαϕh + rα(JϕhK) (43)

∂DG
α th = ∂hαth + rα(JthK) (44)

3.6. Discrete form of the equilibrium equations

The discontinuous Galerkin method is derived from a discrete energy functional Jh : Xh → R. As in [20],
the discrete energy functional is consistently formulated by formally replacing the derivative operator in the
continuous potential energy with the DG derivative operator. To this functional, standard DG stabilization
terms are also added, yielding

Jh(Φh) =

∫
S0
h

ψ(∂DGα ϕh, th, ∂
DG
α th) dS0 −Wext(ϕh, th)

+
1

2
Wx,stab(ϕh,ϕh) +

1

2
WT,stab(th, th). (45)

The stabilization terms are given by

Wx,stab(η,ω) :=

∫
ΓI

βx
he

JηK · JωK j̄0ds, η,ω ∈Xh (46)

WT,stab(v,w) :=

∫
ΓI

βT
he

JvK · JwK j̄0ds, v,w ∈ T h (47)

The symbol he is a local measure of the mesh diameter, here taken as the length of the edge. For the present
work, the penalty parameters are normalized by taking βx = cxEt and βT = cTEt

3/12, where t is the shell
thickness, E is the Young’s modulus of the material, and cx, cT are positive real numbers taken sufficiently
large.

Equilibrium configurations of the discrete shell are given by the stationary points of (45). The equilibrium
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equations thus follow as

〈DJh(Φh), δΦ〉 = 0 =

∫
S0
h

(
nα · ∂DG

α δϕ+ l · δt + mα · ∂DG
α δt

)
J̄dS0

−Wext(δΦ) +Wx,stab(ϕh, δϕ) +WT,stab(t, δt),

∀δΦ = (δϕ, δt) ∈ Vh (48)

where the discrete counterparts

J̄nα =
∂ψ

∂(∂DG
α ϕh)

J̄ l =
∂ψ

∂th
J̄mα =

∂ψ

∂(∂DG
α th)

(49)

of the stress resultant relations (9) have been used. Stable equilibrium positions may be found by searching
for stationary points that are local minima.

Note that the minimization approach can be extended beyond elasticity to materials with dissipative
behavior by recourse to variational constitutive updates [38]. In this technique, an incremental functional
would take the place of (45). Alternatively, the variational viewpoint can be abandoned, and (48) may be
regarded as the definition of a DG weighted residual weak form of the equilibrium equations.

3.7. Iterative solution procedure

The equilibrium problem can be solved iteratively with Newton’s method by linearizing the virtual work
about the current state in the direction of another set of admissible variations. Writing ∆Φ := (∆u,∆t) ∈
Vh, the weak form (48) is linearized again to yield

〈DJh(Φ), δΦ〉+
〈
D2Jh(Φ), δΦ,∆Φ

〉
= 0, ∀δΦ ∈ Vh

which is solved for ∆Φ as a correction toward an improved guess.
The second variation of the discrete energy functional produces the bilinear form of the method Bh : Vh×

Vh → R,

Bh (δΦ,∆Φ) :=
〈
D2Jh(Φh), δΦ,∆Φ

〉
Symmetry of the bilinear form is guaranteed, as the second variation of a scalar potential is always symmetric.
The stiffness matrix, being the representation of the bilinear form in the chosen basis, inherits this property.
The bilinear form is naturally decomposed into three parts

Bh (δΦ,∆Φ) = BM
h (δΦ,∆Φ) +BG

h (δΦ,∆Φ) +Bstab
h (δΦ,∆Φ)

where the superscripts are meant to suggest a material part, a geometric part, and a stabilization part. Each
part if given in the following.

The material part of the bilinear form is recorded here under the assumption that the mixed second
partial derivatives of the free energy with respect to aαβ , γα, and καβ vanish. This restriction is typically
obeyed by shell constitutive models for elastic, isotropic materials. Deriving the more general case leads to
lengthy equations but is straightforward. With this proviso, the material part is given by

BM
h (δΦ,∆Φ) =

∫
S0
h

[
∂2ψ

∂aαβ∂aγδ
(∂DG
β δϕ · aα + ∂DG

α δϕ · aβ)(∂DG
γ ∆u · aδ + ∂DG

δ ∆u · aγ)

+
∂2ψ

∂γα∂γβ
(∂DG
α δϕ · th + aα · δt)(∂DG

β ∆u · th + aβ ·∆t)

+
∂2ψ

∂καβ∂κγδ
(∂DG
α δϕ · bβ + aα · ∂DG

β δt)(∂DG
γ ∆u · bδ + aγ · ∂DG

δ ∆t)

]
J̄dS0 (50)
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where aα = ∂DG
α ϕh and bα = ∂DG

α th.
The geometric part of the bilinear form is

BG
h (δΦ,∆Φ) =

∫
S0
h

[
ñαβ(∂DG

α δϕ · ∂DG
β ∆u + ∂DG

β δϕ · ∂DG
α ∆u)

+ q̃α(∂DG
α δϕ ·∆t + ∂DG

α ∆u · δt) + m̃αβ(∂DG
α δϕ ·∆∂DG

β t + ∂DG
α ∆u · δ∂DG

β t)

]
J̄dS0 (51)

Finally, the stabilization part is

Bstab
h (δΦ,∆Φ) =Wx,stab(δϕ,∆u) +WT,stab(δt,∆t) (52)

Substitution of the basis for Vh into the bilinear form leads to the definition of the stiffness matrix in
the standard way:

Bh (δΦ,∆Φ) = [v]>
[
K
]

[u],

where [K] is the global stiffness matrix, and [u] and [v] are column vectors of the nodal values of the
corrections and the variations. Explicit equations for the elemental stiffness matrices are given in Appendix
A.

As an aside, since ∆u ∈ V h and ∆t ∈ TthT h, it is evident that the simplest element in the family,
k = 2, has 6 displacement nodes, with 3 degrees of freedom each, and 3 director nodes, each with 2 degrees
of freedom, for a total of 24 degrees of freedom.

3.8. Kinematic update

Each iteration of Newton’s method yields linearized corrections that must be applied to update the
configuration of the shell. The geometry of the director manifold must be considered carefully to keep the
nodal directors in the unit sphere. At Newton iterate k, the current nodal unknowns (xkA, t

k
A) must be

updated with the linear correction (∆uA,∆TA) to yield the improved guess (xk+1
A , tk+1

A ).
The mid-surface displacements are vectors, and so the update is achieved trivially by adding the correc-

tions. The nodal directors tA ∈ S2, however, are updated using the exponential map on the unit sphere.
Remarkably, this can be written in closed form. This update procedure was determined by Simo et al. [36],
and is given in Algorithm 1. This algorithm is geometrically exact, and well-conditioned under nonzero
corrections of arbitrary size.

3.9. Specialization to linearized kinematics

In this section, the finite element method described above is linearized about the reference configuration
to yield the linear kinematic version. A set of admissible variations about the reference configurations can
be found by taking the curves

ϕε = ϕ0 + εu

tε = cos ‖ε∆t‖ t0 +
sin ‖ε∆t‖
ε∆t

ε∆t

Thus, the linearized displacements are (uh,∆th) ∈Xh×Tt0T h. This leads to the definition of the linearized
strains

εαβ =
1

2

(
∂αϕ

0 · ∂DG
β uh + ∂βϕ

0 · ∂DG
α uh

)
(56)

ζα = ∂DG
α uh · t0 + ∂αϕ

0 ·∆th (57)

ραβ = ∂DG
α uh · ∂βt0 + ∂αϕ

0 · ∂DG
β ∆th (58)

With an abuse of notation, the linearized strains are written with the same symbols as in the hyperelastic
model in Section 2.5.
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Algorithm 1 Kinematic update procedure.

1: Update nodal positions
xk+1
A = xkA + ∆uA

2: Compute spatial director increments

∆tA = Λ̄
k
A∆TA

3: Update directors with exponential map

tk+1
A = exptkA

(∆tA) := cos ‖∆tA‖ tkA +
sin ‖∆tA‖
‖∆tA‖

∆tA (53)

4: Compute rotation increment

∆ΛA = cos ‖∆tA‖1 +
sin ‖∆tA‖
‖∆tA‖

̂(tkA ×∆tA) +
1− cos ‖∆tA‖
‖∆tA‖2

(tkA ×∆tA)⊗ (tkA ×∆tA) (54)

5: Update rotations
Λk+1
A = ∆ΛAΛk

A (55)

Linearizing the potential energy functional in the direction of the variations defined above yields

J0
h(uh,∆th) =

∫
Sh

(
1

2
tHαβγδεαβεγδ +

1

2
kµta0αβζαζβ +

1

2

t3

12
Hαβγδραβργδ

)
dS −Wext(uh,∆th)

+
1

2

∫
ΓI

(
βx
he

JuhK · JuhK +
βT
he

J∆thK · J∆thK
)
j̄ds

The previous definition of the elastic tensor is retained. The stiffness matrix for the linearized method can
be found by taking the fully nonlinear stiffness matrix in Appendix A and eliminating the geometric stiffness
terms. As is standard, there is no distinction between the reference and current configurations in the linear
theory. As a consequence, the update formula in Algorithm 1 is disregarded.

4. Implementation

A strategy to implement the weak form in (48) in a standard finite element code is given in this section.
In our implementation, calculation of the shape function data is handled through the Gmsh mesh process-
ing library [39]. The Gmsh library also provides geometric information and adjacency relationships of the
triangulation that are convenient for implementing DG methods.

4.1. Discretization of the lifting operator

The DG derivative operator is applied by pre-computing and storing the action of the lifting operator
on the basis functions of the kinematic fields. The details of this computation are recorded in this section.
It is shown that the representation of the lifting operator is of the same form as the familiar shape function
derivatives, and thus can be stored in a similar data structure.

The DG derivative is taken with respect to the convected coordinates, and thus the formulation of the DG
derivative in Section 3.4 involves integrals over the parameterization space. This is somewhat different than
typical discontinuous Galerkin methods, where the ambient space and the manifold of the domain are both
the same Euclidean space, and the DG derivative is taken with respect to a Cartesian coordinate system.
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Of course, the parameterization space for every element is identical, in the sense that each element maps
from a copy of the master element according to the isoparametric approach. The upshot is that the lifting
operator can be computed once and for all on the master element in the convected coordinates {ξ1, ξ2} and
used to compute the DG derivative on every E ∈ Th.

ξ2

ξ1

Ê

e = 1

e
=

2

e
=

3 µ =
√

2
2 (E1 + E2)

µ = −E2

µ = −E1

10

1 E

ϕh

Figure 3: The master element used for P2(E), showing the unit normals to each edge.

For ψ ∈Xh, the lifting operator within element E is defined by (35)∫
Ê

rα(ψ) · zα dA = −
∫
∂Ê

ψ {zα}µα ds, ∀zα ∈WE
h

The boundary of the master element ∂Ê can be partitioned into its three edges. The lifting operator can
be decomposed into contributions from each edge, leading to the definition of the edge lifting operator
reα : [L2(ΓI)]

3 →WE
h , ∫

Ê

reα(ψ) · zα dA = −
∫
e

ψ {zα}µα ds, ∀zα ∈WE
h (59)

Clearly rα =
∑
e∈ΓI

reα.
Inserting the representation of ψ in the chosen basis of Xh, and then making use of the linearity of the

lifting operator allows one to write

reα

(∑
A

NAψA

)
=
∑
A

reα(NA)ψA

The action of the edge lifting operator on the basis functions of Xh, reα(NA), is thus needed to compute the
DG derivative. Let [re]Aα := reα(NA), and let QB denote the basis functions of Wh. Then (59) is written

∫
Ê

(∑
B

QB(ξ)
∑
A

[re]AαBψA

)(∑
C

QC(ξ) zαC

)
dA =

− 1

2

∫
e

(∑
A

NA(ξ)ψA

)(∑
C

QC(ξ)zαC

)
µα ds, ∀zα ∈WE

h

Taking the sums outside the integrals, and then applying the standard variational arguments, the above
holds independently for every zαC and ψA so that∑

B

[re]AαB

∫
Ê

QBQC dA = −1

2

∫
e

NAQCµα ds
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The integral on the left hand side is recognized as the components of the elemental mass matrix for WE
h ,

[M Ê ]BC :=

∫
Ê

QBQC dA.

Defining the notation

[Ge]ACα :=

∫
e

NAQCµα ds,

the nodal values of the edge lifting operator are found simply by solving the linear system∑
B

[M Ê ]BC [re]AαB = −1

2
GACα (60)

for each A ∈ e and α ∈ {1, 2}. The mass matrix [M Ê ]BC is symmetric and positive definite, and hence
invertible. This system is small, as the elemental mass matrix has rows and columns of size dimWE

h ; note
that this size depends only on the polynomial degree chosen for WE

h and is independent of the global problem
size.

With the nodal values computed, the edge lifting can be interpolated to any point in the master element.
Expanding the lifting in the basis for Wh gives

[re]Aα (ξ) :=
∑
B

QB(ξ)[re]AαB (61)

This shows that the lifting operator representation [re]Aα has the same form as the derivatives of the primal
shape functions ∂αN

A(ξ). This fact can be exploited to store the lifting operator at the quadrature points
of the element in a manner that is compatible with existing finite element codes.

Using the procedure above, the DG derivative of the position map is computed according to

∂DG
α ϕh = ∂hαϕh + rα(JϕhK)

=

nx∑
A=1

∂αN
Ax̄A ±

∑
e∈∂Ê

nex∑
A=1

[re]Aα x̄A (62)

The positive sign is used for the degrees of freedom on the edge e belonging to the current element, and
the negative sign is taken for degrees of freedom on the edge belonging to the neighbor element. (With the
strong enforcement of boundary conditions, the lifting operator vanishes on edges on the essential boundary
of the domain, and thus these edges are omitted in the summation over e).

The lifting operator of the director field is computed in an analogous way. The corresponding DG
derivative is written

∂DG
α th =

nT∑
A=1

∂αL
AtA ±

3∑
e=1

neT∑
A=1

[re]AαtA (63)

It is emphasized that the polynomial degree of the derivative approximation spaces Wh and Kh affects
only the size of the pre-processing problem (60), and does not affect the number of unknowns or the matrix
bandwidth in the global problem.

4.2. Element internal forces

As in standard finite element method implementations, the nodal forces and stiffness matrix are assembled
element by element. The internal nodal forces are given in this section in explicit form amenable to computer

18



implementation. The internal virtual work can be rewritten as a sum of elemental contributions in the form

Wint(ϕh, th; δϕ, δt) =
∑
E∈Th

∑
A∈CE

x

[fEx,int]
A · δx̄A +

∑
E∈Th

∑
A∈CE

T

[fET,int]
A · δTA

where CEx and CET are sets of nodes defined shortly.
Substituting the interpolations into the internal virtual work shows that the nodal forces appearing in

the above are

[fEx,int]
A =

∫
E

nα

(
∂αN

A ±
3∑
e=1

[re]Aα

)
J̄dS0 (64)

[fET,int]
A =

∫
E

(Λ̄
A

)>mα
(
∂αL

A ±
3∑
e=1

[re]Aα

)
J̄dS0 +

∫
E

(Λ̄
A

)>lLA J̄dS0 (65)

Note that [fET,int]
A, the nodal forces paired to the nodal director variations have two components.

At this point CEx and CET may be easily identified. Since the edge lifting operates on the kinematic jumps
at the element boundaries, all of the nodes inside the dashed circle in Figure 4 are needed to compute the DG
derivative in the shaded element.4 Thus #CEx = nx + 3nex and #CET = nT + 3neT . Due to the reciprocity
guaranteed by the variational principle, the extended node sets CEx and CET are needed to compute the strains
inside the shaded element, and in turn, forces are generated on each of these nodes. It is interesting that the
use of an extended set of degrees of freedom bears some similarity to subdivision shell elements [40, 41, 42].
However, discontinuous Galerkin methods only couple degrees of freedom through face adjacencies; no
coupling is induced between elements sharing only vertices. The maximum number of nonzero elements per
row in the stiffness matrix is thus bounded. Furthermore, if all degrees of freedom belonging to an element
are numbered consecutively, the stiffness matrix has a block structure, where the number of nonzero blocks
in each row is known a priori (apart from boundary degrees of freedom). This predictable structure may
be exploited to design efficient factorization schemes for direct solvers or preconditioners (see, e.g., [43]).
Another advantage of this structure is that common element-level operations, such as interpolation of the
kinematic fields and the nodal force assembly in (64) and (65), use values largely stored in contiguous blocks
of memory.

Figure 4: Degrees of freedom needed to compute DG derivative on the grey element.

4This requirement holds for the nodes in the displacement interpolation and the nodes in the director interpolation.
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Regarding the representation of the nodal unknowns: the material director increments are naturally
stored as components of R2, that is, ∆TA = ∆TαAEα; it is recommended that the displacement increments
be stored relative to the fixed Cartesian basis of the ambient space R3, that is, ∆uA = uiAEi. In order
to reduce the matrix bandwidth and to promote usage of contiguous memory blocks, it is recommended
that the displacement and director correction unknowns are numbered together element-wise, and that the
spatial components of each unknown are indexed consecutively.

The integrals in (64) and (65) are computed approximately with a quadrature rule. For stiffness and
residual calculations, the selection of the quadrature rule is made using the Reissner plate system as a
guide. The highest degree term appearing in the Reissner virtual work is a polynomial of degree 2k− 2; the
quadrature rule of the shell element is selected to achieve at least this level of precision.

A step-by-step procedure for computing the internal forces in an element is given in Algorithm 2.

Algorithm 2 Computation of the internal nodal forces.

1: Interpolate ϕh and th according to (20) and (21):

ϕh =

nx∑
A

NAx̄A th =

nT∑
A

LAtA

2: Compute the DG derivatives ∂DG
α ϕh and ∂DG

α th using (62) and (63):

∂DG
α ϕh =

nx∑
A=1

∂αN
Ax̄A ±

3∑
e=1

nex∑
A=1

[re]Aα x̄A

∂DG
α th =

nT∑
A=1

∂αL
AtA ±

3∑
e=1

neT∑
A=1

[re]AαtA

3: Compute aαβ , γα, καβ :

aαβ = ∂DG
α ϕh · ∂DG

β ϕh

γα = ∂DG
α ϕh · th

καβ = ∂DG
α ϕh · ∂DG

β th

4: Apply the constitutive laws (11): (aαβ , γα, καβ ; a0
αβ , γ

0
α, κ

0
αβ) 7→ (ñαβ , q̃α, m̃αβ)

5: Collect nα,mα, l according to (10):

nα = ñαβ∂βϕ+ m̃αβ∂βt + q̃αt

l = q̃α∂αϕ

mα = m̃αβ∂αϕ

6: Compute the nodal internal forces using (64) and (65).
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4.3. Stabilization internal forces

The internal forces arising from the stability terms are assembled from each interface element. The
virtual work from the stability terms is written

Wx,stab(ϕh, δϕ) =
∑
e∈ΓI

nex∑
A=1

[fEx,stab]A · δx̄A

WT,stab(th, δt) =
∑
e∈ΓI

net∑
A=1

[fET,stab]A · δTA

The nodal forces are thus

[fex,stab]A = ±
∫
e

βx
he

JϕhKN
A j̄0ds (66)

[feT, stab]A = ±
∫
e

(Λ̄
A

)>
βT
he

JthKLA j̄0ds (67)

which are common to many DG methods, apart from the appearance of the nodal rotation matrix ΛA.

5. Examples

In this section, a numerical implementation of the proposed method is subjected to a set of benchmarks
and examples. In all problems, solution of the systems of equations is performed through the PETSc scientific
computing library [44] using the LU and Cholesky direct solver routines.

The quadratic element k = 2 is used in all examples. The nodal points in the interpolations are illustrated
in Figure 5. The issue of choosing the stabilization parameters optimally is not examined in detail here;
however, the method was found to be rather insensitive to the stabilization parameters, and taking cx, cT ∈
[1, 10] was found to be sufficient. An adaptive stabilization scheme as in [45] could be a useful development
in the future.

ϕh

(a)

th

(b)

Figure 5: Node locations for k = 2 element for (a) the displacement interpolation and (b) the director
interpolation

5.1. Linear benchmarks

In this section, the accuracy of the proposed method with linearized kinematics is assessed with published
linear benchmarks. Even in the restricted scope of linear problems, analyzing the accuracy of numerical
methods for shells is surprisingly difficult. For the most part, exact solutions are not known, and thus
measuring convergence rigorously in terms of norms is not possible. Most researchers and practicing engineers
largely rely on heuristic benchmarks to assess shell methods. Unfortunately, the most commonly used
benchmarks only test point-wise convergence of displacement or forces, and are not necessarily indicative of
the relative performance of different methods. Furthermore, many of the benchmark problems lack sufficient
regularity to be well-posed for shear-flexible shells: in particular, point loads are inadmissible in these
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theories. These shortcomings have been recognized over the last 20 years, and mathematical analysis has
been done to shed light on the inherent difficulties; in particular, the work Pitkäranta and co-workers [46, 47]
and Bathe and Chapelle [48, 49, 50] deserve mention. Reference [46] notes that in the limit of vanishing
thickness, well-posed shell problems range between two limiting regimes: (i) bending dominated problems
and (ii) membrane dominated problems. This suggests that if a method is able to function accurately and
efficiently (without locking) in both extremes, it is likely to be successful.

5.2. Patch tests

Membrane and bending patch tests were performed to verify that constant strain fields are exactly
reproduced by the element. Both tests were conducted on a domain of the unit square in the xy-plane. The
mesh used for these tests is shown in Figure 6. The parameters of the problems are the plate edge length
L, the plate thickness t, the Young’s modulus E, and the Poisson’s ratio ν.

(0, 0, 0) (1, 0, 0)

(1, 1, 0)(0, 1, 0)

(0.25, 0.35)

Figure 6: Geometry of the mesh used in the patch tests.

x

y

(a)

y

x

z

(b)

Figure 7: Patch test configurations. (a) Membrane test. Out-of-plane displacements are constrained on left
and bottom edges (not shown in figure). (b) Bending test.

In both problems, the implementation of the proposed method was verified to satisfy the above solutions
exactly at every nodal point (within machine precision).

5.3. Clamped plate problem of Chinosi and Lovadina plate bending

In this section, the convergence of the proposed method is evaluated numerically on the clamped plate
problem of Chinosi and Lovadina [51]. The convergence is measured over a range of plate thicknesses in
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order to check for locking in the thin plate limit. Ideally, the numerical solution should converge uniformly
as a function of thickness.

The problem is defined on a plate occupying the unit square, which is clamped on all sides. The plate is
subjected to the load f = f3E3, with

f3(x, y) =
Et3

12(1− ν2)

[
12y(y − 1)(5x2 − 5x+ 1)

(
2y2(y − 1)2 + x(x− 1)(5y2 − 5y + 1)

)
+ 12x(x− 1)(5y2 − 5y + 1)

(
2x2(x− 1)2 + y(y − 1)(5x2 − 5x+ 1)

) ]
.

The load contains a scale factor of t3 so that the displacement converges to a finite limit as t → 0. The
exact solution of the displacement field is

u3(x, y) =
1

3
x3(x− 1)3y3(y − 1)3

− 2t2

5(1− ν)

[
y3(y − 1)3x(x− 1)(5x2 − 5x+ 1)x3(x− 1)3y(y − 1)(5y2 − 5y + 1)

]
The first term is the Kirchhoff thin plate limit solution, while the second term represents the Reissner theory
correction, which decays as O(t2). The rotation field solution is

−∆t1 = θ1(x, y) = y3(y − 1)3x2(x− 1)2(2x− 1)

−∆t2 = θ2(x, y) = x3(x− 1)3y2(y − 1)2(2y − 1)

where θα are the infinitesimal rotation components of Reissner-Mindlin theory.
The proposed plate method was exercised on this problem for t/L = {1, 10−1, 10−2, 10−3}, where L is

the plate edge length.5 A uniform mesh of right triangles was used; each mesh refinement was performed
by uniform subdivision. Error is measured with respect to the broken (element by element) Hs norms,
s = 0, 1, which are indicated by ‖•‖s,h. The results are shown in Figure 8. In each plot, the optimal rate of
convergence with respect to the mesh diameter h in the corresponding norm is indicated by a grey triangle.
In each case, the optimal convergence rate is met, for every plate thickness.

Furthermore, the error for normalized plate thicknesses between 1 and 10−2 have converged to the same
asymptotic behavior. The errors for the t/L = 10−3 plate also appear to be approaching the same line,
possibly requiring one or two more levels of refinement. (Further refinement was not practical on available
computers). This is the expected behavior of a uniformly convergent method. These results attest to the
robustness of the proposed DG method as a general plate analysis tool for both thick and thin plates.

5.4. Clamped cylinder

This problem was suggested by Pitkäranta et al.[46] to test the convergence of a curved shell element
in a membrane dominated problem. The problem consists of a cylinder with clamped ends, subjected to a
pressure varying over the azimuth angle θ

p(θ)

p0
=

t

R
cos 2θ

where p0 is an arbitrarily chosen reference pressure, R is the cylinder radius, and t is the wall thickness.
The other parameters of the problem are the cylinder length L, and the material parameters specified in
Table 1.

5Clearly t/L = 1 is not physical, but including this range brackets most practical plate problems in terms of orders of
magnitude, and allows us to assess the mathematical properties of the method from “thick” plates to “thin”.
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Figure 8: Error in the numerical solution from the proposed plate DG method in the clamped plate problem
of Chinosi and Lovadina. The error is measured over a range of plate thicknesses to check for locking. The
results suggestive the method is uniformly convergent. (a) Error in uh in the L2 norm. (b) Error in θh in
the L2 norm. (c) Error in θh in the broken H1 norm.
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Table 1: Parameters for the clamped cylinder test.

Parameter Symbol

E/p0 200× 103

ν 1/3
L/R 1
cx 2
cT 2
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The convergence of the numerical method is measured with respect to an analytical calculation of the
strain energy given in [46], and is repeated in Table 2.6 The problem is solved on a sequence of regular
meshes, with the first mesh in the refinement sequence shown in Figure 8. Successive meshes are obtained
by uniform subdivision. In figure 9, the proposed DG method is compared with results obtained in [49] for
several of the MITC shell elements, which are among the best performing elements known. The MITC6
element, being the quadratic triangle element of the family, is the closest relative of the k = 2 DG shell
element tested here. In terms of the relative error in the strain energy, the present method is seen to be
similar in performance to the MITC6 element. The accuracy level remains comparable as the shell becomes
thin. The proposed method shows no tendency to lock in this membrane-dominated test.

Table 2: Exact solution of the strain energy for the clamped cylinder problem, from [46]. The energy is

C × 6p2
0R

3(1− ν2)

E

t

R
.

t/R C

0.01 2.688287959059254
0.001 2.796612585420251

X Y
Z

X Y
Z

symmetry

sym
m

etry

symmetry

clam
ped/free

Figure 8: Coarsest mesh used in the clamped and free cylinder benchmarks. The other meshes in the
sequence are created by uniform subdivision.

5.5. Free cylinder

This problem, another benchmark suggested by Pitkäranta et al.[46], tests curved shell elements in a
bending-dominated problem. The cylinder mesh is subject only to the symmetry constraints, and the end is
left free. The geometry, and properties, and meshes are identical to those in the clamped cylinder benchmark.
The loading is given by

p(θ)

p0
=

(
t

R

)3

cos 2θ.

The exact solution of the strain energy is given in Table 3.
The proposed method is again compared to the MITC elements in terms of relative error in strain

energy. The results are shown in Figure 10. The proposed method again displays good convergence with
mesh refinement. In the t/R = 10−2 case, the accuracy is nearly identical to the MITC6 element. In the

6The reference energy given in [46] contains an error, and should be multiplied by (1− ν)2 [47].
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Figure 9: Relative error in strain energy in the clamped cylinder benchmark. Results plotted for current
DG scheme as well as quadrilateral first order MITC elements (MITC4) and triangular second order MITC
elements (MITC6). The normalized shell thickness is (a) t/R = 10−2 and (b) t/R = 10−3.
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Table 3: Exact solution of the strain energy for the free cylinder problem, from [46]. The energy is

C × 6p0R
3(1− ν2)

E

(
t

R

)3

.

t/R C

0.01 0.704242080729323
0.001 0.700057056738260

t/R = 10−3 case, the accuracy of the proposed method is poorer than the MITC elements for coarse meshes,
but surpasses the MIT4 element by the third refinement level and reaches similar accuracy to the MITC6.
An additional refinement level was performed with the present method to show that this level of accuracy is
maintained. Again, the accuracy of the method remains acceptable in the thin limit. This benchmark and
the previous one attest to the versatility of the method as a high performing tool in both asymptotic limits.

5.6. Scordelis-Lo roof

The Scordelis-Lo roof problem is a classic shell benchmark. It has been shown to be a problem of
“intermediate” character in the thin limit, having finite bending and membrane energies as t → 0 [48].
A cylindrical section is loaded by gravity. The boundary conditions are shown in Figure 11a; the rigid
diaphragm condition is enforced as zero displacements in the x- and z-directions. The span angle is 80◦,
the roof length is 50 ft, the radius is 25 ft and the shell thickness is 0.25 ft. The material properties are
E = 432× 106 lb/ft2 and ν = 0. The gravity load is 90 lb/ft2 in the negative z-direction. Scordelis and Lo
computed the vertical displacement of the mid-span at the free edge as 0.3024 ft, which is used to normalize
the numerical results in Figure 11b. The current method is compared with a series of other shell elements:
the MITC4 element, the DG method of Güzey et al. [27], the one-point quadrature degenerated solid shells
of Liu et al. [52], and the assumed strain element of Simo et al. [53]. In this point-wise displacement metric,
the present DG method converges rapidly and without overshoot.

6. Nonlinear benchmarks

In this section, benchmark problems with geometric and material nonlinearities are solved with the
proposed method to assess its ability to function as a practical engineering tool.

6.1. Roll-up of a beam

This test is a classical elastica problem of Euler commonly used to demonstrate the large deformation
capability of beam and shell elements. A flat cantilever beam of length L width w, and thickness t is
subjected to a moment M at its tip. Euler’s theory predicts that the beam should deform into a complete
circle at a value of M = 2πEI/L, with I = wt3/12 the second moment of the cross-sectional area. The
parameters of the problem are indicated in Table 4.

The problem was solved in 12 equal load increments. Figure 12 depicts the equilibrium position of the
beam at several load increments, as well as the final deformed shape. The convergence condition was set to
be when the L2 norm of the residual forces is reduced to 10−8 of the initial out-of-balance. At each load
increment, 10 Newton iterations were required to reach equilibrium. The robsutness of the proposed method
can be appreciated by comparing these results with the performance of the “S4R” element of the commercial
finite element code Abaqus. In fact, Sze et al. [54] report a much larger number of load steps (125) and
maximum permitted number of Newton iterations (714) convergence using the default convergence criteria
and the default adaptive load incrementing scheme on the same problem.
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Figure 10: Relative error of the strain energy in the free cylinder benchmark. Results plotted for current
DG scheme as well as quadrilateral first order MITC elements (MITC4) and triangular second order MITC
elements (MITC6). The normalized shell thickness is (a) t/R = 10−2 and (b) t/R = 10−3.
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Figure 11: (a) Mesh and boundary conditions of the Scordelis-Lo roof problem. (b) Numerical calculations
of the Scordelis-Lo roof benchmark compared with selected other formulations.
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Table 4: Parameters used in the beam roll-up problem.

Parameter Value

E 12× 106 Pa
ν 0
L 10 m
w 1 m
t 0.1 m
cx 5
cT 5

X

Y

Z X

Y

Z(a)
(b)

Figure 12: Mesh and results for the clamped beam roll-up problem. (a) Mesh (b) the undeformed con-
figuration and the equilibrium position found after several of the loading increments, including the final
state.

6.2. Twisting of a bar

A cantilevered bar of length L, width w, and thickness t is twisted by application of a torque T at
the free end. This is another test of the shell method to efficiently find equilibrium positions under large
deformations and rotations. The parameters of the problem are given in Table 5. Note that in this case,
the bar is rather thick, with t/w = 0.2. The in-plane dimensions of the bar are the same as the previous
problem, and the same mesh is used. The material is taken to be elastic.

The load is applied in 25 equal increments. The convergence criterion is again taken to be a reduction in
the L2 norm of the residual to 10−8 of the value at the start of the load increment. The final state of the bar
is shown in Figure 13. The deformation is clearly quite large, with the bar being subjected to approximately
one and a half turns. The maximum number of Newton iterations needed in any increment is 8, and the
median value is 5. In fact, the number of Newton iterations to reach equilibrium decreased as the total load
increased. These features illustrate the robust convergence behavior obtained with the interpolations and
exact update formulae. In the absence of an exact solution for comparison, this example was carried out
for the sole purpose of showing the reliable performance of the quasi-static method in the presence of very
large deformations.

6.3. Pinched open hemisphere

The pinched open hemisphere problem is commonly used as a benchmark for both linear and nonlinear
shells. In this problem, a hemispherical shell with an 18◦ hole in the top is loaded by two pairs of diametrically
opposed forces on the equator, separated by 90◦. The forces are equal in magnitude, but opposite in sense
(see Figure 14a). The parameters of the problem are given in Table 6.
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Table 5: Parameters used for bar torsion problem.

Parameter Value

E 12× 106 Pa
ν 0
L 10 m
w 1 m
t 0.2 m
T 20× 103 N m
cx 5
cT 5

Figure 13: Final state of the bar in the torsion problem after twisting through one and a half turns.

Point loads are not admissible loads for shear-flexible shells with generalized Reissner-Mindlin kinematics,
such as the theory used in this thesis. Hence, despite its popularity, the utility of this problem as a benchmark
is limited. Yet, due to the fact that this example is so widely used, it is included here to show that the
behavior of the proposed DG method behaves similarly to other accepted shell methods. The results are
presented in Figure 14c as force vs. displacement plots of the inward and outward load points. The present
method is compared with the shell element of Simo et al. [55], which is based on the same shell theory as the
proposed method, but uses an assumed strain approach to control locking. Additionally, results are included
from the standard shell element of the widely used commercial solid mechanics software Abaqus [56] (the
Abaqus data come through the published work of Sze et al. [54]). The proposed method predicts very
similar results to the both of the other element formulations. The geometric nonlinearity in this problem
is rather strong, which may be observed from the disparity in the magnitudes of the inward and outward
displacements.

Table 6: Parameters used in the pinched hemisphere problem.

Parameter Value

E 68.25× 106 Pa
ν 0.3
R 10 in
t 0.04 in
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Figure 14: (a) Initial geometry of the pinched hemisphere problem showing the mesh. Quarter symmetry
is exploited. (b) Deformed geometry at P = 200. (Results have been reflected across symmetry planes to
depict entire domain.) (c) Force-displacement plots for the present method, as well as the shell element of
Simo [55] and the “S4R” shell element in the commercial finite element code Abaqus [56].
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6.4. Bending to membrane transition in a circular plate

The problem tests the ability of the proposed method to capture the nonlinear transition of a circular
plate from bending to membrane behavior under large deflections. The problem setup is illustrated in 15a.
A circular clamped plate is subjected to transverse distributed load and possible radial pre-tension. The
clamped plate has radius a and thickness t, and is loaded quasi-statically with a spatially uniform transverse
load of strength p0 that increases in time. (The direction of the load remains fixed, perpendicular to the
undeformed plate surface.) Additionally, a radial pre-tension with intensity N0 is applied at the start of the
simulation. The equilibrium position is found, then the external boundary is held fixed as the lateral load is
increased. The Poisson’s ratio of the material is ν = 0.27. The independent variables in dimensionless form

are p0a
4

Et4 , characterizing the transverse load intensity, and k = a
t

√
12(1−ν2)N0

Et , characterizing the pre-tension.

The plate aspect ratio t/a is taken as 0.1, so that the numerical results may be compared with calculations
from thin plate theory. The response of the plate is measured in terms of w/a, the center point transverse
deflection normalized by the radius.

Quarter symmetry is exploited in the mesh, which is shown in Figure 15b. The predicted response of
the plate is shown in Figure 16 in terms of load intensity vs. transverse deflection of the plate center.
The response of the plate is initially governed by bending and can be described well with Kirchhoff plate
theory, which predicts that the deflection scales linearly with p0. As the deflection of the plate grows to be
comparable with the thickness, membrane effects become important, and the response becomes increasingly
nonlinear. At large deflections, bending effects are small, and the plate response is dominated by in-plane

membrane forces, and membrane theory predicts that the transverse displacement goes as ∼ p
1/3
0 . Simula-

tions are conducted for three levels of pre-tension, and are compared with semi-analytical 7 predictions of
Sheplak and Dugundji using von Kármán nonlinear plate theory [57]. The results are plotted on logarithmic
scales so that the asymptotic behaviors can be clearly seen. The proposed method closely reproduces the
published results. It is particularly noteworthy that the proposed method accurately captures the transition
with a rather coarse mesh. (There is a boundary layer in the solution near the clamped boundary, resolving
this would improve the results further). The bending to membrane transition is present in many technolog-
ically important fracture problems involving impact and penetration, such as the design of force protection
and armor systems, and ship grounding analysis in naval architecture.

7. Summary and Conclusions

A discontinuous Galerkin method was proposed for the analysis of finitely deforming, shear-flexible shells.
The key feature of this method is that the usual tools to prevent locking in shells, mixed formulations and
reduced integration, are eschewed in favor of a selection of approximation spaces that are compatible with
the thin shell limit. Numerical evidence was presented that suggests the method is accurate and locking-free.
As in most discontinuous Galerkin methods, the number of unknowns generated for a given mesh is higher
than competing conforming methods; on the other hand, the absence of mixed variables allows the proposed
method to be cast variationally, in terms of an energy minimum principle. The energy principle approach
could prove advantageous for solution methods and mesh adaptation.
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Figure 15: (a) Schematic of the clamped circular plate problem. (b) Mesh used in simulation showing
quarter symmetry.
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center point deflection. Solid lines are data from 1D finite difference calculations of Dugundji and Sheplak
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Appendix A. Stiffness matrices

Appendix A.1. Bulk element stiffness matrix

The material and geometric parts involve areal integrals, and thus lead to the bulk element stiffness
matrix [k],

[k] = [kM] + [kG]

The material part of the stiffness matrix can be partitioned according to the fields as in

[kM] =

[
[kM
xx] [kM

xT ]

[kM
Tx] [kM

TT ]

]
(A.1)

The submatrices are

[kM
xx]AB =

∫
Ê

(
∂αN

A ±
3∑
e=1

[re]Aα

)(
∂γN

B ±
3∑
e=1

[re]Bγ

)(
Hαβγδ

m aβ ⊗ aδ

+Hαγ
s th ⊗ th +Hαβγδ

b bβ ⊗ bδ

)
j̄ dA (A.2)

[kM
xT ]AB =

∫
Ê

(
∂αN

A ±
3∑
e=1

[re]Aα

)
LBHαβ

s th ⊗ (Λ̄
>
Baβ)j̄ dA

+

∫
Ê

[(
∂αN

A ±
3∑
e=1

[re]Aα

)(
∂δL

B ±
3∑
e=1

[re]Bδ

)
Hαβγδ

b bβ ⊗ (Λ̄
>
Baγ)

]
j̄ dA (A.3)

[kM
TT ]AB =

∫
Ê

(
∂βL

A ±
3∑
e=1

[re]Aβ

)(
∂δL

B ±
3∑
e=1

[re]Bδ

)
Hαβγδ

b (Λ̄
>
Aaα)⊗ (Λ̄

>
Baγ)j̄ dA

+

∫
Ê

LALB ⊗Hαβ
s (Λ̄

>
aα)⊗ (Λ̄

>
Baβ)j̄dA (A.4)

and [kM
Tx] = [kM

Tx]>.
The geometric part of the stiffness matrix is likewise partitioned according to the fields, giving

[kG] =

[
[kG
xx] [kG

xT ]

[kG
Tx] [0]

]
with the submatrices given by

[kG
xx]AB =

∫
Ê

ñαβ

(
∂αN

A ±
3∑
e=1

[re]Aα

)(
∂βN

B ±
3∑
e=1

[re]Bβ

)
1j̄ dA (A.5)
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[kG
xT ]AB =

∫
Ê

q̃αLA

(
∂αN

B ±
3∑
e=1

[re]Bα

)
Λ̄Aj̄ dA

+

∫
Ê

m̃βα

(
∂αL

A ±
3∑
e=1

[re]Aα

)(
∂βN

B ±
3∑
e=1

[re]Bβ

)
Λ̄Aj̄ dA (A.6)

where 1 is the three-dimensional identity tensor, and [kG
Tx] = [kG

xT ]>.

Appendix A.2. Stability interface element stiffness matrix

The stability terms are computed on the interface elements with the integrals

[kexx,stab]AB = ±
∫
e

βx
he
NANB j̄0ds (A.7)

[keTT,stab]AB = ±
∫
e

βT
he
LALB(Λ̄

A
)>Λ̄

B
j̄0ds (A.8)

The positive sign applies when both shape functions are from the same side of the interface, and the negative
sign applies otherwise. The interface element stiffness matrix is then

[kestab] =

[
[kexx,stab] 0

0 [keTT,stab]

]
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