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Abstract: This paper studied a new order fulfilling system using mobile robots instead of
manual picking at online retailers’ distribution centers. This new generation of sustainable green
warehouse systems can improve productivity and flexibility. We measured the performance of
system, and provided design rules for velocity of robots. We builded open queue models for the
new order fulfilling system and calculated throughput time of this system given the number of
robots. This is one of earliest papers to introduce this new material handling system.
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1. INTRODUCTION

Recently online retailer Zappos had installed a new Kiva
Mobile Fulfilling System (MFS) at its distribution center
in Shepherdsville, Kentucky in 2008. This new system sig-
nificantly makes contribution to developing a supply chain
to speed delivery (Marks et al., 2011). Robotic warehouse
techniques are researched before, but until 2010, Kiva MFS
has been applied to warehouses like Zappos, Walgreens,
Staples, Diapers and Gap. Business Week report “Kiva
Systems are revolutionizing companies’ supply-chain and
distribution networks” (Scanlon, 2009). In 2012, Amazon
bought Kiva system for 775 million USD and implemented
a number of Kiva MFS. In August 2015, the company
officially changed its name from Kiva Systems to Amazon
Robotics (Nussbaum, 2015). Some other material handling
companies and robot companies are developing different
robotic picking systems. For example, RMT Robotics,
a high-tech company in Toronto, Canada is developing
robotic picking systems and robotic case picking systems
(see RMTrobotics.com). ADAM (autonomous delivery and
manipulation) robots of RMT companies are similar to
Kiva’s robots. Jingdong (see jd.com), one of the largest
online retailers with revenue of 18.51 billion USD and
sales of 41.9 billion USD in 2014, has built a MFS and
implementing robotic picking in a warehouse of 5,000 m2

in Shanghai.

Kiva MFS is a “parts-to-picker” warehouse systems. Com-
pared with other order fulfillment systems, Kiva MFS can
boost flexibility since it can adapt to changes of product
types which is not easy in traditional “AS/DS” equip-
ments. Another advantage of Kiva MFS is in scalability:
While traditional materials handling technology need large
initial investment on equipments like Mini-load AS/DS
(about 750,000 USD per aisle, 3-10 aisles are common
in a warehouse) and carousels (about 125,000 USD per
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carousel, 3-10 carousels are common in a warehouse), Kiva
MFS only needs to buy appropriate number of shelves
and robots (about 5,000 USD per robot) that fit to their
current demand volume (Kopytoff, 2012). When demand
scale increases, Kiva MFS simply needs to add robots and
shelves incrementally. Kiva MFS is regarded as a new
generation of sustainable green warehouse systems since
it can cut carbon footprint (traditional systems need to
keep on in most time whether they are needed or not.
Kiva MFS robots only run when they are needed), has less
noise (silent robots compared with noisy fork trucks and
conveyor belts ), reduce injuries to warehouse employees
since it is more economically designed (in a traditional
warehouse, workers need to pick, lift,carry by hands or
fork trucks, which bring hazards. Now workers only need
to monitor stations), reduce lighting since robots can work
with almost no lighting.

Our research is related to two research topics of AGV
(Automated guided vehicle system): the fixed guided paths
design and vehicle application in warehousing. In guided
paths design with a fixed route, an AGV simply moves
along the path determined in advance (Ventura and Lee,
2001), with the objective to minimize transport time in-
cluding AGV’s travel time and waiting time. However,
other AGVs use a non-oriented path guided system (Singh
and Tiwari, 2002), prefer softwares to hardwares in path
management, and can relatively easily change their paths
(Tompkins et al., 2010). Our research is closer to unfixed
guided paths. The selection of vehicle routing and schedul-
ing influences the performance of AGV systems (Toth
and Vigo, 2001). One of our objectives of the routing is
to minimize throughput time of the warehouse. Hu and
Egbelu (2000) studied different scheduling strategies for
idle vehicles discussing existing idle AGVs when service
requests arrive. Lee et al. (1998) proposed the algorithm
of sequential path generation to heuristic can generate
collision-free shortest path for multiple AGVs. Qiu et al.



M/G/1

M/G/1

M/G/1

triangular

triangular

triangular

Fig. 1. A queue networks model for Kiva system

(2002) developed efficient algorithms for AGV’s scheduling
and routing problems. The focus strategy of our paper is on
a random selection strategy and the minimize throughput
time selection strategy.

2. MODEL AND ANALYSIS

We use the following notations:

R: the number of robots.

N : the number of pickers.

v: the velocity of robots.

w: the width of aisles.

W : the width of the warehouse.

L: the length of aisles.

Tr: throughput time.

We consider two protocols: (1) R robots only serve for one
order picker, (2) serve for multiple order pickers.

2.1 Pickers do not share robots

In this section, we consider the situation where R robots
serve for 1 order picker. After receiving an order request,
a robot follows the protocol:(1) leave order picker station,
(2) go to storage grid to pick a shelf which includes
requested item , (3) return to a picker station it is serving,
(4) after the worker pick the item the robot will return the
shelf to its original storage position and the robot will also
return the picker station.

The system is a centralized system and the order arrival
process to robots are Poisson processes. We assume the
storage position follows uniform distribution.

The serve protocol of the robot is as follows: After orders
arrive, each robot, originally staying with the order picker,
will leave the picker and go to storage positions to pick one
shelf which can provide items to that order. Then the robot
will return to the picker it is serving.

Lemma 1 If robot r serves the leftmost or rightmost picker,
a single robot serve system can be described as a M/Tr/1
queue on condition that W = L.

Proof The arrival process is Poisson. We mainly need
to show the inter-serve time follows uniform distribution.
We assume the beginning position of robot r is the
leftmost picker’s position. Note a robot receives their
orders information wirelessly and use cameras to read
navigational barcode stickers on the warehouse floor, and
robots will travel in a straight lines. Supposed a robot
receives an order with a storage position Xr ∼ U [0,W ]
and Yr ∼ U [0, L], let Z = X + Y and its density function
is h(z).

R robots will carry shelves to the picker. R departure
processes merge into an arrival process to the picker.
The inter-service time of the picker follows exponential
distribution. So the picker service system can be described
as a G/M/1 system. We describe the system by Figure 1.

(1)Analysis of robots

We use ED to denote the expected delay time, and ES to
denote the expected service time. The expected waiting
time EW = ED + ES. From Wolff (1989)(Equation

154,Page 280), we have EW = λE(S2)
2(1−ρ) + 1

µ , where ED =
λE(S2)
2(1−ρ) is the delay time and 1

µ is the service time. For

robot r as a server in a M/G/1 queue, we have E(S2) =
7(W+L)2

6v2 , µ = v
W+L , ρ = λr(W+L)

v . Substituting E(S2), µ,
ρ into EW , we obtain the expected waiting time at robot
r is,

EWr =
7λr(W + L)2

12v2(1− λr(W+L)
v )

+
W + L

v
. (1)

The equation 1 can be used to design the velocity of robots,
we have the following design rule,

Design rule 1 There exists a minimal acceptable
velocity of robots such that expected waiting time at
robots is less than ωR.

Proof Since EWr(v) is decreasing function of v. Let the
upper bound of EWr (a measure for service level)at robots
be ωR, the minimal acceptable velocity of robots v is given
by

7λr(W + L)2

12v2(1− λr(W+L)
v )

+
W + L

v
= ωR. (2)

Or if the velocity of robots is given by mechanical reasons,
the maximal throughput to guarantee a service level ωR
is ΣR1 λr, and λr can obtain from equation 2. We have a
bound of throughput

THR = ΣR1
12v(ωR − (W + L))

(W + L)(12vωR − 5(W + L))
. (3)

We substitute the squared coefficient of variation of an

inter-arrival time of robots c2aR = 1,ρ = λr(W+L)
v ,the

squared coefficient of variation of an inter-service time
of robots c2sR = 1

3 , µ = v
W+L ,EWr from equation 1,

into the equation c2dR = c2aR + 2ρ2c2sR − 2ρ(1 − ρ)µEW
from Whitt (1983)(Equation 37,Page 2799),and obtain the
squared coefficient of variation of an inter-departure time,



c2dR = 1+
2λ2
r(W+L)2

3v2 −2λr(1− λr(W+L)
v )[ 7λr(W+L)2

12v2(1−λr(W+L)
v )

+

W+L
v ].

(2)Superposition of departure streams from robots

The departure processes are merged into one process,
which is also arrival process of the picker. We use methods
from Whitt (1983) (see page 2797-2794).

λaP = ΣR1 λr (4)

With the asymptotic method, the squared coefficient of
variation of an inter-arrival time of the picker is c2aP =

ΣRr=1
λr

ΣRr=1λr
{1+

2λ2
r(W+L)2

3v2 −2λr(1−λr(W+L)
v )[ 7λr(W+L)2

12v2(1−λr(W+L)
v )

+

W+L
v ]}.

(3)Analysis of pickers

The expected delay time in a picker

EDP =
ρ(c2aP + c2sP )

2µ(1− ρ)
g(ρ, c2aP , c

2
sP ) (5)

is given by Whitt (1983) (see page 2802). g(ρ, c2aP , c
2
sP )

is defined as exp[− 2(1−ρ)(1−c2aP )2)

3ρ(c2
aP

+c2
sP

)
] when c2aP < 1, and 1

when c2aP ≥ 1. We substitute c2sP = 1, and λaP = ΣR1 λr

into EDP , and obtain EDP =
ρ(c2aP+1)
2µP (1−ρ)g(ρ, c2aP , c

2
sP ) =

ΣR1 λr(c2aP+1)

2µP (µP−ΣR1 λr)
g(ρ, c2aP , c

2
sP ).

We consider the mean number of jobs in queue Lq. This
is also the number of robots who are carrying shelves and
waiting before the picker.

Lq =
(ΣR1 λr)

2(c2aP + 1)

2µP (µP − ΣR1 λr)
g(ρ, c2aP , c

2
sP ) (6)

In this system, there is an upper bound ι on Lq. We show
we can find a design rule for velocity of robot.

Design rule 2 There exists a minimal acceptable
velocity of robots such that the number of robots who are
carrying shelves and waiting before the picker Lq is less
than space limitation ι.

Proof c2aP is a decreasing function of v. g(ρ, c2aR, c
2
sR)

is decreasing function of v when c2aR < 1, and 1 when
c2aR ≥ 1. So Lq is a decreasing function of v. By solving
the following function,

Lq(v2) =
(ΣR1 λr)

2(c2aP (v2) + 1)

2µP (µP − ΣR1 λr)
g(ρ, c2aP (v2), c2sP ) = ι.

(7)
We can get a minimal acceptable velocity of robots, v2.

(4)Analysis of stability of systems

For robots, λr < µR = v
W+L , r = 1, ..., R.

For pickers’ workstation, ΣR1 λr < µP .

(5)Throughput time

We estimate the average customer throughput time of
orders, which is a sum of components: the delay time that
an order spends in the queue at storage grids waiting for
being carried by robots EDr, the average service time
of a robot 1

µR
, the delay time that order spends in the

queue at storage grids waiting for being handled by pickers’
workstation EDP , and expected picking time by order
pickers 1

µP
. From Tr = EDr + 1

µR
+ EDP + 1

µP
, we have

Tr = 7λr(W+L)2

12v2(1−λr(W+L)
v )

+W+L
v + 1

µR
+

ΣR1 λr(c2aP+1)

2µP (µP−ΣR1 λr)
g(ρ, c2aP , c

2
sP )+

1
µP
.

(6)Optimal robot number

We make two assumptions: 1) We assume the work is
equally allocated to R robots, and the arrival rate of the
Rth a robot is λr = λ/R.

2) We assume λr are equal, then ΣR1 λr = λ.

We obtain the function of Tr(R),

Tr(R) =
7 λR (W+L)2

12v2(1−λ(W+L)
Rv )

+ 1
µR

+
λ(c2aP+1)

2µP (µP−λ)g(ρ, c2aP , c
2
sP ) +

1
µP
.

T r(R) =
7 λR (W + L)2

12v2(1− λ(W+L)
Rv )

+
1

µR

+
λ(c2aP + 1)

2µP (µP − λ)
g(ρ, c2aP , c

2
sP ) +

1

µP
.

(8)

Lemma 2 EDr(R) is a decreasing function of R.

Proof We can observe from

EDr(R) =
7 λR (W + L)2

12v2(1− λ(W+L)
Rv )

=
7λ(W + L)2

12v2(R− λ(W+L)
v )

.

(9)

Lemma 3 EDP (R) is a nonlinear function of R. When

R ≥ 3λ(W+L)
2v , EDP (R) is an increasing function.

Proof The expected delay time of the pickers’ worksta-
tion

EDP (R) =
λ(c2aP + 1)

2µP (µP − λ)
g(ρ, c2aP , c

2
sP ). (10)

The monotony of EDP (R) is only related to c2aP (R).

We substitute ΣRr=1λr = λ into c2aP (R) and obtain,

c2aP (R) = 1+ 3λ2(W+L)2

2R2v2 − 2λ(W+L)
Rv = 1

3 + 3
2 [λ(W+L)

Rv − 2
3 ]2.

As R increases, the function EDP (R) is nonlinear. It first
decreases and then increases after reaching the critical

point. When 0 < R ≤ 3λ(W+L)
2v , the function EDP (R)

decreases, when R ≥ 3λ(W+L)
2v , EDP (R) increases. By

solve the function,we can get the optimal robot number.

Lemma 4 When 0 < R ≤ 3λ(W+L)
2v , Tr(R) is a decreasing

function, we have a R limited by other constraints. When

R ≥ 3λ(W+L)
2v , Tr(R) is a convex function.

Proof Let ∂Tr(R)
∂R = 0, we can obtain R0 from the func-

tionR2
0 = 6λ2

µP (µP−λ)g(ρ, c2aR, c
2
sR)[R0−λ(W+L)

v ]2[ v
2λ(W+L)−

1
R0

]. If R > 3λ(W+L)
2v , the optimal number of robots

R∗ = R0.

If R ≤ 3λ(W+L)
2v , the optimal number of robots R∗ =

3λ(W+L)
2v .



2.2 Pickers share robots

In this section, we consider the situation where one picker
and R robots.

Assumptions:

Orders arrive following a Poisson process with the rate of
λ. Orders are assigned to available robots following FCFS.
The service rate of the picker processing an order is µp and
the service time follows a general distribution. The picker
handles robots in a FCFS. A robot puts back a shelf to the
closed available spot after the picker finishes the shelf. A
robot does not go back to the picker after returning a shelf,
but stay there under the shelf until getting the instruction
for the next assigned order. Two queuing systems that are
connected in the queue network. M/G/R/FCFS for the
first queueing. The service time µ1 depends on the waiting
time and processing time of the second queuing system.
M/G/1/FICFS for the second queuing. The arrival rate
depends on the first queue but it should be λ.

(1)Analysis of robots

The expected delay time in a robot

EDr = φ(ρ, c2aR, c
2
sR, R)(

c2aR + c2sR
2

)EDr(M/M/R).

(11)
φ(ρ, c2aR, c

2
sR, R) is given by equation(2.25) in Whitt

(1993).

EDr(M/M/R) = 1
µR(1−ρ) [ (Rρ)R

R!(1−ρ) ]ζ and ζ is given by

equation (2.4) in Whitt (1993).

The departure process is also arrival process of the picker.
We use methods from Whitt (1983) (see page 2799). The
squared coefficient of variation of an inter-arrival time of

the picker is c2aP = c2dR = 1+(1−ρ2)(c2aR−1)+ ρ2√
R

(c2sR−1)

= 1 + ρ2√
R

(c2sR − 1).

(3)Analysis of pickers

The expected delay time in a picker

EDP = φ(ρ, c2aP , c
2
sP , 1)(

c2aP + c2sP
2

)EDP (M/M/1).

(12)

where c2aP is given by equation, c2sP = 1, ρ = λ/(µP ),
EWr(M/M/1) = 1

µ(1−ρ) [ ρ
(1−ρ) ]ζ and ζ is given by equation

(2.25) in Whitt (1993).

We consider the mean number of jobs in queue Lq. This
is also the number of robots who are carrying shelves and
waiting before the picker.

Lq = λφ(ρ, c2aP , c
2
sP , 1)(

c2aP + c2sP
2

)EDP (M/M/1) (13)

In this system, congestion near pickers’ workstation is
most serious since aisle width is limited here. There is an
upper bound ι on Lq. We show we can find a design rule
for velocity of robot.

(4)Analysis of stability of systems

For robots, λ < RµR. For pickers’ workstation, λ < µP .

3. NUMERICAL EXPERIMENTS

This section shows how the mobile picking systems prac-
tices, especially to optimize the number of robots. An
important objective for Kiva warehouse automation op-
erations is to determine the optimal number of robots for
“Pickers do not share robots” model.

While increasing the number of robots can improve the
throughput time, it will also increase the robots fixed
cost and robots waiting cost. While increasing the velocity
of robots can improve the throughput time, it will also
increase the technology cost of the robots. Our objective
is to minimize the total operational cost, including the
fixed cost of robots, the robots waiting cost and velocity
increasing cost. The objective function is the sum of the
fixed cost of robots, the waiting cost of robots and velocity
increasing cost. The robots waiting cost ΣRr=1crλrEWr,
where cR is the marginal cost of a robot, cr is the expected
waiting cost per robot, EWr is the total expected waiting
time, crEWr is the total expected waiting cost. The speed
increasing cost cv∆v, where cv is the unit speed increasing
cost, and ∆v is the increment of the velocity of robots,

we have min cRR+ ΣRr=1crEWr + cv∆v.

Since v0 is the initial velocity of robots, and vr is the
velocity of r robot,

we have min cRR+ ΣRr=1crEWr + cv(vr − v0).

3.1 Determine the number of robots

We presented λ = 0.4, the width of the warehouse W = 40
and the length of aisles L = 50. Here we ignored other
constraints that may affect the optimal number of robots.
When v=10 m/min, by solving the three-dimensional
equation(8), R0 = 2.33, 3.27 + 3.74i or 3.27 − 3.74i. As
R is an integer, we deleted the imaginary. Since R0 ≤
2λ(W+L)

v , we obtained the optimal number of robots R∗ =
2λ(W+L)

v = 7. Similarly, by solving the three-dimensional
equation(8), when v=20 m/min, R0 = 1.12, 1.43 + 1.93i
or 1.43− 1.93i, we obtained the optimal number of robots
R∗ = 4. When v=30 m/min, R0 = 0.74, 0.91 + 1.29i or
0.91 − 1.29i, we obtained the optimal number of robots
R∗ = 2. When v=40 m/min, R0 = 0.55, 0.67 + 0.96i or
0.67 − 0.96i, we obtained the optimal number of robots
R∗ = 1. When v=50 m/min, R0 = 0.44, 0.53 + 0.78i or
0.53 − 0.78i, we obtained the optimal number of robots
R∗ = 1.

Figure 2 shows that with the increase of the number of
robots, the throughput time non-linear increases. Since R
is an integer, when v=10 m/min, the number of robots
is less than seven, the trend of throughput time declines,
and then begin to increase. When v=20 m/min,the num-
ber of robots is less than four, the trend of throughput
time declines,and then begin to increase. When v=30
m/min,the number of robots is less than two, the trend
of throughput time declines,and then begin to increase.
When v=40 m/min, the number of robots is less than one,
the trend of throughput time declines, and then begin to
increase. When v=50 m/min, the number of robots is less
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than one, the trend of throughput time declines, and then
begin to increase. When the number of robots is larger
than 30, the throughput time have no great changes.

3.2 Determine the velocity of robots
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Figure 3 shows that as the velocity of robots increases, the
throughput time decreases. Due to technical capacity, aisle
width and other constraints, the velocity of robots has an
upper bound.

4. CONCLUDING

This paper studies a new order fulfilling system featured
by a number of robots transporting movables shelves to
order pickers. This new generation of sustainable green
warehouse systems can improve productivity and flexibil-
ity simultaneously. We measure the performance of system,
and provide design rules for warehouses. We compare two
protocols: To share or no to share robots. The models
is this paper can be used to determine the number of
robots, determine the velocity of robots, and compute
throughput given service level.This is one of earliest papers
to introduce this new material handling system.
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