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A NEW PERSPECTIVE ON RANDOMIZED GOSSIP ALGORITHMS

Nicolas Loizou & Peter Richtárik

School of Mathematics, The University of Edinburgh, United Kingdom

ABSTRACT

In this short note we propose a new approach for the design
and analysis of randomized gossip algorithms which can be
used to solve the average consensus problem. We show how
that Randomized Block Kaczmarz (RBK) method—a method
for solving linear systems—works as gossip algorithm when
applied to a special system encoding the underlying network.
The famous pairwise gossip algorithm arises as a special case.
Subsequently, we reveal a hidden duality of randomized gos-
sip algorithms, with the dual iterative process maintaining a
set of numbers attached to the edges as opposed to nodes
of the network. We prove that RBK obtains a superlinear
speedup in the size of the block, and demonstrate this effect
through experiments.

Index Terms— Average Consensus Problem, Linear Sys-
tems, Networks, Randomized Gossip Algorithms, Random-
ized Block Kaczmarz

1. INTRODUCTION

The average consensus problem and randomized gossip algo-
rithms for solving it appear in many applications, including
distributed data fusion in sensor networks [1], load balancing
[2] and clock synchronization [3]. This subject was studied
extensively in the last decade; for instance, the seminal 2006
paper of Boyd et al. [4] on randomized gossip algorithms mo-
tivated a fury of subsequent research and generated more than
1500 citations to date. For a survey of selected relevant work
prior to 2010, we refer the reader to the work of Dimakis et al.
[5]. For more recent results on randomized gossip algorithms
we suggest [6, 7, 8]. See also [9, 10, 11].

1.1. The average consensus problem

In the average consensus (AC) problem, we are given an undi-
rected connected network G = (V, E) with node set V =
{1, 2, . . . , n} and edges E . Each node i ∈ V “knows” a
private value ci ∈ R. The goal of AC is for every node
of the network to compute the average of these private val-
ues, c̄ := 1

n

∑
i ci, in a distributed fashion. That is, the

exchange of information can only occur between connected
nodes (neighbors).

1.2. Contributions

In this paper we revisit, from a fresh perspective, the AC prob-
lem. Our starting point is the recent observation of Gower
and Richtárik [12] that the most basic randomized gossip al-
gorithm (“randomly pick an edge (i, j) ∈ E and then replace
the values stored at vertices i and j by their average”) is an
instance of the randomized Kaczmarz (RK) method for solv-
ing consistent linear systems, applied to a specific linear sys-
tem encoding the AC problem. The RK method was first an-
alyzed in 2009 by Strohmer and Vershynin [13], and since
then, there was an explosion of activity in refining, general-
izing and extending the results [14, 15, 16, 17, 18]. In this
paper, we examine the Stochastic Dual Ascent (SDA) method
of Gower and Richtárik [12], which includes the RK method
as a special case, in the context of AC problem. We show
how the complexity result of SDA implies a bound on the
ε-averaging time which is well-known in the literature for a
more restricted class of randomized gossip algorithms. Fur-
ther, we explain how SDA uncovers a fundamental but hith-
erto hidden duality of randomized gossip algorithms, and give
a natural interpretation thereof. We then focus on a specific
subclass of SDA which is identical to the randomized block
Kaczmarz method [14] in the primal space, and which can be
interpreted as a randomized Newton method in the dual space.
In particular, we show that the method has a certain superlin-
ear speedup property, and explain what this property means.
Finally, we perform experiments to justify the last claim.

2. SDA: STOCHASTIC DUAL ASCENT

In this section we briefly review those aspects of the work of
Gower and Richtárik [12] on Stochastic Dual Ascent (SDA)
which we will need in the rest of the paper.

Consider an m × n real matrix A (assume it does not
contain any zero rows) and vector b ∈ Rm such that the linear
system Ax = b is consistent (i.e., has a solution). Since we
do not assume the solution is unique, we shall be interested in
a particular solution:

min
x=(x1,...,xn)∈Rn

1
2‖x− c‖

2 subject to Ax = b. (1)

Above, c = (c1, . . . , cn) ∈ Rn is a given vector and ‖ · ‖ is
the standard Euclidean norm. In words, in (1) we are seeking
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the solution of the system which is closest to c. By x∗ we
denote the solution of (1). The dual of problem (1) is

max
y∈Rm

D(y) := (b−Ac)>y − 1
2‖A

>y‖2. (2)

SDA is a randomized iterative algorithm for solving (2), per-
forming the iteration yk+1 = yk + Skλ

k, where Sk is a ma-
trix chosen in an i.i.d. fashion throughout the iterative process
from an arbitrary but fixed distribution (which is a parameter
of the method) and λk is a vector chosen afterwards so that
D(yk + Skλ) is maximized in λ. In general, the maximizer
in λ is not unique. In SDA, we let λk to be the least-norm
maximizer, which leads to the iteration

yk+1 = yk −Rk(A(c+ A>yk)− b) (3)

where Rk := Sk((Sk)>AA>Sk)†(Sk)> (this matrix is
always symmetric and positive semidefinite). With the se-
quence of the dual iterates {yk} we associate a sequence of
primal iterates {xk} as follows:

xk := c+ A>yk. (4)

By combining (4) with (3), we obtain the following algorithm:

xk+1 = xk −A>Rk(Axk − b) (5)

If Sk is chosen randomly from the set of unit coordi-
nate/basis vectors inRm, then the dual method (3) is random-
ized coordinate descent [19, 20], and the corresponding pri-
mal method (5) is RK. More generally, if Sk is a random col-
umn submatrix of them×m identity matrix, the dual method
is the randomized Newton method [21], and the correspond-
ing primal method is a block version of RK [14]. We shall
describe the more general case in more detail in Section 4.

The basic convergence guarantees for both the primal and
the dual iterative processes are presented in the following the-
orem. We set y0 = 0 so that x0 = c, which corresponds to
the vector of initial private values stored at the nodes.

Theorem 2.1 (Complexity of SDA [12]). Let y0 = 0 and
assume that the matrix H := E[Rk] is well defined and non-
singular. Then the dual iterates {yk} of SDA defined in (3)
for all k ≥ 0 satisfy

E[D(y∗)−D(yk)] ≤ ρk(D(y∗)−D(y0)). (6)

Likewise, the corresponding primal iterates, defined in (4)
and explicitly written in (5), for all k ≥ 0 satisfy

E[‖xk − x∗‖2] ≤ ρk‖x0 − x∗‖2. (7)

The convergence rate ρ is given by

ρ := 1− λ+min(A>HA) ∈ (0, 1), (8)

where λ+min(·) denotes the minimum nonzero eigenvalue.

3. RANDOMIZED GOSSIP & SDA

We propose that randomized gossip algorithms be viewed as
applications of SDA (either in the primal or dual form) to a
particular problem of the form (1) (resp. (2)). In particular, we
let c = (c1, . . . , cn) be the initial values stored at the nodes
of G, and choose A and b so that the constraint Ax = b is
equivalent to the requirement that xi = xj (the value stored at
node i is equal to the value stored at node j) for all (i, j) ∈ E .

Definition 3.1. We say that Ax = b is an “average consensus
(AC) system” when Ax = b iff xi = xj for all (i, j) ∈ E .

It is easy to see that Ax = b is an AC system precisely
when b = 0 and the nullspace of A is {t1n : t ∈ R}, where
1n is the vector of all ones in Rn. Hence, A has rank n − 1.
Moreover, it is easy to see that for any AC system, the so-
lution of (1) necessarily is x∗ = c̄ · 1n — this is why we
singled out AC systems. In this sense, any algorithm for solv-
ing (1) will “find” the average c̄. However, in order to obtain
a distributed algorithm we need to make sure that only “local”
(with respect to G) exchange of information is allowed.

3.1. Standard Form and Mass Preservation

Assume that Ax = b is an AC system. Then the primal itera-
tive process (5) can be written in the form

xk+1 = Wkx
k, (9)

where Wk := I − A>RkA. Eq (9) is the standard form
in which randomized gossip algorithms are written. What is
new here is that the iteration matrix Wk has a specific struc-
ture which guarantees convergence to x∗ under very weak as-
sumption (see Theorem 2.1). Note that if y0 = 0, then x0 = c,
i.e., the starting primal iterate is the vector of private values
(as should be expected from any gossip algorithm).

The primal iterates (5) of SDA enjoy a mass preservation
property (the proof follows from (4) in view of A1n = 0):

Theorem 3.2 (Mass preservation). If Ax = b is an AC
system, then the primal iterates (5) for all k ≥ 0 satisfy:
1
n

∑n
i=1 x

k
i = c̄.

3.2. ε-Averaging Time

Let zk := ‖xk − x∗‖. The typical measure of convergence
speed employed in the randomized gossip literature, called
ε-averaging time and here denoted by K(ε), represents the
smallest time k for which xk gets within εz0 from x∗, with
probability greater than 1− ε, uniformly over all starting val-
ues x0 = c. More formally, we define

K(ε) := sup
c∈Rn

inf{k : P
(
zk > εz0

)
≤ ε}.

This definition differs slightly from the standard one in that
we use z0 instead of ‖c‖.



Inequality (7), together with Markov inequality, can be
used to give a bound on K(ε), formalized next:

Theorem 3.3. Assume Ax = b is an AC system. Let
y0 = 0 and assume H = E[Rk] is nonsingular. Then for
any 0 < ε < 1 we have K(ε) ≤ 3 log(1/ε)/ log(1/ρ) ≤
3

1−ρ log(1/ε), where ρ is defined in (8).

It can be shown that under the assumptions of the above
theorem, A>HA only has a single zero eigenvalue, and
hence λ+min(A>HA) is the second smallest eigenvalue
of A>HA. Thus, ρ is the second largest eigenvalue of
I − A>HA = E[Wk]. The bound on K(ε) appearing in
Thm 3.3 is often written with ρ replaced by λ2(E[Wk]) [4].

4. BLOCK GOSSIP ALGORITHMS

In the previous section we highlighted some properties of
SDA relevant to the randomized gossip literature, but without
interpreting SDA as a gossip, or for that matter, distributed
algorithm. In this section we remedy this by focusing on a
particular AC system and a particular random matrix Sk. By
being specific, we will be able to give a natural interpretation
of SDA as a gossip algorithm.

In particular, we choose A to be the |E| × n matrix such
that Ax = 0 directly encodes the constraints xi = xj for
(i, j) ∈ E . That is, row e = (i, j) ∈ E of matrix A contains
value 1 in column i, value−1 in column j (we use an arbitrary
but fixed order of nodes defining each edge in order to fix A)
and zeros elsewhere.

Next, Sk is selected in each iteration to be a random col-
umn submatrix of the m × m identity matrix corresponding
to columns indexed by a random subset of edges Sk ⊆ E . We
shall write Sk = ISk . If Sk = {1, 2}, for instance, then Sk
consists of the first and second column of I. For simplicity,
from now on we will drop the subscript and write S instead
of Sk. This choice means that primal SDA is the randomized
block Kaczmarz (RBK) method.

4.1. Randomized Block Kaczmarz as a Gossip Algorithm

In our setup, the primal iterative process (5) has the form:

xk+1 = xk −A>IS(I>SAA>IS)†I>SAx
k. (10)

Algorithm (10) can be shown to be equivalent to the following
“sketch and project” iteration (see [22] for additional equiva-
lent viewpoints):

xk+1 = argmin
x∈Rn

{‖x− xk‖2 : I>SAx = 0} (11)

which is a (more general) variant of the RBK method of
Needell [14]. More specifically, this method works by pro-
jecting the last iterate xk onto the solution set of a row
subsystem of Ax = 0, where the selected rows correspond to
a random subset S ⊆ E of selected edges.

While (10) (resp. (11)) may seem to be a complicated al-
gebraic (resp. variational) characterization of the method, due
to our choice of A we have the following result which gives a
natural interpretation of RBK as a gossip algorithm (see also
Figure 1).

Theorem 4.1 (RBK as a Gossip Algorithm). Consider the
AC problem. Then each iteration of RBK (Algorithm (10))
works as follows: 1) Select a random set of edges S ⊆ E , 2)
Form subgraph Gk of G from the selected edges 3) For each
connected component of Gk, replace node values with their
average.

Fig. 1: Example of how the RBK method works as gossip algorithm. In
the presented network 3 edges are randomly selected and a subgraph of two
connected components (blue and red) is formed. Then the nodes of each
connected component update their private values to their average.

There is a very closed relationship between RBK and the
path averaging algorithm [23]. The latter is a special case of
RBK, when S is restricted to correspond to a path of vertices.
Notice that in the special case in which S is always a sin-
gleton, Algorithm (10) reduces to the randomized Kaczmarz
method. This means that only a random edge is selected in
each iteration and the nodes incident with this edge replace
their local values with their average. This is the pairwise gos-
sip algorithm of Boyd [4]. Theorem 4.1 extends this interpre-
tation to the case of the RBK method.

4.2. Randomized Newton as a Dual Gossip Algorithm

In this subsection we bring a new insight into the randomized
gossip framework by presenting how the dual iterative pro-
cess that is associated to RBK method solves AC problem.
The dual iterative process (3) takes on the form:

yk+1 = yk − IS(I>SAA>IS)†A(c+ A>yk). (12)

This is a randomized variant of the Newton method applied
to the problem of maximizing the quadratic function D(y)
defined in (2). Indeed, as we have seen before, in each itera-
tion we perform the update yk+1 = yk + ISλ

k, where λk is
chosen greedily so that D(yk+1) is maximized. In doing so,



we invert a random principal submatrix of the Hessian of D,
whence the name.

Randomized Newton Method (RNM) was first proposed
by Qu et al. [21]. RNM was first analyzed as an algorithm
for minimizing smooth strongly convex functions. In [12] it
was also extended to the case of a smooth but weakly convex
quadratics. This method was not previously associated with
any gossip algorithm.

The most important distinction of RNM compared to ex-
isting gossip algorithms is that it operates with values that are
associated to the edges of the network. To the best of our
knowledge, it the first randomized dual gossip method. In
particular, instead of iterating over values stored at the nodes,
RNM uses these values to update “dual weights” yk ∈ Rm
that correspond to the edges E of the network. However, de-
terministic dual distributed averaging algorithms were pro-
posed before [24, 25].

Natural Interpretation. In iteration k, RNM (Algo-
rithm (12)) executes the following steps: 1) Select a random
set of edges Sk ⊆ E , 2) Form a subgraph Gk of G from the
selected edges, 3) The values of the edges in each connected
component of Gk are updated: their new values are a linear
combination of the private values of the nodes belonging to
the connected component and of the adjacent edges of their
connected components.

Dual Variables as Advice. The weights yk of the edges
have a natural interpretation as advice that each selected node
receives from the network in order to update its value (to one
that will eventually converge to the desired average).

Consider RNM performing the kth iteration and let Vr
denote the set of nodes of the selected connected component
that node i belongs to. Then, from Theorem 4.1 we know
that xk+1

i =
∑
i∈Vr x

k
i /|Vr|. Hence, by using (4), we obtain

the following identity:

(A>yk+1)i = 1
|Vr|

∑
i∈Vr (ci + (A>yk)i)− ci (13)

Thus in each step (A>yk+1)i represents the term (advice)
that must be added to the initial value ci of node i in order to
update its value to the average of the values of the nodes of
the connected component i belongs to.

4.3. Importance of the dual perspective

It was shown in [21] that when RNM (and as a result, RBK)
is viewed as a family of methods indexed by the size τ = |S|
(we choose S of fixed size in the experiments), then τ →
1/(1 − ρ), where ρ is defined in (8), decreases superlinearly
fast in τ . In [21], this was only shown for full rank A. In the
next result we extend it to AC matrices A (which are neces-
sarily rank-deficient).

Theorem 4.2. RBK enjoys superlinear speedup in τ . That is,
as τ increases by some factor, the iteration complexity drops
by a factor that is at least as large.

5. NUMERICAL EXPERIMENTS

We devote this section to experimentally evaluate the perfor-
mance of the proposed gossip algorithms: RBK (the primal
method) and RNM (the dual method). Recall that these meth-
ods solve the same problem, and their iterates are related via
a simple affine transform. Hence, all results shown apply to
both RBK and RNM.

Through these experiments we demonstrate the theoreti-
cal results presented in the previous section. That is, we show
that for a connected network G, the complexity improves su-
perlinearly in τ = |S|, where S is chosen as a subset of E
of size τ , uniformly at random. In comparing the number
of iterations for different values of τ , we use the relative er-
ror ε = ‖xk − x∗‖/‖c − x∗‖. We let ci = i for each node
i ∈ V . We run RBK until the relative error becomes smaller
than 0.01. The blue solid line in the figures denotes the actual
number of iterations (after running the code) needed in order
to achieve ε ≤ 10−2 for different values of τ . The green
dotted line represents the function f(τ) := `

τ , where ` is the
number of iterations of RBK with τ = 1 (i.e., the pairwise
gossip algorithm). The green line depicts linear speedup; the
fact that the blue line (obtained through experiments) is below
the green line points to superlinear speedup.

The networks used in our experiments are the ring graph
(cycle) with 30 and 100 nodes (Fig 2) and the 4×4 grid graph
(Fig 3). When we choose |S| = m (i.e., we choose to update
dual variables corresponding to all edges in each iteration),
then ρ = 0, and thus the method converges in one step.

(a) Ring graph with n = 30 (b) Ring graph with n = 100

Fig. 2: Superlinear speedup of RBK on the ring graph.

(a) 4× 4 grid graph (b) Speedup in τ

Fig. 3: Superlinear speedup of RBK on the 4× 4 grid graph
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