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A CLASS OF MULTIPARAMETER OSCILLATORY SINGULAR
INTEGRAL OPERATORS: ENDPOINT HARDY SPACE BOUNDS

ODYSSEAS BAKAS, ERIC LATORRE, DIANA CRISTINA RINCON MARTINEZ,
AND JAMES WRIGHT

ABSTRACT. We establish endpoint bounds on a Hardy space H' for a natural
class of multiparameter singular integral operators which do not decay away
from the support of rectangular atoms. Hence the usual argument via a Journé-
type covering lemma to deduce bounds on product H?! is not valid.

We consider the class of multiparameter oscillatory singular integral oper-
ators given by convolution with the classical multiple Hilbert transform kernel
modulated by a general polynomial oscillation. Various characterisations are
known which give L? (or more generally LP,1 < p < oo) bounds. Here we
initiate an investigation of endpoint bounds on the rectangular Hardy space
H' in two dimensions; we give a characterisation when bounds hold which are
uniform over a given subspace of polynomials and somewhat surprisingly, we
discover that the Hardy space and LP theories for these operators are very
different.

1. INTRODUCTION

There is a well developed connection between singular Radon transforms and os-
cillatory singular integral operators. For instance if ¥ is an n-dimensional surface
given by the graph {(z, ®(z)) : = € R"} of a polynomial mapping ® = (P,... , Py)
where each P; € R[X1,...,X,], then the so-called Hilbert transform along X,

Hs k f(2,2) = po. - flx—y,z—2(y)K(y) dy,

has served as a model operator in the theory of singular Radon transforms. Here
K is a classical Calderén-Zygmund kernel on R™. By computing the partial fourier
transform in the z variable and using Plancherel’s theorem, one sees that the L?
boundedness of Hy x is equivalent to uniform L? boundedness of the oscillatory
singular integral operator

Teg(z) = p.v./ glx —y) eig'(b(y)K(y) dy

n

where we require uniformity in the frequency variable ¢ € R*. This connection has
been developed more deeply in [15] and [16]. It is well known that the operator
Hx i is bounded on all LP with 1 < p < oo (see e.g. [18], Chapter XI ) but
a major open problem in the theory of singular Radon transforms is to establish
endpoint bounds; for example, to determine whether or not Hs i is weak-type

1991 Mathematics Subject Classification. 42B20, 42B30.
1


http://arxiv.org/abs/1803.01046v1

2 0. BAKAS, E. LATORRE, D. MARTINEZ, AND J. WRIGHT

(1,1) or whether it is bounded on the appropriate real Hardy space H* (see [6] for
a result in this direction). This endeavour still seems to be a long term goal.

Although the boundedness properties of Hyx x and the uniform boundedness prop-
erties of T¢ are no longer equivalent outside L?, it has been of interest to study
operators of the form

Sp i g(x) = p.v./ g(x —y)eiP(y)K(y) dy

n

for a general polynomial P € R[Xy,...,X,] and determine whether they are of
weak-type (1,1) or bounded on H!. A negative result would imply a negative
outcome (and a positive result would give some indication) for the corresponding
singular Radon transforms. Since uniformity in the frequency variable £ for the
case P(z) = & - ®(z) where ® is a general polynomial mapping is required, one
is naturally interested in LP, weak-type (1,1) and/or H! bounds for Sp j which
are uniform® over the space of all polynomials of a fixed degree; that is, bounds
which are uniform in the coefficients of the polynomial oscillation P. This has been
accomplished by a number of authors; for example, weak-type (1,1) bounds by
Chanillo and Christ [4] and Hardy space H! bounds by Hu and Pan [9], all bounds
are uniform in the coefficients of the polynomial P.

Recently the theory of singular Radon transforms has been extended to the multipa-
rameter setting and this was done for a number of reasons; see Street’s monograph
[19] and the references therein. This extension poses a number of challenges in
part because it is no longer the case that L? boundedness holds, even when the
underlying surface is polynomial. However we now have a good understanding of
the cancellation conditions needed to guarantee boundedness in various cases and
furthermore, a general LP theory has been developed (see for example, [11], [7],
[17], [19], [14], [2] and [3]). Needless to say, endpoint bounds for multiparameter
singular Radon transforms are even more challenging than the one parameter case
which remains open.

Exactly as in our discussion above, there is a connection between multiparameter
singular Radon transforms and multiparameter oscillatory singular integrals where
now the underlying Calderén-Zygmund K has a multiparameter structure; for ex-
ample, the multiple Hilbert transform kernel K(y) = 1/y1 - - - yn. From the work of
Ricci and Stein [17] (via a simple lifting procedure), one can determine precisely
when Spx (equivalently Hy i) is uniformly bounded on L?. If P(z) = Y cqu® is
a real polynomial in n variables, we define the support of P as Ap = {a : ¢, # 0}.
For any finite subset A C N}, let VA denote the finite dimensional subspace of real
polynomials P in n variables with Ap C A.

Ricci-Stein Theorem ([17]) Fiz A C Nj. Then
sup |Spxllrzmr: < o (1)
PeVa

holds if and only if for every a = (a1,... ,a,) € A, at least n — 1 of the o ’s are
even.

IThere are other reasons for seeking such uniform estimates; see e.g. [18]
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There is an equivalent formulation for Hy, . This result depends on our particular
choice of multiparameter Calderén-Zygmund kernel K(y) = 1/y1 - - - yn. For a fixed
polynomial P € R[X,Y], then a necessary and sufficient condition on P is given in
[20] so that Sp k is bounded on L?(R?) for all multiparameter Calderén-Zygmund
kernels K.

When uniformity is not sought, there are a number of results which characterise
those individual polynomials P for which Sp x is bounded on L?. Furthermore these
characterisations depend on how one truncates the operator Spx. For example,
when n = 2 such a characterisation was given in [2] for the local operator (when the
integration over y € R? is restricted to |y| < 1) and the characterisation is given
in terms of the Newton diagram of P which depends only on the support Ap. In
[12] a different characterisation (but still depending only on the support of P) was
found for the global operator where the integration is taken over all y € R2.

This is in sharp contrast to what happens in n = 3 for the corresponding triple
Hilbert transform with a polynomial oscillation; in [3], it was shown that two poly-
nomials P and ) may have the same support Ap = Ag yet Spx is bounded on
L? whereas Sq i is not bounded on L?! Here K(y) = 1/y1y2y3, the triple Hilbert
transform kernel. So when n = 3, matters are much more delicate but nonetheless
a characterisation of L? boundedness was found in [3] and depends not only on the
support of P but also on the parity of the coefficients. See also [5] for other results
inn = 3.

Here we will be interested in examining how the multiparameter oscillatory singular
integral operator Sp x acts on rectangular atoms. Recall that a rectangular atom
is an L? function ar supported in some rectangle R (an n-fold product of intervals)
satisfying |lagr|| > < |R|~'/? and possessing the cancellation property

/aR(xla"' sy Lj—1,Y, Tj41,- - - ,I'n)dy =0

for any 1 < j < n and for almost every z1,...,%;—1,%j+1,...,Tn. Given the
connection with multiparameter singular Radon transforms, we will be mainly in-
terested in uniform estimates and in particular we seek to understand when the
estimate

/R el < ¢, (2)
n ’Y

holds uniformly for all P € VA for a fixed A C Njj. Here v > 2 and R is the ~
dilate of R with respect to its centre. If Sp is bounded on L?, then an application
of the Cauchy-Schwarz inequality allows us to control ||Spxarl L1 (yr)-

If there exists an € > 0 such that C, < Ccy™¢ holds for some C, and all v > 2,
then® Spx : H] .q(R") = L*(R"), assuming that Spx is also bounded on L?.
Furthermore, the H;rod — L' operator norm of Spx depends only on C. and
its L? operator norm. This result depends on a Journé-type covering lemma for

2here Hérod is the natural real Hardy space associated to multiparameter dilations/structure.
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rectangles and is due to R. Fefferman [8] in the two parameter setting and J. Pipher
[13] in the general multiparameter setting.

Interestingly any v decay bound in (2) is false for oscillatory singular integral oper-
ators, even in the one parameter setting, n = 1 (see Section 2 below). This explains
our interest in obtaining bounds first on the rectangular Hardy space H, . (R™), the

atomic space constructed from rectangular atoms.® Hence bounds on le)wd (R™), if

true, requires a new, alternate approach and we leave this for a future investigation.

Our goal is to characterise those finite sets A C Nj such that (2) holds uniformly
for all P € VA with a constant C, = C, A only depending on v and A (and of
course, independent on the rectangular atom ag). By accomplishing this, we can
then import any of the many L? results known for Sp i, uniform or otherwise, and
obtain boundedness from HL  to L'. But we highlight the Ricci-Stein Theorem
which gives us a characterisation of when uniform L? bounds hold and so, together
with (2), would give us uniform bounds on H} .
In this paper we provide such a characterisation in two dimensions, when n = 2.
First of all, without loss of generality, we may assume (0,0) ¢ A. Furthermore
when A C N2, we set A; = {k>0:(j, k) € A} and Ak ={j >0:(j,k) € A}.

Theorem 1.1. If A C N3 with (0,0) ¢ A, then (2) holds uniformly for all P € Va
if and only if

(a) (1,0) and (0,1) ¢ A, and  (5) |AollAs] +|A%[AY = 0. (3)

Condition (a) is well known to be a necessary condition for any boundedness result
on H' for oscillatory singular integral operators, even in the one parameter setting.
Condition (b) is the new, interesting necessary condition for this 2 parameter case.
Assuming condition (a) holds, we see that condition (b) fails precisely when there
exist a (0,ko) € A with kg > 2 AND there is a (1,k1) € A for some k1 > 1 (or
the corresponding situation holds with the coordinates swapped). In particular if
P(s,t) = cst? + dt*, then the Ricci-Stein Theorem shows that Sp x is bounded on
L? (and in fact on all LP,1 < p < oo) with bounds which are uniform in ¢ and d.
However by Theorem 1.1 this is not the case on H} ., showing a difference in the

rect’
LP and Hardy space theories for this class of singular integral operators.

We can combine Theorem 1.1 with the Ricci-Stein Theorem to obtain a character-
isation for uniform boundedness from HL . (R?) to L'(R?). First, we observe that
if Spic : Hho(R™) — L'(R™) is bounded uniformly for P € Va, then necessarily
Sp i is bounded on L%(R™), uniformly for P € Va (this follows from a standard
argument, see for example [10]) and so A C Nf necessarily satisfies the condition

that every o € A has at least n — 1 even components.

Corollary 1.2. Let A C N2 and assume, without loss of generality, (0,0) ¢ A.
Then Spy : HL (R?) — LY*(R?) is bounded uniformly for P € Va if and only if

jk is even for every (j,k) € A AND condition (3) holds.

3elements in Hll) roq @lso have an atomic decomposition but the atoms are more complicated,

associated to arbitrary open sets of finite measure.
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Notation Uniform bounds for oscillatory integrals lie at the heart of this paper.
Keeping track of constants and how they depend on the various parameters will be
important for us. For the most part, constants C' appearing in inequalities P < CQ
between positive quantities P and @ will be absolute or uniform in that they can
be taken to be independent of the parameters of the underlying problem. We will
use P < Q to denote P < CQ and P ~ Q to denote C~'Q < P < CQ. If P is
a general real or complex quanitity, we write P = O(Q) to denote |P| < C'Q and
when we want to highlight a dependency on a parameter v, we write P = O,(Q)
to denote |P| < C,Q.

We will use multi-index notation: if o = (j,k) € N2 and = = (z1,22) € R?, we
denote z® as the monomial z{x%5 and we use the notation

aj+k¢

10T

to denote the associated partial derivative. We also write |a| = j + k.

p(x) =

2. FAILURE OF DECAY IN (2)

Here we prove that there is no decay in 7 in the bound (2) for the class of oscillatory
singular integral operators, even in the one parameter case. Hence one cannot
establish bounds on H;rod for this class of singular integral operators by the usual
method via a Journé-type covering lemma.

We begin with the most classical oscillatory singular integral operator
- 1
Tf(x) = / el fly)dy
R

and prove the following.

Proposition 2.1. There does not exist an € > 0 such that
/ |Tar(xz)|de < Cy~¢
Y| ]
holds for some C', every v > 2 and all atoms aj associated with intervals I.
Proof We simply consider intervals I = [—1/2|I|,1/2|I|] for small |I| < 1 and
take ar(s) = e " b;(s) where b(s) = 1 when 0 < s < |I|/2 and b;(s) = —1 for

—1/2|I] < s < 0. On easily checks that a; is an atom associated with the interval
I. We will take v = |I|~2 and show that

[ @l z 0 ()
Y[ <]

which will establish the proposition. For this atom a;, we add and subtract 1/ in
the definition of Tar(z) to conclude that

1 .
/ |Tar(z)|de > / — ‘/ ez(xfs)zaf(s)ds de — 2971
YII<]e] ri<iel 12 e



6 0. BAKAS, E. LATORRE, D. MARTINEZ, AND J. WRIGHT

where we take v = [I|72 > 1. However e/~ q(s) = ¢ e=25p; () and so

i(a—s)? | cos(z|I]) — 1] 1
e ar(s)ds >
‘/]R || 1] || 7]

holds for any z satisfying ||z||I| — k7 /2| < 7/200 for some odd k > 1. Therefore
when v = |I|~2, we have

/719 |bI|f17| > /E‘ |b1|$| Z /E

k:kodd k:kodd

= [br(22)| =

where Ey, = {x : ||z||I| — k7/2| < 7/200}. Since |Ej| ~ |I|’1 and |z| ~ k/|I| for
x € Fy, we have

TN AT ST DY R

k:k odd k:odd k:odd
establishing (4) as desired. [ |

From Proposition 2.1 we can easily construct examples in higher dimensions simply
by taking n-fold products.

3. A MORE ROBUST FORMULATION AND SOME PRELIMINARIES

We fix a finite set A C NZ satisfying condition (3) in Theorem 1.1. We also fix
a P(z) = Y cox® with Ap C A but we keep in mind that our estimates should
always be independent of P € Va.

Let ¢ € C§°(R) be an even function which is supported in {|s| ~ 1} and has the
property that >° , ¢(277s) =1 for all s € R\ {0}. Set ¢,(s) = #(27s)/s and for

p=(p,q) €7% y= (y1,y2) € R?, we write ¢p(y) = ¥p(y1)Yq(y2) and

D)= [ e @ =) dy.

For any finite subset F C Z™, we consider the following general truncation of our
operator Sp i,

Trf(z) = > Tpf(x
peEF
Our main goal is to prove the bound (2) for 7'z, uniformly for all finite subsets F.
This implies a more robust version of Theorem 1.1. We note that the Ricci-Stein
Theorem also holds uniformly for all such truncations. By translation invariance
and since we seek bounds which hold uniformly for all P € VA, we may assume,
without loss of generality, that the support of the rectangular atom ag is the unit
square; that is, matters are reduced to showing that for v > 2,

/ _ [Tra(@)de < C; (5)

holds uniformly for all atoms a supported in the unit square, for all P € VA and
for all finite subsets F C Z2.
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We now give a few useful results which we will use time and time again.

For Q(x) = Y dax® € Va define |Q|1 = Y |do| and for some fixed Cy > 1, set
NIl = max _inf  |07Q(x)].

aEA IE[—C(),C()]"
Lemma 3.1. Let A C NJ be a finite subset with 0 ¢ A. For Co > 1, define ||| - |||
as above. Then there is a positive constant C' > 0, dependingly only on A, Cy and
n such that

el > ¢l (6)
holds for every Q € Va.

Proof The proof is just the usual equivalence of norms argument although ||| - is
not a norm (the triangle inequality fails). However it does act enough like a norm
to make the usual argument work.

Note that ||[AQ]|| = |A||||Q|]] for any scalar A € R and from this we see that (6)
holds with

C = inf
Q]

where S1 = {Q € Va : ||Q]]1 = 1}. It suffices to show that C' is positive. Suppose
C = 0. Since S; is the unit sphere in the finite dimensional vector space VA with
respect to the norm || - ||1, it is compact and so we can find a sequence @Q); € Sy
such that |Q; — Q|1 — 0 for some @ € S; and such that [||Q;||]| — 0. We will see
that this implies Q = 0 which gives us our contradiction since ) € S; and hence
nonzero.

First we observe that for every o € A, the corresponding coefficient d’, of @; tends
to zero. This follows from |||Q;||| — 0 by a simple induction argument, starting
with those ap € A satisfying || = maxqea |af and hence 9*°Q;(x) = dJ, ag!. But
since [|Q; — Qll1 — 0, we see that d’, converges to d, the corresponding coefficient
of Q. Hence d, = 0 for every o € A and so Q = 0. [ ]

We will use Lemma 3.1 to estimate oscillatory integrals with polynomial phases. In
fact we will use Lemma 3.1 in combination with the following higher dimensional
version of van der Corput’s lemma.

Lemma 3.2. Let A be a finite subset of Ny such that 0 ¢ A. Then for every
Co > 0 and ¢ € C(R™) with supp(y) C [—Co, Co]™, there is a 6 with 0 < § < 1
and C, both depending only on |A|,Cy and n, such that whenever we have a uniform
bound from below |0*Q(x)| > X on the support of b for some derivative a € A of
an element Q) € VA, then

| / e y(ayda| < ONT (Wl + VL) (7)
holds.

For our applications, the importance of this lemma lies in the uniformity in the
bound (7), the fact that the constant C' depends only on A, Cjy and n and otherwise
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can be taken to be independent of @ and A. Due to this uniformity, the proof does
not quite follow from the standard higher dimensional version of the classical van
der Corput’s lemma as found for instance in [18], Proposition 5 page 342, since we
do not necessarily have uniform control of the C* norms of Q(x)/\. This would
be the case IF A is comparable ||Q||1, and although by Lemma 3.1 we can always
find a 8 € A so that the uniform bound [0°Q(z)| 2 ||Q||1 holds on the support of
¥ (and hence the result in [18] would imply the bound in (7) with A = ||Q||1), our
applications combining Lemmas 3.1 and 3.2 are somewhat nonstandard.

At times our arguments will have the following format: given a polynomial phase
® € VA whose corresponding oscillatory integral given in (7) is the object we would
like to bound, it will not be clear how to successfully estimate ||®||; from below.
Nevertheless, we will be able pass to a related polynomial Q = Q¢ whose norm
IQ|lx can be effectively bounded below and furthermore, we will be able to relate
derivatives of @@ to derivatives of ®. We will apply Lemma 3.1 to @ to find a
derivative of ) bounded below by ||Q]|1 and then deduce a derivative bound for ®
in terms of ||Q|[1. We will then apply Lemma 3.2 to ® with A = ||@]]1. The two
norms ||®||; and ||@]]1 will not be comparable in general.

Proof of Lemma 3.2 The bound (7) follows from a higher dimensional version
of van der Corput’s lemma found in [1], Proposition 4.14 on page 1004, whose
hypotheses are satisfied for polynomials with bounded degree with a concluding
bound which has the desired uniformity.

In fact the bound given in Proposition 4.14 in [1] is

‘/neiQ(m)w(w)dw < XVl + V9] 1)

but since the bound ||¢|| 1 trivially holds, we see that (7) holds with 6 = min(§*,1/2)
where * = max(1/|a| : @ € A). This completes the proof of Lemma 3.2.

As an application of Lemmas 3.1 and 3.2, with the format described above, we
derive an L? bound for T},. More precisely, since we are interested only in how T},
acts on atoms supported in the unit square, we consider the operator

Tofla) = [ wple =)™ (o)) dy

for some ¢ € C§°(R?) supported in [—3,3]? with p(z) = 1 for all z in the unit
square. We will apply the above two lemmas to deduce a bound for the kernel of
T3 T, which in turn will give us a bound on the L? operator norm of Tp,.

For p = (p,q) € Z* and o = (j,k) € NZ, we use the notation p - @ = pj + gk and
2P 0 3% = (2Pz1 )7 (2922)".

Proposition 3.3. Let p = (p,q) € Z? be ordered, p < q. Then for some 0 < § < 1,
{2—q/2 |Ca* Pjstaqks | =8 ifp<o

ITollz> <

< (8)

9= (0+0)/2 |¢, 2PU-—1Haka| =5 if p > ()

where P(z) =Y cax® and a. = (J«, k«) is any element in Ap with j, > 1.
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Proof The kernel L of Tng is

L(z,u) = ¢(x)p(u) /RQ ! P=a)=Plu=wly (y — 2)p(y — u) dy.

Note that L is supported in [—3,3]* and if p < 0, L is further supported when
|1 —ui| < 2P. We make the change of variables y — 2P o y to conclude

L) = plajpt2 ™ [ 0 0()dy,

where
(y) = Ppouly) = Z ca2P*[(y—2"Pox)* — (y—27Pou)?]

and

O(y) = Opauly) = Pyr —27Px1) Pyr — 27 ua) Gy — 27 722) P(y2 — 2" Tus)

Y1 — 271’171 Yy — 271’11,1 Yo — 27‘1172 Yo — 27‘111,2

is a smooth function, supported in [—5,5]? with uniformly bounded C* norms. Let
gt) = S caZP Uy —2Pox+ 1270 (x— w)®
and note that ®(y) = g(1) — ¢g(0) = 01 g'(t)dt. Writing
X = y1— 2P +t27P(x1 —wy) = (1 —0)(y1 — 2 Px1) + t(y1 — 27 Puq),
and similarly for Y, we see that X, Y € [—10, 10]? for all ¢ € [0,1]. Also ®(y) =

1
0

aEAPp aEAp
1
= / Z 2pj+qk |:Cj+1,k(j+1)(xl —ul) —|—Cj1k+1(l€—|—1)(172 —UQ)]XJYk:| dt
0 -
(7,k)eAp

where Ap = (Ap — (1,0)) U (Ap — (0,1)). We note that Ap € A where A =
(A —(1,0)) U(A —(0,1)) and every (j,k) € A satisfies j + k > 1. We now apply
Lemma 3.1 to Q(X,Y) =3_; 11cA, d;  X7Y* where

djje = 277 ei0 k(G + D (@1 — w) + ¢ (B + 1) (22 — u2)]

and A to find a derivative o = (j,k) € A such that [0°Q(X,Y)| > ||Q|1 for
(X,Y) € [-10,10]2.

Hence 0%Q(X,Y) is single-signed on [—10, 10]? and so

1
o0 (y)| = / 0% QY| dt 2 [QlL

holds for all y = (y1, y2) in the support of ©. Here we used the fact that X and Y
are translates of y; and y2; X = y1 + B1,Y = y2 + By for some By, Bs.

Using the fact that j. > 1, we see that ||Q|l1 > |d;, -1k,

9p(jx—1)+gqks

Cjuudu(®1 = w1) + €111 (Ra + 1) (22 — u2)|

> |Cj x |2p(j*71)+qk*

z1 — uy + B(a, uz)|
where B(xz2,u2) depends only on xs2,us and the coefficients of P.



10 0. BAKAS, E. LATORRE, D. MARTINEZ, AND J. WRIGHT

We now apply Lemma 3.2 to ® and A = ||Q||1 to deduce the existence of a § = §(A)
with 0 < 6 < 1 such that

|L(z,u)| < 27PFD |¢; 4, 2P0 DHE () 4y 4 B(ag, ug))| . (9)
Since flrl<3 |1 — uy + B(xa,u2)|~°dr < Cs, we have

=

sup / L@, )| de S 27 0FD [e;, y 2P0~ DFabs

Similarly sup, [ |L(z,u)|du < 2-#+9)|c;, ), 200 —D+aks
tion of Schur’s lemma shows

~9 and hence an applica-

1T Tplle S 27 PH Dy, 270D F ks

~

-4
)

implying
1Tpllre S 270HD/2ley g, 200~ DFak|=0/2

which proves the Proposition for the p > 0 case.

When p < 0, we use the fact that L(x,u) is supported in E where E = {(x,u) €
[—3,3]* : |]z1 — u1| < 2P}. Using the bound (9) for L(z,u), integrating over E and
making the change of variables 1 — 27P(x; — u1) we have

/EIL(wju)Idw < 2(p+q)2p|cj*,k*2p(j*1)+qk*|5/||<3|2p:v1+B(x2,u2)|‘Sd:ﬂ.

Since

/ 2P21 + B(x2,u2)| *dz = 27@/ |21 + 277 B2, uz)|Oda <27,
=<3 2| <3

we have

/|L($7u)|d9€527q2*5p|0j*,k*2p(j*71)+qk*|75 = 27, p, 2P0 TR0

As above, this leads to the bound ||Tp*Tp||L2 < 27¢;, g, 2P 9% | =9 and hence

Tollze S 2772 |ej. 0, 227 H 00|70/

which finishes the proof of the Proposition. [ ]

We end this section with a final useful lemma.

Lemma 3.4. Let Py be the collection of real polynomials of a single variable of
degree at most d, and let G C Z be a finite set of integers. Then

Cq = sup }Z /Rl/]p(S)eiQ(s)dS

QEPa,G PG

is finite.

This is a well known result; see for example [18], Chapter XI, page 513.
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4. PROOF OF THEOREM 1.1 — PRELUDE TO THE SUFFICIENCY PART

As stated in the previous section, we will establish a more robust version of Theorem
1.1 by showing that the uniform bound (2) holds for T’r where F is any finite subset
of N2. Without loss of generality we may take the elements p = (p,q) € F to be
ordered, say p < ¢q. Furthermore, since we are proving L' bounds away from the
unit square, for |x| > ~, it suffices to consider a finite F with every p = (p,q) € F
satisfying p < ¢ and ¢ > ¢y > 1. For such F, we see that for any atom a supported
in the unit square, Tpa(z) with p € F is automatically supported where |z] > ~
and so it suffices to prove

/ Tra(z)|dz < 1, (10)

uniformly for all atoms a supported in the unit square and all such F described
above.

We decompose such an F into Oja((1) disjoint sets such that
|Cag| 27770 > |eal 20 (11)

holds for some ag € A and all « € A. It suffices to consider a fixed subset Fy where
(11) holds, say for ap = (jo, ko) € A, and establish (10) with F replaced by Fo.

The case jy > 1. First we will consider the case jo > 1. In this case, for p € Fy,
we consider the difference operator Dy = T, — S, where

Sof(e) = [ wpla=)e™er ) 1) dy.

For p € Fo, y2 € [—1,1] and |z2 — y2| ~ 29, we have |za| ~ 27 since ¢ > ¢, > 1.
Hence |(z2 — yo)* — 25| < 29%1, implying |P(z1 —y1, 22 — y2) — P(z1 — y1,22)| S
|Cjo ko [2P70F2(R0=1) wwhenever 1y, (2 —y) # 0 and p = (p, ) € Fo. Therefore we have

IDpallzs S [ejo,hg| 270 F ko= (12)
for any p = (p,q) € Fo and all atoms a supported in the unit square.

To complement the estimate (12), we will observe that the corresponding operator

Sof@) 1= [ tple =TI o) 1) dy

for Sy, satisfies the same L? operator norm bound as Tp; namely

Proposition 4.1. Let p = (p,q) € Z? be ordered, p < q. Then for some 0 < § < 1,

19pllze S

~

2-4/2 o, 2PIx ks =0 if p <
{ Car, | ifp<0 (13)

9—(p+a)/2 |Co¢* 9p(jx—1)+qk- |—6 if p>0

where P(z) =Y cax® and a, = (j«, k«) 15 any element in Ap with j, > 1.
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We now deompose Fy further into a disjoint union Fy = Fo 4+ U Fp,— where for
p = (p,q) € Fo.+, we have p > 0 and for p = (p,q) € Fo,—, we have p < 0. Hence
for p € Fo,+, Dpa(x) is supported in

{x = (z1,22) : |z1| ~ 27 and |za| ~ 2‘1}

when ¢ is an atom supported in the unit square. Hence by the Cauchy-Schwarz
inequality, || Dpal|: < 2P+t9/2| Dpal| 12 for p € Fo 1. Also when p € Fo —, Dpa(z)
is supported in

{./L' = (xl,fl,'g) : |$1| 5 1 and |$2| ~ 2(1}

and so | Dpal|zr < 29/2||Dpal|2 for p € Fo—. Hence applying Propositions 3.3

and 4.1 to the operators T}, and Sp separately (recall that we are assuming jo > 1
for the moment) shows us that

Cio.k 9pjo+qko|—4 ifp <0

IDpall 5 om0l (14)

|Cj07k02p Jo q o| ifp>0

which, together with (12) allows us to successfully sum || Dpal|;: over p € Fy =
Fo,+ U Fo,—.

To see this, let us treat the cases p € Fp 4+ and p € Fo_ separately. When
p = (p,q) € Fo+, we take a convex combination of the bounds in (12) and (14);
for any 0 < € < 1, we have

|Cjo ko 2pjo+q(ko -b |E

<
[Dpallzr < [0 o 2P0 ¥R 51—

We choose € such that

0 — 1
> 622 or ejo >6(1—€)(jo—1) (15)
1—c¢ Jo

This allows us, for fixed ¢, to sum in p < ¢ to conclude

Y IDpallr S [lejor 2000 ~D1]
PEFY |

e—d6(1—¢)

where g, ={p€Z:(p,q) € Fo,+}.

Finally, for ¢ > ¢, > 1, we split this sum further; when |cj, x,[200 50D < 1, we
choose € so that €/(1 — €) > 0 (which implies the condition (15)) and this allows
us to sum over ¢ > 0 to obtain an O(1) bound. When |cj, x,[200TRo~19 > 1 we
further restrict € so that €/(1 —€) < §. We note that it is possible to choose € so
that

jo— 1 €
5 Jo : <
Jo 1—c¢
and with this choice, we can successfully sum over these ¢ > 0 and hence

> IIDpal ST (16)

PEFo0,+

< 0
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We now turn to bounding the sum |Dpallr:. Again we take a convex

PEFo,—
combination of the bounds in (12) and (14); for any 0 < € < 1, we have

|Cj0 ko 9pjo+q(ko—1) |6

[Dpallzr <

- iod+qko1€—0(1—€) o
~ |Cj0 k02pj0+qko|5(l—e) = [|Cj0)k0|2pJ0 q 0} 9—¢€q

for any p = (p,q) € Fo,—. Again we will fix ¢ and sum over p € F§ _ first. For
those p such that |cj, k2P0 F9%0 < 1, we choose € such that € — (1 —€) > 0 and
for those p such that |cj, x,|2P70F%% > 1, we choose € such that e — §(1 —€) < 0. In
either case we see that

Y IDpallr < 27
peF",,

and so

Y IDpall S1. (17)

PEFo,—
The bounds (16) and (17) reduce matters (modulo Proposition 4.1) to examining

[ >-per, Spallr in the case jo > 1.

We first consider those p = (p, q) € Fo,+ and note that

Spa(z) = /R2 [Vq(z2 — y2) — Yq(@2)] (w1 — y1)e P @1 91:22) g (y) dy

by the cancellation property of the atom a. Since |za| ~ |z2 — y2| ~ 27 when
Yg(r2 —y2) # 0 and ya € [—1,1], we have

Spa(o)] S 27 pman(e2) [ [0 = yr)ao)] dy
and so || Spal|rr <277 implying that
Y ISpaln S L.
p=(p,q9)€F0.+
For p = (p, q) € Fo,—, we again use the cancellation property of the atom a to write
> Spae) = X [ [baloa = v2) — be2)] Sy ano1)dse
pEFo, - q>0 R
where ay, (u) = a(u,y2) and
Sq7g(n1) = /[ Yo tpla —y)]ePETI gy dy.
R p(p.g)eFo,

The operator S7? is a multiplier operator on R with multiplier

mE© = X [l e gy

p:(p,q)€EFo,—

which by Lemma 3.4 is a bounded function of £, uniformly in the parameters x, g
and the set G, = {p: (p,q) € Fo,—}. Hence S¥* is uniformly bounded on L?.
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For fixed z2 and g, S7?ay, () is supported in [—3, 3] and so by the Cauchy-Schwarz

inequality,
| 3 Seall s 2 f

pEFo,— >0 |2 |~21

S /\// la(y1,y2) > dyr dy S 1,
R\ Jr

the last inequality following by a final application of the Cauchy-Schwarz inequality.
The completes the proof of Theorem 1.1 in the case jo > 1, once Proposition 4.1 is
proved.

{/ 1572 ay, |l L2dy2 | dra
R

Proof of Proposition 4.1 This proceeds exactly along the lines of Proposition
3.3 by considering the kernel M (x,u) of S;Sp which is given by
M(z,u) = sp(x)(p(u)/ P n—zry2) =Py —wy2ly, (4 — ), (y — u) dy.
R2
We have the same support conditions for M as we did for L and again we make
the change of variables y — 2P oy to conclude

M(z,u) = pla)p(u)2 @+ / W) O(y) dy.
RQ
where this time

P(y) = Ppauly) = ch,ﬂpﬂqk [(yr —27P21) — (g1 — 27Pur)’|ys

and O(y) is unchanged, a smooth function, supported in [—5,5]? with uniformly
bounded C* norms. Using an appropriately modified defintion of g(t) we see that

1
o(y) = / [ > cj,k2m'+qkj2*”(x1—u1>Xj*1y§} dt
O “Gkear
1
- [ > [Cj+1,k2jp+kq(j+1)(1?1—m)}Xij} dt
0 . X
(],k)EAP

where now Ap = Ap — (1,0) and where X is same as before but now Y = ys.
Again we see that X,Y € [—10,10]2 for all ¢ € [0, 1].

The analysis now proceeds exactly as before. We only note that (for an appropri-
ately modified Q)

1Rl = Idjo—1.k0 = |Cjoko 277D FR0 g (21 — uy).

The rest of the proof of Proposition 4.1 follows line by line the proof of Proposition
3.3.

This completes the proof of (10) with F = Fy in the case jo > 1.
The case jo = 0. When j; = 0, we modify the above argument as follows.

First we note that (0,kg) € A shows that Ag = {k > 2: (0,k) € A} is nonempty
and so, since |Ag||/A1] = 0, we see that A; = (). We decompose Fo into Oja((1)
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disjoint sets {Fo,»} such that for each o, there is an oy = (js, ko) € A\ A with
Jjo > 2 (since A; = ()) and

Ca, [2P°% > eal2P

for all & € A\ Ay whenever p € Fy,. Note that |cq, 2P > |cy,|2P* for all
p € Fo.

We fix one of these subsets Fy ,, and establish (10) with F = Fy,,. To simplify
notation we write aq = (j1, k1) instead of g, = (Joy s Koy )-

We write P(z1,22) = Q(z1,22) + T(22) where (z = (21, 22))
Qz) = Z cox® and T(zg) = Z ok Th.

aEA\Ag (0,k)EAg

We modify the definition of the comparison operator Sy, as

Spf(z) = /R2 Yoz — y)ell@E—yne)+ T (@)l £(4)) dy

and consider D, = Tp, — Sp as before. The two estimates (12) and (14) now become

IDpalip S ek, [2P72 a1 (18)
and
|Cj & 2Pj1+qk1|*5 ifp<o0
< 1,R1
IDpallr 5 {|cj17k12p(j11)+qk1|5 ifp>0" (19)

The difference bound (18) is straightforward and the decay bound (19) follows along
the same lines establishing (14). The key here is that j; > 1 (in fact we know j; > 2
and this will be needed later) and so (18) and (19) together allow us to see that

the sum » = . [|Dpal|r: is uniformly bounded, reducing matters to showing

/RJSmea(:v)’dx <1 (20)

where Sg, , = EPE]:O Sp- The arguments for the case jo > 1 do not apply to
: o
S7, ., and we return to the proof of (20) after an interlude.

5. PROOF OF THEOREM 1.1 — THE PROOF OF THE NECESSITY

Since the proof of the necessity uses some arguments from the previous section, we
now pause in the proof of the sufficiency part and give a proof of the necessity;
that is, to show that condition (3) in Theorem 1.1 is a necessary condition for the
uniform bound (2) to hold.

The necesssity of (1,0) and (0,1) ¢ A is well known so we will assume this condition
holds but suppose |Ag||A1] + |A°[JA] > 1. Under these assumptions we will show
that the uniform bound in (2) does not hold. Without loss of generality suppose
|Ap||A1| > 1 so that there exists ko > 2 and k; > 1 such that (0, ko), (1,k1) € A.
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We consider the subfamily of polynomials P. 4(s,t) = cstkt +dtko € VA as ¢, d vary
over R. If (2) holds, then

// |SP d/CCL(.Il,.IQ ‘dIldIQ 5 1 (21)
10< 2| <[z <Ke™?

holds uniformly for all 0 < € <« 1,¢,d € R and atoms a supported in the unit
square. Our aim is to show that (21) does not hold.

In fact, for our atom a we simply take a(y) = b(y1)b(y2) where y = (y1,y2) and
b(u) = 1 when O <wu<1/2 and b(u) = —1 when —1/2 < u < 0. We will choose
¢ =c(€),d = d(e) € R and show that the integral in (21),

k1 ko] dsdt
// // a(xy — s,xa — t)e ifest™ +dt ‘d.’[]ldl'g,
10<|z1 | <|z2| et R2

satisfies I(€) > log(e~!) which will show that (21) fails.

From the arguments of the previous section, we see that

. i[c(ml—s)wgl-i-d(iQ—t)ko]; t) dsd }
_ . a(s,t)dsdt| dxidzs + O(1
//E}/~/]R2 o= -0 e 00

holds where
E = {(w1,22) 110 < |a| < |wo| < €7, ey | < |dab?]}.

This is precisely the reduction to (20) when P(s,t) = cst*t + dtko.

We note that

//10<11<12|

1 1 1
10<lz) 11 L2y 1< |2a) T3 10<|z1] 1
and so

1 . 1
I(e) = [/ —‘[/ ez[c(“*s)m;l*d(“%)ko]7(1(3,t) dsdt‘dxldxg + O(1).
g 2|1/ Jre (1 —3)

Next we show that the integral

7,011 s)x 1+d(12 t)ko] — i t t’d d
// |I2|’//Rz : {(331—5) Il]a(s, ) dsdt| dins

is O(1). We note that this integral is at most

// —2 /’/ eid(“_t)koa(s,t) dt‘ds} dridry =: I;
10< |1 | <|z2| |z2lz? LJrl/r

we split I = II + III into two integrals where the integration in I7 is further
restricted to where |d:1c§°71| < 1 and the integration in I/ is over the complement,

where |dzho ™t > 1.

// ei[a(mlfs)zghrd(mft)ko];{ 1 i}a(svt)dsdt‘dxldm
R2 r1 —Slxo —1t To

Using the cancellation of the atom a, we see that

1 . .
- / / = | / | / et 4o (s, 1) | ds] deadry
F 1 R'JR
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where F = {(21,2) : 10 < |21| < |22], |d2h°| < 1}. Hence

1
H§|d|/ —2[/ |x2|k°_2da:2} dz; < 1
10<a1| L1 Y jdag0 (<1

where we used (crucially) the fact that ko > 2.

To treat I11, we fix s and write B(xz) = B(x2,s) = [, eid@2=0" (g #)dt for the
inner integral in /17 and use the Cauchy—Schwarz inequality to see that

|B(@2)|dzs <
/<gg2 Jdako? | |~”62|
1 1
- . B(zo)2dz. <
\//1S12| |22 |+ 1/ko \//1de§°1| |I2|(k0—1)/k0| (x2)|2dze <
2
|d|1/’“°¢ ][ esrroas, oy e o W\/ [ tats.mmnfzay
R'JR R

where a denotes the partial fourier transform in the second variable. Here

m(n) = /Rei[dtk“”’t] dt

is the oscillatory integral multiplier which arises when computing the fourier trans-
form of B(zz) and is a well defined integral (defined as a limit as R — oo of
truncated integrals |t| < R which converges since kg > 2). Furthermore by van der
Corput’s lemma, see [18] page 332, we have |m(n)| < Cy, |d|~/*0 and so

/ |B(ao)|dry < / las, 0)[2 dt
1<|z2], \dm20 ! |.’II2| R

|[I11] < |ast|2dtds de; <1
<\zl\ 331

with a final application of the Cauchy-Schwarz inequality.

implying that

Therefore

1 _
€) = // 7‘/ ez[*csx§1+d(z27t)ko]a(s,t)dsdt’dxldxz + 0(1).
B |1 |z2] ke

From our definition of a(s,t) = b(s)b(t) we have
/ ei[fcsm§1+d(z27t)k0]a(s7t) dsdt — Z)\(CIEQ ) / b(t)ez d(zo—t)k0 dt
R2 [t]<1/2

and we note that

cos cxz - ’

jeay’| (22)

ca:2 |—’ -
2

whenever |czh!| < 1. With a little work, we can also show that

L (23)
t]<1/2
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whenever |dzh° ™! < 1 < |z2|. We will show this later.

Hence
1
I(e) = // ——— |daho | |caht| day day
G |zl T 2

where G = {(x1,22) € E : |dah° ™|, |exk'| < 1}. We now choose d = €*~! and
¢ = €™ so that |zp| < e ! implies |cah!|, |[dzi™!| < 1. Thus with this choice of
c and d, we have F = G. We divide the concluding analysis of the integral above

into two cases.
Case 1: ko—1 < ky. Here |21| < |22| < € ! automatically implies |czi 25| < |dabo|
and so E = G = {(x1,22) : 10 < |21| < |22| < €71}, In fact,

|zo| <€t = JewaF TR <1 = emp|®t < exp|foTt = Jemn|Ft @] < |dake)

and so

IN

lca1ast| = lewa|M|a1| < |ewa| |aa| < |dab?l.

Therefore

1
(e > / / L em ot gy > / log(|z2]) |eza]Fo 1 2edz
B |71][72] 10< 2z | e

~ / log(y/c) y**1-2dy > log(1/e)
10e<yk1

since kg + k1 — 2 > 1.

Case 2: ky < kg — 1. Here |cxyab'| < |dz5°| and |zo| < €' imply that |z1| < |xa].
In fact,

jezray!| < |des’| = |allewa|™ < Jaa|leas|* ™
and since |z2| < 7!, we have |z1| < |exzo|F0~F171|zy| < |22|. Hence

E = {(xl,xg) 210 < |zo| < e 1 10< |x1], and |3:1||e:1:2|k1 < |3:2||ex2|k°_1}

and so

1
I(e) 2 / 7|I1||I2| |6$2|k0+k171 dx1dzy

10<21],10< w2 | et

lexa|*1 |21 |<|ewa|*0 ™! zg]

1
/ for] W dndy

10e<|y| <1
1<z | <[y[Fo 17 |y /e|

R / [log(1/€) +log(ly[*~*1)][y[*T1 =2 dy > log(1/e)
51/(k0*k1)g‘y‘<<1

which shows that I(e) 2 log(1/¢) holds in both cases IF (23) holds.

Vv

We now establish (23). First we note that

1/2
/ b(t)eid(mzft)ko dt — / [eid(%ft)k(’ _ eid(szrt)kU] i
[t|<1/2 o
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1/2
_ eidm’;O// [ei[kodm’;ﬂfl(—t)Jr...] _ei[kodm’;flwr...]]dt
0
and so

_ 1/2
’ / b(t)eid(z2—t)" dt‘ > ‘ / (sin(kodake " t[1+g(£)]) +sin(kodzhe " t[14+h(t)])) dt‘
t1<1/2 0

where g(t), h(t) = O(1/|z2|). For large |zo| > 1 and small |dz5° | < 1, we see
that the integrand in the above integral is single-signed and both
sin(kodah® {1 + g(t)]), sin(kodzs "H[1 + h(t)])| = kodzho (1 + F(t))
for some |F(t)] <1/2 and all 0 < ¢ < 1/2. Hence
| sin(kodaho " (1 + g(t)]) + sin(kodzko~1¢[1 + h(t)])| = |dake™!
for all 0 <t < 1/2, showing that indeed (23) holds.

6. PROOF OF THEOREM 1.1 — THE CONCLUSION OF THE SUFFICIENCY PART

We return to complete the proof of the sufficiency part ot Theorem 1.1 where
matters were reduced to establshing (20).

We split oo, into Fy, UFg,, where

fafal = {(p,q)e]:oﬁ1 :pZO} and Fy, = {(p,q)e.?’:o)(71 :p<0}.

We first concentrate on establishing (20) for ]—'(f o+ We further split ]—'(f -, nto
Foo UFes? where

0,01
Fom = {0.0) € 7§

0,91 oy 1 lCjy (2P0 DR < ey [20(Ro= 1)

and ]—'J 5,21 is defined with the opposite inequality. We recall that by condition (3),
J1 > 2 and now this becomes important in our analysis.

The bound (20) for }-8;11‘ For p = (p,q) € }-(féllv consider D! = S, — Rf!

where

Ritaa) = [ dplo =)ol m Tl dy

For [z1 —y1| ~2P,p > 0 and [y1| < 1, we have [z1] < 27 and so |(21 —yl)J: —27| <
2°U=1) for any j > 0 implying |Q(z1 — y1,22) — Q(1,72)| S |ej, k, 2201 "D Hak
whenever ¢p(x —y) # 0 and p = (p,q) € .7:3:01. Therefore

LallL . p(j1—1
Dy allr S lej, b, (2P0 DTk (24)

holds for any p = (p,q) € ]-"3: (;1. The complementary decay bound (established
separately for S, and R') is

HD;,F’ICLHLl < [|Co)k0|2q(kofl)]*6

S (25)
which holds for some 0 < § < 1 and every p = (p,q) € ]-'gfj,l. Let us first see how

to combine (24) and (25) to successfully sum over p = (p,q) € Fy '

0,01
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For any 0 < € < 1, we have

j1— € — —5(1—¢
Dol 5 [ 2200189 ey 0] 500

and so for fixed ¢, we can sum over p € Hy :={p: (p,q) € ]-"Sf[,ll} (using in a crucial
way that j; > 2!),

Z HD;’laHLl S [|Co7k0|2Q(7€0—1)]6—5(1—5)

pEH,

and this can be summed successfully over ¢ because (importantly) kg > 2; when
summing over ¢ such that |cg x,[29%0~ < 1, we choose € such that ¢ —§(1 —¢) > 0
and when summing over ¢ such that |coz,[29(%~1) > 1, we choose € such that

e—d0(1—€)<0.

Hence to establish (20) for }'gf (;11, matters are reduced to showing

LIS [ et — e amag)as 5 1 (26)

PEFS,
but this is more or less a one parameter operator and the arguments in [9] can be
used to establish (26).

We now turn to the proof of (25). By Cauchy-Schwarz, we have
IDg all < 20F972| Dyal| 2

and to bound ||Dpal|z2, we treat Sp and Rf! separately by estimating the L?
operator norms of

Spfla) = [ wpler —y)etOm e el () dy
and

Ry f(a) = /R Up(w = y)e 7o (y) f(y) dy

via examining the kernels of S’;‘,S’p and R;ﬁl *R;“l.

Instead of the unorthodox argument used in Section 3 to combine Lemmas 3.1 and
3.2, we will take a more direct route. The kernel of SE.Sp is

N((E7u) = ga(:z:)w(u) /RQ ei[Q(lh—Il7y2)—Q(y1—u1,y2)+T(y2—Iz)—T(yz—uz)]¢p(y_I)1/)p(y_u) dy

and again we make the change of variables y — 2P o y to conclude
Niz.u) = pla)e2 0 [ ¥ 6()dy.
where now
D(y) = Ppauly) = Z k27T (yy — 27Pm ) — (1 — 27Pun )]y
(4:k)€A\Ao

+ Z cok2% [(y2 — 27%2)" — (y2 — 27%up)*] = Z dj i yiyh
(0,k)EAq
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and O(y) is the same as before, a smooth function, supported in [—5, 5]? with uni-
formly bounded C* norms. We apply Lemma 3.1 directly to ® to find a derivative
0* where a = (j, k) with |a] = j+k > 1 and such that [0*®(y)| 2 ||®||1, uniformly
for y € [—5,5]%. This is a case where we will be able to effectively bound ||®||; from
below and then a standard multidimensional version of van der Corput’s lemma (as
in [18]) suffices athough one can also appeal to Lemma 3.2.

We note that | ®]|1 > |do,k,—1] and

d07k0—1 = Z CO,k2qkek,k0 [(_2iq$2)kik0+1 - (—27(1’(1,2)kiko+1]
k>ko

+ ZCJ ko1 2P0 [(—27P )T — (—27Puy )]
j>2

where ey 1, are numerical constants depending only on k& and ko. Hence

)k*k(r‘rl

doko—1 = Co,ko 9a(ko—1) [u2 — 29 + Z (_x2 _ (_u2)k7k0+1}

k>kot1 COko

+ Z Cjko—1 1 xl)j _ (_ul)ﬂﬂ

J>2 €0.ko
and so dp k,—1 = CokaZq(koil)[u2—$2+0(27q)]. In fact do gy—1 = CoﬁkOQq(koil)f(:EQ)
where f = fy, . satisfies | f(x2)] <1 and |f'(z2)] 2 1 on [-3,3].

Hence by Lemma 3.2 we can find a 0 < § < 1 such that

1 1
IN(z,u)|de < 2*<P+q>—/ LI
/|x|<1 |co,k 200~ D8 <y | f(22)°

and from the properties of f (|| fllco <1 and [f/(s)] 2 1), it is a standard argument
to show that the integral on the right hand side above is uniformly bounded. In
fact we fix 1 and bound the integral in xo;

/12<1 | f(z2)]° Z /Eg | f (z2)

>0

where Ey = {|zo| < 1:|f(x2)| ~27¢}. Since the derivative of f is bounded below,
we see that |Ey| <27 and so

> Y £ Y
>0 /Eff |f (w2) >0 £>0

which converges since § < 1. For a general treatment of integrals using this method,
see for example [16].

As before this leads to the bound || Sp|| g2 2 < 27 P+0)/2 [|co,k, [29(k0—1)] ~%/2 Which
shows that (25) holds for Sp. The treatment for R;‘ 1 is easier as the phase function
®(y) which arises does not have any terms with ¢; ; where j > 2.
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The bound (20) for F;;”. For p € 7 ;> we consider D2 = S, — R where

R;’Qa(:v) — / 2 Yoz — y)ei[Q(m—yl,m)-i—T(acz)]a(y) dy
R
so that
||D+’2a|\L1 S ok | 20070 (27)

holds for every p = (p,q) € -7:0 .- The complementary decay bound is

[lej, gy | 2701 DFaka] =0 (28)

which holds for some 0 < § < 1. Combing the bounds (27) and (28), using j; > 2
and ko > 2, gives the uniform bound -+ D} 2allr S 1 as before.
0,01

~

IDFallLr S

Hence the proof that (20) holds for ]—'(]L (’721 reduces to showing
/ > /wpw— )e' T YT g (y) dy| de S 1

PEFS
but this is precisely the same bound as for ||
Section 4 in the case jo > 1 (but now j; > 1).

per, Spallz1 which was treated in

It remains to establish (28). But this is entirely analogous to the bound (13) in
Proposition 4.1 for the case p > 0; we omit the details.

We complete the proof of Theorem 1.1 by establishing (20) for F = Fj .

We first consider

Utp.gra( / Up (1 — y1) [V (w2 — y2) — Vg (ws)]el Q@ —wrr2) T (227w2)l g (1)) gy
and bound
} Z Up.pa(z)|dz < /Z/Wq T2 — Y2) — Yq(@2)] 1(y2, 22) dyo dz2
(P;Q)E]:J(fl ®a2e,
where

I(ya,z2) = / Z /1/)]0 x1 —y1)e 1Q T1-Y1,22) a(y) dyp| dz.

(P, 9)€F, 4,

We write ay, (y1) = a(y1,y2) and use the Cauchy-Schwarz inequality, together with
Plancherel’s theorem, to see that

I(ys2s) < \// Gy (©)m(E) |2 de

m({) = Z /1/)p(5)ei[Q(57962)+§s] ds

_ JRr
P:(P.9)EF; 4,

where
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satisfies [m(€)| < 1 by Lemma 3.4. Hence by Plancherel,

RJ Z U(wz)a(x)‘dx S Z2Qq/|x2~2q {/R \//R la(y1, y2)|2dy1 dy | dwo

(P,9)€Fg, o, q>cy

and a final application of the Cauchy-Schwarz inequality shows that

/| Z U(pﬁq)a(ac)|dx < 1

2
(P.0)EFq 0,

We are left with bounding the L' norm of Z(PH)EFJ,UI Vip,qa(z) where
Viaale) 1= afea) [ 10D T yijaty) dy
R2
To do this, we split F , into ]-"0_7(;11 U ]-"0_7(;21 where
‘F(;érll = {(p;Q) € ‘F(Icrl : |CJ'1J€1|2pj1+q}C1 < |Coyko|2Q(k0_l)}

and F_ (’,21 is defined similarly with the opposite inequality holding.

The proof of (20) for ]-"0_7(;11 . Forp=(p,q) € .7:0_7(;11, we consider D»! =V, — R
where

R;’la(:zr) = Yg(x2) /R2 6iT(z27y2)1/1p(331 —y1)a(y) dy

so that
IDgtalles S lej k| 2770 HaE (29)
We also have the complementary decay bound
1D alls S [leos 2to=] (30)

which holds for some 0 < § < 1 and every p = (p,q) € .7:0_7(;11. This follows in the
same way as before, using a T*T argument. Also as before, using (29) and (30),
we can sum ||Dg a1 uniformly over p € ]—'(;(;11 since kg > 2. To complete the

proof of (20) for F = F, " we need to bound the L' norm of Y pers Ry 'a(x)
2T

but once again, this acts like a one parameter operator and the arguments of [9]
apply here.

The proof of (20) for }-(;5721' Finally we show that (20) holds for F = }'(;(;21.
From above, matters are reduced to showing

> Veal, S 1. (31)
PEF, 2

Here we do not need to compare V, with another operator; instead we use the
cancellation of the atom a to note that

V(p,q)@(ﬂf) = ¢q($2) /RQ eiQ($17y1112) [eiT(mzfyz) _ eiT(z2)]¢p($l _ yl)a(y) dy

and so
||V(p,q)a||L1 N |CO,ko|2Q(k0_l) (32)
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holds for all p = (p,q) € Fy, (;2;. The complementay decay bound (which follows by
employing the T*T argument as before) is

; -5
Vip.pallr S [l e (2P0 ] (33)

and this holds for some 0 < § < 1 and all p = (p,q) € ]-“&[,21. The bounds (32) and
(33) imply, using ko > 2, that

Z ”V(p,q)a”L1 5 1

~ 2
pGJ"-'O,C,1

which implies (31) and this completes the proof of Theorem 1.1.
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