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Finding a point in the intersection of a collection of closed convex sets, that is the convex feasibility problem,
represents the main modeling strategy for many computational problems. In this paper we analyze new
stochastic reformulations of the convex feasibility problem in order to facilitate the development of new
algorithmic schemes. We also analyze the conditioning problem parameters using certain (linear) regularity
assumptions on the individual convex sets. Then, we introduce a general random projection algorithmic
framework, which extends to the random settings many existing projection schemes, designed for the general
convex feasibility problem. Our general random projection algorithm allows to project simultaneously on
several sets, thus providing great flexibility in matching the implementation of the algorithm on the parallel
architecture at hand. Based on the conditioning parameters, besides the asymptotic convergence results, we
also derive explicit sublinear and linear convergence rates for this general algorithmic framework.

History : First version: March 2017.

1. Introduction Finding a point in the intersection of a collection of closed convex sets, that
is the convex feasibility problem, represents a modeling paradigm which has been used for many
decades for posing and solving engineering and physics problems. Among the most important
applications modeled by the convex feasibility formalism are: radiation therapy treatment planning
[20], computerized tomography [19] and magnetic resonance imaging [33]; wavelet-based denoising
[13], color imaging [34] and demosaicking [24]; antenna design [17] and sensor networks problems [8];
data compression [23], neural networks [35] and adaptive filtering [38].
Convex feasibility problems have various formulations, such as finding the fixed points of a non-
expansive operator, the set of optimal solutions of a specific optimization problem or the set of
solutions to some convex inequalities. Projection methods were first used for solving systems of
linear equalities [21] or linear inequalities [25], and then extended to general convex feasibility
problems, e.g. in [14]. Projection methods are very attractive in applications since they are able to
handle problems of huge dimensions with a very large number of convex sets in the intersection.
For instance, the projection algorithm which represents one of the first iterative algorithms for
feasibility problems, rely at each iteration on orthogonal projections onto given individual sets. Its
simple algorithmic structure supports the current large scale setting and can be easily adapted to
parallel environments, making such schemes adequate to modern computational architectures. If
the iteration of a given projection algorithm rely on an alternating sequence of projections onto
sets over the iterations, then it belongs to an alternating projection schemes [5,6, 27,31]. Further-
more, depending on the variant of the alternating projection algorithm, the current set (or sets)
on which the projection is made can be chosen, for example, in a random, cyclic or greedy manner.
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Otherwise, if the scheme uses at current iteration an average of multiple projections of the current
iterate onto various sets, then also it can be viewed as an average projection algorithm [11,12].
The convergence properties, the iteration complexity and even the inherent limitations of the
class of projection schemes has been intensely analyzed over the last decades, as it can be seen
in [1–6,11,12,14,27,28,31] and the references therein. In [1] a barycenter type projection algorithm
is developed, which allows the efficient handling of feasibility problems arising in the nonnegative
orthant. The proposed method uses approximate projections on the sets and is proven globally
convergent under the sole assumption that the given intersection is nonempty and the errors are
controllable. An important contribution is made in [3], where the rates of convergence of some
projections algorithms are analyzed for solving the general convex feasibility problem. Besides
revealing some connections between the Slater’s condition and the classical linear regularity prop-
erty, the authors show that if the Slater’s condition does not hold, the projection algorithms can
behave quite badly, i.e. with a rate of convergence which is not bounded. Moreover, the authors
also propose an alternative local linear regularity bound to derive further convergence rate results.
Linear convergence of the conditional gradient method applied on the equivalent optimization for-
mulation of the problem of finding a point in the intersection of an affine set with a compact
convex set is derived in [4]. In a more general setting, [2] studies the problem of finding a point in
the intersection of affine constraints with a nonconvex closed set and a simple gradient projection
scheme is developed. The scheme is proven to converge to a unique solution of the problem, at a
linear rate, under a natural assumption defined in terms of the problem’s data.

Contributions. Below, we clarify the relationship and differences between our work and earlier
research in this direction. In particular, the main contributions of this paper consist in unifying
and extending existing projection methods in several aspects:
(i) The classical convex feasibility problem was usually formulated for a finite intersection of simple
convex sets. While finding a point in the intersection of a finite number of convex sets is a problem
with its own challenges, it does not cover many interesting applications modeled by an intersection
of (infinite) countable/uncountable number of simple convex sets (see e.g. [29]). In this paper we
present several new equivalent stochastic formulations of the convex feasibility problem, which
allow us to deal with intersections of families of convex sets that may be even uncountable.
(ii) From an algorithmic point of view, most of the previous approaches are limited to cycle
based alternating projection schemes. Moreover, for this strategy it is difficult to prove asymptotic
convergence and to estimate the rate of convergence in the general convex feasibility case. Therefore,
we introduce a general random projection algorithmic framework, which covers or extends to
the random settings many existing projection schemes, designed for the general convex feasibility
problem. Besides asymptotic convergence results, we also derive explicit convergence rates for this
general algorithm. It is worth to mention that our convergence rates depend explicitly on the
number of computed projections per iteration. Moreover, our general framework generates new
algorithms, that are not analyzed in the literature, with possible better convergence rates than the
existing ones.
(iii) From our convergence analysis it follows that we can use large step-sizes, besides the usual
naturally arisen constant step-size policy. Thus, we prove theoretically, what is empirically known
in numerical applications for a long time, namely that these over-relaxations accelerate significantly
the convergence of projection methods.
(iv) Our general random projection algorithm allows to project simultaneously onto several sets,
thus providing great flexibility in matching the implementation of the algorithms on the parallel
architecture at hand.

Notations. For given m ∈ N\{0}, we denote the set [m] = {1, . . . ,m}. We consider the space R
n

composed by column vectors. For x, y ∈ R
n denote the scalar product by 〈x, y〉 = xT y and the

Euclidean norm by ‖x‖ =
√
xTx. We use the notation xi for the ith component of the vector x
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and ei for the ith column of the identity matrix. The projection operator onto the closed convex
set X is denoted by ΠX(·) and the distance from a given x to set X is denoted by distX(x).
Let Q ∈ R

n×n, then we use notation Qi for the ith row of the matrix Q. The minimal non-zero
singular value and the minimal nonzero eigenvalue of the matrix Q are represented by σnz

min(Q) and
λnz
min(Q), respectively. Similarly, σmax(Q) and λmax(Q) denote the largest singular value and the

largest eigenvalue of the matrix Q, respectively. Also ‖Q‖F denotes its Frobenius norm.

2. Problem formulation In this paper we consider the convex feasibility problem:

Find x∈X , (1)

where X ⊆R
n is a closed convex set. We assume that X is nonempty. In general, in most convex

feasibility problems one should seek scalable algorithms with simple iterations which are able to
find an approximation of a point from the set X . For this purpose, we usually assume that X can
be represented as the intersections of finitely/infinitely many simple closed convex sets. Then, a
simple and widely known idea for solving the convex feasibility problem is to project successively
onto the individual sets in a certain fashion, e.g. cyclic or random. These projection algorithms are
most efficient when the projections onto the individual sets are computationally cheap. However, in
many cases, it is difficult to find an explicit representation of the set X as intersection of simple sets.
That is why in the sequel we consider different relaxations of (1), based on several representations
for the individual sets, and we investigate when this relaxations are exact.

2.1. Stochastic reformulations In many applications the set X has explicit representations,
while in others this set it is not known explicitly. Therefore, below we present several representations
or approximations for the set X . For that, we introduce the concept of stochastic approximation
of X . Given a probability distribution P, we consider a random variable S ∼P from a probability
space Ω.
Definition 1 (Stochastic approximation of sets). For any S ∈ Ω let XS be a random

closed convex subset of Rn. We say that XS is a stochastic approximation of X if X ⊆ XS for all
S ∈Ω.
We will henceforth consider stochastic approximation sets XS arising as a function of some random
variable S from a probability space (Ω,P). Therefore, the set X may be represented as an exact
countable/uncountable intersection of stochastic approximation sets XS, that is X = ∩S∈ΩXS, or
approximated by this intersection, that is X ⊆ ∩S∈ΩXS. Clearly, having a family of stochastic
approximation sets (XS)S∈Ω, we have the first relaxation of (1):

X ⊆
⋂

S∈Ω

XS. (2)

Then, we consider the following convex feasibility problem, which may be a relaxation of the
potentially difficult original problem (1):

Find x∈
⋂

S∈Ω

XS. (3)

In this paper, we propose several stochastic reformulations of the convex feasibility problem (3).
1. Stochastic fixed point problem.

Find a fixed point of the mapping x 7→ES∼P [ΠXS
(x)] . (4)

2. Stochastic non-smooth optimization problem.

Minimize
{

f(x)
def
= ES∼P [IXS

(x)]
}

subject to x∈R
n. (5)
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3. Stochastic smooth optimization problem.

Minimize

{

F (x)
def
=

1

2
ES∼P

[
‖x−ΠXS

(x)‖2
]
}

subject to x∈R
n. (6)

4. Stochastic intersection problem.

Find x∈R
n such that P(x∈XS) = 1. (7)

Equivalence of the above reformulations is captured by the following lemma:

Lemma 1 (Equivalence). Assume ∩S∼PXS 6= ∅. The stochastic reformulations (4), (5), (6)
and (7) of the convex feasibility problem (3) are equivalent. That is, the set of fixed points of
x 7→ES∼P [ΠXS

(x)] is equal to the set of minimizers of the objective functions f or F , and to the
set {x : P(x∈XS) = 1}. We shall use the symbol Y to denote this set.

Proof : An elementary property of the Lebesgue integral states that if φ≥ 0, then E [φ] = 0 if and
only if φ= 0 almost sure (a.s.). Using this classical result, we can prove the following equivalences:

(5)⇔ (7). The P-measurable function fS(x) = IXS
(x) is non-negative and thus the set of minimizers

in (5) are those x for which ES∼P [IXS
(x)] = 0, which is equivalent to IXS

(x) = 0 a.s., that is x∈XS

a.s., or equivalent to P(x∈XS) = 1.

(6)⇔ (7). The function FS(x) = ‖x−ΠXS
(x)‖2 is non-negative and thus the set of minimizers in

(6) are those x for which ES∼P [‖x−ΠXS
(x)‖2] = 0, which is equivalent to ‖x−ΠXS

(x)‖=0 a.s. or
equivalently x=ΠXS

(x) a.s. or equivalently x∈XS a.s., or equivalent to P(x∈XS) = 1.

(6)⇒(4). Since ‖ES∼P [x−ΠXS
(x)]‖2 ≤ES∼P [‖x−ΠXS

(x)‖2], then it follows that the set of min-
imizers of (6) are included in the set of fixed points of the average projection operator Π(x) =
ES∼P [ΠXS

(x)] defined in (4).

It remains to prove the other inclusion (4)⇒(6). Let x be a fixed point of the average projection
operator, that is x=ES∼P [ΠXS

(x)]. Then, for any z ∈∩S∼PXS, it follows that z ∈XS for all S and
from the optimality condition for the projection onto XS we have 〈x−ΠXS

(x),ΠXS
(x)− z〉 ≥ 0.

This leads to:

0 = 〈ES∼P [x−ΠXS
(x)] , x− z〉=ES∼P [〈x−ΠXS

(x), x− z〉]
=ES∼P [〈x−ΠXS

(x), x−ΠXS
(x)+ΠXS

(x)− z〉]

=ES∼P

[
‖x−ΠXS

(x)‖2
]
+ES∼P




〈x−ΠXS

(x),ΠXS
(x)− z〉

︸ ︷︷ ︸

≥0




 ,

for all z ∈ ∩S∈ΩXS. Thus, sum of two non-negative scalars is zero implies that each term is zero,
that is ES∼P [‖x−ΠXS

(x)‖2] = 0 and therefore the set of fixed points of (4) are included into the
set of minimizers of (6). Q.E.D.

2.2. Discussion The proof of Lemma 1 provides several connections between (4), (5), (6)
and (7). There is also an interesting interpretation between (5) and (6). Notice that for any given
nonempty closed convex set Y , the indicator function IY is convex, lower semi-continuous, that is
not identically +∞. Therefore, the value function:

1

2
‖x−ΠY (x)‖2 = min

z∈Rn
IY (z)+

1

2
‖z−x‖2
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is known to be well-defined and finite everywhere [7] (Chapter 12). Moreover, the function x 7→
‖x−ΠY (x)‖2 is the Moreau approximation of the non-smooth indicator function IY , thus it has
Lipschitz continuous gradient with constant 1, see [27]. This implies that the function F has
Lipschitz continuous gradient with constant LF = 1. Observe that the smooth optimization problem
(6) is obtained from the Moreau approximation FS(x) = 1/2‖x−ΠXS

(x)‖2 of each indicator function
fS(x) = IXS

(x) of the non-smooth optimization problem (5), that is:

min
x∈Rn

F (x)=min
x∈Rn

ES∼P [FS(x)] = min
x∈Rn

ES∼P

[

min
z∈Rn

fS(z)+
1

2
‖z−x‖2

]

(8)

=min
x∈Rn

ES∼P







min
z∈Rn

IXS
(z)+

1

2
‖z−x‖2

︸ ︷︷ ︸

‖x−ΠXS
(x)‖2







.

Note that, for general functions fS, there are no connections between the two problems (5) and
(6) as expressed in (8). However, for indicator functions fS(x) = IXS

(x) we have argminx f(x) =
argminxF (x), according to previous lemma.
For the convex feasibility problem (3), with Ω having finite support, the following basic alternating
projection algorithm has been extensively studied in the literature [18,27]:

(B-AP) : chooseSk cyclic/random & updatexk+1 =ΠXSk
(xk).

The (B-AP) algorithm can be interpreted in several ways depending on the reformulations (4)-(7):
1. For example, when solving the stochastic fixed point problem (4), we do not have an explicit

access to the average projection map x→ES∼P [ΠXS
(x)]. Instead, we are able to repeatedly sample

S ∼P and use the stochastic projection map x→ ΠXS
(x), which leads to the random variant of

(B-AP) algorithm.
2. Since the stochastic optimization problem (5) with fS = IXS

:

min
x

f(x) =ES∼P [fS(x)] ,

is non-smooth, then we approximate each indicator function fS = IXS
with its Moreau approxima-

tion FS and we can apply gradient method on the resulting expected approximation which leads to
the proximal point method. Since we do not have access to the function ES∼P

[
IXS

(z)+ 1
2
‖z−x‖2

]

for some fixed x, but we can repeatedly sample S ∼P we can apply stochastic proximal point:

x+ = argmin
z

IXS
(z)+

1

2
‖z−x‖2 =ΠXS

(x).

3. When solving the stochastic optimization problem (6):

min
x

F (x) =ES∼P [FS(x)] ,

where

FS(x) =
1

2
‖x−ΠXS

(x)‖2

we do not have access to the gradient of F :

∇F (x) =ES∼P [∇FS(x)] =ES∼P [x−ΠXS
(x)] .

Instead, we can repeatedly sample S ∼P and receive unbiased samples of this gradient at points of
interest, that is ∇FS(x) = x−ΠXS

(x). Then, applying the stochastic gradient method with stepsize
1 leads to the random variant of (B-AP).
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4. We observe that (7) can be written equivalently as:

Find x∈ {x : P(x∈XS) = 1} :=
⋂

S∼P

XS.

Then, when solving the previous stochastic intersection problem we typically do not have explicit
access to the stochastic intersection ∩S∼PXS. Rather, we can sample S ∼P and utilize the simple
form of XS to derive (B-AP) algorithm. Notice that if Ω is finite/countable, then the stochastic
intersection problem reduces to the standard intersection problem (3).
However, in Section 6 we will give a more general algorithmic framework for solving the four
equivalent problems with larger stepsize and better performances than (B-AP).
As Lemma 1 claims, our four stochastic reformulations are equivalent and they are all relaxations
of the convex feasibility problem (3), that is:

∩S∈ΩXS ⊆Y .

Therefore, for any family of stochastic approximation sets (XS)S∼P over a probability space (Ω,P),
we clearly have:

X ⊆
⋂

S∈Ω

XS ⊆Y . (9)

Therefore, it is natural to investigate when these inclusions hold with equality.

3. Exactness For simplicity we further redenote ES∼P [·] with the simpler notation E [·].
From previous discussion we note that for any family of stochastic approximations (XS)S∼P over
a probability space (Ω,P) we trivially have the inclusion X ⊆ Y . If X = Y , then the stochastic
reformulations (4), (5), (6) and (7) are equivalent to the convex feasibility problems (1) and (3).
However, this need not be the case, not without additional assumptions. To see this, consider
X =

⋂m

i=1Xi, that is finite intersection of closed convex sets Xi, and the random set XS =X1. Since
X ⊆ X1, this constitutes a stochastic approximation of X , as defined in Definition 1. However,
Y =X1, which is not necessarily equal to X . In view of the above, we need to enforce a regularity
assumption, which we call exactness.

Assumption 1 (Exactness). Stochastic reformulations (4), (5), (6) and (7) of the convex
feasibility problems (1) and (3) are exact. That is, X =Y.

In the next result we give a sufficient condition for exactness:

Lemma 2. The following statement hold: If there exists κ<∞ such that the following inequality
(a.k.a. “linear regularity property”) holds for all x∈R

n:

dist2X (x)≤ κE
[
dist2XS

(x)
]
, (10)

then X =Y (i.e., exactness holds).

Proof : The set Y of optimal points of the stochastic smooth optimization problem (6) satisfies:
F (x) = 0 for all x ∈ Y . Moreover, the relation F (x) = E [‖x−ΠXS

(x)‖2] = E
[
dist2XS

(x)
]
holds.

Therefore, for any x∈Y we have E
[
dist2XS

(x)
]
= 0. From (10) we conclude that dist2X (x) = 0, which

means that x∈X . Combined with (9), this implies that X =Y holds. Q.E.D.
Since distXS

(x) ≤ distX (x) it follows immediately from (10) that κ ≥ 1. The feasibility problem
is ill-conditioned when κ is large. Notice that linear regularity is a very conservative condition
for exactness. We can see that if Ω is finite/countable, then the stochastic intersection problem
reduces to the standard intersection problem (3), i.e. we have exactness. Note that linear regularity
property does not hold for any collection of closed convex sets as the following example shows:
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Example 1. Let X1 = {x : |x1|p ≤ x2} with p > 1, and X2 = {x : x2 = 0}. These two sets are
convex and X =X1 ∩X2 = {0}. Then, for any x∈X1, satisfying |x1|p = x2, we have:

dist2X (x) = x2
1 +x2

2 and dist2X1
(x)+dist2X2

(x) = x2
2.

Then, clearly there is no finite κ> 0 such that:

x2
1 +x2

2 ≤ κx2
2 ∀|x1|p = x2, x1 ≥ 0,

since by replacing x2 and obtaining

x2
1 +x2p

1 ≤ κx2p
1 ⇒ 1

x2p−2
1

+1≤ κ,

we can take x1 very small (close to zero). Q.E.D.
Notice that linear regularity is related to Slater’s condition, as discussed in [3]. Moreover, this
property is directly related to the stochastic formulations (4)-(7), as we will show below.

3.1. Properties of the smooth function F If we consider the smooth stochastic optimiza-
tion problem (6), then we have the following important relation:

F (x) =
1

2
E
[
‖∇FS(x)‖2

]
∀x∈R

n, (11)

since we recall that ∇FS(x) = x−ΠXS
(x). Moreover, the linear regularity property (10) is equiv-

alent with the quadratic functional growth condition on F introduced in [26], which was defined
as a relaxation of strong convexity. Indeed, under the exactness assumption, we have X = Y =
argminxF (x) and the optimal value F ∗ = 0. Moreover, we have F (x) = E

[
dist2XS

(x)
]
. Then, the

property (10) can be rewritten equivalently as:

F (x)−F ∗ ≥ 1

2κ
‖x−ΠX (x)‖2 ∀x∈R

n, (12)

which is exactly the definition of the quadratic functional growth condition introduced in [26].
Typically, the standard assumption for proving linear convergence of first order methods for smooth
convex optimization is the strong convexity of the objective function, an assumption which does
not hold for many practical applications, including the one presented in this paper. In [26] it has
been proved that we can still achieve linear convergence rates of several first order methods for
solving smooth non-strongly convex constrained optimization problems, i.e. involving an objective
function with a Lipschitz continuous gradient that satisfies the relaxed strong convexity condition
(12). Moreover, in [26] it has been shown that the quadratic functional growth condition (12) is
equivalent with the so-called error bound condition for unconstrained problem (6).
Further, let γ ≥ 0 be the smallest constant satisfying the inequality:

‖E [x−ΠXS
(x)]‖2 ≤ γ ·E

[

‖x−ΠXS
(x)‖2

]

∀x∈R
n. (13)

By Jensen’s inequality, γ ≤ 1. However, for specific sets and distributions P, it is possible for γ to
be strictly smaller than 1, as the following examples show. For example, we can consider finding a
solution of a linear system X = {x :Ax= b}, where A∈R

m×n. For this set we can easily construct
stochastic approximations sets XS = {x : STAx = ST b} taking any matrix S ∈ R

m×q. Clearly, for
any matrix S we have X ⊆XS . Then, we have the following characterization for γ:
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Theorem 1. Let us consider finding a solution of the linear system X = {x : Ax = b}, where
A ∈ R

m×n. Further, let us consider the stochastic approximation sets XS = {x : STAx = ST b},
where S ∈Ω=R

m×q and a probability distribution P on Ω. Then, (13) holds with:

γ = λmax(A
TE
[
S(STAATS)†ST

]
A)≤ 1.

Proof : Clearly, for x satisfying Ax= b the inequality (13) holds for any γ ≤ 1. It remains to prove
for x satisfying Ax− b 6= 0. However, since XS = {x : STAx= ST b}, then the projection of x onto
XS can be computed explicitly:

ΠXS
(x) = x−ATS(STAATS)†ST (Ax− b)

and the relation we need to prove becomes as follows:
∥
∥E
[
ATS(STAATS)†ST (Ax− b)

]∥
∥
2 ≤ γE

[
‖ATS(STAATS)†ST (Ax− b)‖2

]
.

Using the standard properties of the pseudoinverse, that is Q†QQ† = Q† for any matrix Q, the
previous relation is equivalent to:

∥
∥ATE

[
S(STAATS)†ST

]
(Ax− b)

∥
∥
2 ≤ γ(Ax− b)TE

[
S(STAATS)†ST

]
(Ax− b).

For simplicity, let us denote E = E [S(STAATS)−1ST ]. Then E is a positive semidefinite matrix
and thus there exists E1/2. Clearly, for Ax− b ∈Null(E) the previous inequality holds for any γ.
Therefore, γ is defined as:

γ = max
x:Ax−b6∈Null(E)

‖ATE(Ax− b)‖2
(Ax− b)TE(Ax− b)

= max
x:Ax−b6∈Null(E1/2)

‖ATE1/2E1/2(Ax− b)‖2
‖E1/2(Ax− b)‖2

=max
z 6=0

‖ATE1/2z‖2
‖z‖2 = σ2

max(A
TE1/2) = λmax(A

TEA).

Therefore, we have γ = λmax(A
TE [S(STAATS)†ST ]A). Since the function W 7→ λmax(W ) is convex

over the space of positive semidefinite matrices, then using Jensen’s inequality we have:

λmax(A
TE
[
S(STAATS)†ST

]
A)≤E

[
λmax(A

TS(STAATS)†STA)
]
.

Furthermore, the matrix PS =ATS(STAATS)†STA is idempotent, that is P 2
S = PS. Therefore, all

the eigenvalues of PS are either 0 or 1. Then, we get:

γ = λmax(A
TE
[
S(STAATS)†ST

]
A)≤E

[
λmax(A

TS(STAATS)†STA)
]
≤ 1,

which proves the statement of the theorem. Q.E.D.
Based on the previous theorem we can prove that for particular choices of the probability distri-
bution P we have γ < 1, see e.g. the next corollary:

Corollary 1. Let us consider finding a solution of the linear system X = {x :Ax= b}, where
A∈R

m×n having rang(A)≥ 2. Further, let us consider Ω= {e1, · · · , em}, the standard basis of Rm,
and the corresponding stochastic approximation sets Xei = {x : AT

i x= bi} for all i ∈ [m]. Then, for
two choices of the probability distribution P on Ω, inequality (13) holds with:

γ =







λmax(ATA)
‖A‖2

F
if P(S = ei) =

‖Ai‖
2

‖A‖2
F

λmax(ATDA)
m

if P(S = ei) =
1
m

< 1, (14)

where the diagonal matrix D
def
= diag(‖A1‖−2, · · · ,‖Am‖−2).
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Proof : In this case we have the following expression:

S(STAATS)†ST = ei(e
T
i AA

T ei)
†eTi =

1

‖Ai‖2
eie

T
i .

Then, from Theorem 1 we get for probability distribution P(S = ei) = ‖Ai‖
2

‖A‖2
F
:

γ = λmax

(

ATE

[
1

‖Ai‖2
eie

T
i

]

A

)

= λmax

(

AT

m∑

i=1

‖Ai‖2
‖A‖2F

1

‖Ai‖2
eie

T
i A

)

= λmax

(
ATA

‖A‖2F

)

= λmax

(
AAT

‖A‖2F

)

.

In the last equality we used the fact that the maximum eigenvalues of the matrices ATA and AAT

coincides. But we can easily see that the trace of the matrix AAT

‖A‖2
F
is equal to 1 and thus:

m∑

i=1

λi

(
AAT

‖A‖2F

)

=Trace

(
AAT

‖A‖2F

)

=1.

Therefore, if rang(A)≥ 2, then γ = λmax

(
AAT

‖A‖2
F

)

< 1. Similarly, from Theorem 1 we obtain for the

uniform probability distribution P(S = ei) =
1
m
:

γ = λmax

(

ATE

[
1

‖Ai‖2
eie

T
i

]

A

)

= λmax

(

AT

m∑

i=1

1

m

1

‖Ai‖2
eie

T
i A

)

= λmax

(
ATDA

m

)

= λmax

(
AATD

m

)

,

where D=diag(‖A1‖−2, · · · ,‖Am‖−2) and we used the fact that the sets of nonzero eigenvalues of
the matrices UV and V U are the same for any two matrices U and V of appropriate dimensions,
in particular U =ATD and V =A. Moreover, the trace of the matrix AATD

m
is equal to 1 and thus:

m∑

i=1

λi

(
AATD

m

)

=Trace

(
AATD

m

)

= 1.

If rang(A)≥ 2, then γ = λmax

(
AATD

m

)

< 1 for uniform distribution. Q.E.D.

For systems of linear inequalities we can obtain similar statements. For example, we can consider
finding a feasible point for a system of linear inequalities X = {x :Ax≤ b}, where A ∈R

m×n. For
this set we can easily construct stochastic approximations sets XS = {x : STAx≤ ST b}, where S is
a vector with nonnegative entries, i.e. S ∈R

m
+ . Clearly, if the vector S has nonnegative entries, we

have X ⊆XS. Then, we have the following characterization for γ:

Theorem 2. Let us consider finding a solution of a system of linear inequalities X = {x :Ax≤
b}, where A ∈R

m×n. Further, let us consider the stochastic approximation sets XS = {x : STAx≤
ST b}, where S ∈Ω=R

m
+ and a probability distribution P on Ω. Then, (13) holds with:

γ = λmax

(
ATE

[
S(STAATS)−1S

]
A
)
≤ 1.

Proof : Clearly, for x satisfying Ax≤ b the inequality (13) holds for any γ ≤ 1. It remains to prove
for x satisfying Ax 6≤ b. However, since XS = {x : STAx≤ ST b}, then the projection of x onto XS

can be computed explicitly:

ΠXS
(x) = x− max(0, ST (Ax− b))

‖ATS‖2 ATS = x− Π+(S
T (Ax− b))

‖ATS‖2 ATS
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and the relation we need to prove becomes as follows:

∥
∥E
[
ATS(STAATS)−1Π+(S

T (Ax− b))
]∥
∥
2 ≤ γE

[
‖ATS(STAATS)−1Π+(S

T (Ax− b))‖2
]

or equivalently

∥
∥ATE

[
S(STAATS)−1Π+(S

T (Ax− b))
]∥
∥
2 ≤ γE

[
Π+(S

T (Ax− b))(STAATS)−1Π+(S
T (Ax− b))

]
.

Moreover, if we define the event I(x) = {S ∈ Ω : ST (Ax− b) > 0}, then the previous relation can
be written as follows:
∥
∥
∥
∥
AT

(∫

I(x)

S(STAATS)−1STdP

)

(Ax− b)

∥
∥
∥
∥

2

≤ γ(Ax− b)T
(∫

I(x)

S(STAATS)−1STdP

)

(Ax− b).

Let us define E(x) =
∫

I(x)
S(STAATS)−1SdP and E =

∫

Ω
S(STAATS)−1SdP . Then both matrices

are positive semidefinite and E(x) � E for all x such that Ax 6≤ b. It follows that γ is an upper
bound on the following function:

R(x) =
‖ATE(x)(Ax− b)‖2

(Ax− b)TE(x)(Ax− b)
≤ γ ∀x : Ax 6≤ b.

However, it is easy to find an upper bound for this function R(x) for each fixed x, namely:

R(x)≤ λmax(A
TE(x)A) ∀x : Ax 6≤ b.

Since E(x)�E, then ATE(x)A�ATEA and consequently λmax(A
TE(x)A)≤ λmax(A

TEA). More-
over, there exists x such that I(x) =Ω. Thus, we have:

γ = λmax(A
TEA) = λmax

(
ATE

[
S(STAATS)−1ST

]
A
)
.

Since the function W 7→ λmax(W ) is convex over the space of positive semidefinite matrices, then
using Jensen’s inequality we have:

λmax

(
ATE

[
S(STAATS)−1ST

]
A
)
≤E

[
λmax

(
ATS(STAATS)−1STA

)]
.

Furthermore, the matrix PS =ATS(STAATS)−1STA is idempotent, that is P 2
S =PS. Therefore, all

the eigenvalues of PS are either 0 or 1. Then, we get:

γ=λmax

(
ATE

[
S(STAATS)−1ST

]
A
)
≤E

[
λmax

(
ATS(STAATS)−1STA

)]
≤1,

which proves the statement of the theorem. Q.E.D.
Based on the previous theorem we can prove that for particular choices of the probability distri-
bution P we have γ < 1, see e.g. the next corollary:

Corollary 2. Let us consider solving a system of linear inequalities X = {x :Ax≤ b}, where
A∈R

m×n having rang(A)≥ 2. Further, let us consider Ω= {e1, · · · , em}, the standard basis of Rm,
and the corresponding stochastic approximation sets Xei = {x : AT

i x≤ bi} for all i ∈ [m]. Then, for
two choices of the probability distribution P on Ω, inequality (13) holds with:

γ =







λmax(ATA)
‖A‖2

F
if P(S = ei) =

‖Ai‖
2

‖A‖2
F

λmax(ATDA)
m

if P(S = ei) =
1
m

< 1, (15)

where the diagonal matrix D
def
= diag(‖A1‖−2, · · · ,‖Am‖−2).
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Proof : The proof is similar to the one given in Corollary 1. Q.E.D.
The reader can easily find other examples of convex feasibility problems with γ < 1. The linear
regularity inequality (10) and the Jensen type inequality (13) impose strong conditions on the
shape of the function F :

Theorem 3. Let the linear regularity condition (10) hold. Then, the following bounds are valid
for the smooth objective function F :

1

2κ
‖x−ΠX (x)‖2 ≤ F (x)−F ∗ ≤ γ

2
‖x−ΠX (x)‖2 ∀x∈R

n, (16)

and their dual formulations

1

2γ
‖∇F (x)‖2 ≤ F (x)−F ∗ ≤ κ

2
‖∇F (x)‖2 ∀x∈R

n. (17)

Proof : Under the linear regularity condition (10) we have (12), which represents the left hand side
inequality in (16). For proving the right hand side inequality in (16) we use a well-known property
of the projection:

‖x−ΠXS
(x)‖2 ≤ ‖x− z‖2 −‖ΠXS

(x)− z‖2 ∀z ∈XS. (18)

Then, using that ΠX (x)∈XS we have:

E
[
‖x−ΠXS

(x)‖2
]
= ‖x−ΠX (x)‖2+E

[
‖ΠX (x)−ΠXS

(x)‖2
]
+2〈x−ΠX (x),E [ΠX (x)−ΠXS

(x)]〉
(18)

≤ 2‖x−ΠX (x)‖2−E
[
‖x−ΠXS

(x)‖2
]
+2〈x−ΠX (x),E [ΠX (x)−ΠXS

(x)]〉
=−E

[
‖x−ΠXS

(x)‖2
]
+2〈x−ΠX (x),E [x−ΠXS

(x)]〉,

where in the first inequality we used (18). In conclusion, we get:

E
[
‖x−ΠXS

(x)‖2
]
≤ 〈x−ΠX (x),E [x−ΠXS

(x)]〉. (19)

Furthermore, using Cauchy-Schwartz inequality and (13) in (19) we get:

E
[
‖x−ΠXS

(x)‖2
]
≤ ‖x−ΠX (x)‖‖E [x−ΠXS

(x)]‖
≤ ‖x−ΠX (x)‖

√

γE [‖x−ΠXS
(x)‖2]

which leads to:
F (x)−F ∗ ≤ γ

2
‖x−ΠX (x)‖2,

that is, the right hand side inequality in (16) holds. This proves the first statement of the theorem,
i.e. (16).
For proving the second statement, (17), we first notice that since the Jensen type inequality (13)
always holds for some γ ≤ 1 and using the expression of F and that F ∗ = 0, then we can easily find
the left hand side inequality in (17):

1

2
‖∇F (x)‖2 ≤ γ(F (x)−F ∗) ∀x∈R

n. (20)

Then, combining (10) and (19) and using Cauchy-Schwartz inequality, we get:

E
[
‖x−ΠXS

(x)‖2
]
≤ ‖x−ΠX (x)‖‖E [x−ΠXS

(x)]‖
≤
√

κE [‖x−ΠXS
(x)‖2]‖E [x−ΠXS

(x)]‖,
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which leads to

1

κ
(F (x)−F ∗)≤ 1

2
‖∇F (x)‖2.

Combining the previous inequality with (20) we obtain the second statement of the theorem, i.e.
(17). Q.E.D.
Theorem 3 states that F is strongly convex with constant 1

k
and has Lipschitz continuous gradient

with constant γ when restricted along any segment [x,ΠX (x)]. Indeed, since ∇F (ΠX (x)) = 0, then
from (16)-(17) we obtain:

1

2κ
‖x−ΠX (x)‖2+ 〈∇F (ΠX (x)), x−ΠX (x)〉+F ∗

≤ F (x)≤ γ

2
‖x−ΠX (x)‖2 + 〈∇F (ΠX (x)), x−ΠX (x)〉+F ∗

which are exactly the strong convexity condition and the Lipschitz continuity condition, respec-
tively, along any segment [x,ΠX (x)], see [26] for more details. It follows that κγ ≥ 1 and κγ
represents the condition number of the convex feasibility problem (3). Note that F has global
Lipschitz continuous gradient with constant LF = 1.

3.2. Properties of the operator Π=E [ΠXS
] It is well-known that the projection operator

is firmly nonexpansive:

〈ΠXS
(x)−ΠXS

(y), x− y〉 ≥ ‖ΠXS
(x)−ΠXS

(y)‖2 ∀x, y ∈R
n.

Taking the expectation in the previous relation, we get that average projection operator Π(x) =
E [ΠXS

(x)] is also firmly nonexpansive:

〈E [ΠXS
(x)]−E [ΠXS

(y)] , x− y〉 ≥E
[
‖ΠXS

(x)−ΠXS
(y)‖2

]
≥ ‖E [ΠXS

(x)]−E [ΠXS
(y)]‖2 (21)

for all x, y ∈R
n. Similar to Theorem 3 we can derive some contraction inequalities for the average

projection operator Π.

Theorem 4. Let the linear regularity condition (10) hold. Then, the following bounds are valid
for the average projection operator Π(x) =E [ΠXS

(x)]:

(1− γ)‖x−x∗‖2 ≤ 〈Π(x)−Π(x∗), x−x∗〉 ≤
(

1− 1

κ

)

‖x−x∗‖2 (22)

for all x∈R
n and the corresponding fixed point x∗ =ΠX (x).

Proof : In order to prove the right hand side inequality, we choose in (21) the fixed point y=ΠX (x),
which leads to:

〈E [ΠXS
(x)]−ΠX (x), x−ΠX (x)〉 ≥E

[
‖ΠXS

(x)−ΠX (x)‖2
]

=E
[
‖ΠXS

(x)−x‖2
]
−‖x−ΠX (x)‖2 +2〈E [ΠXS

(x)]−ΠX (x), x−ΠX (x)〉,

which combined with (10) leads to

〈E [ΠXS
(x)]−ΠX (x), x−ΠX (x)〉 ≤ ‖x−ΠX (x)‖2−E

[
‖ΠXS

(x)−x‖2
]

(10)

≤
(

1− 1

κ

)

‖x−ΠX (x)‖2.
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For the left hand side inequality we proceed as follows:

〈E [ΠXS
(x)]−ΠX (x), x−ΠX (x)〉= ‖x−ΠX (x)‖2+ 〈E [ΠXS

(x)]−x,x−ΠX (x)〉
≥ ‖x−ΠX (x)‖2−‖x−ΠX (x)‖‖E [ΠXS

(x)]−x‖
≥ ‖x−ΠX (x)‖2−‖x−ΠX (x)‖

√

γE [‖ΠXS
(x)−x‖2]

= ‖x−ΠX (x)‖2−‖x−ΠX (x)‖
√

2γ(F (x)−F ∗)
(16)

≥ ‖x−ΠX (x)‖2 −‖x−ΠX (x)‖γ
√

‖x−ΠX (x)‖2
= (1− γ)‖x−ΠX (x)‖2,

where in the first inequality we used Cauchy-Schwartz inequality, in the second inequality we used
(13) and in the third inequality we used relation (16). Q.E.D.
Theorem 4 shows that the operator Π is a contraction with contraction constant c = 1 − 1

k
< 1

when restricted along any segment [x,ΠX (x)].

4. Examples: finite intersection We consider X represented as the intersection of a finite
family of convex sets:

X =

m⋂

i=1

Xi,

where Xi are nonempty closed convex sets. We also assume that X 6= ∅. In several papers, such
as [5,27], the authors introduced a linear regularity property for the set X =

⋂m

i=1Xi. That is, there
exists κmax <∞ such that:

dist2X (x)≤ κmax max
i∈[m]

dist2Xi
(x) ∀x∈R

n. (23)

Based on this condition, linear convergence rate, depending on the constant κmax, has been derived
for the alternating projection algorithm (B-AP). Note that our definition of linear regularity (10)
extends the one given in (23) for finite intersection to the more general convex feasibility problem
(3). More precisely, in order to show linear convergence for our general algorithmic framework
introduced in this paper, we require the linear regularity property for the set X =∩S∈ΩXS defined

in (10). For a uniform probability over the set Ω= [m]
def
= {1,2, . . . ,m} we have:

dist2X (x)≤ κmax max
i∈[m]

dist2Xi
(x)≤ κmax

m∑

i=1

dist2Xi
(x)

=m ·κmaxE
[
dist2XS

(x)
]
.

This shows that:

κ≤m ·κmax.

Thus, condition (23) is a relaxation of our more general condition (10), also analyzed in [28].
Further, we analyze this property (10) and estimate the constant κ for several representative cases
of stochastic approximation sets for X .

4.1. Standard Let XS = Xi for all i ∈ Ω= [m], endowed with some probability pi ≥ 0. Since
∩m

i=1Xi =X ⊆XS, then XS is a stochastic approximation of X . Note that:

Y =

{

x :
m∑

i=1

piIXS
(x) = 0

}

=
⋂

i : pi>0

Xi.
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Hence, a sufficient condition for exactness is to require pi > 0 for all i ∈ [m]. Moreover, under this
condition and (23) it follows that linear regularity (10) holds with κ= κmax

pmin
, where pmin =mini∈[m] pi.

Indeed, we can use the following inequality:

pminmax
i∈[m]

dist2Xi
(x)≤

m∑

i=1

pmindist
2
Xi
(x)≤

m∑

i=1

pidist
2
Xi
(x) =E

[
dist2XS

(x)
]
.

4.2. Subsets With each nonempty subset S ⊆ [m] we associate a probability pS ≥ 0, such
that

∑

S⊆[m] pS = 1. We then define XS =∩i∈SXi with probability pS. Since X ⊆XS , then this is a
stochastic approximation. Moreover,

Y =

{

x :
∑

S

pSIXS
(x) = 0

}

=
⋂

S : pS>0

XS.

A sufficient condition for the last set to be equal to X (i.e., a sufficient condition for exactness) is

[m] =
⋃

S : pS>0

S.

In words, this condition requires us to assign positive probabilities to some collection of subsets
covering [m]. If we only assign positive probabilities to singletons, we recover example 1. Moreover,
under this condition and (23) it follows that linear regularity (10) holds with κ = κmax

pmin
, where

pmin =minS:pS>0 pS. This is due to the fact that maxi∈[m] dist
2
Xi
(x)≤∑m

i=1 dist
2
Xi
(x), that dist2Xi

(x)≤
dist2∩j∈SXj

(x) = dist2XS
(x),∀i∈ S and that we assume there is a collection of subsets S covering [m].

4.3. Convex combination Fix r ∈ [m], and let us consider a countable subset Ωr defined as
follows:

Ωr ⊂
{

S ∈R
m :

m∑

i=1

Si =1, S ≥ 0, ‖S‖0 ≤ r

}

.

Let us consider a discrete probability distribution P on Ωr. We then choose S ∼P and define the
stochastic approximation set as:

XS =
m∑

i=1

SiXi
def
=

{
m∑

i=1

Sixi : xi ∈Xi

}

.

This is clearly a stochastic approximation, that is X ⊆ XS , since
∑m

i=1 Si = 1 and for any x ∈ X
it follows that x ∈ Xi for all i ∈ [m] and thus x =

∑

i Six ∈ XS. For r = 1 we recover the stan-
dard example from Section 4.1. If additionally, we assume that Ωr contains the basic vectors, i.e.
{e1, · · · , em} ⊆ Ωr, and XS defined as above, then exactness holds when pi =P(S = ei)> 0 for all
i∈ [m]. Indeed, if x∈Y , then:

0 =E [IXS
(x)] =

∑

S∈Ω

pSIXS
(x)≥

∑

S∈{e1,··· ,em}

pSIXS
(x),

which implies x∈Xi, provided that pi > 0, for all i∈ [m]. Moreover, under this condition and (23)
it follows that linear regularity (10) holds with κ= κmax

pmin
, where pmin =mini∈[m] pi. This is due to

the fact that Xei =Xi and that:

pminmax
i∈[m]

dist2Xi
(x)≤

m∑

i=1

pidist
2
Xi
(x)≤

∑

S∈Ω

pSdist
2
XS

(x) =E
[
dist2XS

(x)
]
.
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4.4. Equality constraints Assume a linear representation for the set X , that is X = {x ∈
R

n :Ax= b}, where the matrix A∈R
m×n. In this case we have Xi = {x∈R

n :AT
i x− bi =0}, where

Ai is the ith row of matrix A. Let q≤m, Ω⊆R
m×q and a probability distribution P on Ω. Thus,

we define the stochastic approximation:

XS = {x∈R
n : STAx= ST b} ∀S ∈Ω.

We notice that ∩S∈ΩXS = {x : SAx= Sb ∀S ∈Ω}. If we can find m linearly independent columns in
the family of matrices (S)S∈Ω, then X =∩S∈ΩXS. Next we derive sufficient conditions for exactness,
that is conditions that guarantee X =Y , and we also provide an estimate for κ.

Theorem 5. Let X = {x ∈ R
n : Ax = b}, with A ∈ R

m×n and consider the stochastic approxi-
mation XS = {x ∈R

n : STAx= ST b}, where S ∈R
m×q is a random matrix in the probability space

(Ω,P). Furthermore, assume that S satisfies E [S(STAATS)†ST ]≻ 0. Then, we have exactness and
the linear regularity property (10) holds with constant:

κ=
1

λnz
min(A

TE [S(STAATS)†ST ]A)
> 0. (24)

Proof : Notice that the projection ΠXS
(x) of x onto XS can be expressed as:

ΠXS
(x) = x−ATS(STAATS)†ST (Ax− b),

thus the local distance distXS
(x) from x to the set XS is given by:

distXS
(x) = ‖x−ΠXS

(x)‖= ‖ATS(STAATS)†ST (Ax− b)‖
= ‖ATS(STAATS)†STA(x−ΠX (x))‖. (25)

Further, the matrix PS =ATS(STAATS)†STA is idempotent, that is P 2
S = PS, which implies that

‖PSz‖2 = zTPSz for any z ∈R
n. By squaring and taking expectation in both sides of (25) and also

using the previous property of PS, we further obtain:

E
[
dist2XS

(x)
] (25)
= E

[
‖PS(x−ΠX (x))‖2

]

=E
[
(x−ΠX (x))

TPS(x−ΠX (x))
]

=(x−ΠX (x))
TE [PS] (x−ΠX (x)). (26)

On the other hand, it is well known from the Courant-Fischer theorem [30], that for any C ∈R
m×n

we have:
‖Cz‖≥ σnz

min(C)‖z‖ ∀z ∈ Im(CT ),

where recall that σnz
min denotes the smallest nonzero singular value of a matrix. If we define the

matrix E =E [S(STAATS)†ST ] and take C =E1/2A, then the above relation leads to:

‖E1/2Az‖ ≥ σnz
min(E

1/2A)‖z‖ ∀z ∈ Im(ATE1/2). (27)

Further, since we assume that E = E [S(STAATS)†ST ] ≻ 0, then E1/2 ≻ 0 and Im(AT ) =
Im(ATE1/2). Moreover, we have the fact that x − ΠX (x) ∈ Im(AT ). Therefore, by applying the
relation (27) for z = x−ΠX (x), observing that E [PS] = ATEA, and by combining relations (26)
and (27), we have:

E
[
dist2XS

(x)
]
= ‖E1/2A(x−ΠX (x))‖2
(27)

≥
(
σnz
min(E

1/2A)
)2
dist2X (x)

= λnz
min(A

TEA)dist2X (x)
= λnz

min(E [PS])dist
2
X (x)

= λnz
min(E

[
ATS(STAATS)†STA

]
)dist2X (x)
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for all x∈R
n. This final relation implies our statement. Q.E.D.

In [31] it has been proved that, when we consider discrete samplings, such as S ∈Ω= {e1, · · · , em},
and full row rank matrices A with no strictly zero rows, the matrix E [ST (SAATST )†S] is positive
definite, that is it satisfies our assumption considered in the previous theorem. A simple consequence
of previous theorem is the following:

Corollary 3. If we consider Ω= {e1, · · · , em}, then for two choices of the probability distri-
bution P on Ω the linear regularity constant takes the form:

κ=







‖A‖2F
λnz
min(ATA)

if P(S = ei) =
‖Ai‖

2

‖A‖2
F

m

λnz
min(ATDA)

if P(S = ei) =
1
m

≥ 1, (28)

where the diagonal matrix D
def
= diag(‖A1‖−2, · · · ,‖Am‖−2).

Proof : If Ω = {e1, · · · , em} and the probability P(S = ei) = ‖Ai‖2/‖A‖2F , then the stochastic approx-
imation set Xei is given by a linear hyperplane, i.e. Xei = {x ∈R

n :AT
i x= bi}, and the expression

in (24) becomes:

λnz
min(A

TE
[
S(STAATS)†ST

]
A) = λnz

min

(

ATE

[
eie

T
i

‖Ai‖2
]

A

)

= λnz
min

(

AT

m∑

i=1

‖Ai‖2
‖A‖2F

eie
T
i

‖Ai‖2
A

)

= λnz
min

(

AT Im
‖A‖2F

A

)

=
λnz
min(A

TA)

‖A‖2F
.

Thus, in this case, the linear regularity constant is given by:

κ
(24)
=

‖A‖2F
λnz
min (A

TA)
=

( ‖A‖F
σnz
min(A)

)2

≥ 1.

For the uniform probability P(S = ei) = 1/m, the expression in (24) becomes:

λnz
min(A

TE
[
S(STAATS)†ST

]
A) = λnz

min

(

ATE

[
eie

T
i

‖Ai‖2
]

A

)

= λnz
min

(

AT

m∑

i=1

1

m

eie
T
i

‖Ai‖2
A

)

=
λnz
min(A

TDA)

m
,

where the diagonal matrix D=diag(‖A1‖−2, · · · ,‖Am‖−2). This proves our statement. Q.E.D.

4.5. Inequality constraints Let q ≤ m, Ω ⊆ R
m×q
+ the set of matrices with nonnegative

entries, i.e., Rm×q
+ = {S ∈R

m×q : Sij ≥ 0 ∀i∈ [m], j ∈ [q]}, and a probability distribution P on Ω.
Assume a functional representation for the set X , that is X = {x ∈ R

n : F(x) ≤ 0}, where F :
R

n → R
m is a vector of convex closed functions, that is F = (F1, · · · ,Fm). In this case we have

Xi = {x∈R
n :Fi(x)≤ 0}. Thus, we define the stochastic approximation:

XS = {x∈R
n : STF(x)≤ 0} ∀S ∈Ω.

We notice that ∩S∈ΩXS = {x : STF(x)≤ 0 ∀S ∈Ω}. If there exist m linearly independent columns
in the family of matrices (S)S∈Ω, then X = ∩SXS. Moreover, if the probability space is finite,
then we also have exactness. Next, we provide estimates for the linear regularity constant κ for
some particular sets. First, we consider finding a point in the intersection of halfspaces, that is
X = {x∈R

n :Ax≤ b}.
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Theorem 6. Let X = {x∈R
n :Ax≤ b} and consider stochastic approximation halfspaces XS =

{x ∈ R
n : STAx ≤ ST b}, where S is a random vector from the finite probability space Ωr ⊂ {S ∈

R
m : S ≥ 0,‖S‖0 ≤ r} for some given r ∈ [m] endowed with a probability distribution P= (pS)S∈Ωr .

We further denote the Hoffman constant for the polyhedral set X with κ̃. Then, under exactness
the linear regularity property (10) holds with constant:

κ=
max
S∈Ωr

‖ATS‖2

min
S∈Ωr

pS
κ̃. (29)

Proof : Notice that in this case we have an explicit projection onto XS given by ΠXS
(x) = x −

Π+(STAx−ST b)

‖AT S‖2
ATS, which implies that:

distXS
(x) =

Π+(S
TAx−ST b)

‖ATS‖ ≥ Π+(S
TAx−ST b)

max
S∈Ωr

‖ATS‖ . (30)

From Markov inequality we have:

E
[
dist2XS

(x)
]

max
S∈Ωr

dist2XS
(x)

≥P

(

dist2XS
(x)≥max

S∈Ωr

dist2XS
(x)

)

.

Combining the previous inequality with (30), we obtain:

E
[
dist2XS

(x)
]
≥P(dist2XS

(x)≥max
S∈Ωr

dist2XS
(x)) ·max

S∈Ωr

dist2XS
(x)

=P(distXS
(x)≥max

S∈Ωr

distXS
(x)) ·max

S∈Ωr

dist2XS
(x)

≥ min
S∈Ωr

pS ·max
S∈Ωr

dist2XS
(x)

(30)

≥ min
S∈Ωr

pS ·
max
S∈Ωr

Π2
+(S

TAx−ST b)

max
S∈Ωr

‖ATS‖2 . (31)

On the other hand it is well know that for a polyhedral set the Hoffman inequality is valid, see [9].
Since we assume exactness and that Ωr has a finite number of elements, then there exists some
positive constant κ̃ > 0 such that:

dist2X (x)≤ κ̃max
S∈Ωr

Π2
+(S

TAx−ST b) ∀x∈R
n.

Using this Hoffman inequality in (31) leads to the relation:

E
[
dist2XS

(x)
]
≥

min
S∈Ωr

pS

κ̃max
S∈Ωr

‖ATS‖2dist
2
X (x) ∀x∈R

n,

which proves our statement. Q.E.D.
However, for a specific choice of the probability distribution we can get better estimate for κ, as
the next corollary shows:

Corollary 4. Let X = {x ∈ R
n : Ax ≤ b} and consider stochastic approximation halfspaces

XS = {x∈R
n : STAx≤ ST b}, where S is a random vector from the finite probability space Ωr ⊂{S ∈

R
m : S ≥ 0,‖S‖0 ≤ r} for some given r ∈ [m] endowed with the probability distribution P= (pS)S∈Ωr

given by pS = ‖ATS‖2/∑S∈Ωr
‖ATS‖2. We further denote the Hoffman constant for the polyhedral

set X with κ̃. Then, under exactness the linear regularity property (10) holds with constant:

κ= κ̃
∑

S∈Ωr

‖ATS‖2. (32)
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Proof : Since ΠXS
(x) = x− Π+(STAx−ST b)

‖AT S‖2
ATS, then we have:

distXS
(x) =

Π+(S
TAx−ST b)

‖ATS‖ .

Using the expressions for the distance and for the probability, we further have:

E
[
dist2XS

(x)
]
=
∑

S∈Ωr

pSdist
2
XS

(x)

=
∑

S∈Ωr

‖ATS‖2
∑

S∈Ωr
‖ATS‖2 ·

Π2
+(S

TAx−ST b)

‖ATS‖2

=
1

∑

S∈Ωr
‖ATS‖2

∑

S∈Ωr

Π2
+(S

TAx−ST b). (33)

On the other hand, under exactness and Ωr has a finite number of elements there exists some
positive Hoffman constant κ̃ > 0 such that:

dist2X (x)≤ κ̃
∑

S∈Ωr

Π2
+(S

TAx−ST b) ∀x∈R
n.

Using the Hoffman inequality in (33) leads to the relation:

E
[
dist2XS

(x)
]
≥ 1

κ̃
∑

S∈Ωr
‖ATS‖2dist

2
X (x) ∀x∈R

n,

which proves our statement. Q.E.D.
Second, following similar ideas as in [18, 27], we consider the general case of a convex set X with
nonempty interior, that is, there exists a ball of radius δ > 0 and center x̄∈X such that:

{x∈R
n : ‖x̄−x‖ ≤ δ}⊆X .

Theorem 7. Let X be a convex set with nonempty interior, that is there exists δ > 0 and x̄∈X
such that {x∈R

n : ‖x̄−x‖ ≤ δ}⊆X . Consider any family of stochastic approximations XS, where
S is a random variable from the finite probability space Ω endowed with a probability distribution
P= (pS)S∈Ω. Then, under exactness the linear regularity property (10) holds over any bounded set
Q with constant:

κ=
max
x∈Q

‖x− x̄‖2

δ2min
S∈Ω

pS
∀x∈Q. (34)

Proof : Let us define for some α> 0 and x∈R
n the vector:

yα(x) =
α

α+ δ
x̄+

δ

α+ δ
x.

Now we show that by choosing α̃=max
S∈Ω

distXS
(x), then yα̃(x) ∈ X for all x ∈R

n. Indeed, we first

rewrite yα̃(x) as:

yα̃(x) =
α̃

α̃+ δ
z+

δ

α̃+ δ
ΠXS

(x),

where z = x̄+ δ
α̃
(x−ΠXS

(x)). Notice that:

‖z− x̄‖= δ

α
‖x−ΠXS

(x)‖= δ
distXS

(x)

max
S∈Ω

distXS
(x)

≤ δ.
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Thus, we have z ∈ X , which implies z ∈ XS for all S ∈ Ω. Since z ∈ XS, then further we conclude
that also yα(x)∈XS for all XS, which finally confirms that yα(x) ∈X , due to exactness. By using
this fact, results that:

distX (x)≤ ‖yα̃(x)−x‖= α̃

α̃+ δ
‖x− x̄‖

≤ α̃

δ
‖x− x̄‖= ‖x− x̄‖

δ
max
S∈Ω

distXS
(x). (35)

From the Markov inequality we get the bound:

min
S∈Ω

pS ≤P(dist2XS
(x)≥max

S∈Ω
dist2XS

(x))≤
E
[
dist2XS

(x)
]

max
S∈Ω

dist2XS
(x)

. (36)

Using (35) and (36), we obtain for any x∈Q:

dist2X (x)
(35)+(36)

≤ ‖x− x̄‖2
δ2min

S∈Ω
pS

E
[
dist2XS

(x)
]
≤

max
x∈Q

‖x− x̄‖2

δ2min
S∈Ω

pS
E
[
dist2XS

(x)
]
,

which confirms our result. Q.E.D.

5. Examples: infinite intersection Assume X =∩S∈ΩXS, for some (possibly infinite) index
set Ω and sets XS ⊆R

n. Many interesting applications can be modeled as the intersection of infinite
(countable/uncountable) number of simple convex sets, see e.g. [29] for some control and machine
learning applications. Let P be a probability measure on Ω. Then, if we choose S ∼ P, XS is a
stochastic approximation of X . Note that

Y = {x : P(x∈XS) = 1}.

5.1. Separation oracle Assume that we have access to a separation oracle for X . That is,
for each S ∈R

n, the oracle either confirms that S ∈X , or outputs a vector g = g(S)∈R
n such that

〈g, z−S〉 ≤ 0 for all z ∈X . If we let

XS
def
=

{

R
n S ∈X

{x : 〈g,x−S〉 ≤ 0} S /∈X ,

then clearly X ⊆XS for all S ∈R
n. Given any distribution P over Rn, XS is a stochastic approxi-

mation of X . In this case we can only guarantee:

X ⊆∩S∈RnXS .

5.2. Supporting halfspaces A particular case of the convex feasibility problem is the so-
called split feasibility problem [10]:

Find x∈X = {x∈R
n : Ax ∈Z},

i.e., X is defined by imposing convex constraints defined by the set Z in the range of the matrix
A ∈R

m×n. Then, if we choose any S ∈ R
n we can define a stochastic approximation as the entire

space or the following halfspace:

XS
def
=

{

R
n S ∈X

{x : cTSx≤ bS} S /∈X ,
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where cS 6= 0 and bS are defined as follows:

cS =AT (AS−ΠZ(AS)) and bS = ‖AS‖2 − (ΠZ(AS))
TAS−‖AS−ΠZ(AS)‖2.

Note that the halfspace XS = {x : cTSx≤ bS} can be written equivalently as:

XS = {x : 〈AS−ΠZ(AS),Ax−ΠZ(AS)≤ 0}.

It is easy to check using the optimality conditions for the projection onto Z that for any S /∈ X
the hyperplane cTSx= bS separates S from X , that is:

X ⊆XS ∀S ∈R
n.

Therefore, given any distribution P over Rn, the halfspace XS is a stochastic approximation of X .

In fact, in this case we have:

X =∩S∈RnXS .

Indeed, it is straightforward that we have X ⊆ ∩S∈RnXS. For the other inclusion, let us take any

x ∈ ∩S∈RnXS. Then, x ∈ XS for any fixed S. Now, if we make the particular choice S = x, then

x∈Xx, that is it satisfies:

〈Ax−ΠZ(Ax),Ax−ΠZ(Ax)≤ 0

which holds if and only if Ax=ΠZ(Ax), that is x∈X .

5.3. Normal cone Let Ω ∈ R
n be a closed convex set and fix x̄ ∈ Ω. Consider X to be the

normal cone of the convex set Ω at some fixed point x̄∈Ω:

X = {x : (x− x̄)T (S− x̄)≤ 0 for all S ∈Ω}=
⋂

S∈Ω

XS,

where XS
def
= {x : (x− x̄)T (S− x̄)≤ 0}. If P is a probability distribution over Ω, and S ∼P, then

XS is a stochastic approximation of X . Moreover, in this case we have X =
⋂

S∈ΩXS.

6. Stochastic Projection Algorithm In this section we propose the following parallel

stochastic projection method:

Algorithm SPA (general case)
Choose x0 ∈ R

n, minibatch size N ≥ 1, and positive stepsizes
{αk}k≥0. For k≥ 0 repeat:
1. Draw N independent samples, Sk

1 , S
k
2 , · · · , Sk

N ∼P

2. Compute xk+1 = xk −αk

(

xk − 1
N

N∑

i=1

ΠX
Sk
i

(xk)

)

This algorithm can be viewed as a random implementation of the extrapolated method of parallel

projections from [15], which generates a sequence by extrapolation of convex combinations of

projections onto subfamilies of sets cyclically.
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6.1. Interpretation The minibatch algorithm SPA performs at each iteration k a number of
N projections onto the simple sets XSk

1
, · · · ,XSk

N
in parallel and then the new iterate is computed

taking a linear combination between the previous iterate and the average of those projections.
Such minibatch strategy has several interpretations. For example, when we consider the stochastic
smooth optimization problem (6):

min
x∈Rn

F (x) =E [FS(x)] ,

where FS(x) = 1/2‖x− ΠXS
(x)‖2, usually a Monte Carlo simulation-based approach is used for

solving it. It consists in generating random samples of S and the expected value function F is
approximated by the corresponding sample average function. That is, let S1, · · · , SN be indepen-
dently and identically distributed random sample of N realizations of the random variable S. Then,
we consider the sample average function F̂N = 1/N

∑N

i=1FSi
and the associated problem:

min
x∈Rn

F̂N(x).

Finally, this sample average optimization problem is solved. The idea of using sample average
approximations for solving stochastic programs is a natural one and was used by various authors
over the years [32]. However, the solution x̂∗

N of the sample average optimization problem converges
to the true solution x∗ of the stochastic optimization problem only for large enough number of
samples N →∞. On the other hand, in our minibatch algorithm SPA the approach is different.
First, we fix the number of samples N . Then, at each iteration k we draw N independent samples
Sk
1 , S

k
2 , · · · , Sk

N to also form a sample average function F̂ k
N = 1/N

∑N

i=1 FSk
i
. Finally, we do not solve

the sample overage optimization problem:

min
x∈Rn

F̂ k
N(x),

instead we only perform one gradient step for this problem with stepsize αk

xk+1 = xk −αk∇F̂ k
N(x

k),

and then repeat the procedure. In this case we are not forced to take N large in order to obtain
an approximative solution of the original problem. In fact, we can even consider N = 1.
The minibatch algorithm SPA can be also interpreted in terms of the stochastic non-smooth
optimization problem (5):

min
x∈Rn

f(x) =E [fS(x)] ,

where fS(x) = IXS
(x). If we fix the number of samples N , then at each iteration k we draw N

independent samples Sk
1 , S

k
2 , · · · , Sk

N to form the same sample average function:

F̂ k
N(x) =

1

N

N∑

i=1

(

min
z∈Rn

fSk
i
(z)+

1

2
‖x− z‖2

)

,

and then consider solving the sample overage optimization problem

min
x∈Rn

F̂ k
N(x),

which can be rewritten using the notation z = [z1 · · · zN ]T as follows:

min
x∈Rn,zi∈Rn

F̂ k
N(x, z)

(

:=
1

N

N∑

i=1

[

IX
Sk
i

(zi)+
1

2
‖x− zi‖2

])

.
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However, we do not solve the previous average optimization problem in the variables (x, z), instead
we only perform one step of Relaxed Block Alternating Minimization Method. That is, given xk,
we compute:

zk+1 = arg min
z∈RNn

F̂ k
N(x

k, z), x̃k+1 = arg min
x∈Rn

F̂ k
N(x, z

k+1)

xk+1 = (1−αk)x
k +αkx̃

k+1,

and repeat the whole procedure. Again, this strategy allows us to work also with N small, including
N = 1.

6.2. Convergence analysis Our convergence analysis is based on two important properties
of the family of convex sets (XS)S∈Ω. For simplicity, we recall them once more here. First, there
exists γ ≤ 1 satisfying the inequality (13), i.e.:

‖E [x−ΠXS
(x)]‖2 ≤ γ ·E

[

‖x−ΠXS
(x)‖2

]

∀x∈R
n. (37)

However, for specific sets and distributions P, we proved in Section 3.1 that γ can be much smaller
than 1. Second, there exists κ≤∞ such that the family of convex sets (XS)S∈Ω satisfies the linear
regularity property (10), i.e.:

dist2X (x)≤ κE
[
dist2XS

(x)
]

∀x∈R
n. (38)

However, we have proved in Section 4 that for specific sets and distributions P, the constant κ can
be finite, that is κ<∞. Based on the properties (37) and (38) the smooth objective function F of
the stochastic optimization problem (6) satisfies Theorem 3, in particular we have:

1

2κ
‖x−ΠX (x)‖2 ≤ F (x)−F ∗ ≤ γ

2
‖x−ΠX (x)‖2 ∀x∈R

n. (39)

There is an interesting interpretation of inequality (39), that is the objective function F is strongly
convex with constant 1

κ
and has Lipschitz continuous gradient with constant γ ≤ 1 when restricted

along any segment [x,ΠX (x)]. Thus, κγ represents the condition number of the convex feasibility
problem (3). Using the inequalities (37)-(39) we can prove not only asymptotic convergence of the
sequence {xk}k≥0 generated by algorithm SPA, but also rates of convergence. We start with a
basic result from probability theory, see e.g. [28]:

Lemma 3 (Supermartingale Convergence Lemma). Let vk and uk be sequences of non-
negative random variables such that:

E
[
vk+1|Fk

]
≤ vk −uk a.s. ∀k≥ 0,

where Fk denotes the collection {v0, · · · , vk, u0, · · · , uk}. Then, we have vk convergent to a random
variable v a.s. and

∑∞

k=0 u
k <∞ a.s.

Then, we obtain the following asymptotic convergence result:

Theorem 8. Assume that the set X is nonempty and define γN
def
= 1

N
+
(
1− 1

N

)
γ ≤ 1. Let

{xk}k≥0 be generated by algorithm SPA with stepsizes 0< αk <
2

γN
. Then, we have the following

average decrease:

E
[
‖xk+1 −x∗‖2 | xk

]
≤ ‖xk −x∗‖2 − 2(2αk −α2

kγN)F (xk) (40)

for all k≥ 0 and x∗ ∈X . Moreover, the fastest decrease is given by the constant stepsize αk =1/γN .
If additionally, exactness holds and the stepsize satisfies δ ≤ αk ≤ 2

γN
−δ for some 0< δ ≤ 1

γN
, then

the sequence xk converges almost sure to a random point in the set X and lim
k→∞

F (xk) = 0 almost
sure.
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Proof : For simplicity, we shall write Πk
i =ΠX

Sk
i

(xk). Let x∗ be any element of X . Then, we have

the following:

‖xk+1−x∗‖2=
∥
∥
∥
∥
∥
xk −x∗ −αk

(

xk − 1

N

N∑

i=1

Πk
i

)∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
xk −x∗ −αk

1

N

N∑

i=1

(xk −Πk
i )

∥
∥
∥
∥
∥

2

=‖xk −x∗‖2 −2αk

N

N∑

i=1

〈
xk−x∗, xk−Πk

i

〉
+

α2
k

N2

∥
∥
∥
∥
∥

N∑

i=1

(xk−Πk
i )

∥
∥
∥
∥
∥

2

≤ ‖xk −x∗‖2 − 2αk

N

N∑

i=1

∥
∥xk −Πk

i

∥
∥
2
+

α2
k

N2

∥
∥
∥
∥
∥

N∑

i=1

(xk −Πk
i )

∥
∥
∥
∥
∥

2

= ‖xk −x∗‖2 − 2αk

N

N∑

i=1

∥
∥xk −Πk

i

∥
∥
2

(41)

+
α2
k

N2

(
N∑

i=1

‖xk −Πk
i ‖2 +

∑

i6=j

〈xk −Πk
i , x

k −Πk
j 〉
)

,

where the inequality follows from the bound:

〈xk −x∗, xk −Πk
i 〉= 〈xk −Πk

i , x
k −Πk

i 〉+ 〈Πk
i −x∗, xk −Πk

i 〉 ≥ ‖xk −Πk
i ‖2,

since 〈Πk
i −x∗, xk −Πk

i 〉 ≥ 0 for all x∗ ∈X ⊆XSk
i
. Taking expectations conditioned on xk and using

the definition of F :

F (xk) =
1

2
E
[
‖xk −Πk

i ‖2 | xk
]
=

1

2
E

[

‖xk −ΠX
Sk
i

(xk)‖2 | xk

]

=
1

2
E
[
‖xk −ΠXS

(xk)‖2 | xk
]
,

and invoking conditional independence of Πk
i and Πk

j for i 6= j (inherited from independence of Sk
i

and Sk
j ), we obtain:

E
[
‖xk+1 −x∗‖2 | xk

]
≤ ‖xk −x∗‖2 − 4αkF (xk)

+
α2
k

N2

(

2NF (xk)+
∑

i6=j

〈
E
[
xk −Πk

i | xk
]
,E
[
xk −Πk

j | xk
]〉

)

= ‖xk−x∗‖2− 4αkF (xk)+
2α2

k

N
F (xk)+

α2
k(N

2−N)

N2

∥
∥E
[
xk−ΠXS

(xk) |xk
]∥
∥
2

(42)

(37)

≤ ‖xk−x∗‖2− 4αkF (xk)+
2α2

k

N
F (xk)+

α2
k(N−1)

N
γE
[
‖xk−ΠXS

(xk)‖2 |xk
]

= ‖xk −x∗‖2 − 4αkF (xk)+
2α2

k

N
F (xk)+

2α2
k(N − 1)

N
γF (xk)

= ‖xk −x∗‖2 − 2(2αk −α2
kγN)F (xk).

Thus, we have obtained for all k≥ 0 and x∗ ∈X :

E
[
‖xk+1 −x∗‖2 | xk

]
≤ ‖xk −x∗‖2 − 2(2αk −α2

kγN)F (xk).

Clearly, the fastest decrease is obtained by maximizing 2αk − α2
kγN in αk, that is the maximum

is obtained for constant stepsize αk = 1/γN . Further, for the stepsizes satisfying δ ≤ αk ≤ 2
γN

− δ
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we have 2αk −α2
kγN ≥ δ2γN > 0. Then, from Supermartingale Convergence Lemma we have that

‖xk − x∗‖2 converges a.s. for every x∗ ∈ X and thus the sequence xk is bounded a.s. This implies
that xk has a limit point x̃∗. Since we also have

∑∞

k=0F (xk)<∞ a.s., it follows that F (xk)→ 0
a.s. Therefore, for any accumulation point x̃∗ of xk we have F (x̃∗) = 0 a.s. (by continuity of F ).
This leads to x̃∗ ∈Y a.s. When exactness holds (i.e. X =Y), it follows that at least a subsequence
of xk converges almost surely to a random point x̃∗ from the set X . Q.E.D.
The previous theorem clearly shows that in order to have decrease in average distances (see (44))
the stepsize αk has to satisfy:

0<αk <
2

γN

∀k≥ 0. (43)

This shows that we can use large stepsizes αk. Thus, we prove theoretically, what is known in
numerical applications for a long time, namely that this overrelaxation αk ≈ 2

γN
> 1 accelerates

significantly in practice the convergence of projection methods as compared to its basic counterpart
αk = 1, see [12, 15]. For several important sets we can estimate the “Lipschitz” constant γ and
consequently γN , see Section 3.1. For other sets however, it is difficult to compute γ. In this case
we propose an adaptive estimation of γ at each iteration k as follows:

γk =
‖E [xk −ΠXS

(xk)]‖2
E [‖xk −ΠXS

(xk)‖2] .

This choice has the following interpretation. From Theorem 3 we have that F has Lipschitz con-
tinuous gradient with constant γ on any segment [xk, ΠX (x

k)]:

F (xk)
(17)

≥ F ∗+ 〈∇F (ΠX (x)), x
k −ΠX (x)〉+

1

2γ
‖∇F (xk)−∇F (ΠX (x))‖2,

which, using F ∗ = F (ΠX (x
k)) = 0 and ∇F (ΠX (x

k)) = 0, is equivalent to:

γ ≥ 1/2‖∇F (xk)‖2
F (xk)

= γk.

Using arguments of Theorem 8, it is straightforward to obtain the following descent.

Corollary 5. Assume that the set X is nonempty and define γk
N

def
= 1

N
+
(
1− 1

N

)
γk ≤ 1. Let

{xk}k≥0 be generated by algorithm SPA with stepsizes 0< αk <
2

γk
N

. Then, we have the following

average decrease:

E
[
‖xk+1 −x∗‖2 | xk

]
≤ ‖xk −x∗‖2 − 2(2αk −α2

kγ
k
N)F (xk) (44)

for all k≥ 0 and x∗ ∈X .

Proof : From the relation (42) we have:

E
[
‖xk+1 −x∗‖2 | xk

]
≤ ‖xk−x∗‖2− 4αkF (xk)+

2α2
k

N
F (xk)+

α2
k(N

2−N)

N2

∥
∥E
[
xk−ΠXS

(xk) |xk
]∥
∥
2

= ‖xk−x∗‖2− 4αkF (xk)+
2α2

k

N
F (xk)+

α2
k(N−1)

N
γkE

[
‖xk−ΠXS

(xk)‖2 |xk
]

= ‖xk −x∗‖2 − 4αkF (xk)+
2α2

k

N
F (xk)+

2α2
k(N − 1)

N
γkF (xk)

= ‖xk −x∗‖2 − 2(2αk −α2
kγ

k
N)F (xk),

which confirms the results. Q.E.D.
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When even the expectation is difficult to compute for finding γk, then, inspired by [15], we
propose to use the following approximation for the previous ratio:

γk =
‖∑N

i=1w
k
i (x

k −ΠX
Sk
i

(xk))‖2
∑N

i=1w
k
i ‖xk −ΠX

Sk
i

(xk)‖2
,

where the weights wk
i satisfy

∑N

i=1w
k
i = 1 and wk

i > 0. For these situations we take the stepsize:

αk =
α

γk
N

, withα ∈ (0, 2).

The effectiveness of this choice for the stepsize has been shown in many practical applications, see
e.g. [12,15]. Next theorem provides rates of convergence for the sequence xk generated by SPA:

Theorem 9. Assume that the set X is nonempty and define γN = 1
N
+
(
1− 1

N

)
γ. Let {xk}k≥0

be generated by algorithm SPA with stepsizes satisfying δ ≤ αk ≤ 2
γN

− δ for some 0 < δ ≤ 1
γN

.
Then:

(i) For the average point x̂k = 1
Σk

k−1∑

i=0

αix
i, where Σk =

k−1∑

i=0

αi, we have the following sublinear

convergence rate:

E
[
F (x̂k)

]
−F ∗ =

1

2
E
[
dist2XS

(x̂k)
]
≤ dist2X (x

0)

2δγNΣk

.

Moreover, the average sequence x̂k converges almost surely to a random point in the set X , provided
that exactness holds.

(ii) If additionally the linear regularity property (38) holds, then we have the following linear
convergence rate for the last iterate xk:

E
[
dist2X (x

k+1)
]
≤
(

1− δ2γN

κ

)

E
[
dist2X (x

k)
]
,

or in terms of function values:

E
[
F (xk)

]
−F ∗ ≤

(

1− δ2γN

κ

)k
γdist2X (x

0)

2
.

Proof : By taking expectation w.r.t. the entire history on both sides in (44) we get the following
decrease in the distance to a point x∗ ∈X :

E
[
‖xk+1 −x∗‖2

]
≤E

[
‖xk −x∗‖2

]
− 2(2αk −α2

kγN)E
[
F (xk)

]
.

Further, denoting rk
def
= E [‖xk −x∗‖2] and noticing the lower bound 2−αkγN ≥ δγN for any stepsize

satisfying δ ≤αk ≤ 2
γN

− δ for some 0< δ ≤ 1
γN

, we have:

2δγNαkE
[
F (xk)

]
≤ 2αk(2−αkγN)E

[
F (xk)

]
≤ rk − rk+1.

If we add the entire history from i= 0 to i= k− 1, we obtain:

2δγNE

[
k−1∑

i=0

αiF (xi)

]

=

k−1∑

i=0

2δγNαiE
[
F (xi)

]
≤ r0 − rk≤ r0 =‖x0 −x∗‖2

for all x∗ ∈X . If we choose x∗ =ΠX (x
0) and use the convexity of function F , then we finally get:

2ΣkδγNE

[

F

(

1

Σk

k−1∑

i=0

αix
i

)]

≤ 2δγNE

[
k−1∑

i=0

αiF (xi)

]

≤ dist2X (x
0).
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This relation and F ∗ = 0 imply immediately the first part of our result. Moreover, by Theorem
8, xk converges almost surely to a random point in the set X . Therefore, the average sequence

x̂k = 1
k

k−1∑

i=0

xi also converges almost surely to the same random point in the set X .

(ii) In order to prove linear convergence under linear regularity property (38) we use again inequality
(44) and F ∗ =0:

E
[
‖xk+1 −x∗‖2 | xk

]
≤ ‖xk −x∗‖2 − 2(2αk −α2

kγN) (F (xk)−F ∗)
(39)

≤ ‖xk −x∗‖2 − 2αk−α2
kγN

κ
dist2X (x

k).

Taking expectations w.r.t. the entire history, we obtain:

E
[
‖xk+1 −x∗‖2

]
≤E

[
‖xk −x∗‖2

]
− 2αk −α2

kγN

κ
E
[
dist2X (x

k)
]
. (45)

Choosing x∗ =ΠX (x
k), and using the inequality dist2X (x

k+1) = ‖xk+1 −ΠX (x
k+1)‖2 ≤ ‖xk+1 − x∗‖2

together with (45), we finally get:

E
[
dist2X (x

k+1)
]
≤
(

1− 2αk −α2
kγN

κ

)

E
[
dist2X (x

k)
]
.

Since for our choice of the stepsize δ ≤ αk ≤ 2
γN

−δ for some 0< δ ≤ 1
γN

, we have 2αk−α2
kγN ≥ δ2γN ,

then the previous relation implies immediately:

E
[
dist2X (x

k+1)
]
≤
(

1− δ2γN

κ

)

E
[
dist2X (x

k)
]
.

which proves the second statement of the theorem. Finally, combining the convergence rate in
distances with the right hand side inequality in (39) we get the convergence in expectation of value
function. Q.E.D.
An immediate consequence of Theorem 9 is the following corollary:

Corollary 6. Assume that the set X is nonempty and γN = 1
N
+
(
1− 1

N

)
γ. Let {xk}k≥0 be

generated by algorithm SPA with the optimal constant stepsize αk = 1/γN . Then:

(i) For the average point x̂k = 1
k

k−1∑

i=0

xi we have the following sublinear convergence rate:

E
[
F (x̂k)

]
−F ∗ =

1

2
E
[
dist2XS

(x̂k)
]
≤ γN ·dist2X (x0)

2k
.

(ii) If additionally the linear regularity property (38) holds, then we have the following linear
convergence rate for the last iterate xk:

E
[
dist2X (x

k+1)
]
≤
(

1− 1

γN ·κ

)

E
[
dist2X (x

k)
]
, (46)

or in terms of function values:

E
[
F (xk)

]
−F ∗ ≤

(

1− 1

γN ·κ

)k
γdist2X (x

0)

2
.
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Proof : By taking expectation w.r.t. the entire history on both sides in (44) we get the following
decrease in the distance to a point x∗ ∈X :

E
[
‖xk+1 −x∗‖2

]
≤E

[
‖xk −x∗‖2

]
− 2(2αk −α2

kγN)E
[
F (xk)

]
.

Further, denoting rk
def
= E [‖xk −x∗‖2], we have:

2(2αk −α2
kγN)E

[
F (xk)

]
≤ rk − rk+1.

The fastest decrease is obtained maximizing 2αk −α2
kγN in αk, which leads to the optimal stepsize

αk = 1/γN . The rest of the proof follows exactly the same steps as in the proof of Theorem 9,
observing that choosing δ = 1/γN we get αk = 1/γN . Q.E.D.
From Theorem 9 and Corollary 6 it follows that the convergence rates of algorithm SPA depend
explicitly on the minibatch sample size N via the term γN . Moreover, we notice that the scheme
SPA is very general and we can recover multiple existing projection algorithms from the litera-
ture. Further, we analyze some particular algorithms resulted from SPA and derive their conver-
gence rates.

6.3. Average Projection algorithm: N = m/∞ As N → ∞, we have γN → γ, and the
linear rate in Corollary 6 converges to 1 − 1/(κ · γ). This is also confirmed by the convergence
rate given in Theorem 10 below. More precisely, when N →∞ the algorithm SPA becomes the
deterministic gradient method for solving the smooth convex problem (6), which we call average
projection algorithm:

Algorithm AvP
Choose x0 ∈R

n and positive stepsizes {αk}k≥0. For k ≥ 0 repeat:

1. Compute xk+1 = xk−αk∇F (xk)
(

def
= xk −αk (x

k −E [ΠXS
(xk)])

)

Under linear regularity condition (38) the sequence {xk}k≥0 generated by algorithm AvP is con-
verging linearly:

Theorem 10. If the linear regularity property (38) holds, then we have the following linear
convergence rate for the last iterate xk generated by algorithm AvP with the optimal stepsize αk =
1/γ:

dist2X (x
k+1)≤

(

1− 1

γ ·κ

)

dist2X (x
k), (47)

or in terms of function values:

F (xk)−F ∗ ≤
(

1− 1

γ ·κ

)k
γdist2X (x

0)

2
.

Proof : Let x∗ be any element of X . Then, we have the following:

‖xk+1 −x∗‖2=
∥
∥xk −x∗ −αk

(
xk −E

[
ΠXS

(xk)
])∥
∥
2

= ‖xk −x∗‖2 − 2αk

〈
xk −x∗, xk −E

[
ΠXS

(xk)
]〉

+α2
k

∥
∥xk −E

[
ΠXS

(xk)
]∥
∥
2

(37)

≤‖xk−x∗‖2− 2αk

〈
xk−x∗, xk−E

[
ΠXS

(xk)
]〉

+γα2
kE
[∥
∥xk−ΠXS

(xk)
∥
∥
2
]

= ‖xk−x∗‖2 − 2αkE
[〈
xk −ΠXS

(xk)+ΠXS
(xk)−x∗, xk −ΠXS

(xk)
〉]

+ γα2
kE
[∥
∥xk−ΠXS

(xk)
∥
∥
2
]

= ‖xk−x∗‖2 − 2αkE
[∥
∥xk−ΠXS

(xk)
∥
∥
2
]

+ γα2
kE
[∥
∥xk−ΠXS

(xk)
∥
∥
2
]
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− 2αkE
[〈
ΠXS

(xk)−x∗, xk −ΠXS
(xk)

〉]

≤ ‖xk−x∗‖2 − (2αk − γα2
k)E

[∥
∥xk−ΠXS

(xk)
∥
∥
2
]

= ‖xk−x∗‖2 − 2(2αk − γα2
k)F (xk). (48)

where the second inequality follows from the optimality condition of the projection
〈ΠXS

(xk)−x∗, xk −ΠXS
(xk)〉 ≥ 0 for all x∗ ∈X ⊆XS . From (48) we observe that the fastest decrease

is obtained from maximizing 2αk − γα2
k, which leads to the optimal stepsize αk = 1/γ. For this

choice of the stepsize, αk = 1/γ, and using F ∗ = 0 we obtain from (48):

‖xk+1 −x∗‖2 ≤ ‖xk−x∗‖2 − 2

γ
(F (xk)−F ∗)

(39)

≤ ‖xk−x∗‖2 − 1

γκ
‖xk−x∗‖2,

which implies immediately the statement of the theorem. Q.E.D.
Note that from the proof of Theorem 10 it follows that we can achieve linear convergence for the last
iterate generated by algorithm AvP with stepsizes satisfying 0<αk < 2/γ Moreover, γκ represents
the condition number of the convex feasibility problem (3) or of its stochastic reformulation (6)
(see Theorem 3).
Let us consider finding a point in the finite intersection of convex sets (Xi)i∈[m], that is X =∩m

i=1Xi.
Further, we consider a uniform probability on Ω = [m] and we choose the minibach sample size
N =m, then the average projection algorithm AvP becomes the barycentric method:

AvP(1/m) : xk+1 = xk −αk

(

xk − 1

m

m∑

i=1

ΠXi
(xk)

)

.

The barycentric method was shown to converge asymptotically to a point in the intersection of the
closed convex sets (Xi)i∈[m], see e.g. [15]. Recall that we denoted D = diag(‖A1‖−2, · · · ,‖Am‖−2).
Let us derive convergence rates for the barycentric method AvP(1/m) for two particular cases of
sets:
(i): Consider the problem of finding a solution to a linear system Ax = b, where A is an m ×
n matrix. In this case Xi = {x : AT

i x = bi}. Then, from Theorem 10 the barycentric method
AvP(1/m) with the optimal stepsize αk =1/γ converges linearly:

E
[
dist2X (x

k)
] (47)

≤
(

1− 1

γκ

)k

dist2X (x
0)

(14)+(28)
=

(

1− λnz
min (A

TDA)

λmax(ATDA)

)k

dist2X (x
0).

(ii): Consider now the more general problem of finding a solution to a system of linear inequalities
Ax≤ b, where A is an m×n matrix. Then Xi = {x : AT

i x≤ bi}. From Theorem 10 it follows that
the barycentric method AvP(1/m) with the optimal stepsize αk =1/γ converges also linearly:

E
[
dist2X (x

k)
] (47)

≤
(

1− 1

γκ

)k

dist2X (x
0)

(15)+(29)
=

(

1− 1

max
i=1:m

‖Ai‖2λmax(ATDA)κ̃

)k

dist2X (x
0).
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Note that from Theorem 10 it follows immediately that the basic barycentric method xk+1 =
1
m

∑m

i=1ΠXi
(xk), i.e. stepsize αk = 1, converges linearly:

E
[
dist2X (x

k)
] (47)

≤
(

1− 2− γ

κ

)k

dist2X (x
0).

However, our algorithmic framework leads to new schemes. For example, for a general probabil-
ity distribution (pi)i∈[m] on Ω = [m] and N =m, the average projection algorithm AvP has the
iteration:

AvP(pi) : xk+1 = xk −αk

(

xk −
m∑

i=1

piΠXi
(xk)

)

.

If we choose the probabilities pi =
‖Ai‖

2

‖A‖2
F
, then this method has the following convergence rates for

linear systems and linear inequalities:
(iii): For a linear system Ax= b, from Theorem 10 theAvP(‖Ai‖2/‖A‖2F ) method with the optimal
stepsize αk = 1/γ converges linearly:

E
[
dist2X (x

k)
] (47)

≤
(

1− 1

γκ

)k

dist2X (x
0)

(14)+(28)
=

(

1− λnz
min (A

TA)

λmax(ATA)

)k

dist2X (x
0).

(iv): For a system of linear inequalities Ax≤ b, from Theorem 10 the previous method with the
optimal stepsize αk = 1/γ converges also linearly:

E
[
dist2X (x

k)
] (47)

≤
(

1− 1

γκ

)k

dist2X (x
0)

(15)+(32)
=

(

1− 1

λmax(ATA)κ̃

)k

dist2X (x
0).

6.4. Stochastic Alternating Projection algorithm: N = 1 In this section we analyze in
more detail a particular case of scheme SPA which uses a single projection for the updates. That
is, in SPA we choose N = 1, which results in the Stochastic Alternating Projection (SAP) scheme:

Algorithm SAP
Choose x0 ∈R

n and positive stepsizes {αk}k≥0

For k≥ 0 repeat:
1. Choose randomly a sample Sk ∼P

2. Compute xk+1 = xk −αk

(

xk −ΠXSk
(xk)

)

Algorithm SAP can be viewed as a random implementation of the alternating projection method,
which generates a sequence of iterates by projecting on the sets cyclically. The alternating pro-
jection algorithm has been proposed by Von Neumann [37] for the intersection problem of two
subspaces in a Hilbert space, and it has many generalization and extensions [6, 16, 27]. A nice
survey of the work in this area is given in [5]. The first convergence rate result for the alternating
projection algorithm under the assumption that the intersection set has a nonempty interior has
been given in [18]. Unlike the alternate projection method (which is deterministic), the algorithm
SAP utilize random projections. The convergence rate of SAP for a finite intersection of simple
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convex sets has been given recently in [27, 28]. From the convergence analysis of previous section
it follows that the stepsize in SAP can be chosen as:

δ ≤ αk ≤ 2− δ,

since for N = 1 we have γN = 1. Moreover, the optimal stepsize is αk = 1. However, it has been
observed in practice that overrelaxations, that is αk ∈ [1, 2], make SAP to perform better. Further
note that for specific sets and probabilities we recover well known algorithms from literature:

(i): Consider the problem of finding a solution to a linear system Ax = b, where A is an m× n

matrix. Further, assume Ω= {e1, · · · , em} and the probability distribution P(S = ei) =
‖Ai‖

2

‖A‖2
F
. Then,

SAP with αk = 1 is the randomized Kaczmarz algorithm from [36]:

xk+1 = xk − AT
i x

k − bi
‖Ai‖2

Ai.

Moreover, for these choices of the probabilities and stepsize, our convergence analysis matches
exactly the one in [36], that is SAP is converging linearly:

E
[
dist2X (x

k)
] (46)

≤
(

1− 1

κ

)k

dist2X (x
0)

(28)
=

(

1− λnz
min (A

TA)

‖A‖2F

)k

dist2X (x
0).

However, SAP generalizes the randomized Kaczmarz algorithm from [36], considering for a random
matrix Sk ∈R

m×q the general iteration:

xk+1 = xk −αkA
TSk(S

T
k AA

TSk)
†ST

k (Ax
k − b).

Notice that for constant stepsize αk = 1, the previous SAP scheme is equivalent with the ran-
domized iterative method of [31]. For this choice of the stepsize, our convergence analysis matches
exactly the one in [31]:

E
[
dist2X (x

k)
] (46)

≤
(

1− 1

κ

)k

dist2X (x
0)

(24)
=
(
1−λnz

min(A
TE
[
S(STAATS)†ST

]
A)
)k

dist2X (x
0).

(ii): Consider now the more general problem of finding a solution to a system of linear inequalities
Ax≤ b, where A is an m×n matrix. Further, assume as above Ω= {e1, · · · , em} and the probability

distribution P(S = ei) =
‖Ai‖

2

‖A‖2
F
. Then, SAP with αk = 1 is the Algorithm 4.6 from [22]:

xk+1 = xk − Π+(A
T
i x

k − bi)

‖Ai‖2
Ai.

For these choices of the probabilities and stepsize, our convergence analysis matches exactly the
one in [22]:

E
[
dist2X (x

k)
] (46)

≤
(

1− 1

κ

)k

dist2X (x
0)

(32)
=

(

1− 1

κ̃‖A‖2F

)k

dist2X (x
0).

However, SAP generalizes the Algorithm 4.6 from [22], considering for a random vector Sk ∈R
m
+

the general iteration:

xk+1 = xk −αk

Π+(S
T
k Ax−ST

k b)

‖ATSk‖2
ATSk.
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Under the settings of Theorem 4 we obtain:

E
[
dist2X (x

k)
] (46)

≤
(

1− 1

κ

)k

dist2X (x
0)

(32)
=

(

1− 1

κ̃
∑

S∈Ωr
‖ATS‖2

)k

dist2X (x
0).

(iii): Finally, we can consider the convex feasibility problem where the intersection set has a
nonempty interior. First, let us investigate when the sequence ‖xk − x∗‖ is decreasing. For N = 1
and αk ∈ [0, 2] it follows from (41) that:

‖xk+1 −x∗‖2 ≤ ‖xk −x∗‖2 − (2αk −α2
k)‖xk −ΠX

Sk
(xk)‖ ∀k≥ 0,

that is the sequence ‖xk −x∗‖ is nonincreasing. Similarly, for N ≥ 1 and αk ∈ [0, 1] it follows that:

‖xk+1 −x∗‖2 =
∥
∥
∥
∥
∥
(1−αk)(x

k −x∗)+αk

(

1

N

N∑

i=1

ΠX
Sk
i

(xk)−x∗

)∥
∥
∥
∥
∥

2

≤ (1−αk)‖xk −x∗‖2 +αk

∥
∥
∥
∥
∥

1

N

N∑

i=1

ΠX
Sk
i

(xk)−x∗

∥
∥
∥
∥
∥

2

≤ (1−αk)‖xk −x∗‖2 + αk

N

N∑

i=1

‖ΠX
Sk
i

(xk)−x∗‖2

= ‖xk −x∗‖2 + αk

N

N∑

i=1

(

‖ΠX
Sk
i

(xk)−x∗‖2 −‖xk −x∗‖2
)

≤ ‖xk −x∗‖2 − αk

N

N∑

i=1

‖xk −ΠX
Sk
i

(xk)‖2 ∀k≥ 0.

The last inequality follows from the bound ‖xk −ΠX
Sk
i

(xk)‖2 + ‖ΠX
Sk
i

(xk)− x∗‖2 ≤ ‖xk − x∗‖2 for

all x∗ ∈ X ⊆ XSk
i
. Therefore, for N ≥ 1 and αk ∈ [0, 1] we also have a nonincreasing sequence

‖xk −x∗‖. In conclusion, for the two choices for N and αk given above we have:

‖xk −x∗‖ ≤ ‖x0 −x∗‖ ∀x∗ ∈X , k≥ 0.

An important application of the previous inequality is that when the set X contains a ball with
radius δ centered in x̄. By taking x∗ = x̄ in the previous relation, we have: ‖xk − x̄‖≤ ‖x0 − x̄‖ for
all k ≥ 0. This implies that under the settings of Theorem 7, one should choose the compact set
Q= {x : ‖x− x̄‖≤ ‖x0 − x̄‖}, such that the linear regularity constant given in (34) becomes:

κ=
‖x0 − x̄‖2
δ2min

S∈Ω
pS

, (49)

since all the points of interest for which the linear regularity property has to hold are the iterates
{xk}k≥0. Then, SAP with αk = 1 is the random projection algorithm from [27]. For this choice of
the stepsize and under the setting of Theorem 7, the algorithm SAP attains the following linear
rate:

E
[
dist2X (x

k)
] (46)

≤
(

1− 1

κ

)k

dist2X (x
0)

(34)+(49)
=

(

1− pminδ
2

R2

)k

dist2X (x
0),

where pmin =minS∈Ω pS and R= ‖x0 − x̄‖. A similar convergence rate has been derived in [27] for
this particular scheme.
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7. Conclusions We have proposed new stochastic reformulations of the classical convex fea-
sibility problem and analyzed the problem conditioning parameters in relation with (linear) reg-
ularity assumptions on the individual convex sets. Then, we have introduced a general random
projection algorithmic framework, which extends to the random settings many existing projection
schemes, designed for the general convex feasibility problem. Based on the conditioning parame-
ters, besides the asymptotic convergence results, we have also derived explicit sublinear and linear
convergence rates for this general algorithm. The convergence rates show specific dependence on
the number of projections averaged at each iteration. Our general random projection algorithm
also allows to project simultaneously on several sets, thus providing great flexibility in matching
the implementation of the algorithms on the parallel architecture at hand.
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