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Weighted Low-Rank Approximation
of Matrices and Background Modeling

Aritra Dutta, Xin Li, and Peter Richtárik

Abstract—We primarily study a special a weighted low-rank
approximation of matrices and then apply it to solve the
background modeling problem. We propose two algorithms for
this purpose: one operates in the batch mode on the entire data
and the other one operates in the batch-incremental mode on
the data and naturally captures more background variations and
computationally more effective. Moreover, we propose a robust
technique that learns the background frame indices from the
data and does not require any training frames. We demonstrate
through extensive experiments that by inserting a simple weight
in the Frobenius norm, it can be made robust to the outliers
similar to the `1 norm. Our methods match or outperform several
state-of-the-art online and batch background modeling methods
in virtually all quantitative and qualitative measures.

Index Terms—Weighted low-rank approximation, `1-norm
minimization, Robust PCA, background modelling.

I. INTRODUCTION

WE give a brief review of the classical low rank ap-
proximation of matrices and introduce the background

modeling problem.

A. Low-rank approximation

The standard low rank approximation aka the principal
component analysis (PCA) problem can be defined as an
approximation to a given matrix A ∈ Rm×n by a rank r matrix
under the Frobenius norm:

X∗ = arg min
X∈Rm×n

rank(X)≤r

‖A−X‖2F , (1)

where ‖ · ‖F denotes the Frobenius norm of matrices. The
solutions to (1) are given by

X∗ = Hr(A) := UΣrV
T , (2)

where A has singular value decompositions A = UΣV T ,
and Σr(A) is the diagonal matrix obtained from Σ by hard-
thresholding operation that keeps only r largest singular values
and replaces the other singular values by 0 along the diago-
nal. This is also referred to as Eckart-Young-Mirsky’s theo-
rem ([1]) and is closely related to the PCA method in statis-
tics [2]. In image processing, rank-reduced signal processing,
computer vision, and in many other engineering applications
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SVD is a successful dimension reduction tool. The low rank
matrix obtained through PCA is a good approximation to the
data matrix A if A contains only normally (and independently)
distributed noise. But, in many real world problems, if sparse
large errors or outliers are present in the data matrix, PCA
fails to deal with it and thus additional regularization has been
introduced to accommodate the sparse outliers. One can think
the background modeling problem in video sequences as a
good example of such a real world problem. In the next section
we will review the classic background modeling problem in
light of matrix decomposition and briefly survey several state-
of-the-art algorithms used to solve it.

B. Background modeling in matrix decomposition framework

Background modeling and moving object detection are
two key steps in many computer vision systems and video-
surveillance applications. In the past decade, one of the most
prevalent approaches used in background estimation is to treat
it as a matrix decomposition problem ([3], [4], [5]). Given
a sequence of n video frames with each frame converted
into a vector ai ∈ Rm, i = 1, 2, ..., n, the data matrix
A = (a1,a2, ...,an) ∈ Rm×n is the collection of all the
frame vectors. Therefore, it is natural to consider a matrix
decomposition problem by decomposing A as the sum of its
background and foreground:

A = B + F,

where B,F ∈ Rm×n are the background and foreground
matrices, respectively. The above problem is ill-posed, and it
requires more information about the structure of the decom-
position. In practice, the background B is expected to stay
static or close to static throughout the frames when the camera
motion is small and so B is assumed to be low-rank [6]. At
the same time, the foreground, F is usually sparse if its size
is relatively small compared to the frame size ([3], [4], [7],
[8], [9]). These and similar observations leads to the models
of the form ([3], [4], [8], [9], [10], [11], [12], [13], [14], [15]):

min
B,F

A=B+F

frank(B) + fsparse(F ), (3)

where frank is a function that encourages the rank of B to be
low, and fsparse is a function that encourages the foreground F
to be sparse. Next we will discuss how this idea transformed
into several state-of-the-art algorithms to solve the background
modeling problem.

a) Robust principal component analysis (RPCA): By
using the above idea, RPCA [7], [9], [8] was introduced to
solve the background modeling problem by considering the
background frames, B, having a low-rank structure and the
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foreground, A − B, sparse. The nuclear norm (sum of the
singular values) is used on background matrix B as a surrogate
of rank and the `1 norm is used to encourage sparsity in the
foreground:

min
B
‖A−B‖`1 + λ‖B‖∗, (4)

where ‖ · ‖`1 and ‖ · ‖∗ denote the `1 norm and the nuclear
norm of matrices, respectively. RPCA is considered to be one
of the most widely used state-of-art approaches to solve the
background modeling problem. Several algorithms have been
proposed to solve RPCA [7], [9], [8], for example, inexact
and exact augmented Lagrange method (iEALM and EALM),
accelerated proximal gradient (APG), just to name a few.
However, RPCA cannot take advantage of any possible extra
prior information on the background and can not be used as
a supervised learning method.

b) Generalized fused Lasso (GFL): Consider a super-
vised learning situation when some pure background frames
are given. Recently in [16], Xin et. al. proposed a supervised
model called the GFL to address these issues. Let the data
matrix A be written into A = (A1 A2), where A1 contains the
given pure background frames. Xin et. al. [16] proposed the
following model: Find the background matrix B = (B1 B2),
and foreground matrix F = (F1 F2), partitioned in the same
way as A, such that

min
B,F

B1=A1
A2=B2+F2

rank(B) + ‖F‖GFL, (5)

where ‖·‖GFL denotes a norm that combines the `1 norm and
a local spatial total variation norm (to encourage connectivity
of the foreground). To make the problem more tractable,
Xin et. al. further specialized the above model by assuming
rank(B) = rank(B1). Since B1 = A1 and A1 is given, so
r := rank(B1) is also given and thus, we can re-write the
model of [16] as a special case of the following:

min
B=(B1 B2)
rank(B)≤r
B1=A1

‖A−B‖GFL. (6)

It is obvious that, except in different norms, problem (6)
is a special constrained (weighted) low-rank approximation
problem as in (11).

c) Incremental methods: Conventional PCA [2] is an
essential tool to numerically solve both RPCA and GFL
problems. PCA operates at a cost of min{O(m2n),O(mn2)},
which is due to the SVD of an m×n data matrix. For RPCA
algorithms, the space complexity of an SVD computation
is approximately O((m + n)r), where r is the rank of the
low-rank approximation matrix in each iteration, which is
increasing. And a high resolution video sequence characterized
by very large m, is computationally extremely expensive for
the RPCA and GFL algorithms. For example, APG algorithm
runs out of memory to process 600 video frames each of
size 300 × 400 on a computer with 3.1 GHz Intel Core i7-
4770S processor and 8GB memory. In the past few decades,
incremental PCA (IPCA) was developed for machine learn-
ing applications to reduce the computational complexity of
performing PCA on a huge data set. The idea is to produce

an efficient SVD calculation of an augmented matrix of the
form [A Ã] by using the SVD of A, where A ∈ Rm×n is the
original matrix and Ã contains r newly added columns [17].
Similar to the IPCA, several methods have been proposed to
solve the background estimation problem in an incremental
manner [18], [19].

d) Grassmannian robust adaptive subspace estimation
(GRASTA): In 2012, He et. al. [13] proposed GRASTA, a
robust subspace tracking algorithm and showed its applica-
tion in background modeling problems. At each time step i,
GRASTA solves the following optimization problem: For a
given orthonormal basis UΩs

∈ R|Ωs|×d solve

min
x
‖UΩs

x− aΩs
i ‖`1 , (7)

where each video frame ai ∈ Rm is subsampled over the
index set Ωs ⊂ {1, 2, · · · ,m} following the model: aΩs

i =
UΩs

x+ fΩs
i + εΩs

, such that, x ∈ Rd is a weight vector and
εΩs
∈ R|Ωs| is a Gaussian noise vector. After updating x, one

has to update UΩs
.

e) Recursive projected compressive sensing (ReProCS):
In 2014, Guo et. al. [20] proposed another online algorithm for
separating sparse and low dimensional subspace (see also [21],
[22]). ReProCS is a two stage algorithm. In the first stage,
given a sequence of training background frames, say t, the
algorithm finds an approximate basis which is ideally of low-
rank. After estimating the initial low-rank subspace in the
second stage, the algorithm recursively estimates Ft+1, Bt+1

and the subspace in which Bt+1 lies.
f) Incremental principal component pursuit (incPCP):

Rodriguez et. al. [23] formulated the incPCP algorithm which
processes one frame at a time incrementally and uses only a
few frames for initialization of the prior (see also [24], [25]).
incPCP follows a modified framework of conventional PCP but
is built with the assumption that the partial rank r SVD of first
k−1 background frames Bk−1 is known. And by using them,
Ak−1 can be written as Ak−1 = Bk−1 +Fk−1. Therefore, for
a new video frame ak, one can solve the optimization problem
as follows:

min
Bk,Fk

rank(Bk)≤r

‖Bk + Fk −Ak‖2F + λ‖Fk‖`1 , (8)

where Ak = [Ak−1 ak] and Bk = [UrΣrV
T
r bk] such that

UrΣrV
T
r is a partial SVD of Bk−1. According to [23], the

initialization step can be performed incrementally.
g) Detecting contiguous outliers in the low-rank rep-

resentation (DECOLOR): In DECOLOR, Zhou et. al. [26]
combined three models: a low-rank background model, energy
of the foreground support, S, generated from an Ising model,
and a signal model that describes the data A, given B and F .
They proposed to minimize the function:

min
B,W

rank(B)≤r
Wij∈{0,1}

‖(1−W )� (A−B)‖2F + β‖W‖`1

+γ‖IS,Vvec(W )‖`1 , (9)

where W is an indicator matrix whose (i, j)th entry is 1 if
(i, j) represents a foreground pixel and 0 if it corresponds to
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a background pixel, 1 is the matrix of all 1s, and IS,V is the
incidence matrix of the graph V that denotes all pixels in the
foreground.

h) Probabilistic approach to robust matrix factorization
(PRMF): In PRMF, Wang et. al. [12] decomposed A as: A =
UV T + F , where U and V are two rank r matrices. They
solved the `1 loss function coupled with two regularizer terms:

min
U,V
‖W � (A− UV T )‖`1 +

λU
2
‖U‖2F +

λV
2
‖V ‖2F , (10)

by using the Bayesian perspective and an expectation-
maximization approach. Wang et. al. also assumed that each
element of the foreground F is sampled independently from
the Laplace distribution. In their model, the matrix W is an in-
dicator matrix similar to DECOLOR and the `2 regularization
terms prevent overfitting.

II. WEIGHTED LOW-RANK APPROXIMATION OF MATRICES

The algorithms reviewed in the previous section tried to
improve the model given by (1) via deviating from the
Frobenius norm in order to encourage the detection of outliers
in the data matrix. Note that the solutions to (1) as given
in (2) may also suffer from another shortcoming: the fact that
none of the entries of A is guaranteed to be preserved in X∗.
Indeed, in many real world problems, one has good reasons to
keep certain entries of A unchanged while looking for a low
rank approximation. In 1987, Golub, Hoffman, and Stewart
required that certain columns, A1, of A must be preserved
when one looks for a low rank approximation of (A1 A2) and
considered the following constrained low rank approximation
problem [1]: Given A = (A1 A2) ∈ Rm×n with A1 ∈ Rm×k
and A2 ∈ Rm×(n−k), find Ã2 such that (with Ã1 = A1)

(Ã1 Ã2) = arg min
X1,X2

rank(X1 X2)≤r
X1=A1

‖(A1 A2)− (X1 X2)‖2F . (11)

Inspired by applications in which A1 may contain noise, it
makes more sense if we require ‖A1−X1‖F small instead of
looking for X1 = A1. This leads us to consider the following
problem: Let η > 0, find (X̂1 X̂2) such that

(X̂1 X̂2) = arg min
X1,X2

‖A1−X1‖F≤η
rank(X1 X2)≤r

‖(A1 A2)− (X1 X2)‖2F . (12)

Or, for a large parameter λ, consider

(X̂1 X̂2) = arg min
X1,X2

rank(X1 X2)≤r

λ2‖A1 −X1‖2F + ‖A2 −X2‖2F .

We observed that the above problem is contained in the follow-
ing more general point-wise weighted low rank approximation
problem:

min
X1,X2

rank(X1 X2)≤r

‖ ((A1 A2)− (X1 X2))� (W1 W2)‖2F , (13)

for W1 = λ1 and W2 = 1 (a matrix whose entries are
equal to 1), where W ∈ Rm×n is a weight matrix and �
denotes the Hadamard product. This block structure in weight
matrix, where very few entries are heavily weighted and most

entries stay at 1 (unweighted), is realistic in many applications.
For example, in the problem of background modeling from a
video sequence, each frame is a column in the data matrix and
the background is a low rank (ideally of rank 1) component
of the data matrix. Therefore, the weight is used to single
out the columns that are more likely to be the basis of
background frames and the low rank constraint enforces the
search for other frames that are in the background subspace.
Recent investigations in [10], [27] have shown that the above
“approximately preserving” (controlled by a parameter λ)
weighted low rank approximation can be more effective in
solving the background modeling, shadows and specularities
removal, and domain adaptation problems in computer vision
and machine learning. Dutta et. al. in [27] showed that if one
has prior information about certain frames of the input video
matrix as pure background, then one may insist on preserving
those columns when looking for a low rank approximation.
They reformulated the problem (13) with the weight W1 in
the first block to be chosen entry-wise rather than scaled by
a single constant λ. This gives more freedom to pixel-wise
control of the columns of the given matrix to be preserved.
In this paper, (i) we provide a consolidated treatment of
our recent contributions to the background modeling problem
previously proposed in several conference proceeding papers
based on the method that can be categorized as weighted
low rank approximation of matrices; and (ii) we present
more systematical experiments and a thorough comparison
of our proposed algorithms against several state-of-the-art
background modeling methods on the mainstream data-sets
including Stuttgart, I2R, Wallflower, CDNet 2014, and the SBI
data-set,[28], [29], [30], [31], [32], [33].

Here is the more detailed outline of the rest of the paper.
We first discuss an algorithm (Algorithm 1) to solve (13)

numerically when (W1)ij ∈ [α, β] and W2 = 1. This serves
two purposes: that i) our algorithm takes advantage of the
block structure of the weights that results in efficient numer-
ical performance as compared to the existing algorithms for
solving the general weighted low-rank approximation problem
[34], and that ii) we have detailed convergence analysis for the
algorithm.

Next, we review a batch background estimation model in
Algorithm 2 that is built on Algorithm 1. More specifically,
unlike the models described previously (such as in GFL and
ReProCS methods reviewed in section I-B), we do not require
any training frames but our algorithm can learn the background
frame indices robustly.

Finally, we investigate an adaptive batch-incremental model
(Algorithm 3). Our model finds the background frame in-
dices robustly and incrementally to process the entire video
sequence adaptively by going through a sequence of small
batches. Therefore, unlike Algorithm 2, Algorithm 3 does
not use the entire sequence at once. Rather it operates on
local small batch of video frames and use the background
information in nearby frames. As a result, it is more time and
memory efficient.

We note that similar to the `1 norm used in conventional
and in the incremental methods, a weighted Frobenius norm
used in Algorithm 1 makes Algorithm 2 and 3 robust to the
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outliers for the background modeling problems. Our empirical
validation shows that a properly weighted Frobenius norm
can perform as well as or better than that of state-of-the-art
`1 norm minimization (or any other norms) algorithms for
background estimation.

To conclude the paper, we present extensive numerical
experiments to show that our batch-incremental model is as
fast as incPCP and ReProCS, also, it can deal with high quality
video sequences as accurately as incPCP and ReProCS. Some
conventional algorithms, such as supervised GFL or ReProCS
require an initial training sequence which does not contain any
foreground object. Our experimental results for both synthetic
and real video sequences show that unlike the supervised GFL
and ReProCS, our models does not require a prior. We believe
that the adaptive nature of our algorithm is well suited for real
time high-definition video surveillance.

III. WEIGHTED LOW-RANK APPROXIMATION: THEORY

AS in the standard low rank approximation, the constrained
low rank approximation problem (11) of Golub, Hoff-

man, and Stewart has a closed form solution which is given
in the following theorem:

Theorem 1: [1] Assume rank(A1) = k and r ≥ k, the
solution Ã2 in (11) is given by

Ã2 = PA1
(A2) +Hr−k

(
P⊥A1

(A2)
)
, (14)

where PA1
and P⊥A1

are the projection operators to the column
space of A1 and its orthogonal complement, respectively.

Let (X̃1(W ) X̃2(W )) be a solution to (13). Let λj =
min

1≤i≤m
(W1)ij and λ = min

1≤j≤k
λj . Denote A = P⊥A1

(A2) and

Ã = P⊥
X̃1(W )

(A2). Also denote s = rank(A) and let the
ordered non-zero singular values of A be σ1 ≥ σ2 ≥ · · · ≥
σs > 0.

Theorem 2: Suppose that σr−k > σr−k+1. Then we have,
as λ→∞ and W2 = 1,

(X̃1(W ) X̃2(W )) = AG +O(
1

λ
),

where AG = (A1 Ã2) is defined to be the unique solution
to (11).

Remark 3: (i) We note that AG is unique due to the
assumption σr−k > σr−k+1 [1]. (ii) The convergence
(X̃1(W ) X̃2(W )) → AG alone is expected and indeed
implied by a general result in [35]. However, it does not
specify a rate of convergence.

A. A brief literature review

As it turns out, (13) can be viewed as a generalized total
least squares problem (GTLS) and can be solved in closed
form as a special case of weighted low rank approximation
with a rank-one weight matrix by using a SVD of the given
matrix (λA1 A2) [36], [37]. As a consequence of the closed
form solutions, one can verify that the solution to (11) is the
limit case of the solutions to (13) as λ→∞. Thus, (11) can be
viewed as a special case when “λ =∞”. A careful reader may
also note that, problem (13) can be cast as a special case of
structured low rank problems with element-wise weights [35],
[38].

The weighted low rank approximation problem was studied
first when W is an indicator weight for dealing with the
missing data case ([39], [40]) and then for more general
weight in machine learning, collaborative filtering, 2-D filter
design, and computer vision [41], [42], [43], [44], [45], [46].
For example, if SVD is used in quadrantally-symmetric two-
dimensional (2-D) filter design, as explained in [44] (see
also [45], [46]), it might lead to a degraded construction
in some cases as it is not able to discriminate between the
important and unimportant components of X . To address
this problem, a weighted least squares matrix decomposition
method was first proposed by Shpak [46]. Following his
idea of assigning different weights to discriminate between
important and unimportant components of the test matrix, Lu,
Pei, and Wang ([45]) designed a numerical procedure to solve
(13) for general weight (W1 W2).

Remark 4: There is another formulation of weighted low
rank approximation problem defined as in [44]:

min
X∈Rm×n

‖A−X‖2Q, subject to rank(X) ≤ r, (15)

where Q ∈ Rmn×mn is a symmetric positive definite weight
matrix. Denote ‖A − X‖2Q := vec(A − X)TQvec(A − X),
where vec(·) is an operator which maps the entries of Rm×n
to Rmn×1. It is easy to see that (13) is a special case of (15)
with a diagonal Q. In this paper, we will not use this more
general formulation for simplicity.

B. Why the problem becomes more difficult to solve when
weights present

Note that, in general, the weighted low rank approximation
problem (13) does not have a closed form solution, even when
W2 = 1 [41], [44]. With W2 = 1, we can write (13) as

min
X1,X2

rank(X1 X2)≤r

(
‖(A1 −X1)�W1‖2F + ‖A2 −X2‖2F

)
.

Let rank(X1) = k. It is easy to see that any X2 such that
rank(X1 X2) ≤ r can be given in the form

X2 = X1C +BD,

for some arbitrary matrices B ∈ Rm×(r−k), D ∈
R(r−k)×(n−k), and C ∈ Rk×(n−k). Hence we need to solve

min
X1,C,B,D

(
‖(A1 −X1)�W1‖2F + ‖A2 −X1C −BD‖2F

)
.

(16)

Note that, using a block structure, we can write (16) as (with
a special low rank structure):

min
X1,C,B,D

{
‖
(

(A1 A2)− (X1 B)

(
Ik C
0 D

))
� (W1 1)‖2F

}
,

which is in a form of the alternating weighted least squares
problem in the literature [41], [36]. But we will not follow the
general algorithm proposed in [36] for the following reasons:
that (i) due to the special structure of the weight, our algorithm
is more efficient than [36] (see Algorithm 3.1, in p. 42 [36]),
that (ii) it allows a detailed convergence analysis which is
usually not available in other algorithms proposed in the
literature [41], [44], [36], and that (iii) it can handle bigger
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size matrices as we will demonstrate in the numerical result
section. If k = 0, then (16) reduces to an unweighted rank r
factorization of A2 and can be solved as an alternating least
squares problem [47], [48].

C. Solving the weighted problem
Denote F (X1, C,B,D) = ‖(A1 − X1) �W1‖2F + ‖A2 −

X1C − BD‖2F as the objective function. The function F
is minimized by using an alternating strategy [9], [49] of
minimizing the function with respect to each component
iteratively:

(X1)p+1 = arg min
X1

F (X1, Cp, Bp, Dp),

Cp+1 = arg min
C

F ((X1)p+1, C,Bp, Dp),

Bp+1 = arg min
B

F ((X1)p+1, Cp+1, B,Dp),

and, Dp+1 = arg min
D

F ((X1)p+1, Cp+1, Bp+1, D).

(17)

Note that each of the minimizing problem for X1, C,B, and
D can be solved explicitly by looking at the gradients of
F (X1, C,B,D). But finding an update rule for X1 turns out
to be more involved than the other three variables due to the
interference of the weight W1. We update X1 element wise
along each row. Therefore we will use the notation X1(i, :) to
denote the i-th row of the matrix X1. The numerical process
is described in Algorithm 1.

Algorithm 1: WLR Algorithm
1 Input : A = (A1 A2) ∈ Rm×n (the given matrix);

W = (W1 1) ∈ Rm×n (the weight), threshold
ε > 0;

2 Initialize: (X1)0, C0, B0, D0;
3 while not converged do
4 Ep = A1 �W1 �W1 + (A2 −BpDp)C

T
p ;

5 for i = 1 : m do
6 (X1(i, :))p+1 = (E(i, :))p(diag(W

2
1 (i, 1)

W 2
1 (i, 2) · · ·W 2

1 (i, k)) + CpC
T
p )−1;

end
7 Cp+1 = ((X1)

T
p+1(X1)p+1)

−1(X1)
T
p+1(A2 −BpDp);

8 Bp+1 = (A2 − (X1)p+1Cp+1)D
T
p (DpD

T
p )
−1;

9 Dp+1 = (BT
p+1Bp+1)

−1BT
p+1(A2 − (X1)p+1Cp+1);

10 p = p+ 1;
end

11 Output : (X1)p+1, (X1)p+1Cp+1 +Bp+1Dp+1.

D. Convergence
In this section we comment on the convergence on Algo-

rithm 1. We quote the convergence results of Algorithm 1
without their proof. For detailed proofs we refer to [34]. The
first theorem shows a relation that involves the iterates and the
reconstruction error of the objective function.

Theorem 5: For a fixed (W1)ij > 0 let mp =
F ((X1)p, Cp, Bp, Dp) for p = 1, 2, · · · Then,

mp −mp+1 = ‖((X1)p − (X1)p+1)�W1‖2F
+‖((X1)p − (X1)p+1)Cp‖2F
+‖(X1)p+1(Cp − Cp+1)‖2F

+‖(Bp −Bp+1)Dp‖2F
+‖Bp+1(Dp −Dp+1)‖2F . (18)

Remark 6: From Theorem 5 we know that the non-negative
sequence {mp} is non-increasing. Therefore, {mp} has a limit.

By using Theorem 5 we have the following estimates.
Corollary 7: We have
(i) mp −mp+1 ≥ 1

2‖Bp+1Dp+1 −BpDp‖2F for all p.
(ii) mp −mp+1 ≥ ‖((X1)p − (X1)p+1)�W1‖2F for all p.
Consider the situation when

∞∑
p=1

√
mp −mp+1 < +∞. (19)

Theorem 8:
(i) We have the following:

∑∞
p=1 ‖Bp+1Dp+1−BpDp‖2F <

∞, and
∞∑
p=1

(
‖((X1)p − (X1)p+1)�W1‖2F

)
<∞.

(ii) If (19) holds then lim
p→∞

BpDp and lim
p→∞

(X1)p ex-

ist. Furthermore if we write L∗ := lim
p→∞

BpDp then

lim
p→∞

Bp+1Dp = L∗ for all p.

Note that Corollary 8 only states the convergence of the
sequence {BpDp} but not of {Bp} and {Dp} separately. The
convergence of {Bp} and {Dp} can be obtained with stronger
assumption as demonstrated in the next result.

Theorem 9: Assume (19) holds.
(i) If Bp is of full rank and BTp Bp ≥ γIr−k for large p and

some γ > 0 then lim
p→∞

Dp exists.

(ii) If Dp is of full rank and DpD
T
p ≥ δIr−k for large p and

some δ > 0 then lim
p→∞

Bp exists.

(iii) If X∗1 := lim
p→∞

(X1)p is of full rank, then C∗ := lim
p→∞

Cp

exists. Furthermore, if we write L∗ = B∗D∗, for B∗ ∈
Rm×(r−k), D∗ ∈ R(r−k)×(n−k), then (X∗1 , C

∗, B∗, D∗)
will be a stationary point of F .

IV. WEIGHTED LOW-RANK APPROXIMATION:
APPLICATION TO BACKGROUND MODELING

WE focus on two algorithms for background modeling by
using Algorithm 1. Both algorithms robustly determine

the frame indices which are contenders of the background
frames (with least or no foreground movement) and then take
the advantage of weight matrix W to estimate the background
and the foreground.

Algorithm 2: Background Estimation using WLR
1 Input : A = (A1 A2) ∈ Rm×n (the given matrix);

W = (W1 1) ∈ Rm×n,(the weight), threshold
ε > 0, i1, i2 ∈ N;

2 Run PCA to get low rank BIn and FIn = A−BIn;
3 Learn background frame indices S from BIn and FIn;
4 Set k =

⌈
|S|/i1

⌉
, r = k + i2;

5 Rearrange data: Ã1 = (A(:, i))m×k, randomly chosen k frames
from i ∈ S and Ã2 = (A(:, i′))m×(n−k), i′ from the
remaining frames;

6 Apply WLR on Ã = (Ã1 Ã2) to obtain X̃;
7 Rearrange the columns of X̃ similar to A to find X;
8 Output : X .
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Fig. 1: A flowchart for WLR inspired batch-incremental background estimation model proposed in Algorithm 3.

Algorithm 3: Incremental Background Estimation using
WLR (inWLR)

1 Input : p, A = (A(1) A(2) . . . A(p)) ∈ Rm×n, τ > 0 (for
SVT), α, β > 0 (for weights), threshold ε > 0,
kmax, ir ∈ N;

2 Run SVT on A(1) with parameter τ to obtain:
A(1) = B

(1)
In + F

(1)
In ;

3 Initialize the background block by B = B
(1)
In and A(0) = A(1);

4 for j = 1 : p do
5 Identify the indices S of at most kmax columns of A(j−1)

that are closest to background using B and
F = A(j−1) −B;

6 Set k = #(S), r = k + ir;
7 Set the first block: Ã1 = (A(j−1)(:, i))m×k with i ∈ S;
8 Define W = (W1 1) with W1 ∈ Rm×k where (W1)ij are

randomly chosen from [α, β];
9 Apply Algorithm 1 on Ã(j) = (Ã1 A

(j)) using threshold ε
and weight W to obtain its low rank component B̃(j) and
define F̃ (j) = Ã(j) − B̃(j);

10 Take the sub-matrix of B̃(j) corresponding to the A(j)

block such that A(j) = B(j) + F (j);
11 Update the background block: B = B̃(j);

end
12 Output : B = (B(1), B(2), ..., B(p)).

A. Background estimation by using Algorithm 2

First, we describe a batch background modeling algorithm.
To initialize, we first solve WLR (by using Algorithm 1) for
W = In (this is just PCA) to obtain an coarse estimate of
the background and foreground: A = BIn + FIn, where BIn
is a low rank approximation to A given by PCA. Next, we
use BIn and FIn to learn the frame indices that are closest to
the pure background (with least or no foreground movements).
This is done heuristically (as in [10](see Figure 2)). By setting
a threshold ε1 > 0 based on the histogram of FIn, we convert
FIn into a binary matrix LFIn: all entries of FIn that are
bigger than ε1 are replaced by 1 and the others are replaced
by 0. The matrix BIn is directly converted to a binary matrix
LBIn. Next, we calculate the ratios of the frame sum (i.e.

0 100 200 300 400 500 600
0.85

0.9

0.95

1

GHS model,mean = 0.9524

inWLR, mean = 0.9525

WLR, mean = 0.9265

Fig. 2: Comparison of MSSIM of WLR acting on all frames, inWLR
(p = 6), and GHS inspired background estimation model with
resolution [144, 176].

the column sum) of LFIn to the corresponding frame sum of
LBIn and identify the indices with ratios less than the mode
of these ratios as possible pure background frame indices.
Finally, we apply WLR by putting the weight at the learned
frame indices to decompose the data matrix A into background
and foreground: A = B + F . Our experiments show that the
performance depends more on the correct location (indices)
of the background frames than on the values of the weight.
We remark that Dutta and Li [27] and Xin et al. [16] used the
pure background frames in their background estimation model,
assuming the frames were already given. On the contrary,
Algorithm 2 learns the background frame indices from the
data, thus providing a robust background estimation model.

B. An incremental model using WLR

Next we propose an incremental weighted low rank approx-
imation (inWLR) algorithm for background modeling (see Al-
gorithm 3 and Figure 1). This algorithm proves to be efficient
compared to Algorithm 2 when the video sequence contains a
lot of frames. Our algorithm fully exploits WLR, in which a
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Fig. 3: SSIM map of inWLR and GHS inspired background esti-
mation model.Top to bottom: Frame 420 with dynamic foreground,
frame 600 with static foreground. SSIM index of the methods are
0.95027 and 0.96152, respectively.

prior knowledge of the background space can be used as an ad-
ditional constraint to obtain the low rank (thus the background)
estimation of the data matrix A. First, we partition the original
video sequence into p batches: A = (A(1) A(2) . . . A(p)),
where the batch sizes do not need to be equal. Instead of work-
ing on the entire video sequence, the algorithm incrementally
works through each batch. To initialize, the algorithm coarsely
estimates the possible background frame indices of A(1): we
run the classic singular value thresholding (SVT) of Cai et.
al. [50] on A(1) (we can afford this since the size of A(1) is
much smaller than that of A) to obtain a low rank component
(containing the estimations of background frames) B(1)

In and let
F

(1)
In = A(1)−B(1)

In be the estimation of the foreground matrix
(Step 2). From the above estimates, we obtain the initialization
for B and A(0) (Step 3). Then, we go through each batch
A(j), using the estimates of the background from the previous
batch as prior for the WLR algorithm to obtain the background
B̃(j) (Step 9). To determine the indices of the frames that
contain the least information of the foreground we identify
the “best background frames” by using a modified version
of the percentage score model by Dutta et. al. [10] (Step
5). Using this modified model allows us to estimate k, r,
and the first block Ã1 which contains the background prior
knowledge (Steps 6-7). Weight matrix W = (W1 1) is chosen
by randomly picking the entries of the first block W1 from
an interval [α, β] by using an uniform distribution, where
β > α > 0 are large (Step 8). To understand the effect of
using a large weight in W1, we refer the reader to Theorem 2
and [27], [34]. Finally, we collect background information for
next iteration (Steps 10-11). Note that the number of columns
of the weight matrix W1 is k, which is controlled by bound
kmax so that the column size of Ã(j) does not grow with
j. The output of the algorithm is the background estimations
for each batch collected in a single matrix B. When the
camera motion is small, updating the first block matrix Ã1

(Step 7) has trivial impact on the model since it does not
change much. However, when the background is continuously
evolving (but slowly), our inWLR could be proven very robust
as new frames are entering in the video. Moreover, we show
that Algorithm 3 is faster compare with Algorithm 2.

C. Complexity Analysis

Now, we analyze the complexity of Algorithm 3 for equal
batch size and compare it with Algorithm 2. Primarily, the
cost of the SVT algorithm in Step 2 is only O(mn

2

p2 ). Next,

0 0.2 0.4 0.6 0.8 1
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GRASTA, s=10%, area=0.7414
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DECOLOR, area = 0.9210

PRMF, area = 0.5917

Fig. 4: ROC curve to compare between WLR, GRASTA, ReProCS,
incPCP, DECOLOR, and PRMF on Basic video, resolution 144×
176.
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Fig. 5: ROC curve to compare between inWLR, GRASTA, ReProCS,
incPCP, DECOLOR, and PRMF on Basic video, resolution 144×
176.

in Step 9, the complexity of implementing Algorithm 1
is O(mk3 + mnr

p ). Note that r and k are linearly related and
k ≤ kmax. Once we obtain a refined estimate of the back-
ground frame indices S as in Step 5 and form an augmented
matrix by adding the next batch of video frames, a very natural
question in proposing our WLR inspired Algorithm 3 is: why
do we use Algorithm 1 in each incremental step (Step 9)
of Algorithm 3 instead of using a closed form solution (14)
of GHS? We justify as follows: the estimated background
frames Ã1 are not necessarily exact background; they are only
estimations of background. Thus, GHS inspired model may be
forced to follow the wrong data while inWLR allows enough
flexibility to find the best fit to the background subspace. This
is confirmed by our numerical experiments (see Section V
and Figure 2). Thus, to analyze the entire sequence in p
batches, the complexity of Algorithm 3 is approximately
O(m(k3p+ nr)). Note that the complexity of Algorithm 3 is
dependent on the partition p of the original data matrix. Our
numerical experiments suggest that for video frames of varying
sizes, the choice of p plays an important role and is empirically
determined. Unlike Algorithm 3, if Algorithm 2 is used on the
entire data set and if the number of possible background frame
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Dataset Video Frames Resolution
used

Stuttgart [28] Basic 600 144× 176
Wallflower [30] Waving Tree 66 120× 160
SBI [32] Snellen 321 144× 176

IBMTest2 90 144× 144
HumanBody 740 144× 144
Foliage 300 144× 176
Candela 350 144× 176
Caviar2 460 144× 176

Hall and Monitor 296 144× 176
CDnet 2014 [31] Abandoned Box 300 144× 176

Backdoor 300 144× 176
Busstation 600 144× 176

Intermittent Pan 400 144× 176
Tunnel Exit 300 144× 176

Port 1000 144× 176
Fountain 300 144× 176
Overpass 1100 144× 176
Fountain 2 1100 144× 176

Canoe 1100 144× 176
Fall 1100 144× 176

I2R/Li dataset [29] Meeting Room 1209 64× 80
Watersurface 162 128× 160

Campus 600 64× 80
Fountain 500 64× 80

TABLE I: Data used in this paper.

indices is k′, then the complexity is O(mk′
3

+mnk′). When
k′ grows with n and becomes much bigger than kmax in order
to achieve competitive performance, we see that Algorithm 1
tends to slow down with higher overhead than Algorithm 3
does.

V. EXPERIMENTS

WE present our extensive numerical experiments and
show the effectiveness of our background modelling

algorithms on synthetic and real world video sequences and
compare them with several state-of-the-art background mod-
eling algorithms.

A. Data sets

We extensively use 24 gray scale videos from the Stuttgart,
I2R, Wallflower, CDNet 2014, and the SBI dataset [28], [29],
[32], [33], [30], [31]. Stuttgart is a synthetic dataset, but all
other datasets are real world videos. They contain several chal-
lenges, for example, static foreground, dynamic background,
change in illumination, occlusion and disocclusion of static
and dynamic foreground. We refer the readers to Table I to
get an overall idea of the number of frames of each video
sequence used, video type, and resolution.

B. Metrics used for quantitative comparison

We use four different metrics for this purpose: traditionally
used receiver and operating characteristic (ROC) curve, peak
signal to noise ratio (PSNR), and the most advanced measures
mean structural similarity index (MSSIM), and multiscale
structural similarity index (MSSSIM)[53], [54], [55] as they
mostly agree with the human visual perception [53]. When
a ground truth mask (foreground or background) is available
for each video frame, we use a pixel-based measure of F or
B, the foreground or background recovered by each method

to form the confusion matrix for the ROC predictive analysis.
In our case, the pixels are represented by 8 bits per sample,
and MI , the maximum pixel value of the image is 255.
Therefore, a uniform threshold vector linspace(0,MI , 100)
is used to compare the pixelwise predictive analysis between
each recovered foreground or background frame and the
corresponding ground truth. PSNR is calculated by using the
metric 10log10

M2
I

MSE , such that MSE = 1
mn‖G(:, i)−R(:, i)‖22,

where R(; , i) is the recovered vectorized BG/FG frame and
G(:, i) is the corresponding vectorized GT frame. To calculate
the SSIM and MSSSIM of each recovered FG/BG video
frame, we consider a 11× 11 Gaussian window with standard
deviation (σ) 1.5 unless otherwise specified. We consider the
area covered by the ROC curve of an algorithm in a unit square
as a measure of its performance, where the higher the value
is the better. Similarly, for SSIM and MSSSIM the values that
are closer to 1 are better. Lastly, the PSNR of a reconstructed
image generally falls in the range 30-50 dB, where the higher
the better as well.

C. Results on Basic scene of Stuttgart artificial video
Due to the availability of ground truth frames for each

foreground mask, we use 600 frames of the Basic scenario of
the Stuttgart artificial video sequence [28] for quantitative and
qualitative analysis. To capture an unified comparison against
each method, we resize the video frames to 144×176 and for
inWLR set p = 6; that is, we add a batch of 100 new video
frames in every iteration until all frames are exhausted.

1) Comparison with GHS: Because the Basic scenario has
no noise, once we estimate the background frames, GHS can
be used as a baseline method for comparing the effectiveness
of Algorithm 3. To demonstrate the benefit of using an iterative
process as inWLR (Algorithm 1), we first compare the perfor-
mance of Algorithm 3 against the GHS inspired model. We
also compare Algorithm 2 acting on all 600 frames with the
parameters specified in [51]. We use MSSIM to quantitatively
evaluate the overall image quality. To calculate MSSIM we
perceive the information of how the high-intensity regions of
the images come through the noise, and consequently, we pay
much less attention to the low-intensity regions. We remove
the noisy components F by thresholding it by ε1. Figure 2
indicates that the inWLR and GHS inspired model produce the
same result, but inWLR is more time efficient than GHS. To
process 600 frames, inWLR takes 18.06 seconds. In contrast,
GHS inspired model takes 160.17 seconds and WLR takes
39.99 seconds. In Figure 3, the SSIM map of two sample
video frames of the Basic scenario show that both methods
recover the similar quality background.

2) Comparion with RPCA: Now we compare Algorithm
2 and Algorithm 3 with the RPCA. For this purpose we
consider APG and iEALM. For both algorithms we set λ =
1/max{m,n}, and for iEALM we choose µ = 1.25/‖A‖2
and ρ = 1.5, where ‖A‖2 is the spectral norm (maximum
singular value) of A. From Figure 6 it is clear that when the
foreground is static for a few frames both APG and iEALM
can not remove the static foreground object. Moreover, to
process 600 frames of resolution 144×176, iEALM and APG
took 501.46 seconds and 572.49 seconds, respectively.
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Fig. 6: Qualitative comparison of WLR and inWLR with iEALM and APG. Top to bottom: Frame 420 with dynamic foreground, frame
600 with static foreground.

Algorithm Appearing in Reference
Weighted Low-rank approximation (WLR) Figure 2, 4, 6, 7, 9, and 13 This paper (Algorithm 2), [51]
Incremental Weighted Low-rank approximation (inWLR) Figure 1, 2, Figure 5-12, Figure 14-16, Table III, and IV This paper (Algorithm 3), [52]
Inexact Augmented Lagrange Method of Multipliers (iEALM) Figure 6 [9]
Accelerated Proximal Gradient (APG) Figure 6 [8]
Goulb et. al. inspired BG model Figure 2, 3 [1], [51]
Supervised Generalized Fused Lasso (GFL) Figure 10, 14 [16]
Grassmannian Robust Adaptive Subspace Tracking (GRASTA) Figure 4, 5, 9 [13]
Recurssive Projected Compressive Sensing (ReProCS) Figure 4, 5, 7, 8, 14 [20], [21], [22]
Incremental Principal Component Pursuit (incPCP) Figure 4, 5, 7, 9, 10 [23], [24], [25]
Probabilistic Robust Matrix Factorization (PRMF) Figure 4, 5, and 10 [12]
Detecting Contiguous Outliers in the Low-Rank Representation (DECOLOR) Figure 4, 5, and 10 [26]

TABLE II: Algorithms compared in this paper.
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Fig. 7: Mean SSIM to compare between WLR, inWLR, ReProCS,
and incPCP on Basic video, frame size 144× 176.
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Fig. 8: Basic scenario frame 123. Both methods recover similar
quality background, however, ReProCS foreground has more false
positives than inWLR. This explains why ReProCS suffers in quan-
titative evaluation.

Video MSSIM MSSSIM PSNR Area under
ROC curve

Snellen 0.99179 0.99891 60.9451 0.9525
IBMtest2 0.99979 0.99998 76.2776 0.9985
Human Body 0.9994 0.9999 71.5218 -
Foliage 0.9865 0.99803 58.5055 -
Candela 0.9999 0.999995 80.2983 0.9988
Caviar2 0.99998 0.99999 87.8575 -
HallMonitor 0.99993 0.99998 84.8487 1

TABLE III: Performance of inWLR on SBI dataset [32].

3) Comparison with other state-of-the-art-methods: Next
we compare Algorithm 2 and Algorithm 3 with other state-
of-the-art background estimation methods, such as, GRASTA
(with different subspample ratio), incPCP, ReProCS, PRMF,
GFL, and DECOLOR. We do not include GOSUS [14] as it is
very similar to GRASTA. For GRASTA, we set the subsample
percentage s at 0%, 10%, 20%, and at 30% respectively,
estimated rank 60, and keep the other parameters the same
as those in [13]. We use 200 background frames of the Basic
sequence for initialization of ReProCS. According to [23],
the initialization step can be performed incrementally. For the
Stuttgart sequence, the algorithm uses the first video frame
for initialization. PRMF and DECOLOR are unsupervised
algorithms. We set the target rank for PRMF to 5 and the
other parameters are kept same as in the software package.
For DECOLOR we use the static camera interface of the
code and the parameters are kept same as they are mentioned
in the software package. The ROC curves in Figures 4 and
5 to demonstrate that our proposed algorithms outperform
other methods. In Figure 7 we present the mean SSIM of
the recovered foreground frames and Algorithm 3 outper-
forms ReProCS. In contrast, incPCP has similar mean SSIM.
Moreover, in Figure 9 all methods except GRASTA appear
to perform equally well on the Basic scenario. However,
when the foreground is static (as in frames 551-600 of the
Basic scenario) neither incPCP, PRMF, nor, DECOLOR can
capture the static foreground object, thus result the presence
of the static car as a part of the background (see Figure 10).
For supervised GFL model, we use 200 frames from each
scenario (Basic and Waving Tree) for training purpose.
The background recovered and the SSIM map in Figures 10
show that GFL provides a comparable reconstruction and can
effectively remove the static car (also see Figure 14). However,
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Fig. 9: Basic scenario frame 420.GRASTA with subsample rate 10% recovers a fragmentary foreground and degraded background.
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Fig. 10: Basic scenario frame 600. incPCP, PRMF, DECOLOR fail to detect the static foreground object, though a careful reader can
detect a blurry reconstruction of the car in incPCP foreground. However, the SSIM map of all methods are equally good.
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Fig. 11: Qualitative results of inWLR on selected sequences of SBI
dataset.

it is worth mentioning that inWLR is extraordinarily time
efficient compare with the GFL model. We also note that
ReProCS is a robust method in removing several background
challenges. Although, ReProCS foreground has more false
positives than inWLR. This explains why ReProCS suffers in
quantitative evaluation (see Figure 8 and 14).

D. Performance on SBI dataset

SBI dataset comprises 14 image sequences and they come
with 14 background ground truths. Therefore, we can validate
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Fig. 12: Qualitative results of inWLR on selected sequences of
CDnet 2014 dataset.

the background recovered by our inWLR algorithm against
the background ground truth. For this purpose, we use all four
quantitative metrics: area under the ROC curve, SSIM, PSNR,
and MSSSIM. To calculate MSSSIM for the SBI dataset, we
use a Gaussian window of size 9 × 9 and standard deviation
(σ) 1.5. In Figure 11 we present the qualitative performance
of inWLR on 7 different sequences of the SBI dataset and
we refer to Table III for quantitative measures. The missing
values under the “Area under ROC curve” column of Table
III is due to NaN values corresponding the false positive rate
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Fig. 13: SSIM index map of: (a) Water Surface, (b) Waving
tree, (c) Fountain, and (d) Meeting Room. Top to bottom: Original,
background estimated by Algorithm 2, ground truth frame (size
64×80), SSIM index map (size 54×70) of Algorithm 2. The MSSIM
are 0.9851, 0.9082, 0.9940, and 0.9343, respectively.

Video MSSIM MSSSIM PSNR (dB)
Abandoned Box 0.9836 0.9980 58.6752
Backdoor 0.9836 0.9978 60.4562
Busstation 0.9892 0.9987 57.7467
Intermittent Pan 0.9836 0.9978 57.7169
Tunnel Exit 0.9832 0.9977 57.6781
Port 0.9833 0.9978 57.6868
Fountain 0.9886 0.9985 57.6812
Overpass 0.9847 0.998 57.676
Fountain 2 0.9934 0.9992 57.6777
Canoe 0.9858 0.9981 57.678
Fall 0.9853 0.9980 57.7461

TABLE IV: Quantitative performance of inWLR on CDNet 2014
dataset [32].

(FPR) of the predictive analysis. We note that the backgrounds
recovered by inWLR sometimes have a minor ghosting effect
(see red bounding boxes in Figure 11). However, the average
PSNR and MSSSIM of inWLR on 7 sequences of the SBI
dataset are 74.3221 and 0.9995, respectively. In contrast, the
spatially coherent self-organizing background subtraction (SC-
SOBS1) algorithm has the highest average PSNR (35.2723)
and MSSSIM (0.9765) on the entire SBI dataset [56], [33].
Recently, the supervised online algorithms, such as, IRLS
and Homotopy proposed by Dutta and Richtárik [57], have
average MSSSIM on the SBI dataset as 0.9975 and 0.9987,
respectively.

E. Performance on CDNet2014 dataset

The CDNet 2014 dataset contains a total 11 different video
categories. Additionally, each video comes with region of
interest (ROI) image which defines the region(s) in a video
with foreground movement. The ROI is the red colored part
of the frame (with static camera movement). We choose a
total 11 sequences from the CDNet 2014 dataset and test the
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Fig. 14: Waving Tree,frame size [120,160]. ReProCS and GFL use
220 and 200 pure background frames respectively as training data.
The MSSIM for inWLR, GFL, and ReProCS are 0.9592, 0.9996,
and 0.5221, respectively. inWLR and GFL recover superior quality
background.

Fig. 15: Top to bottom: Fountain with p = 5, Campus with
p = 6. Left to right: Original, inWLR background, and inWLR
foreground.

performance of inWLR algorithm both qualitatively and quan-
titatively. We use SSIM, PSNR, and MSSSIM for quantitative
measure. We refer to Figure 12 for the first set of qualitative
results. The average PSNR of inWLR on 11 video sequences
of CDNet 2014 dataset is 58.0381 dB.

F. Dynamic background: a case study

Dynamic background objects are a potential challenge for
background modeling algorithms as it is natural for an al-
gorithm to consider them as a part of the foreground. To
demonstrate the power of our method on more complex data
sets containing dynamic foreground, we perform extensive
qualitative and quantitative analysis on the Li data set [29],
Wallflower data set [30], and CDNet 2014 dataset [31].
Both our algorithms are capable of detecting the dynamic
background objects, although Algorithm 3 is a more natural
choice as it deals with the video sequence in an incremental
manner. First, in Figure 13, we show the performance of
Algorithm 2. The SSIM index map on all four recovered
foreground indicates that WLR performs consistently well on
the video sequences containing dynamic background. Next, in
Figure 14, we compare inWLR against GFL and ReProCS
on 60 frames of Waving Tree sequence. In Figure 15
we show the performance of inWLR on two data sets with
dynamic background and semi-static foreground. Finally, in
Figure 16 we present the performance of inWLR on the CDNet
2014 dataset with dynamic background. We also provide the
quantitative results in Table IV.

VI. CONCLUSION

In this paper we proposed two novel algorithms for back-
ground estimation. We demonstrated how a properly weighted
Frobenius norm can be made robust to the outliers, similarly
to the `1 norm in other state-of-the-art background estimation
algorithms. Both of our algorithms adaptively determine the
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Fig. 16: Qualitative results of inWLR on selected sequences of
CDnet 2014 dataset with dynamic background. Only in the Canoe
sequence, inWLR has some ghosting effect of the foreground object
in the background.

background frames without requiring any prior estimate. Fur-
thermore, our batch-incremental algorithm does not require
much storage and allows slow changes in the background.
Our extensive qualitative and quantitative comparison on real
and synthetic video sequences demonstrate the robustness of
our algorithms. The batch sizes and the parameters in our
incremental algorithm are still empirically selected. Therefore,
in future we plan to propose a more robust estimate of
the parameters. Like all other algorithms in the literature,
we have some limitations as well. Although we are not
explicitly required to use pure training background frames,
it is mandatory that the video has availability of some pure
background frames. Then our algorithm can automatically
detect them and use them efficiently in background modeling.
Otherwise it will detect the frames with least foreground
movements and approximately preserve them as a contender of
the background. In the later case the constructed background
can be defective.
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