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Inexact Coordinate Descent: Complexity and Preconditioning∗

Rachael Tappenden Peter Richtárik Jacek Gondzio

School of Mathematics
University of Edinburgh

United Kingdom

December 11, 2014

Abstract

In this paper we consider the problem of minimizing a convex function using a randomized
block coordinate descent method. One of the key steps at each iteration of the algorithm is
determining the update to a block of variables. Existing algorithms assume that in order to
compute the update, a particular subproblem is solved exactly. In this work we relax this re-
quirement, and allow for the subproblem to be solved inexactly, leading to an inexact block
coordinate descent method. Our approach incorporates the best known results for exact up-
dates as a special case. Moreover, these theoretical guarantees are complemented by practical
considerations: the use of iterative techniques to determine the update as well as the use of
preconditioning for further acceleration.

Keywords: inexact methods, block coordinate descent, convex optimization, iteration com-
plexity, preconditioning, conjugate gradients.

AMS: 65F08; 65F10; 65F15; 65Y20; 68Q25; 90C25

1 Introduction

Due to a dramatic increase in the size of optimization problems being encountered, first order
methods are becoming increasingly popular. These large-scale problems are often highly structured
and it is important for any optimization method to take advantage of the underlying structure.
Applications where such problems arise and where first order methods have proved successful
include machine learning [17, 33], compressive sensing [8, 43], group lasso [26, 36], matrix completion
[5, 27], and truss topology design [28].

Block coordinate descent methods seem a natural choice for these very large-scale problems
due to their low memory requirements and low per-iteration computational cost. Furthermore,
they are often designed to take advantage of the underlying structure of the optimization problem
[41, 42] and many of these algorithms are supported by high probability iteration complexity results
[24, 25, 28, 29, 38].

∗This work was supported by the EPSRC grant EP/I017127/1 “Mathematics for vast digital resources”. Peter
Richtárik was also supported by the Centre for Numerical Algorithms and Intelligent Software (funded by EPSRC
grant EP/G036136/1 and the Scottish Funding Council).
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1.1 The Problem

If the block size is larger than one, determining the update to use at a particular iteration in a
block coordinate descent method can be computationally expensive. The purpose of this work is
to reduce the cost of this step. To achieve this, we extend the work in [29] to include the case of
an inexact update.

In this work we study randomized block coordinate descent methods applied to the problem
of minimizing a composite objective function. That is, a function formed as the sum of a smooth
convex and a simple nonsmooth convex term:

min
x∈RN

{F (x) := f(x) + Ψ(x)}. (1)

We assume that the problem has a minimum (F ∗ > −∞), f has (block) coordinate Lipschitz
gradient, and Ψ is a (block) separable proper closed convex extended real valued function (all these
concepts will be defined precisely in Section 2).

Our algorithm (namely, the Inexact Coordinate Descent (ICD) method) is supported by high
probability iteration complexity results. That is, for confidence level ρ ∈ (0, 1) and error tolerance
ε > 0, we give an explicit expression for the number of iterations k that guarantee that the ICD
method produces a random iterate xk for which

P(F (xk)− F ∗ ≤ ε) ≥ 1− ρ.

We will show that in the inexact case it is not always possible to achieve a solution with small error
and/or high confidence.

Our theoretical guarantees are complemented by practical considerations. In Section 3.3 we
explain our inexactness condition in detail and in Section 3.4 we give examples to show when the
inexactness condition is implementable. Further, in Section 6 we give several examples, derive the
update subproblems, and suggest algorithms that could be used to solve the subproblems inexactly.
Finally, we present some encouraging computational results.

1.2 Literature Review

As problem sizes increase, first order methods are benefiting from revived interest. On very large
problems however, the computation of a single gradient step is expensive, and methods are needed
that are able to make progress before a standard gradient algorithm takes a single step. For instance,
a randomized variant of the Kaczmarz method for solving linear systems has recently been studied,
equipped with iteration complexity bounds [21, 22, 16, 37], and found to be surprisingly efficient.
This method can be seen as a special case of a more general class of decomposition algorithms, block
coordinate descent methods, which have recently gained much popularity [20, 24, 25, 29, 30, 31, 40].
One of the main differences between various (serial) coordinate descent schemes is the way in which
the coordinate is chosen at each iteration. Traditionally cyclic schemes [32] and greedy schemes
[28] were studied. More recently, a popular alternative is to select coordinates randomly, because
the coordinate can be selected cheaply, and useful iteration complexity results can be obtained
[19, 29, 30, 31, 39, 35].

Another current trend in this area is to consider methods that incorporate some kind of ‘inexact-
ness’, perhaps using approximate gradients, or using inexact updates. For example, [18] considers
methods based on inexact dual gradient information, while [33] considers the minimization of an
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unconstrained convex composite function where error is present in the gradient of the smooth term,
or in the proximity operator for the non-smooth term. Other works study methods that use in-
exact updates when the objective function is convex, smooth and unconstrained [1], smooth and
constrained [3] or for `1-regularized quadratic least squares problem [15].

1.3 Contribution

In this paper we extend the work of Richtárik and Takáč [29] and present a block coordinate descent
method that employs inexact updates having the potential to reduce the overall algorithm running
time. Furthermore, we focus in detail on the quadratic case, which benefits greatly from inexact
updates, and show how preconditioning can be used to complement the inexact update strategy.

F Exact Method [29] Inexact Method [this paper] Theorem

C-N
c1

ε

(
1 + log

1

ρ

)
+ 2

c1

ε− u
+

c1

ε− αc1
log

(
ε− βc1

ε−αc1
ερ− βc1

ε−αc1

)
+ 2 9(i)

C-N c2 log

(
F (x0)− F ∗

ερ

)
c2

1− αc2
log

(
F (x0)− F ∗ − βc2

1−αc2
ερ− βc2

1−αc2

)
9(ii)

SC-N
n

µ
log

(
F (x0)− F ∗

ερ

)
n

µ− αn
log

(
F (x0)− F ∗ − βn

µ−αn

ερ− βn
µ−αn

)
11

C-S
ĉ1

ε

(
1 + log

1

ρ

)
+ 2

ĉ1

ε− û
+

ĉ1

ε− αĉ1
log

(
ε− βĉ1

ε−αĉ1
ερ− βĉ1

ε−αĉ1

)
+ 2 12

SC-S
1

µf
log

(
f(x0)− f∗

ερ

)
1

µf − α
log

f(x0)− f∗ − β
µf−α

ερ− β
µf−α

 13

Table 1: Comparison of the iteration complexity results for coordinate descent methods using an
inexact update and using an exact update (C=Convex, SC=Strongly Convex, N=Nonsmooth, S =
Smooth).

Table 1 compares some of the new complexity results obtained in this paper for an inexact
update with the complexity results for an exact update presented in [29]. The following notation is
used in the table: by µφ we denote the strong convexity parameter of function φ (with respect to a
certain norm specified later), µ = (µf +µΨ)/(1 +µΨ) and Rw(x0) can be roughly considered to be
distance from x0 to a solution of (1) measured in a specific weighted norm parameterized by the
vector w (to be defined precisely in (14)). The constants are c1 = 2nmax{R2

w(x0), F (x0)−F ∗}, ĉ1 =
2R2

w(x0) and c2 = 2nR2
w(x0)/ε, and n is the number of blocks. Parameters α, β ≥ 0 control the

level of inexactness (to be defined precisely in Section 3.2) and u and û are constants depending
on α, β and c1, and α, β and ĉ1, respectively.

Table 1 shows that for fixed ε and ρ, an inexact method will require more iterations than an
exact one. However, it is expected that in certain situations an inexact update will be significantly
cheaper to compute than an exact update, leading to better overall running time. Moreover, the
new complexity results for the inexact method generalize those for the exact method. Specifically,
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for inexactness parameters α = β = 0 we recover the complexity results in [29].

1.4 Outline

The first part of this paper focuses on the theoretical aspects of a block coordinate descent method
when an inexact update is employed. In Section 2 the assumptions and notation are laid out and in
Section 3 the ICD method is presented. In Section 4 iteration complexity results for ICD applied
to (1) are presented in both the convex and strongly convex cases. Iteration complexity results for
ICD applied to a convex smooth minimization problem (Ψ = 0 in (1)) are presented in Section 5,
in both the convex and strongly convex cases.

The second part of the paper considers the practicality of an inexact update. Section 6 provides
several examples of how to derive the formulation for the update step subproblem, as well as
giving suggestions for algorithms that can be used to solve the subproblem inexactly. Numerical
experiments are presented in Section 7 and Appendix A provides a detailed analysis of the spectrum
of the preconditioned matrix used in the numerical experiments.

2 Assumptions and Notation

In this section we introduce the notation and definitions that are used throughout the paper.

2.1 Block structure of RN

The problem under consideration is assumed to have block structure and this is modelled by
decomposing the space RN into n subspaces as follows. Let U ∈ RN×N be a column permutation
of the N ×N identity matrix and further let U = [U1, U2, . . . , Un] be a decomposition of U into n
submatrices, where Ui is N ×Ni and

∑n
i=1Ni = N . It is clear (e.g., see [30] for a brief proof) that

any vector x ∈ RN can be written uniquely as

x =

n∑
i=1

Uix
(i), (2)

where x(i) ∈ RNi . Moreover, these vectors are given by

x(i) := UTi x. (3)

For simplicity we will sometimes write x = (x(1), x(2), . . . , x(n)) instead of (2). We equip RNi with
a pair of conjugate norms, induced by a quadratic form involving a symmetric positive definite
matrix Bi:

‖t‖(i) := 〈Bit, t〉
1
2 , ‖t‖∗(i) = 〈B−1

i t, t〉
1
2 , t ∈ RNi , (4)

where 〈·, ·〉 is the standard Euclidean dot product.

2.2 Smoothness of f

Throughout this paper we assume that the gradient of f is block Lipschitz, uniformly in x, with
positive constants l1, . . . , ln. This means that, for all x ∈ RN , i ∈ {1, 2, . . . , n} and t ∈ RNi we have

‖∇if(x+ Uit)−∇if(x)‖∗(i) ≤ li‖t‖(i), (5)
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where

∇if(x) := (∇f(x))(i) (3)
= UTi ∇f(x) ∈ RNi . (6)

An important consequence of (5) is the following standard inequality [23, p.57]:

f(x+ Uit) ≤ f(x) + 〈∇if(x), t〉+ li
2 ‖t‖

2
(i). (7)

2.3 Block separability of Ψ

The function Ψ : RN → R ∪ {+∞} is assumed to be block separable. That is, we assume that it
can be decomposed as:

Ψ(x) =
n∑
i=1

Ψi(x
(i)), (8)

where the functions Ψi : RNi → R ∪ {+∞} are convex and closed.

2.4 Norms on RN

For fixed positive scalars w1, w2, . . . , wn, let w = (w1, . . . , wn) and define a pair of conjugate norms
in RN by

‖x‖2w :=

n∑
i=1

wi‖x(i)‖2(i), (‖y‖∗w)2 := max
‖x‖w≤1

〈y, x〉2 =
n∑
i=1

w−1
i (‖y(i)‖∗(i))

2. (9)

In the subsequent analysis we will often use w = l (for Ψ 6= 0) and/or w = lp−1 (for Ψ = 0), where
l = (l1, . . . , ln) is a vector of Lipschitz constants, p = (p1, . . . , pn) is a vector of positive probabilities
and lp−1 denotes the vector (l1/p1, . . . , ln/pn).

2.5 Strong convexity of F

A function φ : RN → R∪{+∞} is strongly convex w.r.t. ‖ ·‖w with convexity parameter µφ(w) > 0
if for all x, y ∈ domφ,

φ(y) ≥ φ(x) + 〈φ′(x), y − x〉+
µφ(w)

2 ‖y − x‖2w, (10)

where φ′ is any subgradient of φ at x. The case with µφ(w) = 0 reduces to convexity.
In some of the results presented in this work we assume that F is strongly convex. Strong

convexity of F may come from f or Ψ or both and we will write µf (w) (resp. µΨ(w)) for the strong
convexity parameter of f (resp. Ψ), with respect to ‖ · ‖w. Following from (10)

µF (w) ≥ µf (w) + µΨ(w). (11)

Using (7) and (10) it can be shown that

µf (l) ≤ 1, and µf (lp−1) < 1. (12)

We will also make use of the following characterisation of strong convexity. For all x, y ∈ domφ
and λ ∈ [0, 1],

φ
(
λx+ (1− λ)y

)
≤ λφ(x) + (1− λ)φ(y)− µφ(w)λ(1−λ)

2 ‖x− y‖2w. (13)
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2.6 Level set radius

The set of optimal solutions of (1) is denoted by X∗ and x∗ is any element of that set. We define

Rw(x) := max
y

max
x∗∈X∗

{‖y − x∗‖w : F (y) ≤ F (x)}, (14)

which is a measure of the size of the level set of F given by x. We assume that Rw(x0) is finite for
the initial iterate x0.

3 The Algorithm

Let us start by presenting the algorithm; a more detailed description will follow.

Algorithm 1 ICD: Inexact Coordinate Descent

1: Input: Inexactness parameters α, β ≥ 0, and probabilities p1, . . . , pn > 0.
2: for k = 0, 1, 2, . . . do

3: Choose δk = (δ
(1)
k , . . . , δ

(n)
k ) ∈ Rn according to (20)

4: Choose block i ∈ {1, 2, . . . , n} with probability pi

5: Compute the inexact update T
(i)
δk

(xk) to block i of xk

6: Update block i of xk: xk+1 = xk + UiT
(i)
δk

(xk)
7: end for

3.1 Generic description

Given iterate xk ∈ RN , Algorithm 1 picks block i ∈ {1, 2, . . . , n} with probability pi, computes

the update vector T
(i)
δk

(xk) ∈ RNi (we comment on how this is computed later in this section)
and then adds it to the ith block of xk, producing the new iterate xk+1. The iterates {xk} are
random vectors and the values {F (xk)} are random variables. The update vector depends on xk,
the current iterate, and on δk, a vector of parameters controlling the “level of inexactness” with
which the update is computed. The rest of this section is devoted to giving a precise definition of

T
(i)
δk

(xk). Note that from (1) and (7) we have, for all x ∈ RN , i ∈ {1, 2, . . . , n} and t ∈ RNi :

F (x+ Uit) = f(x+ Uit) + Ψ(x+ Uit) ≤ f(x) + Vi(x, t) + Ψ−i(x), (15)

where
Vi(x, t) := 〈∇if(x), t〉+ li

2 ‖t‖
2
(i) + Ψi(x

(i) + t), (16)

Ψ−i(x) :=
∑
j 6=i

Ψj(x
(j)). (17)

That is, (15) gives an upper bound on F (x+ Uit), viewed as a function of t ∈ RNi .
The inexact update computed in Step 5 of Algorithm 1 is the inexact minimizer of the upper

bound (15) on F (xk +Uit) (to be defined precisely below). However, since only the second term of
this bound depends on t, the update is computed by minimizing, inexactly, Vi(x, t) in t.
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3.2 Inexact update

The approach of this paper best applies to situations in which it is much easier to approximately
minimize t 7→ Vi(x, t) than to either (i) approximately minimize t 7→ F (x + Uit) and/or (ii)
exactly minimize t 7→ Vi(x, t). For x ∈ RN and δ = (δ(1), . . . , δ(n)) ≥ 0 we define Tδ(x) :=

(T
(1)
δ (x), . . . , T

(n)
δ (x)) ∈ RN to be any vector satisfying

Vi(x, T
(i)
δ (x)) ≤ min

{
Vi(x, 0), δ(i) + min

t∈RNi
Vi(x, t)

}
, i = 1, . . . , n. (18)

(We allow here for an abuse of notation — δ(i) is a scalar, rather than a vector in RNi as x(i) for
x ∈ RN — because we wish to emphasize that the scalar δ(i) is associated with the ith block.) That

is, we require that the inexact update T
(i)
δ (x) of the ith block of x is (i) no worse than a vacuous

update, and that it is (ii) close to the optimal update T
(i)
0 (x) = arg mint Vi(x, t), where the degree

of suboptimality/inexactness is bounded by δ(i).
As the following lemma shows, the update (18) leads to a monotonic algorithm.

Lemma 1. For all x ∈ RN , δ ∈ Rn+ and i ∈ {1, 2, . . . , n},

F (x+ UiT
(i)
δ (x)) ≤ F (x). (19)

Proof:

F (x+ UiT
(i)
δ (x))

(15)

≤ f(x) + Vi(x, T
(i)
δ (x)) + Ψ−i(x)

(18)

≤ f(x) + Vi(x, 0) + Ψ−i(x)
(16)+(17)

= F (x).

Furthermore, in this work we provide iteration complexity results for ICD, where δk = (δ
(1)
k , . . . , δ

(n)
k )

is chosen in such a way that the expected suboptimality is bounded above by a linear function of
the residual F (xk)− F ∗. That is, we have the following assumption.

Assumption 2. For constants α, β ≥ 0, the vector δk = (δ
(1)
k , . . . , δ

(n)
k ) is chosen to satisfy

δ̄k :=

n∑
i=1

piδ
(i)
k ≤ α(F (xk)− F ∗) + β, (20)

Notice that, for instance, Assumption 2 holds if we require δ
(i)
k ≤ α(F (xk) − F ∗) + β for all

blocks i and iterations k.
The motivation for allowing inexact updates of the form (18) is that calculating exact updates

is impossible in some cases (for example, not all problems have a closed form solution), and com-
putationally intractable in others. The purpose of allowing inexactness in the update step of ICD

is that an iterative method can be used to solve for the update T
(i)
δ (x), thus significantly expanding

the range of problems that can be successfully tackled by coordinate descent. In this case, there is
an outer coordinate descent loop, and an inner iterative loop to determine the update. Assumption
2 shows that the stopping tolerance on the inner loop, must be bounded above via (20).

CD methods provide a mechanism to break up very large/huge scale problem, into smaller
pieces that are a fraction of the total dimension. Moreover, often the subproblems that arise to
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solve for the update have a similar/the same form as the original huge scale problem. (For example,
see the numerical experiments in Section 7, and the examples given in Section 6.) There are many
iterative methods that cannot scale up to the original huge dimensional problem, but are excellent
at solving the medium scale update subproblems. ICD allows these algorithms to solve for the
update at each iteration, and if the updates are solved efficiently, then the overall ICD algorithm
running time is kept low.

3.3 The role of α and β in ICD

The condition (18) shows that the updates in ICD are inexact, while Assumption 2 gives the level of
inexactness that is allowed in the computed update. Moreover, Assumption 2 allows us to provide a
unified analysis; formulating the error/inexactness expression in this general way (20) gives insight
into the role of both multiplicative and additive error, and how this error propagates through the
algorithm as iterates progress.

Formulation (20) is interesting from a theoretical perspective because it allows us to present
a sensitivity analysis for ICD, which is interesting in its own right. However, we stress that (18),
coupled with Assumption 2, is much more than just a technical tool; α and β are actually parameters
of the ICD algorithm (Algorithm 1) that can be assigned explicit numerical values in many cases.

We now explain (18), Assumption 2 and the role of parameters α and β in slightly more detail.
(Note that α and β must be chosen sufficiently small to guarantee converge of the ICD algorithm.
However, we postpone discussion of the magnitude of α and β until Section 3.5.) There are four
cases.

1. Case I: α = β = 0. This corresponds to the exact case where no error is allowed in the
computed update.

2. Case II: α = 0, β > 0. This case corresponds to additive error only, where the error level
β > 0 is fixed at the start of Algorithm 1. In this case, (18) and (20) show that the error

allowed in the inexact update T
(i)
δ (xk) is on average β. For example, one can set δ

(i)
k = β,

for all blocks i and all iterations k so that (20) becomes δ̄k =
∑

i piβ = β. Notice that the

tolerance allowable on each block need not be the same; if one sets δ
(i)
k ≤ β, for all blocks i

and iterates k then δ̄k ≤ β, so (20) holds true. Moreover, one need not set δ
(i)
k > 0 for all

i, so that the update vector T
(i)
δ (xk) could be exact for some blocks (δ

(i)
k = 0), and inexact

for others (δ
(j)
k > 0). (This may be sensible, for example, when Ψi(x

(i)) 6= Ψj(x
(j)) for some

i 6= j and that (16) has a closed form solution for T (i)(xk) but not for T (j)(xk).) Furthermore,

consider the extreme case where only one block update is inexact T
(i)
δ (xk), (T

(j)
0 (xk) for all

j 6= i). If the coordinates are selected with uniform probability, then the inexactness level on

block i can be as large as δ
(i)
k = nβ and Assumption 2 holds.

3. Case III: α > 0, β = 0. In this case only multiplicative error is allowed in the computed

update T
(i)
δ (xk), where the error allowed in the update at iteration k is related to the error

in the function value (F (xk) − F ∗). The multiplicative error level α is fixed at the start of

Algorithm 1, and α(F (xk)−F ∗) is an upper bound on the average error in the update T
(i)
δ (xk)

over all blocks i at iteration k. In particular, notice that setting δ
(i)
k ≤ α(F (xk)−F ∗), for all

i and k satisfies Assumption 2. As for Case II, one is allowed to set δ
(i)
k = 0 for some block(s)

8



i, or to set δ
(i)
k > α(F (xk)− F ∗) for some blocks i and iterations k as long as Assumption 2

is satisfied.

4. Case IV: α > 0, β > 0. This is the most general case, corresponding to the inclusion of
both multiplicative and additive error, where the error level parameters α and β are fixed

at the start of Algorithm 1. Notice that Assumption 2 is satisfied when the error δ
(i)
k in the

computed update T
(i)
δ (xk) obeys δ

(i)
k ≤ α(F (xk) − F ∗) + β. Moreover, as for Cases II and

III, one is allowed to set δ
(i)
k = 0 for some block(s) i, or to set δ

(i)
k > α(F (xk) − F ∗) for

some blocks i and iterations k as long as Assumption 2 is satisfied. Notice that, as iterations
progress, the multiplicative error α may become dominated by the additive error β, in the
sense that, α(F (xk)− F ∗)→ 0 as k →∞ so the upper bound on δ̄k tends to β.

Cases I–IV above show that the parameters α and β directly relate to the stopping criterion

used in the algorithm employed to solve for the update T
(i)
δ (xk) at each iteration of ICD. The

following section gives examples of algorithms that can be used within ICD, where α and β can be
given explicit numerical values and the stopping tolerances are verifiable.

3.4 Computing the inexact update

In this section we focus on the computation of the inexact update (Step 5 of Algorithm 1). We
discuss several cases where it is possible to verify Assumption 2, and thus provide specific instances
to show that ICD is indeed implementable.

In order to compute an inexact update, the quantity Vi(x, T
(i)
0 (xk)) in (18) is needed. Moreover,

to incorporate multiplicative error, the optimal objective value F ∗ must also be known.

1. F ∗ is known: There are many instances when F ∗ is known a priori, which means that the
bound F (xk) − F ∗ is computable at every iteration, and subsequently multiplicative error
can be incorporated into ICD. In most cases, the update subproblem (18) has the same

form as the original problem (see Section 6), so that Vi(xk, T
(i)
0 ) is also known. This is the

case, for example, when solving a consistent system of equations (minimizing a quadratic
function), where F ∗ = 0, so that F (xk) − F ∗ = F (xk). The update subproblem has the

same form (a consistent system of equations must be solved to calculate T
(i)
δk

), so we also have

Vi(xk, T
(i)
0 ) = 0. Hence, for any α, β ≥ 0, one can compute δ

(i)
k (20), that satisfies Assumption

2 and (18). That is, at each iteration of ICD, accept any inexact update T
(i)
δk

that satisfies:

Vi(xk, T
(i)
δk

)− Vi(xk, T
(i)
0 ) = Vi(xk, T

(i)
δk

) ≤ δ(i)
k ≤ αF (xk) + β. (21)

2. Primal-dual algorithm: If the update T
(i)
δk

is found using an algorithm that terminates on
the duality gap, then (18) and Assumption 2 are easy to verify. In particular, suppose that
α = 0 and β > 0 is fixed when initializing ICD. Then, for block i and iteration k, we accept

T
(i)
δk

such that

Vi(xk, T
(i)
δk

))− Vi(xk, T
(i)
0 ) ≤ Vi(xk, T

(i)
δk

))− V DUAL
i (xk, T

(i)
δk

)) ≤ δ(i)
k ≤ β, (22)

where V DUAL
i (xk, T

(i)
δk

)) is the value of the dual at the point T
(i)
δk

.
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Remark 3. 1. Both (21) and (22) are termination criteria for the iterative method used for

the inner loop to determine the inexact update T
(i)
δ (xk). They show that the error bound is

indeed implementable, and that the inexactness parameters α and β relate to the stopping
tolerance used in the inner loop of ICD.

2. Selecting an appropriate stopping criterion and tolerance (i.e., deciding upon numerical values
for α and β) is a problem that frequently arises when solving optimization problems, and the
decision is left to the discretion of the user.

3. It may be possible to find other stopping conditions such that (18) is verifiable. Moreover, it
may be possible for the algorithm to converge in practice if a stopping condition is used for
which (18) cannot be checked.

3.5 Technical result

The following result plays a key role in the complexity analysis of ICD.

Theorem 4. Fix x0 ∈ RN and let {xk}k≥0 be a sequence of random vectors in RN with xk+1

depending on xk only. Let ϕ : RN → R be a nonnegative function, define ξk := ϕ(xk) and assume
that {ξk}k≥0 is nonincreasing. Further, let ρ ∈ (0, 1), ε > 0 and α, β ≥ 0 be such that one of the
following two conditions holds:

(i) E[ξk+1 | xk] ≤ (1 + α)ξk −
ξ2
k
c1

+ β, for all k ≥ 0, where c1 > 0,

c1
2

(
α+

√
α2 + 4β

c1ρ

)
< ε < min{(1 + α)c1, ξ0} and σ :=

√
α2 + 4β

c1
< 1;

(ii) E[ξk+1 | xk] ≤
(

1 + α− 1
c2

)
ξk + β, for all k ≥ 0 for which ξk ≥ ε,

where αc2 < 1 ≤ (1 + α)c2, and βc2
ρ(1−αc2) < ε < ξ0.

If (i) holds and we define u := c1
2 (α+ σ) and choose

K ≥ c1

ε− αc1
log

(
ε− βc1

ε−αc1
ερ− βc1

ε−αc1

)
+ min

{
1

σ
log

(
ξ0 − u
ε− u

)
,
c1

ε− u
− c1

ξ0 − u

}
+ 2, (23)

(where the second term in the minimum is chosen if σ = 0), or if (ii) holds and we choose

K ≥ c2

1− αc2
log

(
ξ0 − βc2

1−αc2
ερ− βc2

1−αc2

)
, (24)

then P(ξK ≤ ε) ≥ 1− ρ.

Proof. First notice that the thresholded sequence {ξεk}k≥0 defined by

ξεk =

{
0, if ξk < ε,

ξk, otherwise,
(25)

satisfies ξεk > ε⇔ ξk > ε. Therefore, by Markov’s inequality, P(ξk > ε) = P(ξεk > ε) ≤ E[ξεk]
ε . Letting

θk := E[ξεk], it thus suffices to show that
θK ≤ ερ. (26)

10



(The rationale behind this “thresholding trick” is that the sequence E[ξεk] decreases faster than
E[ξk] and hence will reach ερ sooner.) Assume now that (i) holds. It can be shown (for example,
see Theorem 1 of [29] for the case α = β = 0) that

E[ξεk+1 | xk] ≤ (1 + α)ξεk −
(ξεk)2

c1
+ β, E[ξεk+1 | xk] ≤

(
1 + α− ε

c1

)
ξεk + β. (27)

By taking expectations in (27) (in xk) and using Jensen’s inequality, we obtain

θk+1 ≤ (1 + α)θk −
θ2
k
c1

+ β, k ≥ 0, (28)

θk+1 ≤
(

1 + α− ε
c1

)
θk + β, k ≥ 0. (29)

Notice that (28) is better than (29) precisely when θk > ε. It is easy to see that the inequality

(1 +α)θk−
θ2
k
c1

+β ≤ θk holds if and only if θk ≥ u. In other words, (28) leads to θk+1 that is better
than θk only for θk ≥ u. We will now compute k = k1 for which u < θk ≤ ε. Inequality (28) can be
equivalently written as

θk+1 − u ≤ (1− σ)(θk − u)− (θk − u)2

c1
, k ≥ 0. (30)

where σ < 1. Writing (28) in the form (30) eliminates the constant term β, which allows us to
provide a simple analysis. (Moreover, this “shifted” form leads to a better result; see the remarks
after the Theorem for details.) Letting θ̂k := θk−u, by monotonicity we have θ̂k+1θ̂k ≤ θ̂2

k, whence

1− σ
θ̂k+1

− 1

θ̂k
=

(1− σ)θ̂k − θ̂k+1

θ̂k+1θ̂k
≥ (1− σ)θ̂k − θ̂k+1

θ̂2
k

(30)

≥ 1

c1
. (31)

If we choose r ∈ {1, 1
1−σ}, then

1

θ̂k

(31)

≥ r

(
1

θ̂k−1

+
1

c1

)
≥ rk 1

θ̂0

+
1

c1

k∑
j=1

rj =

{
rk
(

1
ξ0−u + 1

c1σ

)
− 1

c1σ
, r = 1

1−σ ,

1
ξ0−u + k

c1
, r = 1.

In particular, using the above estimate with r = 1 and r = 1
1−σ gives

θ̂k1 ≤ ε− u (and hence θk1 ≤ ε) (32)

for

k1 := min

{⌈
log

(
1
ε−u + 1

c1σ
1

ξ0−u + 1
c1σ

)
/ log

(
1

1− σ

)⌉
,

⌈
c1

ε− u
− c1

ξ0 − u

⌉}
, (33)

where the left term in (33) applies when σ > 0 only.
Applying the inequalities (i) dte ≤ 1 + t; (ii) log( 1

1−t) ≥ t (holds for 0 < t < 1; we use the

inverse version, which is surprisingly tight for small t); and (iii) the fact that t 7→ C+t
D+t is decreasing

on [0,∞) if C ≥ D > 0, we arrive at the following bound

k1 ≥ 1 + min

{
1

σ
log

(
ξ0 − u
ε− u

)
,
c1

ε− u
− c1

ξ0 − u

}
. (34)
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Letting γ := 1− ε−αc1
c1

(notice that γ ∈ (0, 1)), for any k2 ≥ 0 we have

θk1+k2

(29)

≤ γθk1+k2−1 + β ≤ γk2θk1 + β(γk2−1 + γk2−2 + · · ·+ 1)

(32)

≤ γk2ε+ β
1− γk2

1− γ
= γk2

(
ε− β

1− γ

)
+

β

1− γ
. (35)

In (35), notice that the second to last term can be made as small as we like (by taking k2 large),
but we can never force θk1+k2 ≤

β
1−γ . Therefore, in order to establish (26), we need to ensure

that βc1
ε−αc1 < ερ. Rearranging this gives the condition c1

2 (α +
√
α2 + 4β

c1ρ
) < ε, which holds by

assumption. Now we can find k2 for which the right hand side in (35) is at most ερ:

k2 :=

⌈
log

(
ε− β

1−γ

ερ− β
1−γ

)
/ log

(
1

γ

)⌉
≤ 1 +

c1

ε− αc1
log

(
ε− βc1

ε−αc1
ερ− βc1

ε−αc1

)
. (36)

In view of (26), it is enough to take K = k1 + k2 iterations. The expression in (23) is obtained
by adding the upper bounds on k1 and k2 in (34) and (36).

Now assume that property (ii) holds. By a similar argument as that leading to (27), we obtain

θK ≤
(

1− 1−αc2
c2

)
θK−1 + β ≤

(
1− 1−αc2

c2

)K
θ0 + β

K−1∑
j=0

(
1− 1−αc2

c2

)j
≤

(
1− 1−αc2

c2

)K (
θ0 − βc2

1−αc2

)
+ βc2

1−αc2

(24)

≤ ερ.

The proof follows by taking K given by (24).

Let us now comment on several aspects of the above result:

1. Usage. We will use Theorem 4 to finish the proofs of the complexity results in Section 4; with
ξk = ϕ(xk) := F (xk)− F ∗, where {xk} is the random process generated by ICD.

2. Monotonicity and Nonnegativity. Note that the monotonicity assumption in Theorem 4 is
for the choice of xk and ϕ described in 1) satisfied due to (19). Nonnegativity is satisfied
automatically since F (xk) ≥ F ∗ for all xk.

3. Best of two. In (33), we notice that the first term applies when σ > 0 only. If σ = 0, then
u = 0, and subsequently the second term in (33) applies, which corresponds to the exact case.
Notice that if σ > 0 is very small (so u 6= 0), the iteration complexity result still may be
better if the second term is used.

4. Generalization. Note that for α = β = 0, (23) recovers c1
ε (1 + log 1

ρ) + 2 − c1
ξ0

, which is the
result proved in Theorem 1(i) in [29], while (24) recovers c2 log((F (x0) − F ∗)/ερ), which is
the result proved in Theorem 1(ii) in [29]. Since the last term in (23) is negative, the theorem
holds also if we ignore it. This is what we have done, for simplicity, in Table 1.

5. High accuracy with high probability. In the exact case, the iteration complexity results hold
for any error tolerance ε > 0 and confidence ρ ∈ (0, 1). However, in the inexact case, there
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are restrictions on the choice of ρ and ε for which we can guarantee the result P(F (xk)−F ∗ ≤
ε) ≥ 1− ρ. Table 5 gives conditions on α and β under which arbitrary confidence level (i.e.,
small ρ) and accuracy (i.e., small ε) is achievable. For instance, if Theorem 4(ii) is used,
then one can achieve arbitrary accuracy only if β = 0, but arbitrary confidence under no
assumptions on α and β. The situation for part (i) is worse: ε is lower bounded by a positive
expression that involves ρ, unless α = β = 0.

Theorem 4(i) Theorem 4(ii)

ε can be arbitrarily small if α = β = 0 β = 0

ρ can be arbitrarily small if β = 0 any α, β

Table 2: The conditions under which arbitrary confidence ρ and accuracy ε are attainable.

6. Two lower bounds on ε. The inequality ε > c1
2

(
α+

√
α2 + 4β

ρc1

)
(see part (i) of Theorem 4)

is equivalent to ε > βc1
ρ(ε−αc1) . Note the similarity of the last expression and the lower bound

on ε in part (ii) of the theorem. We can see that the lower bound on ε is smaller (and hence,
is less restrictive) in (ii) than in (i), provided that c1 = c2.

7. Two analyses. It can be seen that analyzing the “shifted” form (30) leads to a better result
than analyzing (28) directly, even when β = 0. Consider the case β = 0, so that σ = α and
u = αc1. From equation (31) θk+1 ≤ A := αc1 + (1 − α)/( 1

θk−αc1 + 1
c1

), whereas analyzing

equation (28) directly yields θk+1 ≤ B := (1 + α)/( 1
θk

+ 1
c1

). It can be shown that A ≤ B,
with equality if α = 0.

4 Complexity Analysis: Convex Composite Objective

The following function plays a central role in our analysis:

H(x, T ) := f(x) + 〈∇f(x), T 〉+ 1
2‖T‖

2
l + Ψ(x+ T ). (37)

Comparing (37) with (16) using (2), (3), (6), (8) and (9) we get

H(x, T ) = f(x) +
n∑
i=1

Vi(x, T
(i)). (38)

It will be useful to establish inequalities relating H evaluated at the vector of exact updates
T0(x) and H evaluated at the vector of inexact updates Tδ(x).

Lemma 5. For all x ∈ RN and δ ∈ Rn+,

H(x, T0(x)) ≤ H(x, Tδ(x)) ≤ H(x, T0(x)) +
n∑
i=1

δ(i). (39)
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Proof:

H(x, T0(x))
(38)
= f(x) +

n∑
i=1

Vi(x, T
(i)
0 (x))

(18)
= f(x) +

n∑
i=1

min
t∈RNi

Vi(x, t)

≤ f(x) +
n∑
i=1

Vi(x, T
(i)
δ (x))

(38)
= H(x, Tδ(x))

(18)

≤ f(x) +
n∑
i=1

(
δ(i) + min

t∈RNi
Vi(x, t)

)
(38)
= H(x, T0(x)) +

n∑
i=1

δ(i).

The following Lemma provides an upper bound on the expected distance between the current
and optimal objective value in terms of the function H.

Lemma 6. For x, T ∈ RN , let x+(x, T ) be the random vector equal to x + UiT
(i) with probability

1
n for each i ∈ {1, 2, . . . , n}. Then

E[F (x+(x, T ))− F ∗ | x] ≤ 1
n(H(x, T )− F ∗) + n−1

n (F (x)− F ∗).

Proof:

E[F (x+(x, T )) | x] =
n∑
i=1

1
nF (x+ UiT

(i))

(15)

≤ 1
n

n∑
i=1

[f(x) + Vi(x, T
(i)) + ψi(x)]

(38)+(17)
= 1

nH(x, T ) + n−1
n f(x) + 1

n

n∑
i=1

∑
j 6=i

Ψj(x
(j))

= 1
nH(x, T ) + n−1

n F (x).

Note that if x = xk and T = Tδ(xk), then x+(x, T ) = xk+1, as produced by Algorithm 1. The
following Lemma, which provides an upper bound on H, will be used repeatedly throughout the
remainder of this paper.

Lemma 7. For all x ∈ domF and δ ∈ Rn+ (letting ∆ =
∑

i δ
(i)), we have

H(x, Tδ(x)) ≤ ∆ + min
y∈RN

{
F (y) +

1−µf (l)
2 ‖y − x‖2l

}
. (40)

Proof:

H(x, Tδ(x))
(39)

≤ ∆ + min
T∈RN

H(x, T )

= ∆ + min
y∈RN

H(x, y − x) (where y = x+ T )

(37)
= ∆ + min

y∈RN
{f(x) + 〈∇f(x), y − x〉+ Ψ(y) + 1

2‖y − x‖
2
l }

(10)

≤ ∆ + min
y∈RN

{f(y)− µf (l)
2 ‖y − x‖

2
l + Ψ(y) + 1

2‖y − x‖
2
l }.
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4.1 Convex case

Now we need to estimate H(x, Tδ(x))− F ∗ from above in terms of F (x)− F ∗.
Lemma 8. Fix x∗ ∈ X∗, x ∈ domF , δ ∈ Rn+ and let R = ‖x− x∗‖l and ∆ =

∑
i δ

(i). Then

H(x, Tδ(x))− F ∗ ≤ ∆ +

{
(1− F (x)−F ∗

2R2 )(F (x)− F ∗), if F (x)− F ∗ ≤ R2,
1
2R

2 < 1
2(F (x)− F ∗), otherwise.

(41)

Proof: Because strong convexity is not assumed, µf (l) = 0, so

H(x, Tδ(x))
(40)

≤ ∆ + min
y∈RN

{F (y) + 1
2‖y − x‖

2
l }

≤ ∆ + min
λ∈[0,1]

{F (λx∗ + (1− λ)x) + λ2

2 ‖x− x
∗‖2l }

≤ ∆ + min
λ∈[0,1]

{F (x)− λ(F (x)− F ∗) + λ2

2 R
2}.

Minimizing in λ gives λ∗ = min{1, (F (x)− F ∗)/R2} and the result follows.
We now state the main complexity result of this section, which bounds the number of iterations

sufficient for ICD used with uniform probabilities to decrease the value of the objective to within
ε of the optimal value with probability at least 1− ρ.

Theorem 9. Choose an initial point x0 ∈ RN and let {xk}k≥0 be the random iterates generated
by ICD applied to problem (1), using uniform probabilities pi = 1

n and inexactness parameters

δ
(1)
k , . . . , δ

(n)
k ≥ 0 that satisfy (20) for α, β ≥ 0. Choose target confidence ρ ∈ (0, 1) and error

tolerance ε > 0 so that one of the following two conditions hold:

(i) c1
2 (α+

√
α2 + 4β

c1ρ
) < ε < F (x0)−F ∗ and α2+ 4β

c1
< 1, where c1 = 2nmax{R2

l (x0), F (x0)−F ∗},

(ii) βc2
ρ(1−αc2) < ε < min{R2

l (x0), F (x0)− F ∗}, where c2 =
2nR2

l (x0)
ε and αc2 < 1.

If (i) holds and we choose K as in (23), or if (ii) holds and we choose K as in (24), then P(F (xK)−
F ∗ ≤ ε) ≥ 1− ρ.

Proof. Since F (xk) ≤ F (x0) for all k by (19), we have ‖xk − x∗‖l ≤ Rl(x0) for all k and x∗ ∈ X∗.
Using Lemma 6 and Lemma 8, and letting ξk := F (xk)− F ∗, we have

E[ξk+1 | xk] ≤ δ̄k + 1
n max

{
1− ξk

2‖xk−x∗‖2l
, 1

2

}
ξk + n−1

n ξk (42)

= δ̄k + max
{

1− ξk
2n‖xk−x∗‖2l

, 1− 1
2n

}
ξk

≤ δ̄k + max
{

1− ξk
2nR2

l (x0)
, 1− 1

2n

}
ξk. (43)

Consider case (i). From (43) and (20) we obtain

E[ξk+1 | xk] ≤ δ̄k +
(

1− ξk
c1

)
ξk ≤ (1 + α)ξk −

ξ2
k
c1

+ β, (44)

and the result follows by applying Theorem 4(i). Now consider case (ii). Notice that if ξk ≥ ε, then
(43) together with (20), imply that

E[ξk+1 | xk] ≤ δ̄k + max
{

1− ε
2nR2

l (x0)
, 1− 1

2n

}
ξk ≤

(
1 + α− 1

c2

)
ξk + β.

The result follows by applying Theorem 4(ii).
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4.2 Strongly convex case

Let us start with an auxiliary result.

Lemma 10. Let F be strongly convex with respect to ‖ · ‖l with µf (l) + µΨ(l) > 0. Then for all
x ∈ domF and δ ∈ Rn+, with ∆ =

∑
i δ

(i), we have

H(x, Tδ(x))− F ∗ ≤ ∆ +
(

1−µf (l)
1+µΨ(l)

)
(F (x)− F ∗).

Proof: Let µf = µf (l), µΨ = µΨ(l) and λ∗ = (µf + µΨ)/(1 + µΨ) ≤ 1. Then,

H(x, Tδ(x))
(40)

≤ ∆ + min
y∈RN

{F (y) +
1−µf

2 ‖y − x‖
2
l }

≤ ∆ + min
λ∈[0,1]

{F (λx∗ + (1− λ)x) +
(1−µf )λ2

2 ‖x− x∗‖2l }

(11)+(13)

≤ ∆ + min
λ∈[0,1]

{λF ∗ + (1− λ)F (x) +
(1−µf )λ2−(µf+µΨ)λ(1−λ)

2 ‖x− x∗‖2l }

≤ ∆ + F (x)− λ∗(F (x)− F ∗).

The last inequality follows from the fact that (µf + µΨ)(1 − λ∗) − (1 − µf )λ∗ = 0. It remains to
subtract F ∗ from both sides of the final inequality.

We can now estimate the number of iterations needed to decrease a strongly convex objective
F within ε of the optimal value with high probability.

Theorem 11. Let F be strongly convex with respect to the norm ‖ · ‖l with µf (l) + µΨ(l) > 0

and let µ :=
µf (l)+µΨ(l)

1+µΨ(l) . Choose an initial point x0 ∈ RN and let {xk}k≥0, be the random iterates

generated by ICD applied to problem (1), used with uniform probabilities pi = 1
n for i = 1, 2, . . . , n

and inexactness parameters δ
(1)
k , . . . , δ

(n)
k ≥ 0 satisfying (20), for 0 ≤ α < µ

n and β ≥ 0. Choose

confidence level ρ ∈ (0, 1) and error tolerance ε satisfying βn
ρ(µ−αn) < ε < F (x0)− F ∗. Then for K

given by (24), we have P(F (xK)− F ∗ ≤ ε) ≥ 1− ρ.

Proof. Letting ξk = F (xk)− F ∗, we have

E[ξk+1 | xk]
(Lemma 6)

≤ 1
n(H(xk, Tδk(xk))− F ∗) + n−1

n ξk
(Lemma 10)

≤ δ̄k + 1
n

(
1−µf (l)
1+µΨ(l)ξk

)
+ n−1

n ξk

(20)

≤
(
1 + α− µ

n

)
ξk + β.

By (12), µ ≤ 1, and the result follows from Theorem 4(ii) with c2 = n
µ .

5 Complexity Analysis: Smooth Objective

In this section we provide simplified iteration complexity results when the objective function is
smooth (Ψ ≡ 0 so F ≡ f). Furthermore, we provide complexity results for arbitrary (rather than
uniform) probabilities pi > 0.
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5.1 Convex case

In the smooth exact case, we can write down a closed-form expression for the update:

T
(i)
0 (x)

(18)
= arg min

t∈RNi
Vi(x, t)

(16)
= arg min

t∈RNi
{〈∇if(x), t〉+ li

2 ‖t‖
2
(i)} = − 1

li
B−1
i ∇if(x).

Substituting this into Vi(x, ·) yields

Vi(x, T
(i)
0 (x)) = 〈∇if(x), T

(i)
0 (x)〉+ li

2 ‖T
(i)
0 (x)‖2(i) = − 1

2li
(‖∇if(x)‖∗(i))

2. (45)

We can now estimate the decrease in f during one iteration of ICD:

f(x+ UiT
(i)
δ (x))− f(x)

(7)

≤ 〈∇if(x), T
(i)
δ (x)〉+ li

2 ‖T
(i)
δ (x)‖2(i)

(16)
= Vi(x, T

(i)
δ (x))

(18)

≤ min{0, δ(i) + Vi(x, T
(i)
0 (x))}

(45)
= min{0, δ(i) − 1

2li

(
‖∇if(x)‖∗(i)

)2}. (46)

The main iteration complexity result of this section can be now established.

Theorem 12. Choose an initial point x0 ∈ RN and let {xk}k≥0 be the random iterates generated by
ICD applied to the problem of minimizing f , used with probabilities p1, . . . , pn > 0 and inexactness

parameters δ
(1)
k , . . . , δ

(n)
k ≥ 0 satisfying (20) for α, β ≥ 0, where α2 + 4β

c1
< 1 and c1 = 2R2

lp−1(x0).

Choose target confidence ρ ∈ (0, 1), error tolerance ε satisfying c1
2 (α+

√
α2 + 4β

c1ρ
) < ε < f(x0)−f∗,

and let the iteration counter K be given by (23). Then P(f(xK)− f∗ ≤ ε) ≥ 1− ρ.

Proof. We first estimate the expected decrease of the objective function during one iteration of the
method:

E[f(xk+1) | xk] = f(xk) +
n∑
i=1

pi[f(xk + UiT
(i)
δk

(xk))− f(xk)]

(46)

≤ f(xk) +
n∑
i=1

pi

(
δ

(i)
k −

1
2li

(
‖∇if(xk)‖∗(i)

)2)
(9)
= f(xk)− 1

2

(
‖∇f(xk)‖∗lp−1

)2
+

n∑
i=1

piδ
(i)
k

≤ f(xk)− 1
2

(
‖∇f(xk)‖∗lp−1

)2
+ α(f(xk)− f∗) + β. (47)

Since f(xk) ≤ f(x0) for all k,

f(xk)− f∗ ≤ max
x∗∈X∗

〈∇f(xk), xk − x∗〉 ≤ ‖∇f(xk)‖∗lp−1Rlp−1(x0). (48)

Substituting (48) into (47) we obtain

E[f(xk+1)− f∗ | xk] ≤ f(xk)− f∗ − 1
2

(
f(xk)−f∗
Rlp−1 (x0)

)2
+ α(f(xk)− f∗) + β. (49)

It remains to apply Theorem 4(i).
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5.2 Strongly convex case

In this section we assume that f is strongly convex with respect to ‖·‖lp−1 with convexity parameter
µf (lp−1). Using (10) with x = xk and y = x∗, and letting h = x∗ − xk, we obtain

f∗ − f(xk) ≥ 〈∇f(xk), h〉+
µf (lp−1)

2 ‖h‖2lp−1

= µf (lp−1)
(
〈 1
µf (lp−1)

∇f(xk), h〉+ 1
2‖h‖

2
lp−1

)
. (50)

By minimizing the right hand side of (50), and rearranging, we obtain

f(xk)− f∗ ≤
1

2µf (lp−1)
(‖∇f(xk)‖∗lp−1)2. (51)

We can now give an efficiency estimate for the case of a strongly convex objective.

Theorem 13. Let f be strongly convex with respect to the norm ‖ · ‖lp−1 with convexity parameter
µf (lp−1) > 0. Choose an initial point x0 ∈ RN and let {xk}k≥0 be the random iterates generated by
ICD applied to the problem of minimizing f , used with probabilities p1, . . . , pn > 0 and inexactness

parameters δ
(1)
k , . . . , δ

(n)
k ≥ 0 that satisfy (20) for 0 ≤ α < µf (lp−1) and β ≥ 0. Choose the

target confidence ρ ∈ (0, 1), let the target accuracy ε satisfy β
ρ(µf (lp−1)−α)

< ε < f(x0) − f∗, let

c2 = 1/µf (lp−1) and let iteration counter K be as in (24). Then P(f(xK)− f∗ ≤ ε) ≥ 1− ρ.

Proof. The expected decrease of the objective function during one iteration of the method can be
estimated as follows:

E[f(xk+1)− f∗|xk]
(47)

≤ (1 + α)(f(xk)− f∗)−
1

2
(‖∇f(xk)‖∗lp−1)2 + β

(51)

≤ (1 + α− µf (lp−1))(f(xk)− f∗) + β

It remains to apply Theorem 4(ii) with ϕ(xk) = f(xk)− f∗ (and notice that c2 > 1 by (12)).

6 Practical aspects of an inexact update

The goal of the second part of this paper is to demonstrate the practical importance of employing
an inexact update in the (block) ICD method.

6.1 Solving smooth problems via ICD

In the first part of this section we assume that Ψ = 0, so the function F (x) = f(x) is smooth and
convex. In this case the overapproximation is

F (xk + Uit) = f(xk + Uit)
(7)+(4)

≤ f(xk) + 〈∇if(xk), t〉+ li
2 〈Bit, t〉 ≡ f(xk) + Vi(xk, t). (52)

Differentiating (52) with respect to t and setting the result to 0, shows that determining the update
to block i at iteration k is equivalent to solving the system of equations

Bit = − 1
li
∇if(xk). (53)
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Recall that Bi is positive definite so the exact update is

T
(i)
0 (xk) = − 1

li
B−1
i ∇if(xk), (54)

and, as mentioned in Section 3.4, Vi(xk, T
(i)
0 (xk)) = 0. Clearly, solving systems of equations is

central to the block coordinate descent method in the smooth case.
Exact CD [28] requires the exact update (54), which depends on the inverse of an Ni × Ni

matrix. A standard approach to solving for T
(i)
0 (xk) in (54) is to form the Cholesky factors of Bi

followed by two triangular solves. This can be extremely expensive for medium Ni, or dense Bi.
The results in this work allow (53) to be solved using an iterative method to find an inex-

act update T
(i)
δk

(xk). If we compute t for which Vi(xk, t) − Vi(xk, T
(i)
0 (xk)) = Vi(xk, t) = ‖Bit −

1
li
∇if(xk)‖22 ≤ β, then we terminate the iterative method and accept the inexact update T

(i)
δk
≡ t.1

Because Bi is positive definite, a natural choice is to solve (52) using conjugate gradients
[13]. (This is the method we adopt in the numerical experiments presented in Section 7). It is
widely accepted that using an iterative technique has many advantages over a direct method for
solving systems of equations, so we expect that an inexact update can be determined quickly, and
subsequently the overall ICD algorithm running time reduces. Moreover, applying a preconditioner
to (52) can enable even faster convergence of conjugate gradients. Finding good preconditioners is
an active area of research; see for example [2, 10, 12].

6.1.1 A special case: a quadratic function

A special case of the above is when we have the unconstrained quadratic minimization problem

min
x∈RN

f(x) = 1
2‖Ax− b‖

2
2, (55)

where A ∈ RM×N , and b ∈ RM . In this case, the overapproximation (7) becomes

f(x+ Uit) = 1
2‖A(x+ Uit)− b‖22 = f(x) + 〈∇if(x), t〉+ 1

2〈A
T
i Ait, t〉, (56)

where Ai = UiA. Comparing (56) with (52), we see that in the quadratic case, (56) is an exact
upper bound on f(x + Uit) if we choose li = 1 and Bi = ATi Ai for all blocks i = 1, . . . , n. The
matrix Bi is required to be (strictly) positive definite so Ai is assumed to have full (column) rank.2

Substituting li = 1 and Bi = ATi Ai into (53) gives

ATi Ait = −ATi (Ax− b). (57)

Therefore, when ICD is applied to a problem of the form (55), the update is found by solving (57).

6.2 Solving nonsmooth problems via ICD

The nonsmooth case is not as simple as the smooth case, because the update subproblem will
have a different form for each nonsmooth term Ψ. However, we will see that in many cases, the
subproblem will have the same, or similar, form to the original objective function. We demonstrate
this through the use of the following concrete examples.

1Note that if f is a quadratic function corresponding to a consistent system of equations, then we could have used
the more general stopping condition αF (xk) + β, because then we also know that F ∗ = 0.

2If a block Ai does not have full column rank then we simply adjust our choice of li and Bi accordingly, although
this means that we have an overapproximation to f(x+ Uit), rather than equality as in (56).
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6.2.1 Group Lasso

A widely studied optimization problem arising in statistics and machine learning is the so-called
group lasso problem, which has the form

min
x∈RN

1
2‖Ax− b‖

2
2 + λ

n∑
i=1

√
di‖x(i)‖2, (58)

where λ > 0 is a regularization parameter and di for all i is a weighting parameter that depends
on the size of the ith block. Formulation (58) fits the structure (1) with f(x) = 1

2‖Ax − b‖
2
2 and

Ψ(x) =
∑n

i=1 λ
√
di‖x(i)‖2. It can be shown that choosing Bi = ATi Ai

3 and li = 1 for all i, satisfies

the overapproximation (15) giving F (xk +Uit) ≤ f(xk) + 〈ATi rk, t〉+ 1
2〈A

T
i Ait, t〉+λ

√
di‖x(i)

k + t‖2,
where rk = Axk − b, so

Vi(xk, t) = 1
2‖Ait− rk‖

2
2 + λ

√
di‖x(i)

k + t‖2. (59)

We see that (after a simple change of variables) (59) has the same form as the original problem
(58). We can apply any algorithm to approximately minimize (59) that uses one of the stopping
conditions described in Section 3.4.

7 Numerical Experiments

In this section we present preliminary numerical results to demonstrate the practical performance of
Inexact Coordinate Descent and compare the results with Exact Coordinate Descent. We note that
a thorough practical investigation of Exact CD is given in [29] where its usefulness on huge-scale
problems is evidenced. We do not intend to reproduce such results for ICD, rather, we investigate
the affect of inexact updates compared with exact updates, which should be apparent on medium
scale problems. We do this the full knowledge that if exact CD scales well to very large sizes (shown
in [29]) then so too will ICD.

Each experiment presented in this section was implemented in Matlab and run (under linux)
on a desktop computer with a quad core i5-3470CPU, 3.20GHz processor with 24Gb of RAM.

7.1 Problem description for a smooth objective

In this numerical experiment, we assume that the function F = f is quadratic (55) and Ψ = 0.
Further, as ICD can work with blocks of data, we impose block structure on the system matrix. In
particular, we assume that the matrix A has block angular structure. Matrices with this structure
frequently arise in optimization, from optimal control, scheduling and planning problems to stochas-
tic optimization problems, and exploiting this structure is an active area of research [6, 11, 34]. To
this end, we define

A =

[
C

D

]
∈ RM×N , (60)

3Here we assume that ATi Ai � 0
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with the partitioning

C =

C1

. . .

Cn

 ∈ Rm×N , D =
[
D1 . . . Dn

]
∈ R`×N and Ai =

Ci
Di

 ∈ RM×Ni . (61)

Moreover, we assume that each block Ci ∈ RMi×Ni , and the linking blocks Di ∈ R`×Ni . We assume
that `� N , and that there are n blocks with m =

∑n
i=1Mi so M = m+ `, and N =

∑n
i=1Ni.

Notice that if D = 0, where 0 is the ` × N matrix of all zeros, then problem (55) is com-
pletely (block) separable so it can be solved easily. The linking constraints D make problem (55)
nonseparable, which makes it non-trivial to solve.

The system of equations (57) must be solved at each iteration of ICD (where Bi = ATi Ai =
CTi Ci + DT

i Di) because it determines the update to apply to the ith block. We solve this system
inexactly using an iterative method. In particular we use the conjugate gradient method (CG) in
the numerical experiments presented in this section.

It is well known that the performance of CG is improved by the use of an appropriate precon-
ditioner. To this end, we compare ICD using CG with ICD using preconditioned CG (PCG). If
Mi ≥ Ni and rank(Ci) = Ni, then the block CTi Ci is positive definite so we propose the precondi-
tioner (for the ith system)

Pi := CTi Ci. (62)

If Mi < Ni then Pi is rank deficient and is therefore singular. In such a case, we perturb (62)
by adding a multiple of the identity matrix, and propose the nonsingular preconditioner

P̂i = Pi + ρI = CTi Ci + ρI, (63)

where ρ > 0.
Applying the preconditioners (defined in (62) for Mi ≥ Ni, and (63) for Mi < Ni) to (57),

should result in the system having better spectral properties than the original, and this will lead to
faster convergence of the conjugate gradient algorithm. A full theoretical justification (eigenvalue
analysis) for the preconditioners is presented in Appendix A.

Remark: Notice that the preconditioners (62) and (63) are likely to be significantly more sparse
than Bi, and consequently we expect that these preconditioners will be cost effective to apply in
practice. To see this, notice that the blocks Ci are generally much sparser than the linking blocks
Di so that Pi = CTi Ci is much sparser than CTi Ci +DT

i Di.

7.1.1 Experiment parameters and results

The purpose of this experiment is to study the use of an iterative technique (CG or PCG) to
determine the update used at each iteration of the inexact block coordinate descent method, and
compare this approach with Exact CD. For Exact CD, the system (57) was solved by forming the
Cholesky Decomposition of Bi for each i and then performing two triangular solves to find the
exact update.

In the first two experiments, simulated data was used to generate A and the solution vector x∗.
For each matrix A, each block Ci has approximately 20 nonzeros per column, and the density of the
linking constraints Di is approximately 0.1 `Ni. The data vector b was generated from b = Ax∗, so
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the optimal value is known in advance: F ∗ = 0. The stopping condition and tolerance ε for ICD
are: F (xK)− F ∗ = 1

2‖AxK − b‖
2
2 < ε = 0.1.

The inexactness parameters are set to α = 0 and β = 0.1. Therefore, the update for each block

is accepted when 1
2‖AiT

(i)
δk
− r‖22 ≤ β = δ

(i)
k = 0.1 for all i, k. Moreover, each block was chosen with

uniform probability 1
n in all experiments in this section.

In the first experiment the blocks Ci are tall. The incomplete Cholesky decomposition of the
preconditioner Pi was found using Matlab’s ‘ichol’ function with a drop tolerance set to 0.1.
The results of this experiment are shown in the Table 3 and all results are averages over 20 runs.

In the second experiment the blocks Ci are wide.4 The incomplete Cholesky decomposition of
the perturbed preconditioner P̂i = Pi + ρI (with ρ = 0.5) was formed was found using Matlab’s
‘ichol’ function with a drop tolerance set to 0.1. The results are shown in the Table 4 and all
results are averages over 20 runs.

We briefly explain the terminology used in the tables presented in this section. ‘Time’ rep-
resents the cpu time in seconds. Further, the term ‘block updates’ refers to the total number of
block updates computed throughout the algorithm; dividing this number by n gives the number of
‘epochs’, which is (approximately) equivalent to the total number of full dimensional matrix-vector
products required by the algorithm. The abbreviation ‘o.o.m.’ is the out of memory token.

Table 3: Results of Exact CD, ICD with CG and ICD with PCG on a quadratic objective with
block angular structure using simulated data. For all of these problems, the blocks Ci are tall, and
the preconditioner (62) is used for ICD with PCG. The size of A ranges from 106×105 to 107×106.
All results are averages over 20 runs.

Exact CD ICD with CG ICD with PCG

n Mi Ni `
Block
Updates

Time
Block
Updates

CG
Iterations

Time
Block
Updates

PCG
Iterations

Time

100 104 103 1 4,820.1 37.42 4,726.3 15,126 13.95 5,230.6 11,379 12.59

100 104 103 10 7,056.7 53.94 7,181.1 14,480 17.88 6,864.0 13,516 15.95

100 104 103 100 19,129 151.97 19,411 37,841 46.32 19,446 41,344 51.12

10 105 104 1 3129.4 2488.2 3,307.5 5,316.4 64.39 3,246.8 4,201.4 62.71

10 105 104 10 4588 3738.6 4,753.6 9,907.6 109.79 4,655.4 7,646.8 104.65

10 105 104 100 12,431 15,302 15,938 35,943 446.81 15,417 29,272 391.12

100 105 104 1 o.o.m. o.o.m. 44,799 59,340 821.64 43,427 49,801 783.11

100 105 104 10 o.o.m. o.o.m. 63,654 101,163 1,302.0 59,351 82,097 1,267.3

100 105 104 100 o.o.m. o.o.m. 207,314 329276 4982.8 204070 302,308 4806.1

The results presented in Table 3 show that ICD with either CG or PCG significantly outperforms
Exact CD in terms of cpu time. When the blocks are of size Mi × Ni = 104 × 103, ICD is
approximately 3 times faster than Exact CD. The results are even more striking as the block size
increases. Notice that ICD was able to solve problems of all sizes, whereas Exact CD ran out of
memory on the problems of size 107×106. Further, we notice that PCG is faster than CG in terms
of cpu time, demonstrating the benefits of preconditioning. These results strongly support the ICD
method.

4To ensure that Ci has full rank, a multiple of the identity Imi is added to the first mi columns of Ci.
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Table 4: Results of Exact CD, ICD with CG and ICD with PCG on a quadratic objective with
block angular structure using simulated data. For all of these problems, the blocks Ci are wide,
and the preconditioner (63) with ρ = 0.5 is used for ICD with PCG. The size of A ranges from
105 × 105 to 106 × 106. All results are averages over 20 runs.

Exact CD ICD with CG ICD with PCG

n Mi Ni `
Block
Updates

Time
Block
Updates

CG
Iterations

Time
Block
Updates

PCG
Iterations

Time

10 9, 999 104 1 34.2 190.62 821.2 1957 12.55 471.4 1597 9.29

10 9, 990 104 10 31.3 191.96 1,500.8 4,793.3 45.81 867.7 3612 24.55

10 9, 000 104 103 25.5 287.79 703.6 4,052.8 58.31 439.0 4,309.8 46.74

10 7, 500 104 2, 500 39.7 336.69 532.0 3183 76.77 386.5 4592 70.09

100 9, 999 104 1 o.o.m. o.o.m. 13077 27321 185.31 8280 25715 143.63

100 9, 900 104 102 o.o.m. o.o.m. 12,979 50,685 397.47 6,159 47,034 245.89

100 9, 000 104 103 o.o.m. o.o.m. 6974 39535 453.18 4797 52,665 496.35

100 7, 500 104 2, 500 o.o.m. o.o.m. 4936 28986 542.69 4246 57001 740.75

The results presented in Table 4 show that ICD outperforms Exact CD. ICD is able to solve all
problem instances, whereas Exact CD gives the out of memory token on the large problems. We
see that when ` is small, ICD with PCG has an advantage over ICD with CG. However, when ` is
large, the the preconditioner P̂i is not as good an approximation to ATi Ai and so ICD with CG is
preferable.

Remark: Notice that in several of the numerical experiments, Exact CD returned the out of
memory token. Exact CD requires the matrices Bi = CTi Ci+DT

i Di for all i to be formed explicitly,
and the Cholesky factors to be found and stored. Even if Ai is sparse, Bi need not be, and the
Cholesky factor could be dense, making it very expensive to work with. Moreover, this problem
does not arise for ICD with CG (and arises to a much lesser extent for PCG) because Bi is never
explictly formed. Instead, only sparse matrix vector products: Bix ≡ CTi (Cix) + DT

i (Dix) are
required. This is why ICD performs extremely well, even when the blocks are very large.

7.1.2 Real-world data

In the third experiment we test ICD on a quadratic objective with block angular structure, where
the matrices arise from real-world applications. In particular, we have taken several matrices from
the Florida Sparse Matrix Collection [7] that have block angular structure. The matrices used are
given in Table 5. Note that in each case we have taken the transpose of the original matrix to
ensure that the matrix is tall. Further, in each case the upper block (recall (60)) is diagonal, so we
have scaled each of the matrices so that C = I. Note that in this case Pi = I so there is no need
for preconditioning. We compare Exact CD with ICD using CG. All the stopping conditions and
algorithm parameters are the same as those given in Section 7.1.1.

The results of the numerical experiments on these matrices are shown in Table 6. (To determine
n (the number of blocks) and Ni the size of the blocks, we have simply taken the prime factorization
of N .) ICD with CG performs extremely well on these test problems. In most cases ICD with CG
needs more iterations than Exact CD to converge, yet ICD requires only a fraction of the cpu time
needed by Exact CD.
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Table 5: Block angular matrices from the Florida Sparse Matrix Collection [7]. (cep1 is from the
Meszaros Group while all others are from the Mittelmann Group.) Note that the dimensions given
in the table are for the transpose of the original test matrix.

M N `

cep1 4769 1521 3,248
neos 515,905 479,119 36,786
neos1 133,473 131,528 1,945
neos2 134,128 132,568 1,560
neos3 518,832 512,209 6,623

Table 6: Results showing the performance of Exact CD and ICD with CG applied to a quadratic
function with the block angular matrices described in Table 5. For the small problem cep1, Exact
CD is the best algorithm. For all other matrices, ICD with CG is significantly better than Exact
CD in terms of the cpu time.

Exact CD ICD with CG

n Ni
Block
Updates

Time
Block
Updates

CG
Iterations

Time

cep1
9 169 446 0.18 448 828 0.61
3 507 376 0.29 342 678 0.52

neos 283 1,693 622,659 3,258.8 869,924 3,919,172 2,734.65

neos1
41 3,208 148,228 8,759.6 143,156 592,070 773.70
8 16,441 25,503 52,113 25,853 116,468 446.26

neos2
73 1,816 329,749 4,669.1 439,296 1,825,835 997.04
8 16,571 82,784 11,518 55,414 255,129 972.27

neos3 107 4,787 81,956 9,032.1 82,629 433,354 700.82

7.2 A numerical experiment for a nonsmooth objective

In this numerical experiment we consider the l1-regularized least squares problem

min
x∈RN

1

2
‖Ax− b‖22 + λ‖x‖1, (64)

where A ∈ RM×N , b ∈ RM and λ > 0. Problem (64) fits into the framework (1) with f = 1
2‖Ax−b‖

2
2

and Ψ = λ‖x‖1 = λ
∑n

i=1 ‖x(i)‖1. For this experiment we set Bi = ATi Ai and li = 1 for i = 1, . . . , n.
(It can be shown that this choice of Bi and li satisfy the overapproximation (7).) Further, for this
experiment we use uniform probabilities, pi = 1

n for all i, and we set α = 0 and β > 0. The
algorithm stopping condition is F (xk) − F ∗ < ε = 10−4, (the data was constructed so that F ∗ is
known), and the regularization parameter was set to λ = 0.01.

The exact update for the ith block is computed via

Vi(xk, t) = 〈ATi rk, t〉+
1

2
tTATi Ait+ λ‖x(i)

k + t‖1 =
1

2
‖Ait+ rk‖22 + λ‖x(i)

k + t‖1, (65)

where rk := Axk − b and ∇if(x) = ATi rk. Notice that (65) does not have a closed form solution,
meaning that only an inexact update can be used in this case. Recall that the inexact update must
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satisfy (18), and for (65), we do not know the optimal value Vi(xk, T
(i)
0 ). In this case, to ensure

that (18) is satisfied, we simply find the inexact update T
(i)
δk

using an algorithm that terminates on

the duality gap. That is, we accept T
(i)
δk

using a stopping condition of the same form as that given
by (22).

In the numerical experiments presented in this section, we use the BCGP algorithm [4] to solve
for the update at each iteration of ICD. This is a gradient based method that solves problems of
the form (65), and terminates on the duality gap.

We conduct two numerical experiments. In the first experiment A is of size 0.5N × N where
N = 105. In this case (64) is convex (but not strongly convex.) This means that the complexity
result of Theorem 9 applies. In the second experiment A is of size 2N ×N where N = 105. In this
case (64) is strongly convex, and the complexity result of Theorem 11 apply.

The purpose of these experiments is to investigate the effect of different levels of inexactness
(different values of β) on the algorithm runtime. In particular we used three different values:
β ∈ {10−4, 10−6, 10−8}. To make this a fair test, for each problem instance, the block ordering was
fixed in advance. (i.e., before the algorithm begins we form and store a vector whose kth element is
a index between 1 and n that has been chosen with uniform probability, corresponding to the block
to be updated at iteration k of ICD.) Then, ICD was run three times using this block ordering,

once for each value of β ∈ {10−4, 10−6, 10−8}. In all cases we use δ
(i)
k = β for all i and k.

Figures 1 and 2 show the results of experiments 1 (M < N) and 2 (M > N) respectively.
The experiments were performed many times on simulated data and the plots shown are a partic-
ular instance that is representative of the typical behaviour observed using ICD on this problem
description. We see that when the same block ordering is used, all algorithms essentially require
the same number of iterations until termination regardless of the parameter β. (This is to be ex-
pected.) Moreover, it is clear that using a smaller value of β, corresponding to more ‘inexactness’
in the computed update, leads to a reduction in the algorithm running time, without affecting the
ultimate convergence of ICD. This shows that using an inexact update (an iterative method) has
significant practical advantages.
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A Eigenvalues of the preconditioned matrix

The purpose of this section is to provide a full theoretical justification for the choice of precondi-
tioner presented in Section 7.1.

The convergence speed of many iterative methods, such as CG, depends on the spectrum of
the system matrix. The purpose of a preconditioner is to shift the spectrum of the preconditioned
matrix so that the eigenvalues of the resulting system are clustered around one, with few outliers.
In this section we study the eigenvalues of the preconditioned matrix under the problem setup
described in Sections 6.1.1 and 7.1.

Applying (62) and (63) to Bi(= CTi Ci +DT
i Di) gives

P−1
i Bi = I + P−1

i DT
i Di, and P̂−1

i Bi = P̂−1
i Pi + P̂−1

i DT
i Di (66)

To investigate the quality of a preconditioner, we study the eigenvalues of the preconditioned
matrices P−1

i Bi and P̂−1
i Bi defined in (66).

The nonzero eigenvalues of the Ni×Ni matrix P−1
i DT

i Di are the same as the nonzero eigenvalues
of DiP−1

i DT
i (See Theorem 2.8 in [44]). We prefer to work with DiP−1

i DT
i because it is symmetric

and positive semidefinite, so it has real, nonnegative eigenvalues. (Furthermore, if Di has full (row)
rank, then DiP−1

i DT
i is positive definite.)

We can say more about the eigenvalues of the preconditioned matrix by considering the blocks
of A and investigating the relationship between the matrices C and D, defined in (61). Recall that
C contains blocks Ci ∈ RMi×Ni . The remainder of this section is broken into two parts. The first
part considers the case when Mi ≥ Ni while the second part considers the case when Mi < Ni. In
each case Ci is assumed to have full rank.5

A.1 Tall blocks

In this section it is assumed that Ci ∈ RMi×Ni where Mi ≥ Ni and that Di ∈ R`×Ni with 1 ≤ ` < Ni.
Furthermore, we assume that Ci has full column rank (the rows of Ci contain a basis for RNi) so
each row of Di is a linear combination of the rows of Ci. i.e., for Zi ∈ R`×Mi we can write

Di = ZiCi. (67)

We have the following result.

Theorem 14. Let ri = rank(Di) and ri ≤ Ni. Then P−1
i Bi = I + P−1

i DT
i Di (66) has

(i) ri eigenvalues that are strictly greater than one.

(ii) Ni − ri eigenvalues equal to one.

5Note that the eigenvalues of P−1
i DT

i Di can be determined exactly by solving the generalized eigenvalue problem
DT
i Div = λPiv.
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We have the following bound on the diagonal elements of P−1
i DT

i Di.

Lemma 15. Let Pi ∈ RNi×Ni and Di ∈ R`×Ni be the matrices defined in (62) and (67) respectively
and let zTj denote the jth row of Zi. Let Ci = YiRi denote the thin QR factorization ([9]) of Ci, so

Yi ∈ RMi×Ni has orthonormal columns and Ri ∈ RNi×Ni is upper triangular. Then

trace(DiP−1
i DT

i ) =
∑̀
j=1

‖zTj Yi‖22 ≤ ‖Zi‖2F . (68)

Proof. The trace is simply the sum of the diagonal entries of a (square) matrix, so:

DiP−1
i Di = ZiCi(C

T
i Ci)

−1CTi Z
T
i = ZiYiRi(R

T
i Y

T
i YiRi)

−1RTi Y
T
i Z

T
i = (ZiYi)(ZiYi)

T .

Now (DiP−1
i DT

i )jj = ‖Y T
i zj‖22 and so ‖Zi‖2F =

∑`
j=1 ‖zj‖22. Because YiY

T
i is a projection matrix,

‖Y T
i zj‖22 = ‖YiY T

i zj‖22 ≤ ‖zj‖22, and the result follows.

Remark: When Ci is square and has full rank, Yi is an orthogonal matrix, and subsequently
trace(DiP−1

i DT
i ) =

∑`
j=1 ‖zj‖22 = ‖Zi‖2F .

We now present the main result of this section.

Theorem 16. Suppose that A ∈ RM×N has primal block angular structure, with rectangular blocks
Ci ∈ RMi×Ni (Mi ≥ Ni) of full rank (Ni = rank (Ci)) along the diagonal. Suppose that Bi ≡ ATi Ai,
Di and Pi are defined in (61), (67) and (62) respectively, and let ri = rank(Di). Then P−1

i Bi has

(i) Ni − ri eigenvalues equal to one,

(ii) ri eigenvalues that are strictly greater than 1, and sum to ri +
∑`

j=1 ‖Y T
i zj‖22.

Proof. The proof follows from Theorem 14 and Lemma 68.

A.2 Wide blocks

In this section we assume that Ci ∈ RMi×Ni where Mi < Ni with full row rank Mi = rank(Ci),
and that Di ∈ R`×Ni where ` ≥ Ni − Mi. Then the rows of Ci form a basis for a subspace

W := span{c(i)
1 , . . . , c

(i)
Mi
} ⊂ RNi , where (c

(i)
j )T is the jth row of Ci.

Furthermore, let W be an ` × Ni matrix whose rows wTj ∈ W, for j = 1, . . . , `, and let W⊥

be an `×Ni matrix whose rows (w⊥j )T ∈ W⊥, for j = 1, . . . , `, where W⊥ denotes the orthogonal
complement of W. Then one can write

Di = W +W⊥. (69)

For ICD, Bi = ATi Ai must have full rank because it defines a norm (see Section 2.1). However,
when Ci is wide, Pi defined in (62) is rank deficient so we use the preconditioner P̂i defined in (63).
The preconditioned matrix is defined in (66). We study the eigenvalues of P̂−1

i Pi and P̂−1
i DT

i Di

separately, before stating the main result of this section, which describes the eigenvalues of P̂−1
i Bi.

Theorem 17. Let Ci be a real Mi × Ni matrix with Mi < Ni and full row rank Mi = rank(Ci).
Let Pi and P̂i be defined in (62) and (63) respectively, and let Mi = rank(Pi). Then P̂−1

i Pi has
Ni −Mi zero eigenvalues and Mi positive eigenvalues that tend to 1 as ρ→ 0.
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Proof. The preconditioner P̂i satisfies rank(P̂−1
i Pi) = rank(Pi) = Mi, so P̂−1

i Pi has Mi nonzero
eigenvalues and Ni −Mi zero eigenvalues. Furthermore, the Mi nonzero eigenvalues are positive.

(Notice that P̂−
1
2

i PiP̂
− 1

2
i is positive semidefinite.)

Let λ1, . . . , λMi denote the Mi nonzero eigenvalues of Pi. The eigenvalue decomposition of Pi
is Pi = V ΛV T , where Λ = diag(λ1, . . . , λMi , 0, . . . , 0). Moreover, the eigenvalue decomposition for
P̂i is P̂i = Pi + ρI = V Λ̂V T where Λ̂ = Λ + ρI.

Finally, P̂−1
i Pi = V Λ̂−1V TV ΛV T = V Λ̂−1ΛV T , where Λ̂−1Λ is a diagonal matrix with diagonal

entries (λ1/(λ1 + ρ), . . . , λMi/(λMi + ρ), 0, . . . , 0) and as ρ→ 0,
λj
λj+ρ

→ 1 for j = 1, . . . ,Mi.

Theorem 18. Let Di and P̂i be as defined in (69) and (63) respectively, and let ρ > 0. Then

tr(DiP̂−1
i DT

i ) =
∑̀
j=1

(
‖Λ̂−

1
2

1 V T
1 (wj + w⊥j )‖22 +

1

ρ
‖V T

2 (w⊥j )‖22. (70)

Proof. Recall that P̂i = V Λ̂V T where Λ̂ = Λ + ρI and let V =
[
V1 V2

]
be a partitioning of V ,

where V1 ∈ RNi×Mi , and V2 ∈ RNi×(Ni−Mi). The columns of V2 form a basis for the null space of
Ci, so V T

2 w = 0. The results follows by expanding (DiP̂−1
i DT

i )jj = (wj + w⊥j )T P̂−1
i (wj + w⊥j ).

Theorems 17 and 18 demonstrate the importance of the parameter ρ. A small value of ρ will
lead to a good clustering of the eigenvalues around one, but if ρ is too small then (w⊥j )T P̂−1

i (w⊥j )
will become arbitrarily large. Hence, there is a trade-off here.

Now we state the main result of this section, which gives bounds on the eigenvalues of P̂−1
i DT

i Di.

Theorem 19. Let Ci be an Mi × Ni matrix with Mi < Ni and Mi = rank(Ci) and let Di be an
`×Ni matrix with ri = rank(Di). Let P̂i be the preconditioner defined in (63) and let Ai be defined
in (61) with Ni ≥ si = rank(Ai) and Bi = ATi Ai. Then Mi = P̂−1

i Bi has

(i) Ni − si eigenvalues equal to zero.

(ii) si − ri eigenvalues in the interval (0, 1)

(iii) ri eigenvalues in the interval
(

1, 1 +
∑`

j=1

(
‖Λ̂−

1
2

1 V T
1 (wj + w⊥j )‖22 + 1

ρ‖V
T

2 (w⊥j )‖22
))

Proof. Part (i) holds because Bi is Ni ×Ni with rank(Bi) = rank(Ai) = si. Part (ii) follows from
Theorem 17 and Theorem 17. For part (iii), notice that λmax(DiP̂−1

i DT
i ) ≤ trace(DiP̂−1

i DT
i ).

Using (18) and [14, Theorem 4.3.1], gives the result.

Remark: For ICD we require rank(Ai) = Ni, because this ensures that Bi is a positive definite
matrix. Notice that in this case, Theorem 19 shows that all eigenvalues ofMi = P̂−1

i Bi are strictly
greater than zero (i.e., Ni = si).
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