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Abstract

We propose a surprisingly simple model for supervised
video background estimation. Our model is based on `1 re-
gression. As existing methods for `1 regression do not scale
to high-resolution videos, we propose several simple and
scalable methods for solving the problem, including iter-
atively reweighted least squares, a homotopy method, and
stochastic gradient descent. We show through extensive ex-
periments that our model and methods match or outperform
the state-of-the-art online and batch methods in virtually all
quantitative and qualitative measures.

1. Introduction
Video background estimation and moving object detec-

tion is a classic problem in computer vision. Among sev-
eral existing approaches, one of the most prevalent ones is
to solve it in a matrix decomposition framework [6, 8]. Let
A ∈ Rm×n′ be a matrix encoding n′ video frames, each
represented as a vector of size m. Our task is to decom-
pose all frames of the video into background and foreground
frames: A = B + F.

As described above, the problem is ill-posed, and more
information about the structure of the decomposition is
needed. In practice, background videos are often static
or close to static, which typically means that B is of low
rank [39]. On the other hand, foreground usually repre-
sents objects occasionally moving across the foreground,
which typically means that F is sparse. These and simi-
lar observations leads to the development of models of the
form [8, 6, 55, 31, 14]:

min
B

frank(B) + fspar(A−B), (1)

where frank is a suitable function that encourages the rank
of B to be low, and fspar is a suitable function that encour-
ages the foreground F to be sparse.

Xin et al. [56] recently proposed a background estima-
tion model—generalized fused lasso (GFL)—arising as a
special case of [20] with the choice frank(B) = rank(B)

and fspar(F ) = λ‖F‖GFL:

min
B

rank(B) + λ‖A−B‖GFL. (2)

In this model, ‖ · ‖GFL is the “generalized fused lasso”
norm, which arises from the combination of the `1 norm (to
encourage sparsity) and a local spatial total variation norm
(to encourage connectivity of the foreground).

Supervised background estimation. In the modern
world, supervised background estimation models play an
important role in the analysis of the data captured from the
surveillance cameras. As the name suggests, these mod-
els rely on prior availability of some “training” background
frames, B1 ∈ Rm×r. Without loss of generality, assume
that the training background frames correspond to the first
r frames of B, i.e., B = [B1 B2], where B1 ∈ Rm×r
is known and B2 ∈ Rm×n is to be determined, with
n′ = r + n. Let A = [A1 A2] be partitioned accordingly,
and let F2 = A2−B2 ∈ Rm×n. In this setting, [56] further
specialized the model (2) by adding the extra assumption
that rank(B) = rank(B1).As a result, the columns of the
unknown matrix B2 can be written as a linear combinations
of the columns of B1. Specifically, B2 can be written as
B1S, where S ∈ Rr×n is a coefficient matrix. Thus, prob-
lem (2) can be written in the form

min
S′

rank(B1[I S′]) + λ‖A2 −B1S
′‖GFL. (3)

While (6.1) is the the problem Xin et al. [56] wanted to
solve, they did not tackle it directly and instead further as-
sumed that S is sparse, and solved the modified problem

min
S′
‖S′‖1 + λ‖A2 −B1S

′‖GFL, (4)

where ‖ · ‖1 denotes the `1 norm of matrices.

2. New Model
In this paper we propose a new supervised background

estimation model, one that we argue is much better than (4)
in several aspects. Moreover, our model and the methods
we propose significantly outperform other state-of-the-art
methods.
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Figure 1: ROC curve to compare between our proposed `1 re-
gression algorithms on Basic video, frame size 144× 176.

L1 regression. As in (4), our model is also based on a
modified version of (3). We do not need to assume any
sparsity on S′, and instead make the trivial observation that
rank(B1[I S′]) = rank(B1). Since B1 is known, the first
term in the objective function (3) is constant, and hence
does not contribute to the optimization problem. Hence we
may drop it. Moreover, we suggest replacing the GFL norm
by the `1 norm. This leads to a very simple L1 (robust)
regression problem:

min
S′∈Rr×n

‖A2 −B1S
′‖1. (5)

Dimension reduction. The above model can be further
simplified. It may be the case that the rank of B1 ∈ Rm×r
is smaller1 (or much smaller) than r. In such a situation,
we can replace B1 in (5) by a thinner matrix, which allows
us to reduce the dimension of the optimization variable S′.
In particular, let B1 = QR be the QR decomposition of
B1, where Q ∈ Rm×k, R ∈ Rk×r, k = rank(B1), and
Q has orthonormal columns. Since the column space of B1

is the same as the column space of Q, by using the substi-
tution B1S

′ = QS, we can reformulate (5) as the lower-
dimensional L1 regression problem:

min
S∈Rk×n

f(S) := ‖A2 −QS‖1 (6)

Decomposition. Let A2 = [a1, . . . , an] and S =
[s1, . . . , sn], where ai ∈ Rm, si ∈ Rt for all i ∈ [n] :=
{1, 2, . . . , n}. Our model (6) can be decomposed into n
parts, one for each frame:

f(S) =

n∑
i=1

fi(si), fi(si) := ‖ai −Qsi‖1, (7)

1If this is not the case, it still may be the case that the column space of
B1 can be very well approximated by a space with less or much less than
r dimensions.

where ‖ · ‖1 is the vector `1 norm. Therefore, (6) reduces
to n small (k-dimensional) and independent `1 regression
problems:

min
si∈Rt

fi(si), i ∈ [n] (8)

Advantages of our model. We now list some advantages
of our model (6) as compared to (4). We show that 1) our
model does not involve the unnecessary sparsity inducing
term ‖S′‖1, that 2) our model does not include the trade-
off parameter λ and hence issues with tuning this parameter
disappear, that 3) our model involves a simple `1 norm as
opposed to the more complicated GFL norm, that 4) the
dimension of S is smaller (and possibly much smaller) than
that of S′, that 5) our objective is separable across the n
columns of S corresponding to frames, which means that
we can solve for each column of S in parallel (for instance
on a GPU), and that 6) for the same reason, we can solve
for each frame as it arrives, in an online fashion.

Further contributions. Our model works well with just a
few training background frames (e.g., r = 10). This should
be compared with the 200 training frames in GFL model.
We propose 5 methods for solving the model, out of which
4 can work online and all 5 can work in a batch mode. Our
model solves all the following challenges: static and semi-
static foreground, newly added static foreground, shadows
that are already present in the background and newly cre-
ated by moving foreground, occlusion and disocclusion of
the static and dynamic foreground, the ghosting effect of the
foreground in the background. To the best of our knowl-
edge, no other algorithm can solve all the above challenges
in a single framework.

3. Scalable Algorithms for L1 Regression

The separable (across frames) structure of our model al-
lows us to devise both batch and online background estima-
tion algorithms. To the best of our knowledge, this is the
first formulation which can operate in both batch and on-
line mode. Since our problem decomposes across frames
i ∈ [n], it suffices to describe algorithms for solving the `1
regression problem (8) for a single i. This problem has the
form

min
x∈Rt

φ(x) := ‖Qx− b‖1 =

m∑
j=1

|q>j x− bj |, (9)

where x ∈ Rt corresponds to one of the reconstruction vec-
tors si, and b ∈ Rm corresponds to the related frame ai. We
write b = (b1, . . . , bm) ∈ Rm, and let qj ∈ Rt be the jth
row of Q for j ∈ [m].
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Figure 2: ROC curve to compare between IRLS, iEALM,
GRASTA, and ReProCS on Basic video, frame size 144× 176.

Five methods. In this work we propose to solve
(9) via four algorithms: (a) iteratively reweighted least
squares (IRLS), (b) homotopy method, (c) stochastic sub-
gradient descent (variant 1), (d) stochastic subgradient de-
scent (variant 2), and (e) Augmented Lagrangian Method of
Multipliers (ALM) (see Appendix 2).

The first four algorithms can be used in both batch and
online setting and can deal with grayscale and color images.
If we assume the camera is static, and assume constant il-
lumination throughout the video sequence, then our online
methods can provide a good estimate of the background.
Moreover, all algorithms are robust to the intermittent ob-
ject motion artifacts, that is, static foreground (whenever a
foreground object stops moving for a few frames), which
poses a big challenge to the state-of-the-art methods. Addi-
tionally, our online methods are fast as we perform neither
conventional nor incremental principal component analy-
sis (PCA). In contrast, conventional PCA [29] is an essen-
tial subproblem to numerically solve both RPCA and GFL
problems. In these problems, each iteration involves com-
puting PCA, which operates at a cost O(mn2) and is due
to SVD on a m × n matrix. We also recall that the state-
of-the-art online, semi-online, or batch incremental algo-
rithms, such as the Grassmannian robust adaptive subspace
estimation (GRASTA) [27], recursive projected compres-
sive sensing algorithm (ReProCS) [24, 25, 41], or incremen-
tal principal component pursuit (incPCP) [46, 44, 45], use
either thin or partial PCA as well.

The need for simpler solvers for `1 regression. It is nat-
ural to ask: why do we need a new set of algorithms to
solve the classical `1 regression problem when there are
several well known solvers, for example, CVX [22, 21], `1
magic [47], and SparseLab 2.1-core [1]? It turns out that a
high resolution video sequence (characterized by very large
m) is computationally extremely expensive for the above
mentioned classic solvers. Moreover, we do not need highly
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Figure 3: Comparison of Mean SSIM (MSSIM) of IRLS,
iEALM, GRASTA, and ReProCS on Basic video. IRLS has the
best MSSIM. To process 600 frames each of size 144 × 176,
iEALM takes 164.03 seconds, GRASTA takes 20.25 seconds, Re-
ProCS takes 14.20 seconds, and our IRLS takes 7.51 seconds.

accurate solutions. Hence, simple and scalable methods are
preferable to more involved and computationally demand-
ing methods. The `1 magic software, for example, in our
experiments took 126 minutes (on a computer with Intel i7
Processor and 16 GB memory) to estimate the background
on the Waving Tree dataset with A2 ∈ R19,200×66. In
contrast, our IRLS method took 0.59 seconds only for 66
frames.

3.1. Iteratively Reweighted Least Squares (IRLS)

In the past decade, IRLS has been used in various do-
mains, ranging from reconstruction of sparse signals from
underdetermined systems, to the low-rank and sparse matrix
minimization problems in face clustering, motion segmen-
tation, filter design, automatic target detection, to mention
just a few applications [43, 11, 12, 13, 40, 32, 36]. We find
that the IRLS algorithm is a good fit to solve (9). Also, each
iteration of IRLS reduces to a single weighted `2 regression
problem for an over determined system. To the best of our
knowledge, we are the first to use IRLS to propose a back-
ground estimation model.

We now briefly describe IRLS for solving (9). First note
that the cost function f in (9) can be written in the form

φ(x) =

m∑
j=1

|q>j x− bj | =
m∑
j=1

(q>j x− bj)2

|q>j x− bj |
. (10)

For x ∈ Rm and δ > 0 define a diagonal weight matrix via
Wδ(x) := Diag(1/max{|q>j x − bj |, δ}). Given a current
iterate xk, we may fix the denominator in (10) by substitut-
ing xk for x, which makes φ dependent on x via x appearing
in the numerator only. The problem of minimizing the re-
sulting function in x is a weighted least squares problem.
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The normal equations for this problem have the form

Q>W0(xk)Qx = Q>W0(xk)b. (11)

IRLS is obtained by setting xk+1 to be equal to the solution
of (11). For stability purposes, however, we shall use weight
matrices Wδ(xk) for some threshold parameter δ > 0 in-
stead. This leads to the IRLS method:

xk+1 = (Q>Wδ(xk)Q)−1Q>Wδ(xk)b (12)

Osborne [40] and more recently [49] performed a compre-
hensive analysis of the performance of IRLS for `p mini-
mization with 1 < p < 3.

3.2. Homotopy Method

In this section we generalize the IRLS method (12) by
introducing a homotopy [11] parameter 1 ≤ p ≤ 2. We set
p0 = 2 and choose x0 ∈ Rt (in our experiments, random
initialization will do). Consider the function

φp(x, y) :=

m∑
j=1

(q>j x− bj)2

|q>j y − bj |2−p
.

Note that φ1(x, x) is identical to the `1 regression function
φ appearing in (10). Given current iterate xk, consider func-
tion φpk(x, xk). This is a weighted least squares function of
x. Our homotopy method is defined by setting

xk+1 = arg min
x
φpk(x, xk),

and subsequently decreasing the homotopy parameter as
pk+1 = max{pkη, 1}, where 0 < η < 1 is a constant
reduction factor.

As in the case of IRLS, the normal equations for the
above problem have the form

Q>W0,pk(xk)Qx = Q>W0,pk(xk)b, (13)

where Wδ,p(x) := Diag(1/max{|q>j x − bj |2−p, δ}). The
(stabilized) solution of (13) is given by

xk+1 = (Q>Wδ,pk(xk)Q)−1Q>W0,pk(xk)b (14)

As mentioned above, one step of the homotopy scheme
(14) is identical to one step of IRLS (11) when pk = 1.
In practice, however, the homotopy method sometimes per-
forms better (see Figures 1, 7, and Table 4).

3.3. Stochastic Subgradient Descent

In this section we propose the use of two variants of
stochastic subgradient descent (SGD) to solve (9):

min
x∈Rt

φ(x) :=
1

m

m∑
j=1

φj(x), (15)

BG+FG iEALM GRASTA ReProCSBackground GT IRLS (Ours)

Figure 4: Background recovered on Stuttgart, Wallflower, and
I2R dataset. Comparing with the ground truth (second column),
IRLS recovers the best quality background.

where φj(x) := m|q>j x − bj |. Functions φj are convex,
but not differentiable. However, they are subdifferentiable.
A classical result from convex analysis says that the subd-
ifferential of a sum of convex functions is the sum of the
subdifferentials. Therefore, the subddiferential ∂φ of φ is
given by the formula ∂φ(x) = 1

m

∑m
j=1 ∂φj(x). In partic-

ular, if we choose j ∈ [m] uniformly at random, and pick
gj(x) ∈ ∂φj(x), then E[gj(x)] ∈ ∂φ(x). That is, gj(x) is
an unbiased estimator of a subgradient of φ at x.

A generic SGD method applied to (15) (or, equivalently,
to (9)) has the form

xk+1 = xk − ηkgi(xk) (16)

An easy calculation using the chain rule for subdiffer-
entials of convex functions gives the following formula for
∂φj(x) = mqj∂|q>j x− bj | (see, for instance, [38]):

∂φj(x) =


mqj , if q>j x− bj > 0
−mqj , if q>j x− bj < 0
0, otherwise

. (17)

When q>j xk − bj is nonzero, each iterate of SGD moves
in the direction of either vector qj or −qj , with an appro-
priate stepsize. The initialization of the method (i.e., choice
of x0 ∈ Rt and the learning rate parameters ηk) plays an
important role in the convergence of the method.

4
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disocclusion of static and dynamic foreground. For a comprehensive review of the dataset we refer the readers to [34].

We consider two variants of SGD depending on the
choice of ηk and on the vector that we output. In SGD 1
we always normalize each stochastic subgradient, and mul-

tiply the resulting vector by R/
√
k, where k is the iteration

counter, for some constant R > 0 which needs to be tuned.
This method is a direct extension of the subgradient descent
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Figure 7: Qualitative and Quantitative comparison on Toscana-HD video. Besides IRLS and Homotopy, the two best methods on
Toscana, that is, Photomontage [3] and SOBS1 [33] have MSSIM 0.9616 and 0.9892 and CQM 50.2416 and 43.3002, respectively [7].

method ηk output
SGD 1 R√

k‖gj(xk)‖ xk

SGD 2 B
ρ
√
K

x̂K = 1
K

∑K−1
k=0 xk

Table 1: Two variants of SGD.

method in [38]. The output is the last iterate. While we
provide no theoretical guarantees for this method, it per-
forms well in our experiments. On the other hand, SGD 2
is a more principled method. This arises as a special case
of the SGD mehod described and analyzed in [48]. In this
method, one needs to decide on the number of iterations K
to be performed in advance. The method ultimately out-
puts the average of the iterates. The stepsize ηk is set to
B/ρ
√
K, where B > 0 and ρ > 0 are parameters the value

of which can be derived from the following iteration com-
plexity result:

Theorem 1 ([48]). Let x∗ be a solution of (15) and let
B > 0 be such that ‖x∗‖ ≤ B. Further, assume that
‖gj(x)‖ ≤ ρ for all x ∈ Rt and j ∈ [m]. If SGD 2 runs for
K iterations with η = B

ρ
√
T

, then E[φ(x̂K)]−φ(x∗) ≤ Bρ√
K
,

where x̂K is given as in Table 1. Moreover, for any ε > 0 to
achieve E[φ(x̂K)]− φ(x∗) ≤ ε it suffices to run SGD 2 for
K iterations where K ≥ B2ρ2

ε2 .

4. Numerical Experiments
To validate the robustness of our proposed algorithms,

we tested them on some challenging real world and syn-
thetic video sequences containing occlusion, dynamic back-
ground, static, and semi-static foreground. For this purpose,
we extensively use 19 gray scale and RGB videos from the
Stuttgart, I2R, Wallflower, and the SBI dataset [10, 30, 34,
2, 50]. . We refer the readers to Table 2 to get an overall
idea of the number of frames of each video sequence used,
video type, and resolution.

For quantitative measure, we use the receiver operating
characteristic (ROC) curve, recall and precision (RP) curve,
the structural similarity index (SSIM), SSIM map [52],
multi-scale structural similarity index (MSSSIM) [53],

and color image quality measure (CQM) [7, 57]. Due to
the availability of ground truth (GT) frames, we use the
Stuttgart artificial dataset (has foreground GT) and the SBI
dataset (have background GTs) to analyze the results quan-
titatively and qualitatively. To calculate the average compu-
tational time we ran each algorithm five times on the same
dataset and compute the average. Throughout this section,
the best and the 2nd best results are colored with red and
blue, respectively.

4.1. Comparison between our proposed algorithms

First we compare the performance of our proposed al-
gorithms in batch mode on the Basic scenario. Figure 1
shows that all four algorithms are are very competitive and
we note that IRLS has the least computational time. We ran
each of IRLS and Homotopy method for five iterations, and
SGD 1 and SGD 2 for 5000 iterations. IRLS takes 7.02 sec-
onds, Homotopy takes 8.47 seconds, SGD 1 takes 17.81
seconds, and SGD 2 takes 17.67 seconds. We mention that
the choice of R in SGD 1 and B and ρ in SGD 2 are prob-
lem specific. Due to computational efficiency, we compare
IRLS `1 with other batch methods in the next section.

4.2. Comparison with RPCA, GFL, and other state-
of-the-art methods

In this section we compare IRLS with other state-of-
the-art batch background estimation methods, such as,
iEALM [31] of RPCA, GRASTA, and ReProCS on the
Basic scenario. Figure 12a shows that IRLS sweeps the
maximum area under the ROC curve. Additionally, in Fig-
ure 3 IRLS has the best mean SSIM (MSSIM) among all
other methods. Moreover, in batch mode, IRLS takes the
least computational time.

Next in Figure 4 we present the background recovered
by each method on Stuttgart, Wallflower, and I2R dataset.
The video sequences have occlusion, dynamic background,
and static foreground. IRLS can detect the static foreground
and also robust to sudden illumination changes.

Finally, we compare our IRLS with the supervised GFL
model of Xin et al. [56] and inWLR of Dutta et al. [18] (see
Figure 5). For Waving Tree scenario, supervised GFL
uses 200 training frames and it takes 117.11 seconds to
compute the background and foreground from one training

6



Dataset Video No. of frames Resolution
Stuttgart [10] Basic (Grayscale) 600 144× 176

Basic (RGB-HD) 600 600× 800
Lightswitch (RGB-HD) 600 600× 800

SBI [34] IBMTest2 (RGB) 91 320× 240
Candela (RGB) 351 352× 288
Caviar1 (RGB) 610 384× 288
Caviar2 (RGB) 461 384× 288
Cavignal (RGB) 258 200× 136
HumanBody (RGB) 741 320× 240

HallandMonitor (RGB) 296 352× 240
Highway1 (RGB) 440 320× 240
Highway2 (RGB) 500 320× 240
Toscana(RGB-HD) 6 600× 800

Wallflower [50] Waving Tree(Grayscale) 66 120× 160
Camouflage (Grayscale) 52 120× 160

I2R/Li dataset [30] Meeting Room(Grayscale) 1209 64× 80
Watersurface (Grayscale) 162 128× 160
Lightswitch(Grayscale) 1430 120× 160

Lake(Grayscale) 80 72× 90

Table 2: Data used in this paper.

Algorithm Abbreviation Appearing in Experiment Reference
Iterative Reweighted Laast Squares IRLS Figure 1–11,and Table4,5 This paper
Homotopy Homotopy Figure 1,6–11, and Table 4, 5 This paper
Stochastic Subgradient Descent 1 SGD 1 Figure 1 and Table 1 This paper
Stochastic Subgradient Descent 2 SGD 2 Figure 1 and Table 1 This paper
Inexact Augmented Lagrange Method of Multipliers iEALM Figure 12a-4 [31]
Supervised Generalized Fused Lasso GFL Figure 5, 8 [56]
Grassmannian Robust Adaptive Subspace Tracking Algorithm GRASTA Figure 12a–4 [27]
Recurssive Projected Compressive Sensing ReProCS Figure 12a–4 [24, 25, 41]
Incremental Weighted Low-Rank inWLR Figure 5 [18]
Incremental Principal Component Pursuit incPCP Figure 6–11, and Table 4, 5 [46, 44, 45]
Background estimated by weightless neural networks BEWIS Table 4 [23]
Independent Multimodal Background Subtraction Multi-Thread IMBS-MT Table 4 [5]
RSL2011 - Table 4 [42]
Color Median - Table 4 [28]
Photomontage - Table 4 [3]
Self-Organizing Background Subtraction1 SOBS1 Table 4 [33]

Table 3: Algorithms compared in this paper.

frame and the ssim of the FG is 0.9996. inWLR does not
use any training frames and takes 3.39 seconds to compute
the background and foreground from the video sequence
that consists of 66 frames and the MSSIM is 0.9592. In
contrast, IRLS uses 15 training frames and takes 0.59 sec-
onds to process the entire video with an MSSIM 0.9398.
For Basic scenario, supervised GFL again uses 200 train-
ing frames and takes 6.25 seconds to process one training
frame and the ssim of the FG is 0.9462. inWLR does not re-
quire any training frame and takes 17.83 seconds to process
600 frames in a batch-incremental mode and the MSSIM
is 0.9463. In contrast, IRLS uses only 15 training frames
and takes 7.02 seconds to process the entire video and the
MSSIM is 0.9524.

4.3. Online implementation on RGB videos

In this section we show the robustness of two of our algo-
rithms on RGB videos in online mode. Due to the space lim-
itation we only provide results on IRLS and homotopy algo-
rithm (these two methods were also the fastest in the batch
mode). Primarily, we compare our results with incPCP and
GFL [46, 44, 45, 56]. We should mention that besides in-
cPCP, probabilistic robust matrix factorization (PRMF) [51]
and RPCA bilinear projection (RPCA-BL) [35] has on-
line extensions. However, PRMF uses the entire available
data in its batch normalization step and there is no avail-
able implementation of online RPCA-BL. To the best of
our knowledge incPCP is the only state-of-the-art online
method which deals with HD RGB videos in full online
mode. The incPCP code is downloaded from the author’s
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Video SOBS1 RSL2011 IMBS-MT BEWIS Color Median IRLS Homotopy incPCP
IBMTest2 0.9954 0.9303 0.9721 0.9602 0.9939 0.9950 0.9953 0.9670
Candela 0.9775 0.9916 0.9893 0.9852 0.9382 0.9995 0.9992 0.9412
Caviar1 0.9781 0.9947 0.9967 0.9813 0.9918 0.9994 0.9993 0.8649
Caviar2 0.9994 0.9962 0.9986 0.9994 0.9994 0.9999 0.9998 0.9935
Cavignal 0.9947 0.9973 0.9982 0.9984 0.7984 0.9989 0.9975 0.8312
HumanBody 0.9980 0.9959 0.9958 0.9866 0.9970 0.9996 0.9990 0.9360
HallandMonitor 0.9832 0.9377 0.9954 0.9626 0.9640 0.9991 0.9992 0.9355
Highway1 0.9968 0.9899 0.9939 0.9886 0.9924 0.9980 0.9985 0.8847
Highway2 0.9991 0.9907 0.9960 0.9942 0.9961 0.9994 0.9997 0.9819
Toscana 0.9616 0.0662 0.8903 0.8878 0.8707 0.9853 0.9996 0.8416
Average 0.9814 0.9491 0.9929 0.9745 0.9542 0.9975 0.9987 0.9177

Table 4: Comparison of average MSSSIM of the different methods on SBI dataset. Source: [2, 7, 34].
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Figure 8: Qualitative comparison on Basic scenario HD scene. The SSIMs are (the 1st number indicates frame 200 and the 2nd number
indicates frame 600): incPCP 0.021 and 0.0173, IRLS 0.9089 and 0.9731, homotopy 0.9327 and 0.9705, GFL 0.9705 and 0.9310. The
MSSSIMs are: incPCP 0.6315 and 0.4208, IRLS 0.8777 and 0.9746, homotopy 0.9166 and 0.9725, GFL 0.9175 and 0.9645.

website2. As mentioned in the software package we use the
standard PCP (fixed camera) mode for incPCP [46, 44] im-
plementation.

Discussions. We use Basic-HD and the SBI dataset to
provide extensive qualitative and quantitative comparison.
The online mode of our algorithm only uses the available
pure background frames to learn the basis Q for each color
channel and then operate on each test frame in a complete
online mode. Note that we only use 10 training frames
and we strongly believe that one can use even less num-
ber of training frames to obtain almost the similar perfor-
mance. Homotopy uses less iterations than IRLS to pro-
duce a comparable background and hence it is faster than
IRLS in online mode. In Figure 6 and 9 we compare IRLS
and homotopy against incPCP on the SBI dataset. Compare
to the ghosting appearances in the incPCP backgrounds,
our online methods construct a clean background for each
video sequence. We also removed the static foreground, oc-
cluded foreground, and the foreground shadows. In Fig-
ure 7 and 8 we show our performance on HD video se-
quences. In addition to incPCP, we compared with super-
vised GFL on the Basic-HD (see Figure 8). Supervised
GFL uses 200 training frames (the average processing time
of the training frames is 7.31 seconds) and takes 431.78
seconds to process each test frame and produce a compa-

2https://sites.google.com/a/istec.net/prodrig/Home/en/pubs/incpcp

rable quantitative result as online IRLS and homotopy. For
computational time comparison with incPCP we refer to
Table 5. Finally we provide the results of online IRLS
and homotopy on one of the most challenging HD video
sequences, that is, Lighswitch of the Stuttgart dataset.
This scenario is a nighttime scenario and has varying illu-
mination effects throughout the video sequence. Starting
from frame 125 the illumination suddenly changes. Addi-
tionally, it has reflections, traffic light change, and move-
ments of the tree leaves. We used 10 daytime pure back-
ground frames for training purpose and by using them
we estimated the nighttime scene. As expected in Fig-
ure 10 both IRLS and homotopy perform pretty well with
the changing illumination which can be verified from the
pure Lightswitch BG frame (Figure 10 third column).
Additionally, we compare our quantitative results against
other state-of-the-art algorithms, such as, the adaptive neu-
ral background algorithm aka Self-Organizing Background
Subtraction1 (SOBS1) [33], Photomontage [3], Color Me-
dian, RSL2011 [42], Independent Multimodal Background
Subtraction Multi-Thread (IMBS-MT) [5], background es-
timated by weightless neural networks (BEWIS) [23] on
SBI dataset. We refer Table 4 (Source: [7]) and Figure 7. Fi-
nally in Figure 11 we provide the mean CQM of the online
methods on SBI dataset and Basic-HD video. In online
mode, IRLS and Homotopy outperform incPCP in mean
CQM and mean MSSSIM in each video.
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Figure 9: Background and foreground recovered by online methods on SBI dataset. The videos have shadows that already present in the
background and newly created by moving foreground, occlusion and disocclusion of dynamic foreground.

BG+FG Training Frame IRLS BG IRLS FGHomotopy BG Homotopy FG

Fr
am

e 2
10

Fr
am

e 6
00

Original BG, No FG

Figure 10: Background and foreground recovered by our proposed online methods on Lightswitch video. Both IRLS and homotopy
captures the effect of change in illumination, irregular movements of the tree leaves, and reflections. Comparing with the No FG image
both of our proposed method do pretty well.

5. Conclusion

We proposed a novel and fast model for supervised video
background estimation. Moreover, it is robust to several
background estimation challenges. We used the simple and
well-known `1 regression technique and provided several
online and batch background estimation methods that can
process high resolution videos accurately. Our extensive
qualitative and quantitative comparison on real and syn-
thetic video sequences demonstrated that our supervised
model outperforms the state-of-the-art online and batch
methods in almost all cases.

6. Appendix 1: Historical Comments

We start by making a connection between the supervised
GFL model proposed by Xin et al. [56] and the constrained
low-rank approximation problem of Golub et al. [20].

6.1. Golub’s constrained low-rank approximation
problem

In 1987, Golub et al. [20] formulated the following con-
strained low-rank approximation problem: Given A =
[A1 A2] ∈ Rm×n′ with A1 ∈ Rm×r and A2 ∈ Rm×n,
find AG = [B̃1 B̃2] such that, B̃1 ∈ Rm×r, B̃2 ∈ Rm×n,
solve:

[B̃1 B̃2] = arg min
B=[B1 B2]
B1=A1

rank(B)≤r

‖A−B‖2F , (18)

where ‖ · ‖F denotes the Frobenius norm of matrices. Mo-
tivated by [20], Dutta et al. recently proposed more gen-
eral weighted low-rank (WLR) approximation problems
and showed their application in the background estimation
problem [15, 16, 17].
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Figure 11: Mean CQM of online methods on SBI dataset and
Basic-HD video. The higher the CQM value, the better is the
recovered image.

Video (No. of frames) IRLS Homotopy incPCP
IBMTest2 (91) 37.28 21.84 22.45
Candela (351) 163.80 133.6 72.15
Caviar1 (610) 279.99 213.99 120.58
Caviar2 (461) 199.16 158.1 85.68
Cavignal (258) 71.26 70.77 39
HumanBody (741) 261.94 227.25 134.83
HallandMonitor (296) 116.86 88.99 59.63
Highway1 (440) 155.84 134.03 81.44
Highway2 (500) 181.85 156.92 87
Basic-HD (600) 599.06 457.2464 382.41
Toscana-HD (6) 7.73 5.13 3.1

Table 5: Computational time (in seconds) comparison for online
methods.

Connection with (18). Recall that the background esti-
mation model the generalized fused lasso (GFL) proposed
by Xin et al. [56] with the choice frank(B) = rank(B) and
fspar(F ) = λ‖F‖GFL can be written as:

min
B

rank(B) + λ‖A−B‖GFL.

In this model, ‖ · ‖GFL is the “generalized fused lasso”
norm. With the extra assumption that rank(B) = rank(B1)
and by using the ‖·‖GFL norm, problem (2) is a constrained
low rank approximation problem as in (18) and can be writ-
ten as follows:

min
B=[B1 B2]

{‖A−B‖GFL subject to rank(B) ≤ r,B1 = A1}.

7. Appendix 2 : Augmented Lagrangian
Method of Multipliers (ALM)

In this section, we demonstrate an additional background
estimation method by using the decomposition model used

in the main paper. This method was not described in the
main paper. As mentioned in the Further contributions
Section, we device a batch background estimation model
(fifth method) by using the augmented Lagrangian method
of multipliers (ALM).

7.1. The algorithm

The Augmented Lagrangian method of multipliers are
one of the most popular class of algorithms in convex pro-
gramming. In our setup, the proposed method does not pro-
vide an incremental algorithm. Instead it relies on fast batch
processing of the video sequence. We can write (6) as an
equality constrained problem by introducing the variable F2

as follows:

minF2,S ‖F2‖`1
subject to A2 = QS + F2. (19)

We now form the augmented Lagrangian of (19):

L(S, F2, Y, µ) = ‖F2‖`1 + 〈Y,A2 −QS − F2〉 (20)

+
µ

2
‖A2 −QS − F2‖2F ,

where Y ∈ Rm×n is the Lagrange multiplier, 〈Y,X〉 =
Trace(Y >X) is the trace inner product, and µ > 0 is
a penalty parameter. Completing the square and keep-
ing only the relevant terms in (20), for the given iterates
{S(k), F

(k)
2 , Y (k), µk} we have

S(k+1) = arg min
S
L(S, F

(k)
2 , Y (k), µk)

= arg min
S

µk
2

∥∥∥∥A2 −QS − F (k)
2 +

1

µk
Y (k)

∥∥∥∥2

F

,

F
(k+1)
2 = arg min

F2

L(S(k+1), F2, Y
(k), µk)

= arg min
F2

‖F2‖`1 +
µk
2

∥∥∥∥A2 −QS(k+1) − F2 +
1

µk
Y (k)

∥∥∥∥2

F

.

The solution to the first subproblem is obtained by set-
ting the gradient of L(S, F

(k)
2 , Y (k), µk) with respect to S

to 0, and using the fact that Q>Q = I:

S(k+1) = Q>
(
A2 − F (k)

2 +
1

µk
Y (k)

)
. (21)

The second subproblem is the classic sparse recovery prob-
lem and its solution is given by

F
(k+1)
2 = S 1

µk

(
A2 −QS(k+1) +

1

µk
Y (k)

)
, (22)

where S 1
µk

(·) is the elementwise shrinkage function [26,
4]. We update Yk and µk via:{
Y (k+1) = Y (k) + µk(A2 −QS(k+1) − F (k+1)

2 )
µk+1 = ρµk

, (23)

for a fixed ρ > 1.
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Algorithm 1: ALM

1 Input : A = [A1 A2] ∈ Rm×n
′

(data matrix), threshold
ε > 0, ρ > 1, µ0 > 0;

2 Initialize: A1 = QR, Y (0) = A2/‖A2‖∞, S(0), F
(0)
2 ;

3 while not converged do
4 S(k+1) = Q>(A2 − F (k)

2 + 1
µk
Y (k));

5 F
(k+1)
2 = S 1

µk

(A2 −QS(k+1) + 1
µk
Y (k));

6 Y (k+1) = Y (k) + µk(A2 −QS(k+1) − F (k+1)
2 );

7 µk+1 = ρµk;
8 k = k + 1;

end
9 Output : S(k), F

(k)
2

Dual problem. Next we formulate the Lagrangian dual
of (6) to get an insight into the choice of the Lagrange mul-
tiplier Y . Using standard arguments, we obtain

min
F2,S : A2=QS+F2

‖F2‖`1 = min
F2,S

sup
Y
‖F2‖`1

+〈Y,A2 −QS − F2〉
≥ sup

Y
min
F2,S
‖F2‖`1

+〈Y,A2 −QS − F2〉
= sup

Y : ‖Y ‖∞≤1, Q>Y=0

〈Y,A2〉.

(24)

The last problem above is the dual of (6) . Clearly, the dual
is a linear program. Note that the constraint Q>Y dictates
that the columns of Y be orthogonal to all columns of Q
. That is, the columns of Y must be from the nullspace of
Q. If we relax this constraint, the resulting problem has a
simple closed form solution, namely

Y (0) = A2/‖A2‖∞.

This is a good choice for the initial value of Y in Algo-
rithm 1 .

7.2. Grassmannian robust adaptive subspace esti-
mation (GRASTA)

Due to close connection with our ALM, we ex-
plain the Grassmannian robust adaptive subspace estima-
tion (GRASTA) in this section. In 2012, He et al. [27]
proposed GRASTA, a robust subspace tracking algorithm,
and showed its application in background estimation prob-
lem. Unlike Robust PCA [31, 55], GRASTA is not a batch-
video background estimation algorithm. GRASTA solves
the background estimation problem in an incremental man-
ner, considering one frame at a time. At each time step i,
it observes a subsampled video frame aiΩs . That is, each
video frame ai ∈ Rm is subsampled over the index set

Ωs ⊂ {1, 2, · · · ,m} to produce aiΩs , where s is the sub-
sample percentage. Similarly, denote the foreground as
F2 = (f1, . . . , fn). Therefore, fiΩs ∈ R|Ωs| is a vector
whose entries are indexed by Ωs. Considering each video
frame aiΩs has a low rank (say, r) and sparse structure,
GRASTA models the video frame as:

aiΩs = UΩsx+ fiΩs + εΩs ,

where U ∈ Rm×r be an orthonormal basis of the low-
dimensional subspace, x ∈ Rr is a weight vector, and εΩs ∈
R|Ωs| is a Gaussian noise vector. The matrixUΩs ∈ R|Ωs|×r
results from choosing the rows of U corresponding to the
index set Ωs. With the notations above, at each time step i,
GRASTA solves the following optimization problem: For a
given orthonormal basis UΩs ∈ R|Ωs|×r solve

min
x
‖UΩsx− aiΩs‖`1 . (25)

Problem (25) is the classic least absolute deviations prob-
lem similar to (7) and can be rewritten as:

minfiΩs
‖fiΩs ‖`1

subject to UΩsx+ fiΩs − aiΩs = 0. (26)

Problem (26) can be solved by the use of the augmented
Lagrangian multiplier method (ALM) [9]. In GRASTA, af-
ter updating x and fiΩs , one has to update the orthonor-
mal basis UΩs as well. The rank one UΩs update step is
done first by finding a gradient of the augmented Lagrange
dual of (26), and then by using the classic gradient de-
scent algorithm. In summary, at each time step i, given a
U (i) ∈ Rm×r and Ωs ⊂ {1, 2, · · · ,m}, GRASTA finds x
and fiΩs via (26) and then updates U (i+1)

Ωs
. This process

continues until the video frames are exhausted.

Comparison between ALM and GRASTA. 1. At each
step of GRASTA, the background and the sparse foreground
are given as UΩsx and aiΩs − UΩsx, respectively and then
one has to update the basis UΩs . In contrast, (19) solves
a supervised batch video background estimation problem.
In our model, once we obtain the basis set from the QR de-
composition of the background matrixA1, we do not update
the basis further. 2. GRASTA lacks a convergence analysis
which is harder to obtain as the objective function (25) in
their set-up is only convex in each component. [27]. Our
objective function in (6) and in (20) are convex and there-
fore allow us to propose a thorough convergence analysis
for ALM.

7.3. Cost of One Iteration

We discuss the complexity of one iteration of Algo-
rithm 1 when A1 is of full rank, that is, rank(A1) = r. The
complexity of the QR decomposition at the initialization
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step is O(2mr2 − 2
3r

3). Because r ≤ rmax, the maximum
number of available training frames, the above cost can be
controlled by the user. Next, the complexity of one iteration
of Algorithm 1 is O(mnr). In contrast, the cost of each it-
eration of GRASTA is O(|Ωs|r3 +Kr|Ωs|+mr2), where
K is the number of inner iterations and |Ωs| is the cardinal-
ity of the index set Ωs ⊂ {1, 2, · · · ,m} from which each
video frame ai ∈ Rm is subsampled at a percentage s (see
Section 7.2).

7.4. Stopping Criteria

Define Lk := L(S(k), F
(k)
2 , Y (k−1), µk−1). With the

notations above, for a given ε > 0, Algorithm 1 converges
if ‖A2−QS(k)−F (k)

2 ‖F /‖A2‖F < ε, or |Lk−Lk−1| < ε,
or if the maximum iteration is reached.

7.5. Remarks on the Behaviour of ALM

In this section, we propose the convergence of Algo-
rithm 1.

Lemma 1. The sequence {Y (k)} is bounded.

Proof. By the optimality condition of F (k+1)
2 we have,

0 ∈ ∂F2
L(S(k+1), F2, Y

(k), µk).

Therefore,

0 ∈ ∂‖F (k+1)
2 ‖`1−µk(A2−QS(k+1)−F (k+1)

2 +
1

µk
Y (k)),

which implies Y (k+1) ∈ ∂‖F (k+1)
2 ‖`1 . By using Theorem

4 in [31] (see also [54]), we conclude that the sequence
{Y (k)} is bounded by the dual norm of ‖ · ‖`1 , that is, the
‖ · ‖∞ norm.

Theorem 2. There is a constant γ such that

‖A2 −QS(k) − F (k)
2 ‖ ≤

γ

µk
, k = 1, 2, · · · .

Proof. By using (23) we have

A2 −QS(k) − F (k)
2 =

1

µk−1
(Y (k) − Y (k−1)).

The result follows by applying Lemma 1.

Theorem 3. The sequence {Lk} is bounded above and

Lk+1 − Lk ≤ O
(

1

µk−1

)
, k = 1, 2, · · · .

Proof. We have,

Lk+1 = L(S(k+1), F
(k+1)
2 , Y (k), µk)

≤ L(S(k+1), F
(k)
2 , Y (k), µk)

≤ L(S(k), F
(k)
2 , Y (k), µk)

= ‖F (k)
2 ‖`1 + 〈Y (k), A2 −QS(k) − F (k)

2 〉

+
µk
2
‖A2 −QS(k) − F (k)

2 ‖2F

= ‖F (k)
2 ‖`1 + 〈Y (k−1), A2 −QS(k) − F (k)

2 〉

+
µk−1

2
‖A2 −QS(k) − F (k)

2 ‖2F

+〈Y (k) − Y (k−1), A2 −QS(k) − F (k)
2 〉

+
µk − µk−1

2
‖A2 −QS(k) − F (k)

2 ‖2F
(using (23))

= Lk + µk−1‖A2 −QS(k) − F (k)
2 ‖2F

+
µk − µk−1

2
‖A2 −QS(k) − F (k)

2 ‖2F

= Lk +
µk + µk−1

2
‖A2 −QS(k) − F (k)

2 ‖2F .

Therefore,

Lk+1−Lk ≤
µk + µk−1

2
‖A2−QS(k)−F (k)

2 ‖2F , k = 1, 2, · · · .

By using (23) we have for k = 1, 2, · · ·

Lk+1−Lk ≤
µk + µk−1

µ2
k−1

‖Y (k)−Y (k−1)‖2F =
1 + ρ

µk−1
‖Y (k)−Y (k−1)‖2F .

Next by using the boundedness of {Y (k)} we find

Lk+1 − Lk ≤ O

(
1

µk−1

)
, k = 1, 2, · · · ,

which is what we set out to prove.

Theorem 4. We have

f∗ − ‖F (k)
2 ‖`1 ≤ O

(
1

µk

)
,

where f∗ = min
A2=QS+F2

‖F2‖`1 .

Proof. By using the triangle inequality we have

‖F (k)
2 ‖`1 ≥ ‖A2 −QS(k)‖`1

−‖A2 −QS(k) − F (k)
2 ‖`1

(using (23))
≥ f∗ − 1

µk−1
‖Y (k) − Y (k−1)‖`1 .

(27)

The result follows by applying boundedness of the multipli-
ers Y (k).

12



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GRASTA, s=10%, area: 0.7439

iEALM, area: 0.9241

ReProCS, area: 0.8755

ALM, area: 0.9512

(a)

0 100 200 300 400 500 600
-0.2

0

0.2

0.4

0.6

0.8

1

GRASTA, s=10%, mean: 0.5226

iEALM, mean: 0.9301

ReProCS, mean: 0.7980

ALM, mean: 0.9524

(b)

Figure 12: (a) ROC curve to compare between ALM, iEALM, GRASTA, and ReProCS on Basic video, frame size 144 × 176. (b)
Comparison of Mean SSIM (MSSIM) of ALM, iEALM, GRASTA, and ReProCS on Basic video. ALM has the best MSSIM. To process
600 frames each of size 144×176, iEALM takes 164.03 seconds, GRASTA takes 20.25 seconds, ReProCS takes 14.20 seconds, and ALM
takes 13.13 seconds.

BG+FG ALM BG ALM FG

Figure 13: Background and foreground recovered by ALM. The
videos have static foreground and dynamic background.

8. Smooth Optimization of `1 Regression with
Parallel Coordinate Descent Methods [19]

Imagine a situation when one processes a very low-
resolution video sequence with a huge number of avail-

able training frames. That is, when there are more train-
ing frames r than the number of pixels m, the method used
in [19] to solve (8) for each i could be more effective. In
this scenario we propose to solve each `1 regression prob-
lem in (8) by using the parallel coordinate descent meth-
ods on their smooth variants [19]. Note that each fi(si)
is a non-smooth continuous convex function on a compact
set E1. By using Nesterov’s smoothing technique [37] one
can find a smooth approximation fµi (si) of fi(si) for any
µ > 0. Fercoq et al. [19] minimized fµi (si) to approxi-
mately solve the original `1 regression problem that con-
tains fi(si).

9. Additional numerical experiments demon-
strating the effectiveness of ALM

To demonstrate the robustness of the ALM in batch
mode, we compare ALM with other state-of-the-art batch
background estimation methods, such as, iEALM [31] of
RPCA, GRASTA [27], and ReProCS [24] on the Basic
scenario. We use 15 training frames for ALM. Figure 12a
shows that ALM covers the maximum area under the ROC
curve. Additionally, in Figure 12b, our ALM has the best
mean SSIM (MSSIM) among all other methods. More-
over, in batch mode, ALM takes the least computational
time. The background and foreground recovered by ALM in
batch mode also shows its effectiveness in supervised back-
ground estimation (see Figure 13)
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[10] S. Brutzer, B. Höferlin, and G. Heidemann. Evalua-
tion of background subtraction techniques for video
surveillance. IEEE Computer Vision and Pattern
Recognition, pages 1568–1575, 2012.

[11] C. S. Burrus, J. A. Barreto, and I. W. Selesnick. Itera-
tive reweighted least-squares design of fir filters. IEEE
Transaction on Signal Processing, 42(11):2926–2936,
1994.

[12] E.J. Candès, M.B. Wakin, and S. P. Boyd. Enhanc-
ing sparsity by reweighted `1 minimization. Journal
of Fourier Analysis and Applications, 14(5):877–905,
2008.

[13] I. Daubechies, R. DeVore, M. Fornasier, and C. S.
Gunturk. Iteratively reweighted least squares min-
imization for sparse recovery. Communications on
Pure and Applied Mathematics, 63:1–38, 2010.

[14] A. Dutta, B. Gong, X. Li, and M. Shah. Weighted sin-
gular value thresholding and its application to back-
ground estimation, 2017. arXiv:1707.00133.

[15] A. Dutta and X. Li. A fast algorithm for a weighted
low rank approximation. In 15th IAPR International
Conference on Machine Vision Applications (MVA),
pages 93–96, 2017.

[16] A. Dutta and X. Li. On a problem of weighted low-
rank approximation of matrices. SIAM Journal on Ma-
trix Analysis and Applications, 38(2):530–553, 2017.

[17] A. Dutta and X. Li. Weighted low rank approximation
for background estimation problems. In The IEEE In-
ternational Conference on Computer Vision (ICCV),
pages 1853–1861, 2017.

[18] A. Dutta, X. Li, and P. Richtárik. A batch-incremental
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