

Edinburgh Research Explorer

Primal Method for ERM with Flexible Mini-batching Schemes and
Non-convex Losses

Citation for published version:
Csiba, D & Richtárik, P 2015 'Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex
Losses' ArXiv.

Link:
Link to publication record in Edinburgh Research Explorer

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 14. Jun. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/157610288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/primal-method-for-erm-with-flexible-minibatching-schemes-and-nonconvex-losses(cf98e4f8-4571-48b1-9801-3af74bb8b46b).html

Primal Method for ERM with Flexible Mini-batching Schemes

and Non-convex Losses∗

Dominik Csiba † Peter Richtárik ‡

June 9, 2015

Abstract

In this work we develop a new algorithm for regularized empirical risk minimization. Our
method extends recent techniques of Shalev-Shwartz [02/2015], which enable a dual-free analysis
of SDCA, to arbitrary mini-batching schemes. Moreover, our method is able to better utilize the
information in the data defining the ERM problem. For convex loss functions, our complexity
results match those of QUARTZ, which is a primal-dual method also allowing for arbitrary
mini-batching schemes. The advantage of a dual-free analysis comes from the fact that it
guarantees convergence even for non-convex loss functions, as long as the average loss is convex.
We illustrate through experiments the utility of being able to design arbitrary mini-batching
schemes.

1 Introduction

Empirical risk minimization (ERM) is a very successful and immensely popular paradigm in ma-
chine learning, used to train a variety of prediction and classification models. Given examples
A1, . . . , An ∈ Rd×m, loss functions φ1, . . . , φn : Rm → R and a regularization parameter λ > 0, the
L2-regularized ERM problem is an optimization problem of the form

min
w∈Rd

[
P (w) :=

1

n

n∑
i=1

φi(A
>
i w) +

λ

2
‖w‖2

]
(1)

Throughout the paper we shall assume that for each i, the loss function φi is li-smooth with
li > 0. That is, for all x, y ∈ Rm and all i ∈ [n] := {1, 2, . . . , n}, we have

‖∇φi(x)−∇φi(y)‖ ≤ li‖x− y‖. (2)

Further, let L1, . . . , Ln > 0 be constants for which the inequality

‖∇φi(A>i w)−∇φi(A>i z)‖ ≤ Li‖w − z‖ (3)

holds for all w, z ∈ Rd and all i and let L := maxi Li. Note that we can always bound Li ≤ li‖Ai‖.
However, Li can be better (smaller) than li‖Ai‖.
∗The authors acknowledge support from the EPSRC Grant EP/K02325X/1, Accelerated Coordinate Descent

Meth- ods for Big Data Optimization.
†School of Mathematics, The University of Edinburgh, United Kingdom (e-mail: cdominik@gmail.com)
‡School of Mathematics, The University of Edinburgh, United Kingdom (e-mail: peter.richtarik@ed.ac.uk)

1

ar
X

iv
:1

50
6.

02
22

7v
1

 [
m

at
h.

O
C

]
 7

 J
un

 2
01

5

1.1 Background

In the last few years, a lot of research effort was put into designing new efficient algorithms for
solving this problem (and some of its modifications). The frenzy of activity was motivated by the
realization that SGD [1], not so long ago considered the state-of-the-art method for ERM, was far
from being optimal, and that new ideas can lead to algorithms which are far superior to SGD in
both theory and practice. The methods that belong to this category include SAG [2], SDCA [3],
SVRG [4], S2GD [5], mS2GD [6], SAGA [7], S2CD [8], QUARTZ [9], ASDCA [10], prox-SDCA
[11], IPROX-SDCA [12], A-PROX-SDCA [13], AdaSDCA [14], SDNA [15]. Methods analyzed for
arbitrary mini-batching schemes include NSync [16], ALPHA [17] and QUARTZ [9].

In order to find an ε-solution in expectation, state of the art (non-accelerated) methods for
solving (1) only need

O((n+ κ) log(1/ε))

steps, where each step involves the computation of the gradient ∇φi(A>i w) for some randomly

selected example i. The quantity κ is the condition number. Typically one has κ = maxi li‖Ai‖2
λ

for methods picking i uniformly at random, and κ =
∑

i li‖Ai‖2
nλ for methods picking i using a

carefully designed data-dependent importance sampling. Computation of such a gradient typically
involves work which is equivalent to reading the example Ai, that is, O(nnz(Ai)) ≤ dm arithmetic
operations.

1.2 Contributions

In this work we develop a new algorithm for the L2-regularized ERM problem (1). Our method
extends a technique recently introduced by Shalev-Shwartz [18], which enables a dual-free analysis
of SDCA, to arbitrary mini-batching schemes. That is, our method works at each iteration with
a random subset of examples, chosen in an i.i.d. fashion from an arbitrary distribution. Such
flexible schemes are useful for various reasons, including i) the development of distributed or robust
variants of the method, ii) design of importance sampling for improving the complexity rate, iii)
design of a sampling which is aimed at obtaining efficiencies elsewhere, such us utilizing NUMA
(non-uniform memory access) architectures, and iv) streamlining and speeding up the processing
of each mini-batch by means of assigning to each processor approximately even workload so as to
reduce idle time (we do experiments with the latter setup).

In comparison with [18], our method is able to better utilize the information in the data examples
A1, . . . , An, leading to a better data-dependent bound. For convex loss functions, our complexity
results match those of QUARTZ [9] in terms of the rate (the logarithmic factors differ). QUARTZ
is a primal-dual method also allowing for arbitrary mini-batching schemes. However, while [9]
only characterize the decay of expected risk, we also give bounds for the sequence of iterates. In
particular, we show that for convex loss functions, our method enjoys the rate (Theorem 2)

max
i

(
1

pi
+

livi
λpin

)
log

(
(L+ λ)E(0)

λε

)
,

where pi is the probability that coordinate i is updated in an iteration, v1, . . . , vn > 0 are certain
“stepsize” parameters of the method associated with the sampling and data (see (6)), and E(0)

is a constant depending on the starting point. For instance, in the special case picking a single
example at a time uniformly at random, we have pi = 1/n and vi = ‖Ai‖2, whereby we obtain one

2

of the O(n+ κ) log(1/ε) rates mentioned above. The other rate can be recovered using importance
sampling.

The advantage of a dual-free analysis comes from the fact that it guarantees convergence even for
non-convex loss functions, as long as the average loss is convex. This is a step toward understanding
non-convex models. In particular, we show that for non-convex loss functions, our method enjoys
the rate (Theorem 1)

max
i

(
1

pi
+

L2
i vi

λ2pin

)
log

(
(L+ λ)D(0)

λε

)
,

where D(0) is a constant depending on the starting point.
Finally, we illustrate through experiments with “chunking”—a simple load balancing technique—

the utility of being able to design arbitrary mini-batching schemes.

2 Algorithm

We shall now describe the method (Algorithm 1).

Algorithm 1 dfSDCA: Dual-Free SDCA with Arbitrary Sampling

Parameters: Sampling Ŝ, stepsize θ

Initialization α
(0)
1 , . . . , α

(0)
n ∈ Rm, set w(0) = 1

λn

∑n
i=1Aiα

(0)
i , pi = Prob(i ∈ Ŝ)

for t ≥ 1 do
Sample a set St according to Ŝ
for i ∈ St do

α
(t)
i = α

(t−1)
i − θp−1i (∇φi(A>i w(t−1)) + α

(t−1)
i)

w(t) = w(t−1) −
∑

i∈St
θ(nλpi)

−1Ai(∇φi(A>i w(t−1)) + α
(t−1)
i)

The method encodes a family of algorithms, depending on the choice of the sampling Ŝ, which
encodes a particular mini-batching scheme. Formally, a sampling Ŝ is a set-valued random variable
with values being the subsets of [n], i.e., subsets of examples. In this paper, we use the terms
“mini-batching scheme” and “sampling” interchangeably. A sampling is defined by the collection
of probabilities Prob(S) assigned to every subset S ⊆ [n] of the examples.

The method maintains n vectors αi ∈ Rm and a vector w ∈ Rd. At the beginning of step t, we

have α
(t−1)
i for all i and w(t−1) computed and stored in memory. We then pick a random subset St

of the examples, according to the mini-batching scheme, and update variables αi for i ∈ St, based
on the computation of the gradients ∇φi(A>i w(t−1)) for i ∈ St. This is followed by an update of
the vector w, which is performed so as to maintain the relation

w(t) =
1

λn

∑
i

Aiα
(t)
i . (4)

This relation is maintained for the following reason. If w∗ is the optimal solution to (1), then

0 = ∇P (w∗) =
1

n

n∑
i=1

Ai∇φi(A>i w∗) + λw∗, (5)

3

and hence w∗ = 1
λn

∑n
i=1Aiα

∗
i , where α∗i := −∇φi(A>i w∗). So, if we believe that the variables αi

converge to −∇φi(A>i w∗), it indeed does make sense to maintain (4). Why should we believe this?
This is where the specific update of the “dual variables” αi comes from: αi is set a convex combina-
tion of its previous value and our best estimate so far of −∇φi(A>i w∗), namely, −∇φi(A>i w(t−1)).
Indeed, the update can be written as

α
(t)
i = (1− θp−1i)α

(t−1)
i + θp−1i (−∇φi(A>i w(t−1))).

Why does this make sense? Because we believe that w(t−1) converges to w∗. Admittedly, this
reasoning is somewhat “circular”. However, a better word to describe this reasoning would be:
“iterative”.

3 Main Results

Let pi := P(i ∈ Ŝ). We assume the knowledge of parameters v1, . . . , vn > 0 for which

E

∥∥∥∥∥∥
∑
i∈Ŝ

Aihi

∥∥∥∥∥∥
2 ≤ n∑

i=1

pivi‖hi‖2. (6)

Tight and easily computable formulas for such parameters can be found in [19]. For instance,
whenever Prob(|Ŝ| ≤ τ) = 1, inequality (6) holds with vi = τ‖Ai‖2.

To simplify the exposure, we will write

B(t) def
= ‖w(t) − w∗‖2, C

(t)
i

def
= ‖α(t)

i − α
∗
i ‖2, i = 1, 2, . . . , n. (7)

3.1 Non-convex loss functions

Our result will be expressed in terms of the decay of the potential D(t) def
= λ

2B
(t) + λ

2n

∑n
i=1

1
L2
i
C

(t)
i ,

where B
(t)
i and C(t) are defined in (7).

Theorem 1. Assume that the average loss function, 1
n

∑n
i=1 φi, is convex. If (3) holds and we let

θ ≤ min
i

pinλ
2

L2
i vi + nλ2

, (8)

then the for t ≥ 0 the potential D(t) decays exponentially to zero as

E
[
D(t)

]
≤ e−θtD(0). (9)

Moreover, if we set θ equal to the upper bound in (8), then

T ≥ max
i

(
1

pi
+

L2
i vi

λ2pin

)
log

(
(L+ λ)D(0)

λε

)
⇒ E[P (w(T))− P (w∗)] ≤ ε.

4

3.2 Convex loss functions

Our result will be expressed in terms of the decay of the potential E(t) def
= λ

2B
(t) + 1

2n

∑n
i=1

1
li
C

(t)
i ,

where B
(t)
i and C(t) are defined in (7).

Theorem 2. Assume that all loss functions {φi} are convex and satisfy (2). If we run Algorithm 1
with parameter θ satisfying the inequality

θ ≤ min
i

pinλ

livi + nλ
, (10)

then the for t ≥ 0 the potential E(t) decays exponentially to zero as

E
[
E(t)

]
≤ e−θtE(0). (11)

Moreover, if we set θ equal to the upper bound in (10), then

T ≥ max
i

(
1

pi
+

livi
λpin

)
log

(
(L+ λ)E(0)

λε

)
⇒ E[P (w(T))− P (w∗)] ≤ ε

The rate, θ, precisely matches that of the QUARTZ algorithm [9]. Quartz is the only other
method for ERM which has been analyzed for an arbitrary mini-batching scheme. Our algorithm
is dual-free, and as we have seen above, allows for an analysis covering the case of non-convex loss
functions.

4 Chunking

In this section we illustrate one use of the ability of our method to work with an arbitrary mini-
batching scheme. Further examples include the ability to design distributed variants of the method
[20], or the use of importance/adaptive sampling to lower the number of iterations [21, 12, 9, 14].

One marked disadvantage of standard mini-batching (“choose a subset of examples, uniformly
at random”) used in the context of parallel processing on multicore processors is the fact that in a
synchronous implementation there is a loss of efficiency due to the fact that the computation time
of ∇φ(A>i w) may differ through i. This is caused by the data examples having varying degree of
sparsity. We hence introduce a new sampling which mitigates this issue.

Chunks: Choose sets G1, . . . , Gk ⊂ [n], such that ∪ki=1Gi = [n] and Gi ∩ Gj = ∅ ∀i, j and
ψ(i) :=

∑
j∈Gi

nnz(Aj) is similar for every i, i.e. ψ(1) ≈ · · · ≈ ψ(k). Instead of sampling τ

coordinates we propose a new sampling, which on each iteration t samples τ sets G
(t)
(1), . . . , G

(t)
(τ) out

of G1, . . . , Gk and uses coordinates i ∈ ∪τi=1G
(t)
(i) as the sampled set. We assign each core one of

the sets G
(t)
(i) for parallel computation. The advantage of this sampling lies in the fact, that the

load of computing ∇φ(A>i w) for all i ∈ Gj is similar for all j ∈ [k]. Hence, using this sampling we
minimize the waiting time of processors.

5

Algorithm 2 Naive Chunks

Parameters: vector of nnz u
Initialization n = length(u); Empty vector g and s of length n; m = max(u)
g[1] = 1, s[1] = u[1], i = 1
for t = 2 : n do

if g[i] + u[t] ≤ m then
g[i] = g[i] + 1, s[i] = s[i] + u[t]

else
i = i+ 1, g[i] = 1, s[i] = u[t]

How to choose G1, . . . , Gk: We introduce the following algorithm:
The algorithms returns the partition of [n] into G1, . . . , Gk in a sense, that the first g[1] coor-

dinates belong to G1, next g[2] coordinates belong to G2 and so on. The main advantage of this
approach is, that it makes a preprocessing step on the dataset which takes just one pass through
the data. On Figure 1a through Figure 1f we show the impact of Algorithm 2 on the probability
of the waiting time of a single core, which we measure by the difference

max
i∈St

{nnz(Ai)} −
1

τ

∑
i∈St

nnz(Ai)

and

max
i∈[τ]
{nnz(G

(t)
(i))} −

1

τ

τ∑
i=1

nnz(G
(t)
(i))

for the initial and preprocessed dataset respectively. We can observe, that the waiting time is
smaller using the preprocessing.

5 Experiments

In all our experiments we used logistic regression. We normalized the datasets so that maxi ‖Ai‖ =
1, and fixed λ = 1/n. The datasets used for experiments are summarized in Table 1.

Dataset #samples #features sparsity

w8a 49,749 300 3.8%

dorothea 800 100,000 0.9%

protein 17,766 358 29%

rcv1 20,242 47,237 0.2%

cov1 581,012 54 22%

Table 1: Datasets used in the experiments.

Experiment 1. In Figure 2a we compared the performance of Algorithm 1 with uniform serial
sampling against state of the art algorithms such as SGD [1], SAG[2] and S2GD [5] in number
of epochs. The real running time of the algorithms was 0.46s for S2GD, 0.79s for SAG, 0.47s for
SDCA and 0.58s for SGD. In Figure 2b we show the convergence rate for different regularization
parameters λ. In Figure 2c we show convergence rates for different serial samplings: uniform,

6

0 2 0 4 0 6 0 8 0 1 0 0
Ma x(n n z) - Me a n (n n z)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
P

ro
b

a
b

il
it

y

τ = 5

τ = 10

τ = 20

τ = 50

(a) w8a initially

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0
Ma x(n n z) - Me a n (n n z)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a

b
il

it
y

τ = 5

τ = 10

τ = 20

τ = 50

(b) dorothea initially

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
Ma x(n n z) - Me a n (n n z)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a

b
il

it
y

τ = 5

τ = 10

τ = 20

τ = 50

(c) protein initially

0 2 0 4 0 6 0 8 0 1 0 0
Ma x(n n z) - Me a n (n n z)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a

b
il

it
y

τ = 5

τ = 10

τ = 20

τ = 50

(d) w8a chunked

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0
Ma x(n n z) - Me a n (n n z)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a

b
il

it
y

τ = 5

τ = 10

τ = 20

τ = 50

(e) dorothea chunked

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
Ma x(n n z) - Me a n (n n z)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a

b
il

it
y

τ = 5

τ = 10

τ = 20

τ = 50

(f) protein chunked

Figure 1: Distribution of the difference between the maximum number of nonzeros processed by a single
core and the mean of all nonzeros processed by each core. This difference shows us, how much time is wasted
per core waiting on the slowest core to finish its task, therefore smaller numbers are better. The first row
corresponds to the initial distribution while the second row shows the distribution after using Algorithm 2.

importance [12] and also 4 different randomly generated serial samplings. These samplings were
generated in a controlled manner, such that random c has (maxi pi)/(mini pi) < c. All of these
samplings have linear convergence as shown in the theory.

Experiment 2: New sampling vs. old sampling. In Figure 3a through Figure 3l we
compare the performance of a standard parallel sampling against sampling of blocks G1, . . . , Gk
output by Algorithm 2. In each iteration we measure the time by

max
i∈St

{nnz(Ai)}

and
max
i∈[τ]
{nnz(G(i))}

for the standard and new sampling respectively. This way we measure only the computations
done by the core which is going to finish the last in each iteration, and consider the number of
multiplications with nonzero entries of the data matrix as a proxy for time.

7

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Passes through Data

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

SDCA

S2GD

SAG

SGD

(a) rcv1, state of the art

0 10 20 30 40 50 60

10
−15

10
−10

10
−5

10
0

Passes through Data

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

10e−2

10e−3

10e−4

10e−5

10e−2

10e−3

10e−4

10e−5

(b) rcv1, different λ

0 1 0 2 0 3 0 4 0 5 0
p a s s e s ove r d a ta

10-15

10-10

10-5

100

te
s

t
p

o
in

t
-

o
p

ti
m

u
m

Un iform

Im p orta n ce

ra n d om 2

ra n d om 3

ra n d om 4

ra n d om 5

(c) cov1, various samplings

Figure 2: LEFT: Comparison of SDCA with other state of the art methods. MIDDLE: SDCA for various values of
λ. RIGHT: SDCA run with various samplings Ŝ.

1 2 3 4 5 6 7 8
p a s s e s ove r d a ta

10-15

10-10

10-5

100

te
s

t
p

o
in

t
-

o
p

ti
m

u
m

n e w s a m p lin g

s ta n d a rd s a m p lin g

(a) w8a with τ = 5

1 2 3 4 5
p a s s e s ove r d a ta

10-15

10-10

10-5

100

te
s

t
p

o
in

t
-

o
p

ti
m

u
m

n e w s a m p lin g

s ta n d a rd s a m p lin g

(b) w8a with τ = 10

1 2 3
p a s s e s ove r d a ta

10-15

10-10

10-5

100
te

s
t

p
o

in
t

-
o

p
ti

m
u

m

n e w s a m p lin g

s ta n d a rd s a m p lin g

(c) w8a with τ = 20

1 2
p a s s e s ove r d a ta

10-15

10-10

10-5

100

te
s

t
p

o
in

t
-

o
p

ti
m

u
m

n e w s a m p lin g

s ta n d a rd s a m p lin g

(d) w8a with τ = 50

1 2 3 4 5 6
p a s s e s ove r d a ta

10-15

10-10

10-5

100

te
s

t
p

o
in

t
-

o
p

ti
m

u
m

n e w s a m p lin g

s ta n d a rd s a m p lin g

(e) dorothea with τ = 5

1 2 3 4
p a s s e s ove r d a ta

10-15

10-10

10-5

100

te
s

t
p

o
in

t
-

o
p

ti
m

u
m

n e w s a m p lin g

s ta n d a rd s a m p lin g

(f) dorothea with τ = 10

1 2
p a s s e s ove r d a ta

10-15

10-10

10-5

100

te
s

t
p

o
in

t
-

o
p

ti
m

u
m

n e w s a m p lin g

s ta n d a rd s a m p lin g

(g) dorothea with τ = 20

1 2
p a s s e s ove r d a ta

10-15

10-10

10-5

100
te

s
t

p
o

in
t

-
o

p
ti

m
u

m
n e w s a m p lin g

s ta n d a rd s a m p lin g

(h) dorothea with τ = 50

1 2 3 4 5 6 7 8
p a s s e s ove r d a ta

10-15

10-10

10-5

100

te
s

t
p

o
in

t
-

o
p

ti
m

u
m

n e w s a m p lin g

s ta n d a rd s a m p lin g

(i) protein with τ = 5

1 2 3 4 5
p a s s e s ove r d a ta

10-15

10-10

10-5

100

te
s

t
p

o
in

t
-

o
p

ti
m

u
m

n e w s a m p lin g

s ta n d a rd s a m p lin g

(j) protein with τ = 10

1 2 3
p a s s e s ove r d a ta

10-15

10-10

10-5

100

te
s

t
p

o
in

t
-

o
p

ti
m

u
m

n e w s a m p lin g

s ta n d a rd s a m p lin g

(k) protein with τ = 20

1 2
p a s s e s ove r d a ta

10-15

10-10

10-5

100

te
s

t
p

o
in

t
-

o
p

ti
m

u
m

n e w s a m p lin g

s ta n d a rd s a m p lin g

(l) protein with τ = 50

Figure 3: Logistic regression with λ = 1/n. Comparison between new and standard sampling with fine-tuned
stepsizes for different values of τ .

8

6 Proofs

As a first approximation, our proof is an extension of the proof of Shalev-Shwartz [18] to accom-

modate an arbitrary sampling [16, 17, 9, 15]. For all i and t we let u
(t−1)
i = −∇φi(A>i w(t)) and

z
(t−1)
i = α

(t−1)
i − u(t−1)i . We will use the following lemma.

Lemma 3 (Evolution of C
(t)
i and B(t)). For a fixed iteration tand all i we have:

EŜ

[
C

(t−1)
i − C(t)

i

]
= θ

[
‖α(t−1)

i − α∗i ‖2 − ‖u
(t−1)
i − α∗i ‖2 + (1− θp−1i)‖z(t−1)i ‖2

]
(12)

EŜ

[
B(t−1) −B(t)

]
≥ 2θ

λ
(w(t−1) − w∗)>∇P (w(t−1))− θ2

n2λ2

n∑
i=1

vi
pi
‖z(t−1)i ‖2. (13)

Proof. It follows that for i ∈ St using the definition (7) we have

C
(t−1)
i − C(t)

i

(7)
= ‖α(t−1)

i − α∗i ‖2 − ‖α
(t)
i − α

∗
i ‖2

= ‖α(t−1)
i − α∗i ‖2 − ‖(1− θp−1i)(α

(t−1)
i − α∗i) + θp−1i (u

(t−1)
i − α∗i)‖2

= ‖α(t−1)
i − α∗i ‖2 − (1− θp−1i)‖α(t−1)

i − α∗i ‖2 − θp−1i ‖u
(t−1)
i − α∗i ‖2

+θp−1i (1− θp−1i)‖α(t−1)
i − u(t−1)i ‖2

= θp−1i

[
‖α(t−1)

i − α∗i ‖2 − ‖u
(t−1)
i − α∗i ‖2 + (1− θp−1i)‖z(t−1)i ‖2

]
and for i /∈ St we have C

(t−1)
i − C(t)

i = 0. Taking the expectation over St we get the result.
For the second potential we get

B(t−1) −B(t) (7)
= ‖w(t−1) − w∗‖2 − ‖w(t) − w∗‖2

=
2θ

nλ

∑
i∈St

p−1i (w(t−1) − w∗)>Aiz(t−1)i − θ2

n2λ2
‖
∑
i∈St

p−1i Aiz
(t−1)
i ‖2.

Taking the expectation over St, using inequality (6), and noting that

1

n

n∑
i=1

Aiz
(t−1)
i =

1

n

n∑
i=1

Ai∇φ(A>i w
(t−1)) + λw(t−1) = ∇P (w(t−1)), (14)

we get

E
[
B(t−1) −B(t)

]
=

2θ

nλ

n∑
i=1

(w(t−1) − w∗)>Aiz(t−1)i − θ2

n2λ2
E

[
‖
∑
i∈St

Ai(p
−1
i z

(t−1)
i)‖2

]
(6)

≥ 2θ

nλ

n∑
i=1

(w(t−1) − w∗)>Aiz(t−1)i − θ2

n2λ2

n∑
i=1

pivi‖p−1i z
(t−1)
i ‖2

(14)
=

2θ

λ
(w(t−1) − w∗)>∇P (w(t−1))− θ2

n2λ2

n∑
i=1

vi
pi
‖z(t−1)i ‖2

9

6.1 Proof of Theorem 1 (nonconvex case)

Combining (12) and (13), we obtain

E[D(t−1) −D(t)] ≥ θλ

2n

n∑
i=1

1

L2
i

[
‖α(t−1)

i − α∗i ‖2 − ‖u
(t−1)
i − α∗i ‖2 + (1− θp−1i)‖z(t−1)i ‖2

]
+
λ

2

[
2θ

λ
(w(t−1) − w∗)>∇P (w(t−1))− θ2

n2λ2

n∑
i=1

vi
pi
‖z(t−1)i ‖2

]

=
θ

2n

n∑
i=1

[
λ

L2
i

(
C

(t−1)
i − ‖u(t−1)i − α∗i ‖2

)
+

(
λ(1− θp−1i)

L2
i

− θvi
nλpi

)
‖z(t−1)i ‖2

]
+ θ(w(t−1) − w∗)>∇P (w(t−1))

(8)

≥ θ

2n

n∑
i=1

λ

L2
i

(
C

(t−1)
i − ‖u(t−1)i − α∗i ‖2

)
+ θ(w(t−1) − w∗)>∇P (w(t−1)).

Using (3) we have

‖u(t−1)i − α∗i ‖2 = ‖∇φi(A>i w(t−1)) − ∇φi(A>i w∗)‖2 ≤ L2
i ‖w(t−1) − w∗‖2.

By strong convexity of P ,

(w(t−1) − w∗)>∇P (w(t−1)) ≥ P (w(t−1))− P (w∗) +
λ

2
‖w(t−1) − w∗‖2

and P (w(t−1))− P (w∗) ≥ λ
2‖w

(t−1) − w∗‖2, which together yields

(w(t−1) − w∗)>∇P (w(t−1)) ≥ λ‖w(t−1) − w∗‖2.

Therefore,

E[D(t−1) −D(t)] ≥ θ

[
1

n

n∑
i=1

λ

2L2
i

C
(t−1)
i +

(
−λ

2
+ λ

)
B(t−1)

]
= θD(t−1).

It follows that E[D(t)] ≤ (1− θ)D(t−1), and repeating this recursively we end up with E[D(t−1)] ≤
(1−θ)tD(0) ≤ e−θtD(0). This concludes the proof of the first part of Theorem 1. The second part of
the proof follows by observing that P is (L+λ)-smooth, which gives P (w)−P (w∗) ≤ L+λ

2 ‖w−w
∗‖2.

6.2 Convex case

For the next theorem we need an additional lemma:

Lemma 4. Assume that φi are Li-smooth and convex. Then, for every w,

1

n

n∑
i=1

1

Li
‖∇φi(w)−∇φi(w∗)‖2 ≤ 2

(
P (w)− P (w∗)− λ

2
‖w − w∗‖2

)
(15)

10

Proof. Let gi(x) = φi(x) − φi(A>i w∗) −∇φi(A>i w∗)>(x − A>i w∗). Clearly, gi is also li-smooth.
By convexity of φi we have gi(x) ≥ 0 for all x. It follows that gi satisfies ‖∇gi(x)‖2 ≤ 2ligi(x).
Using the definition of gi, we obtain

‖∇φi(A>i w)−∇φi(A>i w∗)‖2 = ‖∇gi(A>i w)‖2

≤ 2li[φi(A
>
i w)− φi(A>i w∗)−∇φi(A>i w∗)>(A>i w −A>i w∗)]. (16)

Summing these terms up weighted by 1/li and using (5) we get

1

n

n∑
i=1

1

li
‖∇φi(A>i w)−∇φi(A>i w∗)‖2

(16)

≤
n∑
i=1

2

n
[φi(A

>
i w)− φi(A>i w∗)−Ai∇φi(A>i w∗)>(w − w∗)]

(5)
= 2

[
P (w)− λ

2
‖w‖2 − P (w∗) +

λ

2
‖w∗‖2 + λw∗>(w − w∗)

]
= 2

[
P (w)− P (w∗)− λ

2
‖w − w∗‖2

]
.

6.3 Proof of Theorem 2

Combining (12) and (13), we obtain

E[E(t−1) − E(t)] ≥ θ

n

n∑
i=1

1

2li

[
‖α(t−1)

i − α∗i ‖2 − ‖u
(t−1)
i − α∗i ‖2 + (1− θp−1i)‖z(t−1)i ‖2

]
+
λ

2

[
2θ

λ
(w(t−1) − w∗)>∇P (w(t−1))− θ2

n2λ2

n∑
i=1

vi
pi
‖z(t−1)i ‖2

]

=
θ

n

n∑
i=1

[
1

2li
(C

(t−1)
i − ‖u(t−1)i − α∗i ‖2) +

(
(1− θp−1i)

2li
− θvi

2piλn

)]
+ θ(w(t−1) − w∗)>∇P (w(t−1))

(10)

≥ θ

n

n∑
i=1

[
1

2li
(C

(t−1)
i − ‖u(t−1)i − α∗i ‖2)

]
+ θ(w(t−1) − w∗)>∇P (w(t−1))

Using the convexity of P we have P (w∗) − P (w(t−1)) ≥ (w(t−1) − w∗)>∇P (w(t−1)) and using
Lemma 4, we have

E[E(t−1) − E(t)]
(15)

≥ θ

n

n∑
i=1

1

2li
C

(t−1)
i − θ

(
P (w(t−1))− P (w∗)− λ

2
‖w(t−1) − w∗‖2

)
+θ(w(t−1) − w∗)>∇P (w(t−1))

≥ θ

[
1

n

n∑
i=1

1

2li
C

(t−1)
i +

λ

2
B(t−1)

]
= θE(t−1).

This gives E[E(t)] ≤ (1−θ)E(t−1), which concludes the first part of the Theorem 2. The second
part follows by observing, that P is (L+ λ)-smooth, which gives P (w)− P (w∗) ≤ L+λ

2 ‖w − w
∗‖2.

11

References

[1] Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann. Math. Statist.,
22(3):400–407, 09 1951.

[2] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. arXiv:1309.2388, 2013.

[3] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regular-
ized loss. Journal of Machine Learning Research, 14(1):567–599, 2013.

[4] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In NIPS, 2013.

[5] Jakub Konečný and Peter Richtárik. S2GD: Semi-stochastic gradient descent methods.
arXiv:1312.1666, 2014.

[6] Jakub Konečný, Jie Lu, Peter Richtárik, and Martin Takáč. mS2GD: Mini-batch semi-
stochastic gradient descent in the proximal setting. arXiv:1410.4744, 2014.

[7] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradi-
ent method with support for non-strongly convex composite objectives. Advances in Neural
Information Processing Systems 27 (NIPS 2014), 2014.

[8] Jakub Konečný, Zheng Qu, and Peter Richtárik. Semi-stochastic coordinate descent.
arXiv:1412.6293, 2014.

[9] Zheng Qu, Peter Richtárik, and Tong Zhang. Randomized Dual Coordinate Ascent with
Arbitrary Sampling. arXiv:1411.5873, 2014.

[10] Shai Shalev-Shwartz and Tong Zhang. Accelerated mini-batch stochastic dual coordinate
ascent. In Advances in Neural Information Processing Systems 26, pages 378–385. 2013.

[11] Shai Shalev-Shwartz and Tong Zhang. Proximal stochastic dual coordinate ascent.
arXiv:1211.2717, 2012.

[12] Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling. ICML, 2015.

[13] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent
for regularized loss minimization. to appear in Mathematical Programming, 2015.

[14] Dominik Csiba, Zheng Qu, and Peter Richtárik. Stochastic dual coordinate ascent with adap-
tive probabilities. ICML 2015.

[15] Zheng Qu, Peter Richtárik, Martin Takáč, and Olivier Fercoq. Stochastic Dual Newton Ascent
for empirical risk minimization. arXiv:1502.02268.

[16] Peter Richtárik and Martin Takáč. On optimal probabilities in stochastic coordinate descent
methods. arXiv:1310.3438, 2013.

[17] Zheng Qu and Peter Richtárik. Coordinate descent methods with arbitrary sampling I: Algo-
rithms and complexity. arXiv:1412.8060, 2014.

12

[18] Shai Shalev-Shwartz. SDCA without duality. CoRR, abs/1502.06177, 2015.

[19] Zheng Qu and Peter Richtárik. Coordinate Descent with Arbitrary Sampling II: Expected
Separable Overapproximation. arXiv:1412.8063, 2014.

[20] Peter Richtárik and Martin Takáč. Distributed coordinate descent method for learning with
big data. arXiv:1310.2059, 2013.

[21] Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate de-
scent methods for minimizing a composite function. Mathematical Programming, 144(2):1–38,
2014.

13

	1 Introduction
	1.1 Background
	1.2 Contributions

	2 Algorithm
	3 Main Results
	3.1 Non-convex loss functions
	3.2 Convex loss functions

	4 Chunking
	5 Experiments
	6 Proofs
	6.1 Proof of Theorem ?? (nonconvex case)
	6.2 Convex case
	6.3 Proof of Theorem ??

