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Abstract

Metal Organic Frameworks (MOFs) have emerged as versatile materials for appli-

cations ranging from gas separation and storage, catalysis, and sensing. The attractive

feature of MOFs is that by changing the ligand and/or metal, they can be chemically

tuned to perform optimally for a given application. In most, if not all, of these ap-

plications one also needs a material that has a sufficient mechanical stability, but our

understanding of how changes in the chemical structure influence mechanical stability

is limited. In this work, we rationalize how the mechanical properties of MOFs are

related to framework bonding topology and ligand structure. In addition, we show how
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these molecular insights can be used to develop strategies to systematically improve the

mechanical stability of the materials.

Introduction

Like any other material, metal-organic frameworks (MOFs), as an important class of porous

materials with large diversity of pore shapes and sizes, and rich chemical functionalities must

pass the stability criteria to be used in most practical applications.1–3 Despite having superior

performance for many applications, MOFs are vulnerable with respect to stability compared

to the competing materials. For instance, due to the relatively weak metal-ligand coordina-

tion bonds, many MOFs are chemically unstable and have low endurance in different types

of chemicals environments, e.g. acidic or basic environment.3 Significant progress has been

made in developing MOFs that are chemically stable, e.g. Zirconium based MOFs.4 Since

applications of MOFs often involve repetitive, cyclic temperature and pressure variations

and capillary forces exerted by guest molecules, sufficient mechanical stability is of equal

importance.5,6 The mechanical stability for porous materials measures the stiffness of a ma-

terial to withstand its pore size and structure under mechanical load. Clearly, deformations

due to external pressure will disrupt pore shape and size, resulting in significantly reduced

performance. In this study, we focus on strategies to improve the mechanical stability of a

particular MOF.

The mechanical properties of materials vary by several orders of magnitude with chang-

ing atomic composition and/or crystal structure.7–9 As the mechanical stiffness, i.e. modulus

of elasticity, typically scales quadratically with the density,10 mechanical stability is of par-

ticular importance for applications of low-density materials, such as MOFs.6,11,12 For these

materials special strategies are often required to improve their mechanical stability. Often

these strategies are inspired by nature (e.g., wood and bones13,14) and involve fractal and

hierarchical design to make highly connected materials over multiple length scales.15–17 In-

2



deed, improving the mechanical stability of MOFs by tuning the chemistry has become an

important focus of attention.3,18–20 In analogy to the concept of high connectivity of the

hierarchical design of materials, it has been shown that the MOFs with high degrees of

framework interconnectivity, i.e. high coordination number of metal nodes, have improved

the mechanical stability.18,21 However, not for all applications a particular MOF can be easily

replaced, and therefore, Kapustin et al. developed a strategy to retrofit a particular MOF

by adding additional ligand to the framework.20 In both cases, the mechanical stability is

improved by increasing the connectivity of the bonding topology.

In this work, we explore the option of decorating the organic ligands of a MOF with

functional groups. The significant progress in computational material science in in silico

generation of MOFs22,23 and reliably prediction of their mechanical properties11,24 permits

studying a large and diverse set of materials to extract structure-property relationships to de-

sign materials with enhanced mechanical stability. We show that the dispersive interactions

play an important role in the stiffness of the materials, and therefore, strategically placed

functional groups can introduce extra framework connectivity via non-bonded interactions.

This secondary network of non-bonded interactions can enhance the mechanical stability

of the framework considerably. We use the term "chemical Caryatids" for those functional

groups that are contributing in carrying the mechanical load applied to the material. In

addition, we show that the optimum mechanical stability of a MOF framework is obtained

by the cooperative effect of the primary network, determined by the bonding topology, and

the secondary network, which is governed by the non-bonded interactions.

Results and discussion

In this work, we focus on Zeolitic Imidazolate Frameworks (ZIFs), which are a special class

of MOFs comprised of four coordinated metals, typically Zinc, with imidazolate (IM) deriva-

tive ligands. ZIFs are an ideal case study for our work because they all have the same
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coordination environment, but diverse bonding topologies and functional groups.25,26 This

allows us to focus on the effects of bonding topology and functional groups on the mechan-

ical properties, while keeping coordination environment fixed, i.e. keeping the same metal

node. In addition, because of the pioneering work of Cheetham and co-workers, ZIFs are

among the very few MOFs for which systematic research has been done on their mechanical

stability.5,6,12 To characterize the mechanical properties of ZIFs, Cheetham and co-workers

used nano-indentation to measure the Young’s modulus, i.e. the resistance of materials to the

tensile stress.6 These and related studies concluded that for these materials the mechanical

properties can be described with the low density-stiffness correlation.6,27–29 As these experi-

ments require sufficiently large single crystals, the number of studied structures is relatively

small compared to the total number of possible ZIFs. In this work, we expand the studied

materials to, in addition to the known ZIF structures, a large set of in silico constructed

materials. Such a large set of materials allows us to cover a representative range of bonding

topologies and functional groups. The ligands used for in silico construction of materials

include the commonly25,30 used derivatives of IM shown in figure 1.

N

N

IM

N

N

mIM

Cl N

NCl

dcIM

N

NO2

N

nIM

Figure 1: The four different ligands used to construct hypothetical materials. (a) IM = imidazolate,
(b) mIM = 2-methylimidazolate, (c) dcIM = dichloroimidazolate, (d) nIM = 2-nitroimidazolate.

Theoretically, mechanical properties of materials are described by their stiffness matrix.31

Young’s and other moduli of elasticity, including bulk and shear modulus, which characterize

material’s resistance to hydrostatic pressure and shear stress, respectively, can be extracted

from the stiffness matrix. Since the mechanical properties of the materials in our study do
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not involve the breaking/formation of chemical bonds and other quantum effects, we used

an approach based on a classical force field to compute the stiffness matrix for each material.

The reliability of our force field is evaluated by comparison with the experimental and ab

initio calculated values of Young’s modulus reported in the literature. Figure 2 shows a

comparable agreement between the ab initio and force field results with the experimental

data, supporting the conclusion of our previous work that these classical force fields yield

sufficiently reliable data on the mechanical properties of these materials.32

If we focus on those materials in figure 2 for which experimental data are available, we

observe the same low density-stiffness correlation as found experimentally.6 However, if we

include all our data, the picture becomes quite different. By expanding the chemistry and

topology of ZIF structures, figure 2 shows large deviations from the density-stiffness correla-

tion. Changing the underlying network topology and/or ligand can lead to larger variations

in mechanical stability than changes in density, and in some cases, even reverse the trend.

For instance, many ZIF structures with dcIM ligand have similar or lower stiffness in com-

parison to the structures in mIM and nIM ligand families, although they have higher density.

A molecular-level explanation of these deviations is provided below, the understanding of

which will allow us to exploit the chemical and topological features of a material to improve

its mechanical stability.

The structures in figure 2 differ in their bonding topology and/or functional group of

ligand. We introduce a computational approach to disentangle the effects of changes of the

topology from changes of the ligand. To distinguish the role of the bonding topology on the

mechanical properties, we first look at the mechanical stability of a simplified network of

atoms comprised of atomic bonding, and we refer to this network as the primary network.

Several approaches have been used to define such a primary network.21,34 Here, we define the

primary network as the ZIF structure in the absence of non-bonded interactions. Since the

ligands in our study only differ in their functional groups, the primary network of the struc-

tures with the same underlying network topology but different ligands are nearly identical.

5



Figure 2: Young’s modulus versus density; for each material we plot the value along each of the
three lattice principle axes. The filled markers with unique marker for each structure are used for
those structures we can compare our force field (FF) with experimental (exp) or ab initio density
functional theory (DFT) calculations, with the markers representing: u: ZIF-8,6,12 l: ZIF-20,6 t:
ZIF-68,6 H: ZIF-4,6,28,29 n: ZIF-76 and s: ZIF-zni.6,28,33 The color coding is used to indicate the
different ligands. If the density-stiffness correlation were perfectly obeyed a principle component
analysis would give a narrow cloud around the dashed line. The clouds derived from principle
component analysis demonstrate the deviations for the different ligands. The complete set of data
can be found in the SI.
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Hence, we expect similar mechanical properties for the structures with the same underlying

network topology. Indeed, figure 3a shows that all ZIFs with the same topology have similar

bulk and shear modulus, and hence, superpose on each other.

Figure 3b and 3c show the effects of switching on the non-bonded interactions where

a large effect of functionalization on mechanical properties is observed. As there is no

functional group on the IM ligand, it can be seen as bare backbone, and we see that the

mechanical properties for this ligand are indeed dominated by the primary network. However,

for the other ligands, functionalization can have a large effect on some topologies while on

others surprisingly little. It is instructive to try to explain these deviations with a simple

extension of the density-stiffness model. This model assumes a solid which has only non-

bonded interactions, for example, a primitive cubic lattice with only nearest neighbour,

(Lennard-Jones type) pairwise interactions. In this simple model, the only variable is the

density dependent nearest neighbour distance. The bulk modulus is given by the second

derivative of the potential energy of the crystal with respect to isotropic deformations. The

second derivative of the Lennard-Jones potential changes sign from positive to negative

at ∼ 1.2σ, where σ is the van der Waals radius (see SI). As the second derivative for each

pairwise interaction can be positive or negative depending on the nearest neighbour distance,

the bulk modulus of this simple solid consists of a sum of positive or negative contributions,

giving the well known density-stiffness correlation. In a ZIF structure, however, there is

a distribution of inter-atomic distances, some have a positive contribution (i.e. stiffening

interactions) and some have a negative contribution (i.e. softening interactions) to bulk

modulus. One can argue that this distribution depends on the topology and functional group.

If we now assume that the contributions of the non-bonded interactions are independent of

the contribution of the primary network, we can obtain a simple correction to the density-

stiffness correlation by adding the sum of the contribution of the non-bonded interactions to

the bulk modulus resulting from the primary network.
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(a) (b)

(c)

Figure 3: Differentiating the contributions from bonding topology (primary network) and non-
bonded interactions (secondary network) in mechanical properties. Considerable contribution from
the secondary network is observed in some of the materials with functional groups. (a) and (b)
Bulk modulus with respect to shear modulus of the materials computed without and with non-
bonded interactions, respectively. (c) Bulk modulus of the materials versus the bulk modulus of
them without non-bonded interactions. Dashed line represents identical properties computed with
and without non-bonded interactions, i.e. no contribution from the secondary network. In all sub-
figures, each marker (open, half-filled and filled) represent a unique underlying network topology
while the colours represent the ligand.
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(a) (b)

(c) (d)

Figure 4: Distribution of stiffening/softening non-bonded contributions for: (a) structures with
bct net and IM, mIM and dcIM ligands, and (b) structures with mIM ligand and bct and aei
nets. The vertical axes represent the sum of second derivative of van der Waals (vdW) energy
(S =

∑
∂2EvdW/∂(ri,j/σi,j)2) plotted with respect to the inter-atomic distances normalized with vdW

radii (Ri,j = ri,j/σi,j). The bulk moduli are 4.7, 9.4 and 7.1 for bct structures with IM, mIM and
dcIM ligands, and 6.3 and 7.0 for aei structures with IM and mIM ligands, respectively (values are
in GPa). (c) and (d) The atomic representation and the primary and secondary networks for the
mIM ligand structures with bct and aei nets, respectively. The primary net is demonstrated with
red tubes and secondary net with cyan tubes; white, black, blue, and grey spheres represent H, C,
N, and Zn atoms, respectively. The corresponding structures with IM ligand have the same primary
net and no secondary net.



In figure 4a, we plot the distribution of stiffening/softening contributions for the ZIFs with

bct topology net for three different ligands. As expected, for IM, which has no functional

group, this contribution is small. For the mIM and dcIM ligands, figure 4a shows higher

peaks in the stiffening regime which is consistent with the observed increase in mechanical

stability due to functionalization. Figure 4b shows an example of two materials in which

the distributions of the stiffening and softening contributions are nearly identical. For the

bct net structure we observe the expected stiffening compared to the primary network.

However, for aei net we observe only a small effect of the non-bonded interactions on the

bulk modulus. This is where our simple correction to the density-stiffness correlation breaks

down. This example illustrates that the contributions of non-bonded interactions and the

primary network to the stiffness can be highly non-additive. The reason for this non-additive

behaviour becomes clear by introducing the concept of a secondary network.

We define the secondary network by connecting pairs of atoms with non-bonded interac-

tions that have a stiffening contribution to the bulk modulus. Figure 4c and 4d shows the

primary (red tubes) and secondary (cyan tubes) networks for the bct and aei topologies,

respectively. Both materials have a 3D percolating primary network, but the pronounced

difference is in the secondary networks. For bct the secondary network is percolating in all

three dimensions, while for aei it percolates only in one dimension, and there are no contri-

butions in the other two dimensions. Inspection of the primary network of aei shows that

the weak spots are on the ligands while the backbone is relatively stiff. Figure 4d shows that

the corresponding secondary network reinforces this stiff backbone, but not the links between

the backbones. Hence, the secondary network is only supporting aei in a direction in which

the primary network is already strong. As the mechanical properties are dominated by the

weakest link, we now understand why we see such a small effect of the secondary network on

the mechanical properties. To have an effect, we need to add a functional group that would

form a secondary network orthogonal to the current network which it would significantly in-

crease the bulk modulus. This type of synergy between the primary and secondary networks
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explains why some topologies show a large effect of functionalization, while for others this

effect can be small.

It is interesting to apply our concept of primary and secondary networks to MOF-520-

BPDC. Kapustin et al.20 retrofitted the mechanically unstable MOF-520 by adding an ad-

ditional linker to to allow for its use at high pressures. This retrofitting procedure changes

the underlying network topology from fon net to more connected skl net. This improved

mechanical stability can be explained in terms of changes of the primary network (see SI).

This form of topological tunability is very robust. However, it does rely on the ability to add

extra linkers to support the weak spots of the primary network, which can be challenging

from a chemical point of view for most materials.

Alternatively, the mechanical properties of MOFs can be tuned by creating a secondary

network via ligand functionalization. The presence of such a secondary network can shed

some light on the experimental observation on the amorphization of ZIFs.35 Amorphization

is directly related to the mechanical stability of these materials.36 Cheetham and co-workers

showed that ZIFs with the bare IM ligand amorphize relatively easily under pressure and

heating, while the corresponding ZIFs with functionalization ligands required extreme con-

ditions, specifically, they observed thermal amorphization only in ZIFs with the bare IM

ligand.35,37 These results are consistent with our molecular dynamics simulations (see SI).

Our analysis of the mechanical stability shows that "switching on" the secondary network

in ZIF-3 and ZIF-4 improve the mechanical stability by as much as ∼ 80% in shear modulus

of both structures, and 300% and 150% in their bulk modulus, respectively. Figure 5 shows

that for both ZIFs the functionalized structures have a secondary network that spans the

entire unit cell in all three directions. Such increased mechanical stability explains why these

materials are stable at conditions where the unsubstituted IM structure amorphize.
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(a) (b)

Figure 5: (a) and (b) Atomic representation and the primary and secondary networks of ZIF-3
and ZIF-4 structures with mIM ligands, respectively. The corresponding structures with IM ligand
have the same primary net and no secondary net. The bulk and shear moduli for ZIF-3 (ZIF-
4) are 2.0 and 0.53 (3.1 and 0.80) for IM and 7.8 and 0.96 (7.6 and 1.49) for mIM structures,
respectively (values are in GPa). The functional groups of the ligands form a secondary network
which enhance the mechanical stability considerably. The primary net is demonstrated with red
tubes and secondary net with cyan tubes; white, black, blue, and grey spheres represent H, C, N,
and Zn atoms, respectively.
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Conclusions

Our study shows that there are two strategies to improve the mechanical stability of a nano-

porous material: modifying the primary and/or secondary network. Changing the primary

network can be challenging as it requires the addition of extra linkers. In this respect the

work of Kapustin et al.20 is a remarkable, but exceptional achievement. functionalization of

ligands to create or modify the secondary network, much like the Caryatids holding up the

porch of the Erechtheion on the Acropolis, might be a more generally applicable route. Our

study shows that such a network, however, is only effective if it supports the weak points of

the primary network.

It is interesting to envision how these results can be used from an experimental per-

spective. Suppose we have optimised a particular MOF for a given application, but the

mechanical stability needs to be improved. As the tools developed in this work are applica-

ble to any MOF, we can determine the primary and secondary network of this material. If

this analysis shows weak spots, a simple screening of different functional groups should give

a clear prediction whether the mechanical properties of the material can be improved.

Methods

To compute the mechanical properties of a materials we start with the crystal structure

either from experimental or from an in silico predicted structure. The procedure of com-

puting the mechanical properties relies on the assumption that the structure corresponds to

the minimum energy configuration that is consistent with the force field used to describe

the potential energy surface of the material. We developed a structural minimisation proce-

dure to efficiently obtain this minimum energy configuration for all materials. All calcula-

tions were carried out within the Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS) molecular simulation package.38 Below we summarise the computational pro-

cedures that we have used. A more detail description can be found in the supplementary
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information.

Hypothetical material generation

Each material was assembled with the ToBasCCo algorithm,39 using a representative set of

fifty zeolite topologies. Input into the program were the underlying networks, as obtained

from the International Zeolite Association website,40 and two geometric building blocks;

a 4-connected tetrahedral (Zn2+) and 2-connected imidazole type ligands. This procedure

yielded 200 materials, i.e. fifty structures for each of the four types of ligands, IM, nIM,

mIM, and dcIM. All the structures are available through the materials cloud website and

supplementary information.

Structure minimisation

Simulated annealing algorithm was used to minimise lattice parameters and atomic sites

using DREIDING force field41 as implemented32 in LAMMPS for all the structures. To

avoid getting trapped in local minima we combined temperature annealing with expan-

sion/relaxation cycles. The details of algorithm and its efficiency are discussed in supple-

mentary information section 1.

Calculation of the mechanical properties

The moduli of elasticity were extracted from the stiffness tensor based on Voigt-Reuss-Hill

averages. The stiffness tensor was calculated for the minimised structures based on the

curvature of the potential energy surface with respect to lattice deformations estimated by

second order polynomials (see SI for details).
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