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Realistic macro-level finite element simulations of the mechanical behavior of trabecular

bone, a cellular anisotropic material, require a suitable constitutive model; a model

that incorporates the mechanical response of bone for complex loading scenarios

and includes post-elastic phenomena, such as plasticity (permanent deformations) and

damage (permanent stiffness reduction), which bone is likely to experience. Some such

models have been developed by conducting homogenization-based multiscale finite

element simulations on bone micro-structure. While homogenization has been fairly

successful in the elastic regime and, to some extent, in modeling the macroscopic

plastic response, it has remained a challenge with respect to modeling damage.

This study uses a homogenization scheme to upscale the damage behavior from the

tissue level (microscale) to the organ level (macroscale) and assesses the suitability

of different damage constitutive laws. Ten cubic specimens were each subjected to

21 strain-controlled load cases for a small range of macroscopic post-elastic strains.

Isotropic and anisotropic criteria were considered, density and fabric relationships were

used in the formulation of the damage law, and a combined isotropic/anisotropic law with

tension/compression asymmetry was formulated, based on the homogenized results,

as a possible alternative to the currently used single scalar damage criterion. This

computational study enhances the current knowledge on the macroscopic damage

behavior of trabecular bone. By developing relationships of damage progression with

bone’s micro-architectural indices (density and fabric) the study also provides an aid for

the creation of more precise macroscale continuum models, which are likely to improve

clinical predictions.

Keywords: trabecular bone, multiscale modeling, parameter estimation, continuum damage, finite element

method, homogenization, biomechanics, high performance computing

1. INTRODUCTION

The growth of older population around the world in the last few decades has caused an increase
in problems which can be associated to deteriorated mechanical properties of bone; osteoporosis is
the clearest example of one such condition.

Computer models have been extensively employed to evaluate the mechanical response of
bone and bone-implant systems under a range of loading scenarios (Pankaj, 2013). Previous
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studies have assumed bone to be homogeneous (Completo et al.,
2009; Conlisk et al., 2015), i.e., its properties do not vary from
point to point in space or heterogeneous (Helgason et al., 2008;
Schileo et al., 2008; Tassani et al., 2011), i.e., its properties vary
with location (these are typically assigned on the basis of grey-
scale values observed in micro-computed tomography scans).
However, in the large majority of studies, bone is assumed to be
linear elastic and isotropic, i.e. its properties at a certain point in
space are the same in all directions. It is well- recognized that the
cellular microstructure of trabecular bone renders it anisotropic
(Turner et al., 1990; Odgaard et al., 1997), i.e., properties at a
point in space vary in different directions. Finite element (FE)
analysis of the bone microstructure, in which the solid and pore
phases are explicitly modeled, has been used to evaluate the
homogenized anisotropic linear elastic properties of bone in the
past two decades. Morphology-elasticity relationships that use
bone density and fabric have also been established, with fabric
typically measured through the mean intercept length (MIL)
fabric tensor (Harrigan and Mann, 1984). These relationships
establish links between density, fabric, and the components of
the stiffness tensor (Zysset, 2003). More recently, some studies
have attempted the evaluation of homogenized yield behaviour
(Cowin, 1986; Wolfram et al., 2012; Levrero-Florencio et al.,
2016).

Homogenized FE models of the whole bone can include
microstructural information at the continuum (macroscopic)
level and can thus improve the assessment of the behavior of bone
and bone-implant systems in clinical scenarios. Homogenization
relies on averaging the strains and stresses over a representative
volume element (RVE) of the considered material; it is the
most widely used multiscale approach to study the macroscopic
behavior of trabecular bone. Homogenization of an RVE in
the post-elastic regime requires examining its response to a
wide range of loading scenarios (Bayraktar et al., 2004; Levrero-
Florencio et al., 2016, 2017a). It is important to note that,
in experiments, it is not possible to test multiple load cases
after a certain load threshold has been surpassed because
permanent deformations and/or damage caused during the first
loading case will affect the behavior in subsequent loading
cases. Therefore, computational means provide an attractive
alternative. Nonetheless, the need for fine resolution to recreate a
biofidelic geometry of the bone microstructure leads to micro-FE
(µFE) systems of several tens of millions of degrees of freedom.
The need to undertake multiple load cases each in non-linear
regime requires the usage of high performance computing (HPC)
platforms and software which can take advantage of them.

Although the damage behavior of bone has been considered in
a few studies (Keaveny et al., 1994a; Garcia et al., 2009; Shi et al.,
2010; Schwiedrzik and Zysset, 2013; Lambers et al., 2014), there
are apparent limitations to most of the employed mathematical
formulations. For example, most macroscopic damage models
of trabecular bone employ an isotropic damage evolution, i.e.,
a “basic,” or single scalar isotropic formulation, as mentioned
in Carol et al. (2002), and do not take into account that the
development of damage may be related to the load case being
considered (Levrero-Florencio et al., 2017a). The authors have
previously conducted a series of uniaxial simulations which show

that damage develops differently in tension−compression, and in
normal−shear (Levrero-Florencio et al., 2017a).

This study has a number of aims. Firstly, it extends the
study performed in Levrero-Florencio et al. (2017a) by adding
12 biaxial macroscopic cases in the normal strain space. The
second aim is to examine the suitability of certain damage
mechanisms by fitting different damage laws to the damaged
macroscopic stiffness tensors. The study then investigates the
possible relationships between the macroscopic damage behavior
of trabecular bone and its density and fabric description,
by including these micro-architectural indices as additional
data in the fitting procedure. The data for these formulations
is obtained computationally through homogenization-based
multiscale simulations run on a HPC platform with an in-house
developed parallel implicit FE code.

2. NOTATION

The mathematical operators defined in this section largely follow
the notation used in Wu and Li (2008), Schwiedrzik et al. (2013),
and Levrero-Florencio et al. (2016). Compact tensor notation is
used throughout this study, with indicial notation within brackets
being used in this section to clarify certain tensorial operations, or
in specific sections where further clarification might be required.

As a general rule, scalars are denoted with Greek or Latin
italic characters (e.g., λ or a, respectively); vectors, or first-order
tensors, are denoted by Latin bold lower-case characters (e.g.,
a); second-order tensors are denoted with Greek or Latin bold
upper-case characters (e.g., σσσ or A, respectively); and fourth-
order tensors are denoted by Latin double-barred upper-case
characters (e.g., A).

Tensorial operations are denoted as follows. Single
contraction of tensorial entities may appear as a · b (aibi),
a · B (aiBij), Ab (Aijbj), or AB (AikBkj), note that the scalar
product symbol (·) only appears when the first entity to be
contracted is a first-order tensor; double contraction of tensorial
entities may appear as A :B (AijBij), A :B (AijklBkl), A : B

(AijBijkl), or A : B (AijmnBmnkl). Different tensor products have
been defined, which include a ⊗ b (aibj), A ⊗ B (AijBkl),

A⊗B (AikBjl), A⊗B (AilBjk), or A⊗B = 1
2 (A⊗B + A⊗B)

( 12 [AikBjl + AilBjk]).
Curly brackets {·} are used to represent vector projections of

second-order tensors, such as

{A} =
{

A11 A22 A33 A12 A13 A23

}T
. (1)

Square brackets [·] are used, in conjunction with parentheses (·),
to indicate priority in the order of mathematical operations; an
important exception occurs when square brackets are used to
represent the matrix projection of a fourth-order tensor, such as

[A] =

















A1111 A1122 A1133 A1112 A1113 A1123

A2211 A2222 A2233 A2212 A2213 A2223

A3311 A3322 A3333 A3312 A3313 A3323

A1211 A1222 A1233 A1212 A1213 A1223

A1311 A1322 A1333 A1312 A1313 A1323

A2311 A2322 A2333 A2312 A2313 A2323

















. (2)
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Double vertical bars ‖(·)‖ are used to represent the Frobenius
norm of the matrix (·), such as the Frobenius norm of the
following 3× 3 symmetric matrix,

‖[A]‖ =

√

A2
11 + A2

22 + A2
33 + 2A2

11 + 2A2
13 + 2A2

23. (3)

3. MATERIALS AND METHODS

3.1. Computational Methods
This section follows the “Materials and Methods” section in
Levrero-Florencio et al. (2017a). The authors used µCT images
of trabecular bone samples to create detailed FE models, which
ranged from 10 to 30 million elements, representing the
solid phase of bone for a cubic trabecular bone samples (which
includes both solid phase and pores) of size 5 mm. In the
study conducted by Levrero-Florencio et al. (2017a), plasticity
and damage were considered for the solid phase post-elastic
properties and nine uniaxial strain cases were investigated (load
cases 1 to 9 of Table 1) representing: three tensile cases (+ε11,
+ε22, and+ε33), three compressive cases (−ε11,−ε22, and−ε33),
and three shear cases (ε12, ε13, and ε23). Themacroscopic damage
behavior was studied by using an appropriate homogenization-
based multiscale technique, which is explained later.

Trabecular bone is an anisotropic material; its anisotropy
may be quantified with a fabric tensor, which indicates how
directionally distributed amaterial is. TheMean Intercept Length
(MIL) fabric tensor is used in this study because it is widely
used in trabecular bone studies, and it performs slightly better
than other fabric measures (Kabel et al., 1999; Zysset, 2003). The
magnitude of an eigenvalue of the MIL fabric tensor denotes
the proportion of material which is aligned in the direction
expressed in the correspondent eigenvector. The fabric tensors
are normalized by a trace equal to 3 (Zysset, 2003).

In this study, 10 out of the 12 samples employed in Levrero-
Florencio et al. (2017a) were subjected to 12 additional biaxial
strain cases in the normal strain space (Table 1, cases 10–21).
Kinematic uniform boundary conditions (i.e., conditions in
which displacements, or macroscopic strains, are controlled)
were used for all analyses; these are known for providing an upper
bound for the macroscopic stiffness tensor andmacroscopic yield
surface of trabecular bone (Wang et al., 2009; Panyasantisuk et al.,
2015). An example of how boundary conditions are implemented
can be seen in Figure 1, which corresponds to load case 4 in
Table 1. The morphological indices of these samples are shown
in Table 2. BV/TV stands for bone volume over total volume and
it is a surrogate for density, DOA stands for degree of anisotropy
and it is the ratio of the highest to the lowest eigenvalues of
the MIL fabric tensor, and SMI stands for structure model index
and it ranges from rod- (SMI = 3) to plate-shaped (SMI = 0)
microstructure.

The 10 samples were aligned with the MIL fabric tensor
eigenvectors, with the eigenvalues sorted in descendent order
(m1 > m2 > m3). The samples were then meshed with
trilinear hexahedra and subjected to the aforementioned strain-
controlled load cases; the largest mesh consisted of∼27Mdegrees
of freedom, leading to square sparse stiffness matrices of up
to 27M×27M elements. The considered constitutive law at the

TABLE 1 | Description of the performed strain-controlled load cases.

Load case Description

1
ε11 > 0; ε22 = ε33 = 0

ε12 = ε13 = ε23 = 0

2
ε22 > 0; ε11 = ε33 = 0

ε12 = ε13 = ε23 = 0

3
ε33 > 0; ε11 = ε22 = 0

ε12 = ε13 = ε23 = 0

4
ε11 < 0; ε22 = ε33 = 0

ε12 = ε13 = ε23 = 0

5
ε22 < 0; ε11 = ε33 = 0

ε12 = ε13 = ε23 = 0

6
ε33 < 0; ε11 = ε22 = 0

ε12 = ε13 = ε23 = 0

7
ε11 = ε22 = ε33 = 0

ε12 > 0; ε13 = ε23 = 0

8
ε11 = ε22 = ε33 = 0

ε13 > 0; ε12 = ε23 = 0

9
ε11 = ε22 = ε33 = 0

ε23 > 0; ε12 = ε13 = 0

10
ε11 = ε22 > 0; ε33 = 0

ε12 = ε13 = ε23 = 0

11
ε11 > 0; ε22 < 0; ε33 = 0

ε12 = ε13 = ε23 = 0

12
ε11 < 0; ε22 > 0; ε33 = 0

ε12 = ε13 = ε23 = 0

13
ε11 = ε22 < 0; ε33 = 0

ε12 = ε13 = ε23 = 0

14
ε11 = ε33 > 0; ε22 = 0

ε12 = ε13 = ε23 = 0

15
ε11 > 0; ε33 < 0; ε22 = 0

ε12 = ε13 = ε23 = 0

16
ε11 < 0; ε33 > 0; ε22 = 0

ε12 = ε13 = ε23 = 0

17
ε11 = ε33 < 0; ε22 = 0

ε12 = ε13 = ε23 = 0

18
ε22 = ε33 > 0; ε11 = 0

ε12 = ε13 = ε23 = 0

19
ε22 > 0; ε33 < 0; ε11 = 0

ε12 = ε13 = ε23 = 0

20
ε22 < 0; ε33 > 0; ε11 = 0

ε12 = ε13 = ε23 = 0

21
ε22 = ε33 < 0; ε11 = 0

ε12 = ε13 = ε23 = 0

tissue level was isotropic with coupled plasticity and damage
(the former captures irrecoverable deformations while the latter
takes accounts for stiffness reduction), meaning that damage and
plasticity interact with each other and evolve at the same time;
the considered yield surface was Drucker-Prager (Tai et al., 2006;
Carnelli et al., 2010; Panyasantisuk et al., 2015) with yield values
corresponding to 0.41% strain in tension and 0.83% strain in
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FIGURE 1 | (Left) Three-dimensional graphical depiction of the strain-controlled compressive load case in direction 1 (load case 4 in Table 1). (Right) Rendered

image of one of the used trabecular bone specimens; this particular sample led to a FE mesh of ∼21M degrees of freedom.

TABLE 2 | Morphological indices of the 10 used specimens.

Specimen BV/TV (%) DOA SMI

1 30.3 2.67 0.52

2 18.1 3.47 1.33

3 14.8 2.65 1.59

4 16.5 2.13 1.37

5 17.7 2.59 1.40

6 22.2 3.47 0.84

7 24.6 2.85 0.88

8 20.3 1.61 1.16

9 23.1 2.10 0.98

10 26.9 2.55 0.79

compression (Bayraktar and Keaveny, 2004). Linear isotropic
hardening corresponding to 5% of the undamaged elastic slope
(Wolfram et al., 2012; Sanyal et al., 2015) was used. At the
tissue level, damage evolution was assumed to be isotropic and
it was obtained from Schwiedrzik and Zysset (2013, 2015). The
maximum damage was capped at 0.9 (90% isotropic stiffness
reduction) to avoid numerical difficulties related to the loss of
positive-definiteness of the stiffness matrix; this was performed
by using

D(εp) = Dmax

(

1− e−kpε
p
)

(4)

where εp = ‖εεεp‖ is the accumulated plastic strain, Dmax is
the maximum damage, and kp is a parameter obtained from
Schwiedrzik and Zysset (2015).

The µFE simulations were run on a Cray XC30
supercomputer hosted by ARCHER (UK National
Supercomputing Service), with an in-house version of ParaFEM
(Smith et al., 2013; Levrero-Florencio et al., 2017b) which solves

implicit quasi-static finite strain elastoplasticity problems in a
highly scalable message passing interface-based (MPI) parallel
fashion. Each simulation took from 40 to 120 min when using
1,920 cores, depending on the considered load case, with biaxial
compression-compression load cases taking the longest. In order
to improve the convergence aspect of the local (constitutive
level, i.e., at each integration point) Newton–closest-point
projection method (Newton-CPPM), two additional schemes
were implemented: (a) a line search as in the primal-CPPM
scheme described in Pérez-Foguet and Armero (2002) and (b)
an improved trial predictor (Bićanić and Pearce, 1996; de Souza
Neto et al., 2008). In the latter scheme, if the first Newton-CPPM
fails to converge, it is restarted but this time with the initial
guess for stress as σσσ proj, which is the stress returned to the
frozen yield surface, i.e., no hardening or damage evolution. If
these two mechanisms do not work, to ensure that a possible
local lack of convergence does not influence the results of the
µFE simulations, lack of convergence of the CPPM scheme
is broadcasted to all MPI processes in order to cut down the
time increment to half of its value. The initial, and maximum,
step size corresponded to 0.1% macroscopic strain Frobenius
norm and was allowed to decrease to a minimum of 0.001%,
if global (structural level, i.e., the global stiffness matrix) or
local convergence was not achieved. The global solution scheme
employed was Newton-Raphson, and a Jacobi, or diagonally,
preconditioned conjugate gradients method was used as the
linear algebraic solver.

The macroscopic elastic stiffness tensor was calculated at
each time increment by using the homogenization procedure
described by van Rietbergen et al. (1995, 1996), in which the
macroscopic elastic stiffness tensor E is

E =
1

V

∫

�

(1− Dµ)Eµ : M dV , (5)
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which, in a FE setting, is equivalent to

E =
1

V

nels
∑

i=1

nips
∑

j=1

(1− Dµ ij)Eµ ij : Mij det(Jij)wj, (6)

and where V is the volume of the cubic region (5×5×5 = 125
mm3), Dµ is the damage at the solid phase, Eµ is the solid phase
undamaged stiffness tensor, nels is the total number of elements in
the considered mesh, nips is the number of integration points in
a trilinear hexahedron, det(Jij) is the determinant of the Jacobian
of the transformation from normal to natural coordinates, wj is
the weight of the corresponding integration point, and M is the
local structure tensor, which relates the solid phase strain εεεµ to
the average strain tensor εεε, such that

εεεµ = M :εεε. (7)

This tensorMwas determined by solving six completely linear FE
systems for six macroscopic uniaxial strain cases (three tensile or
compressive and three shear). For each of these cases, the tissue
strains calculated represent one of the six columns of the matrix
projection of M (Hollister and Kikuchi, 1992). The assumption
made was that the samples are aligned in their orthotropic axes
as they were aligned with the MIL fabric tensor eigenvectors
(Odgaard et al., 1997). Macroscopic strain points were defined
by using the 0.2% strain criterion (Wolfram et al., 2012; Levrero-
Florencio et al., 2017a), and it was extended to define further
0.3, 0.4, and 0.5% strain levels. The corresponding damaged
slope to calculate these strain points is determined at each time
step, depending on the load case. The following is an example
for the biaxial tensile case ε11 = ε22 > 0 (load case 10 in
Table 1). Since the macroscopic strains are small, the assumption
of linear kinematics can be considered at the macroscale; thus,
the homogenized infinitesimal stress can be obtained through the
macroscopic infinitesimal strain and the macroscopic stiffness
tensor, such as































σhom,11

σhom,22

σhom,33

σhom,12

σhom,13

σhom,23































=

















E1111 E1122 E1133 E1112 E1113 E1123
E2211 E2222 E2233 E2212 E2213 E2223
E3311 E3322 E3333 E3312 E3313 E3323
E1211 E1222 E1233 E1212 E1213 E1223
E1311 E1322 E1333 E1312 E1313 E1323
E2311 E2322 E2333 E2312 E2313 E2323















































ε11
ε22
0
0
0
0































=































E1111ε11 + E1122ε22
E2211ε11 + E2222ε22

0
0
0
0































,

(8)

where σσσ hom is the homogenized stress tensor, leading to

‖σσσ hom‖ =

√

E21111ε
2
11 + E21122ε

2
22 + E22211ε

2
11 + E22222ε

2
22, (9)

with the damaged slope being (note that in the considered biaxial
cases |εii| =

∣

∣εjj
∣

∣)

Kdam =

√

E21111 + E21122 + E22211 + E22222. (10)

3.2. Theoretical Framework of Damage
The previously described µFE simulations, together with the
homogenization-based multiscale procedure, were used to derive
the damaged macroscopic stiffness tensors of the considered
samples, for different load scenarios (Table 1) and load levels
(0.2, 0.3, 0.4, and 0.5% strain norm). These stiffness tensors
were used as data points for a minimization procedure
(described in the following subsections), which was used to
fit the macroscopic damage behavior to several theoretical
damage models: single scalar isotropic formulation, three scalars
anisotropic formulation, and isotropic/anisotropic combined
formulation with tension/compression asymmetry.

Coupled damage and plasticity were considered for the
µFE simulations. However, the focus of this study is on the
macroscopic damage behavior of trabecular bone and therefore
no plasticity is assumed at the macroscale. This is why, in the
following, the total strain εεε is used instead of the elastic strain εεεe.

3.2.1. Basic Concepts and Description of the

Baseline Model
Let us consider the theoretical framework of elastic degradation
by using state variables, from which the different damage
constitutive models are derived (Carol et al., 1994, 2002;
Murakami, 2012). The starting point of the theoretical framework
is the assumption of a Helmholtz free energy potential per unit
reference volume ψ of the considered material, from which the
state equations are derived. The free energy potential may be
expressed as

ψ(εεε,Dk,Rk) = ψe(εεε,Dk)+ ψ
D(Rk)

=
1

2
εεε : E(E0,Dk) :εεε +

1

2

l
∑

k=1

KkR
2
k, (11)

where εεε is the infinitesimal strain tensor, E and E0 are,
respectively, the damaged and undamaged stiffness tensors, Dk

are a set of l scalar damage variables; Rk and Kk are, respectively,
a set of l variables and l parameters controlling the size and
hardening of the (damage) dissipation potential functions Fk
(Equation 16).

Time derivative of Equation (11) yields

ψ̇ =
∂ψ

∂εεε
: ε̇εε +

l
∑

k=1

∂ψ

∂Dk
Ḋk +

l
∑

k=1

∂ψ

∂Rk
Ṙk, (12)

which, when used in the Clausius-Duhem inequality for
isothermal processes

σσσ : ε̇εε − ρ ψ̇ ≥ 0, (13)
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gives rise to the dissipation inequality

φ =

(

σσσ − ρ
∂ψ

∂εεε

)

: ε̇εε −

l
∑

k=1

ρ
∂ψ

∂Dk
Ḋk −

l
∑

k=1

ρ
∂ψ

∂Rk
Ṙk

=

l
∑

k=1

YkḊk +

l
∑

k=1

BkṘk ≥ 0, (14)

where ρ is the density of the considered material, σσσ = ρ
∂ψ
∂εεε

,

Yk = −ρ
∂ψ
∂Dk

, and Bk = −ρ
∂ψ
∂Rk

= KkRk.

The evolution equations of Dk and Rk are derived from the
corresponding dissipation potential functions Fk, leading to

Ḋk = γ̇k
∂Fk

∂Yk
; Ṙk = γ̇k

∂Fk

∂Bk
, (15)

where γ̇k are indeterminate multipliers. Since Fk also delimit
the undamaged region of the considered material, the non-
negativeness of Equation (14) is assured (Murakami, 2012).
Linear, a priori uncoupled, criteria for Fk are considered in this
study (each Dk is related to a single Fk), such that

Fk(Yk,Bk) = Yk − (Bk + Bk,0) = Yk − (KkRk + Bk,0) ≤ 0, (16)

where Bk,0 are the initial sizes of Fk, i.e., when Rk = 0. These
linear functions are considered for the sake of simplicity and also
because data on additional strain points is needed so that more
complex, non-linear, evolution expressions of the dissipation
potentials may be taken into account.

Energy equivalence is adopted here since it automatically
induces major symmetry in the stiffness and compliance tensors.
This leads to

ψe(εεε,Dk) =
1

2
εεε : E(E0,Dk) :εεε =

1

2
εεε : M

T(Dk) : E0 : M(Dk) :εεε

=
1

2
εεεeff(εεε,Dk) : E0 :εεεeff(εεε,Dk), (17)

where M is the fourth-order damage effect tensor which depends
on the considered damage formulation, and A

T is defined so that
A
T ≡ AT

ijkl
= Aklij.

3.2.2. Numerical Solution of the Damage Models
Equations (15, 16) are integrated with Backward Euler. Residual
equations for each of the variables to be sought can be
formulated, with a format similar to that of CPPM equations
of computational plasticity (Armero and Pérez-Foguet, 2002;
Pérez-Foguet and Armero, 2002), so that
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Dk,n+1 − Dk,n −1γk,n+1
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∂Bk

∣

∣

∣

n+1
Yk,n+1 − (KkRk,n+1 + Bk,0)















(18)

where n stands for the nth time increment, and the vertical bar
means “evaluated at”.

The resulting set of non-linear equations (Equation 18) can be
solved with a numerical scheme, for instance a Newton-Raphson
approach. The first step is to calculate the Jacobian of the system,
and therefore the residuals (Equation 18) are linearized, leading
to (time subscripts are dropped for convenience from now
onwards)
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0
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δjk −1γk
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∂Fk
∂Dj

+ dRk
∂Fk
∂Rk















. (19)

where δij =

{

0 if i 6= j

1 if i = j
is the Kronecker delta. The specific

expressions for the derivatives of the Jacobian are presented for
each of the considered damage models in the following sections.

The resulting Newton-Raphson scheme to solve for Dk, Rk,
and1γk is
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0









−1
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RD,k
RR,k
Fk







m

(20)

where m stands for the mth iteration of the Newton-Raphson
scheme.

3.2.3. Damage Models
This section describes the three main models, and their variants,
used in this study. The first two models, single scalar isotropic
model (section 3.2.3.1) and three scalars anisotropic model
(section 3.2.3.2) are mainly used to assess the BV/TV and
fabric eigenvalue dependencies of macroscopic damage models
of trabecular bone. The proposed model (section 3.2.3.3),
we believe, is a considerable improvement upon the usually
employed single scalar isotropic formulation.

3.2.3.1. Single scalar isotropic formulation
In this simple damage formulation a single scalar damage variable
D equally affects all the components of the stiffness tensor, i.e.,
all directions are equally affected by damage. The damage effect
tensor is

M = (1− D)Isym, (21)

where Isym = I⊗ I.
The Helmholtz free energy potential for this model is

ψ(εεε,D,R) =
1

2
εεε : (1− D)2E0 :εεε +

1

2
KR2, (22)

which leads to the following expressions for the conjugate
thermodynamic associated variables

σσσ = (1− D)2E0 :εεε

Y = −
1

2
εεε :

∂E

∂D
:εεε = εεε :(1− D)E0 :εεε

B = KR

(23)
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and to the following expressions for the derivatives in Equation
(20)

∂

∂D

∂F

∂Y
= 0

∂F

∂Y
= 1

∂F

∂D
=
∂Y

∂D
= −

1

2
εεε :

∂2E

∂D2
:εεε = −εεε : E0 :εεε

∂F

∂R
= −K.

(24)

BV/TV dependence is included in this model by defining K =

K0,iso ρ
o and B = B0,iso ρ

p, where ρ is the BV/TV of the
considered sample, and o and p are the exponents expressing the
BV/TV dependency.

3.2.3.2. Three scalars anisotropic formulation
In the anisotropic damage formulation a damage scalar for each
principal direction of the sample is considered (D1, D2, and D3),
meaning that each of these three orthogonal directions has a
different damage behavior (as previously stated, these orthogonal
directions are parallel to the axes of the cubic sample). Since the
range of post-elastic strains applied to the sample is relatively
small, it is assumed that no rotation of the orthotropic axes
occurs. The damage effect tensor is

M = (Isym − D), (25)

where

∂D

∂D1
=

















1 α α 0 0 0
α 0 0 0 0 0
α 0 0 0 0 0
0 0 0 β 0 0
0 0 0 0 β 0
0 0 0 0 0 0

















;
∂D

∂D2
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0 α 0 0 0 0
α 1 α 0 0 0
0 α 0 0 0 0
0 0 0 β 0 0
0 0 0 0 0 0
0 0 0 0 0 β

















;

∂D

∂D3
=

















0 0 α 0 0 0
0 0 α 0 0 0
α α 1 0 0 0
0 0 0 0 0 0
0 0 0 0 β 0
0 0 0 0 0 β

















. (26)

in which α and β are parameters which determine how the
components of the stiffness tensor are affected by the different
damage scalars.

The Helmholtz free energy potential is

ψ(εεε,Dk,Rk) =
1

2
εεε : E(E0,Dk) :εεε +

1

2

3
∑

k=1

KkR
2
k, (27)

which leads to the following expressions for the conjugate
thermodynamic associated variables

σσσ = E :εεε = [(Isym − D) : E0 :(Isym − D)] :εεε

Yk = −
1

2
εεε :

∂E

∂Dk

:εεε

Bk = KkRk

(28)

and to the following expressions for the derivatives in Equation
(20)

∂

∂Dj

∂Fk

∂Yk
= 0

∂Fk

∂Yk
= 1

∂Fk

∂Dj
=
∂Yk

∂Dj
= −

1

2
εεε :

∂

∂Dj

∂E

∂Dk

:εεε

∂Fk

∂Rk
= −Kk

∂E

∂Dk
= −

[

∂D

∂Dk

: E0 : M + M : E0 :

∂D

∂Dk

]

∂

∂Dj

∂E

∂Dk
=
∂D

∂Dk

: E0 :

∂D

∂Dj
+
∂D

∂Dj
: E0 :

∂D

∂Dk

(29)

Fabric eigenvalue dependencies are included in this model by
defining Kk = K0,anisom

q

k
and Bk = B0,anisom

r
k
, where mk is

the MIL fabric eigenvalue corresponding to the kth orthotropic
direction of the sample; and q and r are the exponents expressing
the fabric eigenvalue dependency.

3.2.3.3. Combined formulation with tension/compression

asymmetry
We propose a combined isotropic/anisotropic damage
formulation, which consists of four damage scalars: a single
scalar defines the isotropic part of the model (Diso); and three
scalars define the anisotropic part of the model, one for each
of the three orthotropic directions (D1, D2, and D3). As in the
previous cases, the isotropic damage scalar equally affects all
directions, while each of the three orthotropic damage scalars
only affect their corresponding orthogonal direction. It is
assumed that there is no rotation of the orthotropic axes. The
tension/compression asymmetry is included in the damage effect
tensor, such that

M = Isym − Diso −

3
∑

i=1

[1+ ηH(−mi · εεεmi)Daniso,i], (30)

where

Diso = (1− D)Isym, (31)

Daniso,i =
∂D

∂Di
Di (32)

with ∂D
∂Di

being defined in Equation (26), η is the parameter

governing the tension/compression asymmetry, mi is the ith

fabric tensor eigenvector, and H(·) is the Heaviside function
defined as

H(·) =

{

1 if (·) > 0

0 if (·) ≤ 0
. (33)
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The Helmholtz free energy potential for this model is

ψ(εεε,Dk,Rk) =
1

2
εεε : E(E0,Dk) :εεε +

1

2

4
∑

k=1

KkR
2
k, (34)

BV/TV and fabric eigenvalue dependencies are included in this
model by defining Kiso = K0,iso ρ

o; Kk,aniso = K0,aniso ρ
tm

q

k
, k ∈

{1, 2, 3}; Biso = B0,iso ρ
p; and Bk,aniso = B0,aniso ρ

umr
k
, k ∈

{1, 2, 3}, where o and p are the exponents expressing BV/TV
dependency of the isotropic part of the model; and t, u, q, and
r are, respectively the exponents expressing BV/TV and fabric
eigenvalue dependencies of the anisotropic part of themodel. The
rest of expressions in the model are the same to those in section
3.2.3.2.

3.3. Fitting of the Different Damage Laws
The different damage constitutive models described in the
previous section are fitted to the macroscopic damage response
obtained from the homogenization-based multiscale µFE
simulations. The constitutive laws were fitted by using a particle
swarm optimization scheme (particleswarm, MATLAB
R2017b, MathWorks Inc.), followed by a gradient-based scheme
(fmincon, MATLAB R2017b, MathWorks Inc.) to enhance
the final tuning of the parameters, as it is assumed that when
particleswarm finishes, the solution is already within the
proximity of a minimum. The minimization problem is thus
defined as

min

n
∑

i=1

(

‖[Epred(θs)− EµFE]‖i

)2
, (35)

where n is the number of samples×load cases×strain levels,
which means that the damage results for each sample, each
considered load case, and each considered strain level (i.e., 0.2,
0.3, 0.4, and 0.5%) are used in the parameter fitting procedure;
‖[Epred]‖ is the Frobenius norm of the matrix projection of the
damaged stiffness tensor predicted by the considered theoretical
damage model, ‖[EµFE]‖ is the Frobenius norm of the matrix
projection of the damaged stiffness tensor calculated through
homogenization, and θ are the s different parameters of the
considered damage model.

This minimization problem (Equation 35) involves the fitting
of parameters which govern the size of the damage dissipation
potentials (i.e., the surface containing the elastic regime, in
which damage does not develop; it is the damage analog to
the yield surface in plasticity), and therefore the solution of
the CPPM scheme may involve negative 1γk, which are not
physical solutions. The CPPM scheme is used in computational
plasticity and/or damage contexts to solve the corresponding
non-linear equations (Equation 20). If the loading state of a
sample is found within the elastic regime (i.e., inside of the
yield surface in a plasticity context, or inside the damage
dissipation potential in a damage context), no equations need
to be solved as plasticity and/or damage related quantities
would not further develop. Thus, these undesired values of
1γk will arise only if the loading state of the considered
sample is not outside of the damage dissipation potential. In

order to avoid these, the minimization problem is modified
with a penalty term to avoid such unwanted situations, such
that

min

n
∑

i=1

[(

‖[Epred(θs)−EµFE]‖i

)2
+

l
∑

k=1

H(−1γi,k)Kpen(e
|1γi,k|−1)

]

,

(36)

where Kpen is a large (penalty) constant.
The initial choice of a solver not based on gradients is because

the addition of this penalty term breaks the C1 continuity of
the functional to be minimized, and its global non-convexity
is assumed a priori. The specific choice of particle swarm
optimization over other methods not based on gradients, such as
genetic algorithm, is established on the superior computational
efficiency of particle swarm optimization over the genetic
algorithm (Panda and Padhy, 2008).

The goodness of the fitting procedure was analyzed with the
standard error of the estimate (SEE). This is calculated as

SEE(%) = 100

√

∑n
i=1(‖[Epred − EµFE]‖i)2

√

∑n
i=1(‖[Epred − E0]‖i)2

. (37)

4. RESULTS

4.1. Evaluation of the µFE Results
For all load cases in Table 1, the considered samples were
subjected to several strain levels, leading to different damage
levels. The resulting macroscopic damaged stiffness tensors
and the macroscopic strain Frobenius norms were measured
at 0.2, 0.3, 0.4, and 0.5% strain levels by using the 0.2%
strain criterion (Wolfram et al., 2012). This theoretically leads
to damage and macroscopic strain Frobenius norms being
evaluated, respectively, at 0–0.3% (with 0% being considered as
macroscopic yield) macroscopic plastic strain Frobenius norms.
The macroscopic strain Frobenius norms at 0.5% strain level for
each load case are shown in Figure 2 in the form of boxplots. It
can be seen from this figure that within each group (T, C, S, or
MA), higher macroscopic strain Frobenius norms correspond to
compression-dominated load cases (load cases 4–6, 13, 17, and
21 in Figure 2).

Damage is evaluated by subtracting the damaged stiffness
tensor from the undamaged stiffness tensor and calculating the
Frobenius norm of its matrix projection (‖[E0 − Edam]‖). The
values of these norms for each of the considered load cases
are shown in Figure 3; the damage shown corresponds to the
0.5% strain level. Due to the alignment of the samples and
ordering of their fabric eigenvalues (m1 > m2 > m3), it
can be seen from this figure that within each group (T, C,
S, or MA), higher damage values are seen where the fabric
tensor eigenvalues are the largest (i.e., load cases 1, 4, 7,
and 10–13 in Figure 3). Moreover, higher damage values are
also seen in load cases that are compression-dominated (load
cases 4–6, 13, 17 and 21). These higher damage values in
uniaxial compression, or in compressive-dominated multi-axial
load cases, compared to tension load cases indicate a possible
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FIGURE 2 | Boxplots showing the Frobenius norms of the macroscopic strain (‖εεε0‖) at 0.5% strain level, for each load case: uniaxial tension (T), uniaxial compression

(C), shear (S), and multi-axial in the normal strain XY plane (MAXY).

FIGURE 3 | Boxplots showing ‖[E0 − Edam]‖ at 0.5% strain level, for each load case: uniaxial tension (T), uniaxial compression (C), shear (S), and multi-axial in the

normal strain XY plane (MAXY).

tension/compression asymmetry in the damage behavior at the
macroscopic level. It is important to mention that, although
damage values were measured at the same strain levels according
to the 0.2% strain criterion, the macroscopic strain Frobenius
norms (Figure 2) were considerably larger in compression than
in tension.

Multi-linear regressions in log-log space were performed to
establish possible relationships between damage and the micro-
architectural indices of the considered samples. These regressions
were between ‖[E0 − Edam]‖ at 0.5% strain level, BV/TV,

fabric eigenvalues andmacroscopic strain Frobenius norms, such
as

log(‖[E0 − Edam]‖) = A+ B log(BV/TV)+ C log(m1)

+D log(m2)+ E log(‖εεε0‖) (38)

where m1 and m2 are the fabric eigenvalues corresponding to
directions 1 and 2 (only shear andmulti-axial load cases have two
directions); A, B, C, D, and E are the constants in the regression.
These regressions were performed separately for the following
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TABLE 3 | Results from the multi-linear regressions between ‖[E0 − Edam]‖ at

0.5% strain level, BV/TV, fabric eigenvalues, and macroscopic strain Frobenius

norms, in log-log space.

Load case B (MPa) C (MPa) D (MPa) p-value (BV/TV) p-value (mk ) R2

T 1.50 0.31 → 0 0.004 0.91

C 2.03 0.36 → 0 0.002 0.90

T∪C 1.76 0.66 → 0 → 0 0.90

S 1.99 0.53 0.45 → 0 0.001 0.79

MA 1.71 0.62 0.15 → 0 0.001 0.63

Regressions were performed for uniaxial tension (T), uniaxial compression (C), combined

uniaxial tension and uniaxial compression (T∪C), shear (S), and multi-axial (MA) in normal

strain space.

sets of load cases: uniaxial tension, uniaxial compression,
combined uniaxial tension and uniaxial compression, shear, and
multi-axial load cases in normal strain space. The results from
these regressions can be seen in Table 3. Table 3 shows that
both BV/TV and fabric eigenvalues have a significant effect
(p ≤ 0.05), and that damage expressed as per Equation (38)
is directly proportional to the micro-architectural indices, with
the slopes for BV/TV being substantially larger than those for
the fabric eigenvalues. The coefficients of determination (R2)
show that only the multi-linear model of the multi-axial load
cases in normal strain space behaves poorly in comparison to
the rest.

The component-wise fraction between the matrix projection
of E0 − Edam at 0.5% strain level and the matrix projection of
E0 (i.e., the i-th and j-th component of E0 − Edam is divided by
the i-th and j-th component of E0) leads to the 6× 6 matrix with
components

[D]ij =
[E0 − Edam]ij

[E0]ij
. (39)

This matrix depicts the component-wise ratio of the damaged
and undamaged coefficients for each sample and load case.
The component-wise mean of [D]ij over all the considered
samples was calculated and then normalized from 0 to 1 for
each of the considered load cases, forming another 6 × 6 matrix
(e.g., the new matrix i-th and j-th component is the mean
of the Dij components of all the samples); the components
in E0 which are zero are ignored and not considered in
the normalization, i.e., the non-orthotropic coefficients. The
resulting 21 normalized matrices are shown in Figure 4. These
plots suggest that macroscopic damage in trabecular bone is
actually anisotropic and dependent on the considered load case.
In uniaxial tensile and compressive load cases, it can be observed
that the normal components of the stiffness tensor which are
related to the considered load case are the most affected ones
(e.g., in the load case ε11 > 0, components E1111, E1122,
E1133, and the corresponding symmetric counterparts are more
affected than the rest). In shear load cases, the corresponding
shear component is the most affected one. Considering multi-
axial load cases in normal strain space we find that in tension-
tension and compression-compression load cases, the most

affected components are in the off-diagonals of the matrix—
the components that are related to the plane which is being
loaded (e.g., in the load case ε11 = ε22 > 0, components
E1122 and E2211 are more affected than the rest); in tension-
compression/compression-tension load cases, the most affected
components are in the matrix diagonal - the components that are
related to the plane which is being loaded (e.g., in the load case
ε11 = −ε22 > 0, components E1111 and E2222 are more affected
than the rest).

4.2. Effect of BV/TV and MIL Fabric Tensor
on the Damage Behavior
The effect of BV/TV and fabric on the macroscopic damage
behavior of trabecular bone was assessed by (1) considering the
single scalar isotropic damage model in section 3.2.3.1 with and
without considering the effect of BV/TV and then comparing
the respective values of SEE; and (2) considering the anisotropic
damage model in section 3.2.3.2 with and without considering
the effects of BV/TV and fabric eigenvalues and then comparing
the respective values of SEE. In the anisotropic scenario, in
the case in which fabric eigenvalues were not included, the
order of fabric eigenvalues was randomized to maximise the
effect of including fabric in the comparison (the ordering no
longer corresponds to m1 > m2 > m3; the corresponding
stiffness and strain tensors were reordered accordingly). The
minimization scheme was run for five times to ensure that a
suboptimal solution was not chosen. This comparison is shown in
Table 4.

Note that the values of SEE of the anisotropic cases are
not considerable lower than those of the isotropic cases. This
is because even if the damage is higher in the components
related to the considered load case, all the components of the
stiffness tensor are damaged, and ‖[E0 − Edam]‖ takes into
account the reduction of all the components of the stiffness
tensor. The exponents that express BV/TV dependency are
considerably larger than those expressing fabric eigenvalue
dependency.

4.3. Macroscopic Damage Model for
Trabecular Bone
A damage model which incorporates both isotropic/anisotropic
damage progression and tension/compression asymmetry was
implemented and its efficacy in evaluating the macroscopic
damage behavior of trabecular bone was assessed. BV/TV
and fabric eigenvalue dependencies were considered; BV/TV
dependency was included in the isotropic part of the model while
both BV/TV and fabric eigenvalue dependencies were included
in the anisotropic part. Tension/compression asymmetry was
included as shown in section 3.2.3.3. The SEE and the value of
the parameters of the model are shown in Table 5.

This considered model reduces the SEE in more than
15% with respect to the single scalar isotropic model (SEE
= 37.03%). Despite the 13 parameters, a considerably larger
number in comparison with the two parameters of the
isotropic model, the values of some of these parameters
suggest that not all of them need to be considered. For
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FIGURE 4 | Graphical representation of the normalized component-wise means of [D]ij . The represented load cases are shown in Table 1: (A–C) correspond to

uniaxial tension, (D–F) correspond to uniaxial compression, (G–I) correspond to shear, and (J–U) correspond to multi-axial in normal strain space.

instance, the value of B0,aniso is very small, which means that
these parameters, together with the corresponding exponents
expressing BV/TV and fabric eigenvalue dependencies (u and
r) could be ignored, reducing the number of parameters to
10. It is important to point out the negative values of η and
B0,iso.

5. DISCUSSION

The macroscopic damage behavior of trabecular bone has been
researched in a few studies, but these are usually restricted to

uniaxial load scenarios which only permit the assessment of
stiffness reduction in the direction of loading (Keaveny et al.,
1994b; Zioupos et al., 2008; Garcia et al., 2009). Consequently
these studies are unable to provide a comprehensive constitutive
model that can be included in whole-bone simulations. This
study investigated the possible relationship between damage
at the tissue level and the macroscopic multi-axial damage
behavior, by employing a homogenization-based multiscale
approach to samples with a relatively wide range of BV/TV
and fabric tensor eigenvalues, subjected to multiple loading
scenarios. The macroscopic damage behavior of trabecular
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TABLE 4 | SEEs, BV/TV, and fabric eigenvalue exponents for the isotropic and

anisotropic models.

Model SEE (%) Exp K0 · BV/TVk Exp B0 · BV/TVk Exp K0 ·mk
2 Exp B0 ·mk

1

1 37.03

2 33.03 1.71 1.35

3 35.21

4 32.05 1.71 2.35

5 34.06 0.51 0.37

Models 1 and 2 are isotropic with and without BV/TV dependency, respectively; models

1, 2, and 3 are anisotropic and: (1) without BV/TV and fabric eigenvalue dependencies,

(2) with BV/TV dependency only, and (3) with fabric eigenvalue dependency only.

TABLE 5 | Value of the parameters and SEE of the combined isotropic/anisotropic

model with tension/compression asymmetry.

Parameter Value

K0,iso 211.59

B0,iso −1.77

p 1.98

l 1.31

α 0.12

β 0.29

η −0.25

B0,aniso 0.00

K0,aniso 160.62

u 4.01

r 3.70

t 1.75

q 0.94

SEE (%) 21.68

bone was approximated via different continuum damage
models: isotropic and anisotropic; with and without BV/TV
and fabric eigenvalue dependencies; and with and without
tension-compression asymmetry. From the results, it can
be concluded that the macroscopic damage behavior of
trabecular bone has the following features: BV/TV and fabric
eigenvalue dependencies; tension/compression asymmetry;
a combined isotropic/anisotropic behaviour. The first two
of these features are not unexpected as they play a key
role in the evaluation of elastic stiffness (Odgaard et al.,
1997; Zysset, 2003), however, the previously unexplored,
last feature indicates that damage in trabecular bone is
best represented by using both isotropic and anisotropic
damage variables. This is likely to be true for most cellular
materials.

This study assumed an isotropic model with coupled
damage and plastic behavior at the tissue level, which was
deemed appropriate as the isotropy assumption at this level
is known to result in little to no error in macroscopic
results (Cowin, 1997). Isotropic damage at the solid phase
level leads to an anisotropic macroscopic damage response
with a dependency on the considered load case (Levrero-
Florencio et al., 2017a). The variation in the components of the

stiffness tensor shows anisotropic damage which depends on
the considered load case (Figure 4). Shi et al. (2010) suggested
that there is a larger proportion of damaged tissue in the
longitudinal trabeculae (direction of loading) for uniaxial load
cases, which is in agreement with the results presented here,
as the most damaged components of the macroscopic stiffness
tensor are always the on-axis components. An issue which
may make validation of these results very challenging is the
use of kinematic uniform boundary conditions; these boundary
conditions are extremely difficult, not to say impossible, to
reproduce experimentally, especially for the more complex load
cases. Most previous studies involving damage in trabecular bone
have used isotropic models (Garcia et al., 2009; Schwiedrzik
and Zysset, 2013), which may be acceptable for proportional
loading scenarios, but not for changing loads or cyclic
loading scenarios, such as those arising during physiological
activities.

The results show that the macroscopic strain Frobenius
norms were considerably larger in macroscopic compression
than in macroscopic tension. This is important in the considered
context of damage modeling as the thermodynamic stress-like
variables governing damage evolution (Yk) directly depend
on the macroscopic strain values, which could explain the
higher damage values in compression without the explicit
need of modeling tension/compression asymmetry. However,
this asymmetry is taken into account because it still leads
to a better fit of the damage model and it only consists of
one additional parameter. The fact that damage values are
higher in compression-dominated load cases compared to
tension load cases could be related to the more heterogeneous
stress distributions at the solid phase level occurring during
macroscopic compression, which includes tensile stresses at
the tissue level due to bending and buckling of trabeculae
(Stölken and Kinney, 2003). Another important factor
to take into account is that the considered model at the
tissue level is ductile (i.e., fracture is not incorporated).
If fracture was considered at a critical damage threshold,
the tension/compression asymmetry would probably be
different as tissue damage is more diffused in compression
than in tension (Lambers et al., 2014), and therefore a
significant decrease of load carrying capacity would occur
in tension.

The variation in the components of the stiffness tensor
shows anisotropic damage which depends on the considered
load case (Figure 4). Shi et al. (2010) suggested that there
is a larger proportion of damaged tissue in the longitudinal
trabeculae (direction of loading) for uniaxial load cases, which
is in agreement with the results presented here, as the
most damaged components of the macroscopic stiffness tensor
are always the on-axis components. An issue which may
make validation of these results very challenging is the use
of kinematic uniform boundary conditions; these boundary
conditions are extremely difficult, not to say impossible, to
reproduce experimentally, especially for the more complex load
cases. Most previous studies involving damage in trabecular bone
have used isotropic models (Garcia et al., 2009; Schwiedrzik
and Zysset, 2013), which may be acceptable for proportional
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loading scenarios, but not for changing loads or cyclic
loading scenarios, such as those arising during physiological
activities.

Multi-linear regressions between ‖[E0 − Edam]‖, BV/TV,
fabric eigenvalues and macroscopic strain Frobenius norms
(from Table 3). It shows that both BV/TV and fabric eigenvalues
are statistically significant. The coefficients of determination
suggest that only the regression of ‖[E0 − Edam]‖ of the
multi-axial load cases in normal strain space behaved poorly in
comparison to the others. The slopes of BV/TV are significantly
higher than those of fabric eigenvalues, suggesting that BV/TV
plays a more important role in these regressions; they also
suggest that the higher the BV/TV and fabric eigenvalues,
the higher the damage is. Results in Levrero-Florencio et al.
(2017a) showed that the damage in the orthotropic coefficients
of the macroscopic stiffness tensors do not have significant
dependencies on BV/TV or fabric, for each of the considered
load cases. In this study the Frobenius norm ‖[E0 − Edam]‖
is used instead, which takes into account the damage of all the
components of the macroscopic stiffness tensor. Therefore, the
slopes and p-values in Table 3 suggest that lower BV/TV samples
have a more anisotropic damage behaviour in the sense that the
longitudinal trabeculae are more damaged than the oblique, and
that higher BV/TV samples have a more isotropic behavior, or
are more damaged in general. Even if fabric eigenvalues have a
significant effect on ‖[E0−Edam]‖, the considerably lower slopes
suggest that their relevance is significantly lower than that of
BV/TV.

The standard errors of the estimate (SEE) and the exponents
with respect to BV/TV and fabric eigenvalues of five different
damage models indicate that the SEEs are not substantially
different in all these considered models, this is because, despite
the anisotropic damage behavior, all the components of the
stiffness tensor are damaged (Levrero-Florencio et al., 2017a),
suggesting that while a combined isotropic and anisotropic
model is most suitable for simulating the macroscopic damage
behavior of trabecular bone, an isotropic model is not necessarily
poor. The SEEs of the models with dependencies are not
substantially lower to those without the dependencies, suggesting
that the considered BV/TV and fabric eigenvalue dependencies
may not be needed. Nonetheless, the results of the multi-linear
regressions (Table 3) show significance of BV/TV and fabric
eigenvalues when modeling damage. Furthermore, since these
five assessed damage formulations only partially model some of
the features of the macroscopic damage behavior of trabecular
bone mentioned earlier, the dependencies are maintained in the
combined isotropic/anisotropic model with tension/compression
asymmetry.

It is apparent that the model with a combined
isotropic/anisotropic behavior and tension/compression
asymmetry is a substantial improvement over the single scalar
damage formulation since the SEE is reduced by more than
15% (Table 5). Nonetheless, it is important to mention that
this model has 13 parameters instead of 2, though the value
of the parameter B0,aniso indicates that this parameter and the
associated exponents expressing BV/TV and fabric eigenvalue
dependencies can be ignored. The negative value of η suggests

that if tension-dominated cases had similar strains to those in
compression-dominated cases, the damage values would be
higher in tension, as a negative value of η implies crack-closure,
which is expected as bone could be considered a quasi-brittle
material (Hambli, 2013; Mayya et al., 2016). The negative value
of B0,iso suggest that, when modeling the damage progression
with a linear model, there is an initial presence of damage, which
has been previously observed in Levrero-Florencio et al. (2017a)
(the intercepts of the y-axis of the damage-accumulated plastic
strain plots are not zero).

This study has a number of limitations. As previously
mentioned, bone at the solid phase level is assumed to be ductile,
i.e., while reduction in stiffness due to damage is included,
fracture is not. This is perhaps appropriate for the considered
level of loading, but it is indeed not applicable if large strains are
applied, as complete fracture of trabeculae can occur. Nawathe
et al. (2013) shows that ductile tissue behavior overestimates
the experimental yield properties. Another limitation, previously
stated in Levrero-Florencio et al. (2017a), is that although there
is plenty of experimental data on uniaxial load cases (Keaveny
et al., 1997; Bayraktar and Keaveny, 2004; Sanyal et al., 2012;
Manda et al., 2016), these physical experiments do not allow
evaluation of stiffness for samples subjected to different load cases
and the effect of loading in one direction on the behavior in
the others. Therefore, a study completely based on numerical
simulations is the only alternative even though the results cannot
be currently validated experimentally. The use of kinematic
uniform boundary conditions in the µFE analyses could also
be considered a limitation, as they are known for providing an
upper bound of the stiffness tensor (Pahr and Zysset, 2008; Wang
et al., 2009) or macroscopic yield (Panyasantisuk et al., 2015), and
may also affect the damage morphology when compared to the
in situ case (Daszkiewicz et al., 2017). We also assume that the
orthotropic directions do not rotate during loading, which may
be a valid assumption for the considered range of strains.

Use of a large number of load cases (21) and samples (10)
shows that the evolution of the damaged macroscopic stiffness
tensor is based on the loading history. By examining relationships
between bone microstructural indices (such as BV/TV and
fabric) with macroscopic damage constitutive laws, we show that
the proposed combined isotropic/anisotropic damage law with
tension/compression asymmetry is a viable superior alternative
to the widely used single scalar isotropic damage formulation
as it reduces the fitting error from 37 to 22%; it does, however,
require specification of a larger number of material parameters.
The relationships of damage progression with bone’s micro-
architectural indices (density and fabric) developed in this study
provide an approach for the creation of macroscale continuum
models that incorporate damage and will, therefore, improve
clinical predictions of the behavior of bone and bone-implant
systems.
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