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Quantifying and mitigating bias in inference on gravitational wave source populations

Jonathan R. Gair1, ∗ and Christopher J. Moore1, †

1Institute of Astronomy, Madingley Road, Cambridge, CB30HA, United Kingdom
(Dated: February 12, 2018)

When using incorrect or inaccurate signal models to perform parameter estimation on a gravita-
tional wave signal, biased parameter estimates will in general be obtained. For a single event this
bias may be consistent with the posterior, but when considering a population of events this bias
becomes evident as a sag below the expected diagonal line of the P-P plot showing the fraction of
signals found within a certain significance level versus that significance level. It would be hoped
that recently proposed techniques for accounting for model uncertainties in parameter estimation
would, to some extent, alleviate this problem. Here we demonstrate that this is indeed the case.
We derive an analytic approximation to the P-P plot obtained when using an incorrect signal model
to perform parameter estimation. This approximation is valid in the limit of high signal-to-noise
ratio and nearly correct waveform models. We show how the P-P plot changes if a Gaussian process
likelihood that allows for model errors is used to analyse the data. We demonstrate analytically and
using numerical simulations that the bias is always reduced in this way. These results provide a way
to quantify bias in inference on populations and demonstrate the importance of utilising methods
to mitigate this bias.

I. INTRODUCTION

In the coming years it is expected that the advanced
era ground-based gravitational wave (GW) detectors that
are now coming online (such as advanced LIGO [1] and
advanced Virgo [2]) will begin to make routine measure-
ments of GWs from a variety of sources. Later in this
decade, pulsar timing arrays could also begin to detect
sources of nanohertz gravitational waves [3–6] and there
are ambitious plans for a space-based gravitational wave
detector (eLISA [7]) operating in the millihertz band,
that with be launched by ESA around 2034. Inferences
about source parameters in this new era of GW astron-
omy will rely on the availability of detailed signal mod-
els for the sources. The calculation of accurate mod-
els is computationally prohibitive, however, so approx-
imate models will be used for inference, which will, in
general, lead to biases in the parameter estimates ob-
tained. This can lead one to make incorrect inferences
about individual sources as well as incorrect inferences
about astronomical populations of sources. The bias due
to incorrect models becomes more important for louder
sources. eLISA is expected to observe the inspiral and
merger of supermassive black holes at signal-to-noise ra-
tios of O(103). The impact of parameter bias has been
shown to be even more significant in this case [8].

A common way to quantify the performance of param-
eter estimation is via the probability-probability (P-P)
plot. The P-P plot shows the probability that the true
source parameters will lie in a given confidence inter-
val estimated from the detector data, against the value
of the confidence interval. In the ideal, unbiased, case
the P-P should be a diagonal line; i.e., x% of the time

∗ jrg23@ast.cam.ac.uk
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the true source parameters should lie with the x% con-
fidence interval. However, there are a variety of ef-
fects that can cause the P-P plot to deviate from this
ideal. For example, use of a greedy algorithm to build
a multi-dimensional confidence interval from a kD-tree
constructed from a random sample of points from a dis-
tribution (this problem was discussed in the context of
sky-localisation by [9]), deviations between the waveform
model and the true signal due to a breakdown of gen-
eral relativity (GR) in the strong field (the case of un-
detectable deviations from GR, the so-called “stealth-
bias”, was considered in [10]), and mis-estimating the
noise properties of the detector can all cause the P-P plot
to deviate from a ideal diagonal line. However, the cause
of biased parameter estimation that we will consider in
this paper is the presence of inaccuracies in the waveform
model used to analyse the data [8]. If such a systematic
error is present the returned confidence intervals from a
parameter estimation study will be shifted away from the
true parameters making it less likely that the confidence
interval contains the true parameters. Therefore the P-P
plot will “sag” below the ideal diagonal line.

Recently [11] the authors proposed a marginalised like-
lihood which uses Gaussian processes (GPs) to fold in
extra information from a small training set of accurate
waveforms, e.g. numerical relativity (NR) waveforms.
Accurate here refers to how well these waveforms rep-
resent solutions of the GR field equations. Numerical
relativity waveforms are not perfectly accurate, but they
are the best solutions currently available and inaccuracies
in them can be folded into the GP analysis. If astrophys-
ical gravitational waves are governed by a theory other
than general relativity, these waveforms will not be ac-
curate representations of reality. This will also lead to a
bias, but one that is harder to quantify without knowing
the true theory of gravity. Here we proceed assuming GR
is correct and look only at biases from model uncertain-
ties. Once observations are made this assumption could
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be revisited if evidence arises for departures from GR.
The GP marginalised likelihood in general shifts the

best fit parameters closer to the true parameters and
broadens the peak in the posterior, making it more likely
that a given confidence contour contains the true param-
eters. Therefore, it would be expected that parameter es-
timates obtained using the marginalised likelihood would
exhibit less of a bias, and the P-P plots would exhibit
less of a “sag”. However, the Gaussian process regression
(GPR) which underlies the marginalised likelihood makes
some assumptions about how the error in the waveform
model varies over parameter space. In this paper, we
investigate the P-P plots both in the case where these
assumptions turn out to be correct, and, more impor-
tantly, when they are incorrect.

There are two main results in this paper. The first is a
derivation of an analytic expression for the expected sag
in a P-P plot arising from waveform uncertainties. This is
derived under the assumption that the waveform error is
small so that we can use the linear signal approximation.
The second is that the use of the marginalised likelihood
constructed via Gaussian process regression to analyse
data leads to a reduction in the size of the deviation
from the diagonal line. The sag is removed completely if
the true waveform errors are drawn from the same model
used to construct the marginalised likelihood. However,
even when the errors follow a different distribution, the
marginalised likelihood leads to a reduction in the sag.

This paper is organised as follows. Sec. II provides a
recap of and quotes some necessary results about GW
parameter estimation, and introduces the marginalised
likelihood. Sec. III derives analytic expressions for the
P-P plots for both the standard and marginalised likeli-
hoods for a variety of possible waveform errors. Sec. IV
describes the numerical simulations that were performed
to back-up the analytic results in Sec. III. Finally Sec.
V contains a discussion of the results and concluding re-
marks.

II. PARAMETER ESTIMATION

We assume that the source of GWs is fully specified

by a parameter vector ~λ, and that the true waveform

model is h(t;~λ) (hereafter the dependence of h on time t is
supressed for clarity). The aim of a parameter estimation
study given measured data s, is to estimate the posterior

probability on the parameters, P (~λ|s). This is given from

Bayes theorem (Eq. 1) by the likelihood, P (s|~λ) ≡ L′(~λ),

the prior, P (~λ), and the normalising Bayesian evidence

Z =
∫

d~λP (~λ)L′(~λ);

P (~λ|s) =
P (~λ)L′(~λ)

Z
. (1)

As this paper concerns parameter estimation, and not
model selection, we will not discuss the evidence further,

since for any given source, this just enters as a normali-
sation factor for the posterior. In the case of stationary,
Gaussian, additive noise n in the detector the measured

data is given by s = h(~λ0) +n and the likelihood is given
by

L′(~λ) ∝ exp

(
−1

2

〈
s− h(~λ)

∣∣s− h(~λ)
〉)

, (2)

Where 〈·|·〉 denotes the usual noise-weighted inner prod-
uct 〈

a
∣∣b〉 =

∫ ∞
−∞

ã∗(f)b̃(f)

Sn(f)
df . (3)

In Eq. (3), Sn(f) is the (two-sided) noise power spectral
density in the detector.

In general we do not have access to the true wave-

form model h(~λ), at least not at a reasonable computa-
tional cost. Highly, but not totally, accurate NR wave-
forms have recently started to become available [12], and
slightly less accurate (but computationaly cheaper) ex-
tended analytic models such as (S)EOBNR [13] are also
available. However, these are too computationally expen-
sive to use in routine parameter estimation studies, which
typically require many thousands of likelihood evalua-
tions. Instead, we must make use of cheaper but less
accurate waveforms, such as post-Newtonian (PN) [14]),
or numerical “kludge” models [15]. Denoting the approx-

imate waveform model by H(~λ), the approximate likeli-
hood obtained when using this model is given by

L(~λ) ∝ exp

(
−1

2

〈
s−H(~λ)

∣∣s−H(~λ)
〉)

. (4)

In general, posterior distributions obtained from this like-
lihood will not agree with posterior distributions ob-
tained from the exact likelihood in Eq. (2). Denote by
~λexact the best fit parameters obtained from Eq. (2) and
~λapprox the best fit parameters obtained from Eq. (4).
If both the waveform difference and the parameter shift

∆~λ ≡ ~λapprox − ~λexact are small quantities, O(ε), then
an approximate expression for the shift in the parame-
ters can be found by expanding in ε. The shift in best-fit
parameters to linear order in ε was obtained in [8] as

∆~λ ≡ ∆~λ1 where

∆λa1 = −
(
Σ−1

)ab 〈δh(~λ0)|∂bH(~λ0)〉 , (5)

Σab =
〈
∂aH(~λ)|∂bH(~λ)

〉
, and ∂a = ∂/∂λa|~λ=~λ0

. For

completeness we include a derivation of this result, and
an extension of it to quadratic order, in Appendix A).

From Eqs. (5) and (A6) it can be seen that the sys-
tematic shift in parameters caused by using the approxi-
mate likelihood is independent of the signal-to-noise ratio
(SNR). This fact was observed in [8], and since the statis-
tical errors that arise from detector noise decrease with
increasing SNR this means that the systematic shift is
most important for the loudest sources.
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When using the approximate likelihood in Eq. (4) to
characterise a single source one would usually use the
condition that the systematic error due to the model un-
certainty is less than the random error arising from noise
to determine if the model is “good enough”. This condi-
tion ensures that the true parameters will be consistent
with the posterior — the amount by which the system-
atic error shifts the peak of the posterior is less than the
typical posterior width. However, whilst this condition
ensures that the true parameters will always be consis-
tent with the posterior, on average they will be further
from the centre of the posterior and hence lie at a lower
significance than they should. This starts to become im-
portant when observing a population of sources (as we
hope will be the case for Advanced LIGO). Even small
systematic shifts may lead one to make incorrect infer-
ences about the properties of the population. This can
be understood by imagining that we observe a NS-NS
binary with identical astrophysical parameters n inde-
pendent times with Advanced LIGO. The error in the
combined estimate for the mean mass of the population
is the error in each measurement divided by

√
n. There-

fore even if the systematic model error is insignificant for
making inferences regarding a single binary it becomes in-
creasingly significant for inferences regarding populations
as new sources are added. The importance of the model
errors for LIGO observations of NS-NS binaries was con-
sidered by [16]. Model error effects could also be seen in
the parameter estimation analysis of the “big-dog” blind
injection. In that case, the recovered masses for the com-
pact binary injection were significantly biased (in part)
by the fact that different signal models were used for
the injection and parameter estimation [17]. This indi-
cates the importance of considering how to incorporate
model uncertainties in parameter estimation before the
advanced detector era begins. A detailed investigation
of parameter estimation on various injections into data
from the LIGO/Virgo interferometers and employing a
range of different models for the analysis was carried out
in [18]. These results clearly show how the analysis of the
same data using two different models can give mutually
inconsistent results.

The recently proposed marginalised likelihood ([11])
attempted to account for the systematic error in the pos-
terior, and hence remove the bias. The approximate like-
lihood is constructed by including information from a
small training set of accurate waveforms computed of-
fline;

D =
{

(~λi, δh(~λi))|i = 1, 2, . . . , n
}
, (6)

in which δh(~λ) ≡ H(~λ) − h(~λ) denotes the difference
between the approximate waveform and the true wave-
form. GPR assumes that the waveform differences in the
training set are a realisation of a Gaussian process with

covariance function k(~λ,~λ′) over the parameter space ~λ.
Different covariance functions may be considered and the
evidence for the Gaussian process can be maximised with

respect to variations in the parameters of the covariance
function: this process of optimising the covariance func-
tion is called “training”, and it enables the Gaussian pro-
cess to “learn” the properties of the waveform differences
in D. The Gaussian process, once trained, may then be
used to interpolate the waveform difference across param-
eter space. As we are not interested in the actual wave-
form difference, but rather in its effect on the posterior,
the GPR interpolation is used as a prior to analytically
marginalise over the unknown waveform difference. The
resulting expression for the marginalised likelihood is [11]

L(~λ) ∝
exp

(
− 1

2

〈
s−H(~λ)+µ(~λ))

∣∣s−H(~λ)+µ(~λ))
〉

1+σ2(~λ)

)
√

1 + σ2(~λ)
, (7)

where the GPR quantity µ(~λ) is the mean waveform dif-

ference and σ2(~λ) is the error in this GPR estimate;

µ(~λ) = k(~λi, ~λ) inv
(
k(~λi, ~λj)

)
δh(~λj) , (8)

σ2(~λ) = k(~λ,~λ)− k(~λi, ~λ)inv
(
k(~λi, ~λj)

)
k(~λj , ~λ). (9)

For more details on the technique of Gaussian process
regression see (for example) [19, 20] and for more details
of the marginalised likelihood see [11].

III. ANALYTIC CALCULATION OF THE P-P
PLOT

In the limit of high SNR the posterior probability dis-
tribution obtained in the analysis of data from a detector
will be strongly peaked in the vicinity of the true param-
eters. Within the vicinity of this peak it is reasonable to
expand both the exact and approximate signal models in
the usual linear signal approximation (LSA), i.e.

h(~λ) = h(~λ0) + ∆~λa∂ah(~λ0) ,

H(~λ) = H(~λ0) + ∆~λa∂aH(~λ0) . (10)

where ~λ0 denotes the parameter values of the true sig-

nal, ~λ denotes the parameter values at which we want to

evaluate the signal or likelihood and ∆~λ = ~λ− ~λ0. This
LSA is the usual approximation made in the derivation
of the Fisher Matrix and the approximation used in the
derivation of Eqs. (5) and (A6).

We are interested in predicting the “sag” that would
be expected in a P-P plot. If we use an approximate
waveform model to compute the posterior, then we would
expect some bias in the recovered parameters and a sag
in the P-P plot - on average the true parameters would
be further away from the peak of the posterior than we
would expect, and so fewer injections would be recovered
at a given significance level.
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A. The exact likelihood

The exact likelihood, by definition, will give a diagonal
unbiased P-P plot. However we will re-derive this obvious
result to shed light on the calculations that follow.

The Exact Likelihood is given by Eq. (2). The mea-
sured data is assumed to consist of a signal with true pa-

rameters ~λ0 and additive Gaussian noise; s = h(~λ0) + n.
In the limit of high SNR, the difference between two
nearby signals in parameter space may be expanded us-
ing the LSA,

L′(~λ) ∝ exp

(
−1

2

〈
n−∆λa∂ah

∣∣n−∆λa∂ah
〉)

, (11)

= exp

(
−1

2

[〈
n
∣∣n〉− 2∆λa

〈
n
∣∣∂ah〉+ ∆λa∆λbSab

])
,

where the exact Fisher matrix is Sab = 〈∂ah|∂bh〉. Since
the Fisher matrix is symmetric by construction, we may

adopt new coordinates in parameter space ∆̃λ
a

= Qab∆λb

such that the Fisher matrix in these coordinates becomes
diagonal, Sab = QpaQ

q
bδpq. This amounts to rescaling

the coordinate axes such that the iso-probability contour,
which originally was an n-ellipsoid, becomes an n-sphere.
Derivatives with respect to the new coordinates will be
denoted with a tilde, ∂ah = Qba∂̃bh. In these new coordi-
nates the likelihood separates to become

L′(~λ) ∝
∏
x

exp

(
−1

2

(
∆̃λ

x
−
〈
n
∣∣∂̃xh〉)2

)
. (12)

In order to exploit the spherical symmetry about
the peak in the rescaled parameters we adopt
(n-dimensional) spherical coordinates centred
on the peak; the radial coordinate given by

r2 =
∑
x(∆̃λ

x
− < n|∂̃xh >)2. The significance

of the true parameters is given by the volume of the
posterior that is “closer to the peak”, i.e., that has
higher posterior weight than the true parameters,

sig =

∫ R
0

dr rN−1 exp(−r2/2)∫∞
0

dr rN−1 exp(−r2/2)

= 1−
Γ
(
N
2 ,

R2

2

)
Γ
(
N
2

) = 1− Γ̄

(
N

2
,
R2

2

)
, (13)

where Γ(x, y) is the incomplete Gamma function,

Γ(x, y) =

∫ ∞
y

tx−1e−tdt , (14)

Γ(x) = Γ(x, 0) is the complete Gamma function, and
Γ̄(x, y) is the regularised incomplete gamma function de-
fined via the last equality in Eq. (13). In Eq. (13) the
assumption has been made that the prior distribution on
the parameters may be approximated as a constant across
the width of the peak; this is reasonable in the high SNR

limit when the posterior is narrow. The quantity R2 is
given by

R2 =
∑
x

〈
n
∣∣∂̃xh〉2

=
(
S−1

)ab 〈
n
∣∣∂ah〉 〈n∣∣∂bh〉 , (15)

and is distributed as a χ2 random variable with

N = dim(~λ) degrees of freedom. The inverse regu-
larised incomplete gamma function is defined via y =
Γ̄(x, Γ̄−1(x, y)). The quantity on the ordinate axis of a a
standard P-P plot is the probability that the true param-
eters lie within a given significance, P (sig < X). From
Eq. (15) it may be seen that this can be rewritten as a
cumulative probability of the random variable R2;

P (sig < X) = 1− P
(
R2 < 2Γ̄−1

(
N

2
, 1−X

))
. (16)

The cumulative distribution function of the χ2 distribu-
tion is the regularised Gamma function, P (R2 < y) =
Γ̄(N/2, y/2). Using this to evaluate Eq. 16 gives the ex-
pected, unbiased diagonal form of the P-P plot for the
exact likelihood;

P (sig < X) = 1− (1−X) = X . (17)

This diagonal P-P plot is shown in the dotted black curve
in the left-hand panel of Fig. 1. The fact that the PP
plot for the exact likelihood is always diagonal follows
from the definition of the likelihood, and this remains
true even if the LSA fails. The derivation just presented
assumes the LSA in order to make it resemble as closely
as possible the upcoming derivation for the approximate
likelihood.

B. The approximate likelihood

We now move on to the more interesting case when
we have biased parameter estimation from using the ap-
proximate likelihood. As mentioned in the introduction
we expect to obtain a P-P plot that is “sagging” below
the diagonal indicating the bias. We first treat the simple
case where the waveform model depends on just a single

parameter, ~λ = θ, where the expression for the P-P plot
is given in terms of the inverse error function, erf−1(x).
A treatment will then be given for the general N dimen-
sional case in which the expression for the P-P plot is
given in terms of the MarcumQ function, QN (x, y), along
with a illustration of how this reduces to the 1D result.

The Approximate Likelihood is given by Eq. (4). We
assume the approximate model is “nearly” correct and
use the LSA to expand signals that are nearby in param-
eter space. As before, denoting the waveform difference
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by δh(~λ) = H(~λ)− h(~λ), we have

L(~λ) ∝ exp

(
−1

2

〈
n− δh(~λ0)−∆λa∂aH

∣∣ . . .〉)
= exp

(
−1

2

[〈
n− δh(~λ0)

∣∣∣ . . .〉 (18)

−2∆λa
〈
n− δh(~λ0)|∂aH

〉
+ ∆λa∆λbΣab

])
,

where the ellipsis in the right hand entry in the inner
product denotes a repeat of the left hand entry and the
approximate Fisher matrix is Σab = 〈∂aH|∂bH〉. As be-
fore coordinates which diagonalise the Fisher matrix Σab
may be adopted, which give the following separated ex-
pression for the approximate likelihood,

L(~λ) ∝
∏
x

exp

(
−1

2

(
∆̃λ

x
−
〈
n− δh(~λ0)

∣∣∂̃xH〉)2
)
.

(19)

1. Example for one dimensional parameter space

If the waveform depends on only one unknown param-

eter, ~λ = λ, Eq. (19) becomes

L(θ) =
1

σ
√

2π
exp

[
− 1

2σ2
(∆θ − µ)

2

]
, (20)

where

1

σ2
=

〈
dH

dλ

∣∣
λ=λ0

∣∣∣dH
dλ

∣∣
λ=λ0

〉
, (21)

µ = σ2

〈
n− δh(λ0)

∣∣∣dH
dλ

∣∣
λ=λ0

〉
, (22)

and we have included the correct normalisation of the
posterior. The true parameter value is at ∆θ = 0 and
the points with larger posterior weight than the true pa-
rameters lie in the range 0 < ∆θ < 2µ when µ > 0 or in
the range 2µ < ∆θ < 0 when µ < 0. The significance at
which the true parameters lie is therefore∫ 2µ

0

1

σ
√

2π
exp

[
− 1

2σ2
(∆θ − µ)

2

]
d∆θ = erf

(
|µ|√
2σ

)
,

(23)
where

erf(z) =
2√
π

∫ z

0

e−t
2

dt (24)

is the usual error function. The quantity µ defined above
depends on the particular realisation of the noise. We
want to know the fraction of times, over many realisations
of the noise, that the true parameters will lie within a
certain significance contour. This is just

P (sig < X) = P

(
|µ|√
2σ

< erf−1(X)

)
. (25)

The quantity µ/(
√

2σ) is distributed as a Gaussian with

mean µ̃ = σ 〈∆h(λ0)|dH/dλ〉 /
√

2 and variance 1/2 and
so

P (sig < X) =
1

2
erf
(
erf−1(X)− µ̃

)
+

1

2
erf
(
erf−1(X) + µ̃

)
. (26)

In the special case where the approximate waveform
model and the exact waveform model are the same, we
have µ̃ = 0 and recover the expected unbiased result from
Sec. III A;

P (sig < X) = X . (27)

This derivation assumed that µ̃ was constant, but in
practice this will vary from signal to signal. If we de-
note the probability distribution function for µ̃ over the
astrophysical population by f(µ̃), the generalisation of
Eq. (26) can be seen straightforwardly to be

P (sig < X) =

∫ [
1

2
erf
(
erf−1(X)− µ̃

)
+

1

2
erf
(
erf−1(X) + µ̃

)]
f(µ̃)dµ̃ .(28)

2. Parameter space of arbitrary dimension

We will now generalise the expression for the P-P
plot sag in a one-dimensional parameter space, given in
Eq. (26), to arbitrary numbers of parameters. Identical
manipulations to those performed on the exact likelihood
yields the same expression for the significance obtained
in Eq. (13),

sig = 1− Γ̄

(
N

2
,
R2

2

)
, (29)

except this time R2 is a random variable given by

R2 =
∑
x

〈
n− δh(~λ0)

∣∣∂̃xH〉2

(30)

=
(
Σ−1

)ab 〈
n− δh(~λ0)

∣∣∂aH〉〈n− δh(~λ0)
∣∣∂bH〉 .

If δh(~λ) is constant across parameter space, R2 is now a
non-central χ2 random variable with N degrees of free-
dom and non-centrality parameter

Λ =
(
Σ−1

)ab 〈
δh(~λ0)

∣∣∂aH〉〈δh(~λ0)
∣∣∂bH〉 . (31)

As before the expression for the P-P plot is given in terms
of the CDF of the distribution of the random variable
R2. The CDF of the non-central χ2 distribution is the
Marcum-Q function, P (R2 < y) = QN/2(

√
Λ,
√
y),

P (sig < X) = 1− P
(
R2 < 2Γ̄−1

(
N

2
, 1−X

))
(32)

= 1−QN
2

(
√

Λ,

√
2Γ̄−1

(
N

2
, 1−X

))
.(33)
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This is an analytic approximation to the P-P plot in the
LSA and in the case of a constant waveform difference
over parameter space; this function is plotted as a dotted
black line in Fig. 1. In this case the P-P plot always sags
below the diagonal indicating biased parameter recovery.

If δh(~λ) is not constant over parameter space, the gen-
eralisation of this result takes the same form as Eq. (28),
but with the term in square brackets replaced by Eq. (33)
and with f(µ̃) replaced by the corresponding probability
distribution function for Λ. For example, in the case that

δh(~λ) is distributed at different times and at different
points in parameter space as an uncorrelated, zero-mean
Gaussian with variance in each component of ε2 (i.e.

δh(~λ0) ∼ N (0, ε2)) then the quantities 〈δh(~λ0)|∂aH〉 are
distributed as N(0,Σ) and we see that Λ is distributed
as ε2 times a χ2 distribution with N degrees of freedom
with probability distribution function

f(Λ) =
1

2
N
2 Γ(N/2)εN

Λ
N
2 −1e−

Λ
2ε2 . (34)

Writing x2
u = 2Γ̄−1

(
N
2 , 1−X

)
we must evaluate

P (sig < X)

=

∫ ∞
0

[
Λ
N
2 −1e−

Λ
2ε2

2
N
2 Γ
(
N
2

)
εN∫ xu

0

x

(
x√
Λ

)N
2 −1

e−
1
2 (x2+Λ)IN

2 −1(
√

Λx)dx

]
dΛ

=
1

(2ε)
N
2 −1Γ

(
N
2

) ∫ xu

0

[
x
N
2 e−

x2

2∫ ∞
0

y
N
2 e−

1
2 (1+ε2)y2

IN
2 −1(εxy)dy

]
dx

=
1

(2ε)
N
2 −1Γ

(
N
2

)
(1 + ε2)

1
2 +N

4

∫ xu

0

[
x
N
2 e−

x2

2∫ ∞
0

ỹ
N
2 e−

1
2 ỹ

2

IN
2 −1

(
ε√

1 + ε2
xỹ

)
dỹ

]
dx

=
1

2
N
2 −1Γ

(
N
2

)
(1 + ε2)

N
2

∫ xu

0

xN−1e
− x2

2(1+ε2) dx

=
1

2
N
2 Γ
(
N
2

) ∫ x2
u

1+ε2

0

u
N
2 −1e−

u
2 du

= 1− Γ̄

(
N

2
,

Γ̄−1
(
N
2 , 1−X

)
1 + ε2

)
, (35)

where the second line follows by a change of variable and
a change in the order of integration, the fourth line fol-
lows from the fact that Qm(a, 0) = 1 and the final lines
follow from another change of variable. We have also
made use of the integral expression for the Marcum-Q
function given below. This result can also be obtained
directly by noticing that the random variable R2, which

depends on both n and δh(~λ), is distributed as 1 + ε2

times a χ2 random variable with N degrees of freedom.

The analytic expression for the P-P plot is therefore very
similar to the case of the exact likelihood, but with the
argument of the regularised Gamma function scaled ap-
propriately to give the same result as in the final line
of Eq.(35). This P-P plot also exhibits a sag below the
diagonal; see the orange dotted curve in Fig. 1.

The N dimensional result in Eq. (33) can be shown
to reduce to the 1 dimensional result in Eq. (26) using
the standard properties of the Marcum-Q function. The
Marcum-Q function is defined by the integral

Qm(a, b) =

∫ ∞
b

x
(x
a

)m−1

exp

[
−1

2
(x2 + a2)

]
Im−1(ax)dx

= exp

[
−1

2
(a2 + b2)

] ∞∑
k=1−m

(a
b

)k
Ik(ab) , (36)

in which In(x) is the modified Bessel function of the first
kind. For N = 1, the Marcum-Q function, Eq. (36), can
also be simplified

Q 1
2
(a, b) =

√
a

∫ ∞
b

√
x exp

[
− (x2 + a2)

2

]
I−1/2(ax)dx

=

√
1

2π

∫ ∞
b

(
exp

[
− (x+ a)2

2

]
+ exp

[
− (x− a)2

2

])
dx

= 1− 1

2

(
erf

(
b− a√

2

)
+ erf

(
b+ a√

2

))
, (37)

which follows from I− 1
2
(x) =

√
2/π cosh(x)/

√
x. When

N = 1 the regularised Gamma function becomes

Γ
(
1/2, R2/2

)
Γ (1/2)

=

∫∞
R2/2

e−t/
√
t dt∫∞

0
e−t/
√
t dt

=

∫∞
R/
√

2
e−u

2

du∫∞
0

e−u2 du

= 1− erf(R/
√

2) . (38)

Eq. (32) therefore becomes

P (sig < X) =
1

2

(
erf

(
erf−1(X)−

√
Λ

2

)

+erf

(
erf−1(X) +

√
Λ

2

))
, (39)

as we can identify µ̃ = Λ/2, we recover Eq. (26) as ex-
pected.

C. The marginalised likelihood

The Marginalised Likelihood is given by Eq. (7), as be-
fore this may be expanded in the LSA. In the high SNR
limit the posterior is narrow compared to the length scale
over which the waveform changes. The waveform differ-
ence changes over the same length scale as the waveform.

The quantity σ2(~λ) also changes over this length scale,
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as it is “learnt” by the GP in the procedure of max-
imising the evidence. Therefore in the high SNR limit

σ2(~λ) may be approximated as a constant. As before
coordinates which diagonalise the Fisher matrix may be
adopted, which give the following separated expression
for the approximate likelihood,

L(~λ) ∝
∏
x

exp

−1

2

(
∆̃λ

x
−
〈
n+ µ(~λ0)− δh(~λ0)

∣∣∂̃x(H − µ)
〉)2

1 + σ2

 . (40)

The waveform difference is assumed to be a small quan-
tity, therefore in Eq. (40) the derivative ∂̃x(H − µ) may

be replaced by ∂̃x(H), as the difference is the product of
small quantities. Identical manipulations to those per-
formed on the exact and approximate likelihoods give the
same expression for the significance obtained in Eqs. (13)

and (29),

sig = 1− Γ̄

(
N

2
,
R2

2

)
, (41)

except this time the random variable R2 is given by

R2 =
1

1 + σ2

∑
x

〈
n+ µ(~λ0)− δh(~λ0)

∣∣∂̃xH〉2

, (42)

=
1

1 + σ2

(
Σ−1

)ab 〈
n+ µ(~λ0)− δh(~λ0)

∣∣∂aH〉〈n+ µ(~λ0)− δh(~λ0)
∣∣∂bH〉 . (43)

The GPR technique assumes that the δh(~λ) are dis-
tributed as a Gaussian process across parameter space,
with zero mean and a covariance estimated from a train-
ing set and any prior knowledge. If this assumption is
in fact true, and the covariance has been correctly esti-

mated, then the quantity µ(~λ0)−δh(~λ0) is distributed as
a zero mean Gaussian with variance σ2. In this case (per-
haps unsurprisingly) the marginalised likelihood com-
pletely fixes the sag. The new R2 random variable is
distributed as a χ2 random variable with N degrees of
freedom and using the regularised Gamma function as
the CDF of this distribution we recover the diagonal P-P
plot;

P (sig < X) = 1− P
(
R2 < 2Γ̄−1

(
N

2
, 1−X

))
,(44)

= X . (45)

This case is shown, both analytically and numerically, in
orange in Fig. 1.

More interesting is the behaviour in the realistic case

when δh(~λ) is not distributed exactly as the GPR has
predicted. This case is more complicated because the
different components that make up the R2 random vari-
able are no longer independent random variables and a

simple expression for the distribution of δh(~λ) cannot be
found. In particular, from Eq. (42) it can be seen that R2

is the sum of the squares of a noise term, < n|∂̃xH >, a

GPR term, < µ(~λ0)|∂̃xH >, and (minus) a physical term,

< δh(~λ0)|∂̃xH >. In particular the GPR and physical

terms are now related because the expression for µ(~λ0)
in Eq. (8) is a linear combination of the realisations of

δh(~λ) in the training set, D. The sag will still be given by
the analogue of Eq. (28), but this integral will not in gen-
eral be analytically tractable. Instead, we will consider
such cases numerically in Sec. IV.

As we have seen, in the particular case considered
above where the waveform difference is distributed as
assumed by the GPR, the marginalised likelihood com-
pletely removes the systematic bias present in the stan-
dard, approximate, likelihood. In addition, as we will
see in Sec. IV, even in unfavourable situations the
marginalised likelihood is often able to remove significant
portions of the bias. We conclude this section with a dis-
cussion of why it is expected that the bias in parameter
estimates obtained using the marginalised likelihood will
usually be less than those obtained using the standard
likelihood.

From Eqs. (30) and (42) it can be seen that the condi-
tion for the marginalised likelihood to yield more biased
parameter estimates than the approximate likelihood, for

a particular event, is R2
approx < R2

GPR/(1+σ2(~λ0)), where

R2
approx =

∑
x

〈
n− δh(~λ0)

∣∣∂̃xH〉2

R2
GPR =

∑
x

〈
n− δh(~λ0) + µ(~λ0)

∣∣∂̃xH〉2

. (46)
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These terms both involve a projection onto the space

spanned by the derivatives, ∂̃xH, at the point ~λ0. Since
these “tilde” derivatives were constructed to be an or-
thonormal basis, the condition for the marginalised like-
lihood to give worse parameter estimates than the ap-
proximate likelihood can therefore be written as

∣∣∣n− δh(~λ0)
∣∣∣2
D
<

∣∣∣n− δh(~λ0) + µ(~λ0)
∣∣∣2
D

1 + σ2(~λ0)
(47)

where the modulus is taken with respect to the func-
tion inner product in Eq. (3), projected into the space,
D, spanned by the derivatives. For this to be satisfied,
it would be necessary not only for the interpolation to
have the wrong sign when expressed in the basis ∂̃xH

(i.e. 0 >
∑
x 〈 h(~λ0)|∂̃xH 〉 〈 µ(~λ0)|∂̃xH 〉), but also for it

to be large enough in magnitude to overcome the GPR

uncertainty σ2(~λ0) in the denominator. Moreover, this
is just for one particular realisation of the noise and true
waveform parameters. We are really interested in the sag
that arises when considering a population of events. In
that case, we would need Eq. (47) to be true in some aver-
age sense and so the interpolation would have to have the
wrong sign and be too large for the majority of choices of
waveform parameters. Although this is technically possi-
ble, it is clear that any reasonable interpolation algorithm
with decent coverage of the parameter space in the train-
ing set and a reasonable covariance function should vio-
late the above bound on average and therefore yield bet-
ter parameter estimates on average and show a smaller
sag in the P-P plot than the approximate likelihood.

IV. NUMERICAL CALCULATION OF THE P-P
PLOT

In all of the above calculations the expression for the
P-P plot was written in terms of the CDF of the distri-
bution of the R2 random variable. This random variable
is written in terms of a signal inner product of the model
derivatives, it therefore depends both on the properties
of the GW source and of the GW detector. By express-
ing our results in terms of R2 we ensure that they remain
valid for any detector and any source (assuming the LSA
holds). In the cases considered above where analytic ex-
pression for the P-P plots could be found these can also
be verified numerically by drawing n values of R2 from
the relevant distribution and numerically estimating the
CDF. In cases where an analytic expression for the P-P
plot can not be found the same procedure can be used to
investigate the P-P plot numerically.

First consider the unbiased, diagonal P-P plot obtained
for the exact likelihood. The analytic expression for this
P-P plot is given in Eq. (17). A numerical validation of
this result may be performed by drawing random realisa-
tions of the R2 value in Eq. (15). It can be seen that R2

is the sum of the squares of N standard Gaussian random

variables < n|∂̃xH >; i.e. a χ2 distribution with N de-
grees of freedom. We drew n realisations of R2 from this
distribution, numerically estimated the CDF and plotted
the P-P plot using Eq. (16). The results for n = 103 and
N = 4 are shown in the left panels of Fig. 1 (analytic re-
sults shown as a dotted line, numerical results as a solid
line). Within the scale of fluctuations the numerical re-
sults agree well with the analytic results. The bottom
left panel of the same figure shows the sag of the P-P
plot below the diagonal, i.e. sig−P (x < sig). The values
n = 103 and N = 4 will also be used for all subsequent
numerical calculations in this section.

P-P plots for the approximate likelihood are shown in
the centre panels of Fig. 1 for a variety of different dis-
tributions of the waveform difference projected into the
model derivatives; < δh(λ0)|∂̃xH >. In the case of a con-
stant distribution, or a zero-mean Gaussian distribution
the analytic expressions in Eqs. (33) and (35) respec-
tively are shown as dotted lines. For the numerical cal-
culations the procedure followed was first to specify the
distribution for the < δh(λ0)|∂̃xH > random variables
(for example the black curves show results when this is
a constant). The quantity R2 was then calculated using
Eq. (30) by drawing a random value from this distribu-

tion and a random value for < n|∂̃xH > from a standard
Gaussian distribution. The R2 variable was calculated n
times, the CDF of this variable estimated, and the P-P
plot calculated from Eq. (32). Different colours in Fig. 1

indicate different distributions for < δh(λ0)|∂̃xH >, the
specification of these distributions are given in the figure
caption.

Approximate Marginalised

Constant 0.158 -0.044

Gaussian 0.237 0.000

non-central Gaussian 0.385 0.263

Skew non-central Gaussian 0.426 0.079

Poisson 0.317 0.235

Gamma 0.293 -0.001

Correlated 0.441 0.308

TABLE I. Table of the total integrated biases for the curves
shown in Fig. 1. The integrated bias is defined as the total
area in the sag, i.e.

∫ 1

0
d(sig) (sig− P (x < sig)).

P-P plots for the marginalised likelihood are shown
in the right panels of Fig. 1 for a variety of different
distributions of < δh(λ0)|∂̃xH >. In the case of a
zero-mean Gaussian the analytic expressions in Eq. (45)
is shown as a dotted line. For the numerical calcula-
tions it is necessary to construct a training set for the
GPR interpolation. Instead of using GPR to interpo-

late the waveform differences, δh(~λ), it is simpler for our
present purpose to instead interpolate the projections
of the waveform differences onto the waveform deriva-
tives, i.e., < δh(~λ)|∂̃xH >, as these are what appear
in Eq. (42), . The training set was taken to consist



9

0.2

0.4

0.6

0.8

1
P
(x
<
s
ig
)

Exact Likelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1
P
(x
<
s
ig
)

Exact Likelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

ApproximateLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

ApproximateLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

ApproximateLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

ApproximateLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

ApproximateLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

ApproximateLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

ApproximateLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

ApproximateLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

ApproximateLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

MarginalisedLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

MarginalisedLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

MarginalisedLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

MarginalisedLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

MarginalisedLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

MarginalisedLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

MarginalisedLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

0.2

0.4

0.6

0.8

1

P
(x
<
s
ig
)

MarginalisedLikelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

sig

s
ig

-
P
(x
<
s
ig
)

Constant

Gaussian

Non-central
Gaussian

Skewed
non-central
Gaussian

Poisson

Gamma

Correlated

FIG. 1. P-P plots for parameter estimation using the three likelihoods L′(~λ), L(~λ), and L(~λ) shown in the three columns
respectively. In each column the top panel shows a P-P plot whilst the bottom panel shows the “sag”; i.e. the difference
between the ideal diagonal line and the actual P-P plot. In each panel curves drawn as dotted lines correspond to analytic
results whilst solid curves are numerical results. The left-hand column shows ideal, unbiased parameter recovery for the exact
likelihood. In the centre and right-hand columns different colour curves correspond to different distributions of < δh(λ0)|∂̃xH >.
The curves in black are for a constant distribution giving a non-centrality Λ = 2 (Λ defined in Eq. (31)). The curves in orange
are for a zero mean Gaussian distribution with variance 1. The curves in yellow are for a non-central Gaussian distribution
with mean 4/3 and variance 1. The curves in light-green are for a non-central, skewed normal distributiona with location
parameter 1, scale parameter 1, and skew parameter 1. The curves in dark-green are for a Poisson distribution with mean
and variance 1. The curves in blue are for a Gamma distribution with shape parameter 1 and scale parameter 1. And finally,
the curves in purple are for a correlated random walk distribution with mean Gaussian step size 1. In all cases the number
of parameter dimensions is N = 4, and the number of points used for the numerical simulations was n = 103. The left-hand
panel clearly shows the exact likelihood does not suffer from any bias, as expected. The centre panel shows that in all cases the
approximate likelihood suffers from a bias. The right-hand column shows that in all cases the marginalised likelihood reduces
the bias relative to the approximate likelihood. In the ideal case (shown in orange) of a zero mean Gaussian distribution for

< δh(λ0)|∂̃xH > the bias is completely removed.

a The PDF of a skew Gaussian distribution with location parameter µ, scale parameter σ and skew parameter α is given by[
1 + erf(α(x− µ)/

√
2σ)

]
exp(−(x− µ)2/2σ2)

of points at λ = 1, 2, . . . , 20 and the actual experimen-
tal realisation at a value λ0 = 21. For the majority of
distributions (constant, Gaussian, non-central Gaussian,
skew non-central Gaussian, Poisson, and Gamma distri-
butions) shown in Fig. 1 the random variables in the
training set were drawn independently and interpolated
using an uncorrelated Gaussian process, i.e. Kij = σfδij .
The R2 value was calculated from Eq. 42 (with µ = 0
from Eq. (8), because of the assumption of an uncor-
related process), the CDF estimated and the P-P plot
calculated from Eq. (44).

The assumption of an uncorrelated Gaussian process is
a conservative assumption. In the absence of correlations
the Gaussian process regression assumes a “worst-case”
scenario and returns a mean waveform difference of zero
(see Eq. (8)). If correlations were present then the GPR

would return a non-zero estimate for µ and shift the posi-
tion of the posterior peak into better agreement with the
true value, thus improving the P-P plot. To investigate
the effect of correlations the final numerical calculation
(labelled as “correlated” in Fig. 1) was performed using a

random walk distribution. The values of < δh(~λ)|∂̃xH >
at the points λ = 1, 2, . . . , 21 were taken to be a realisa-
tion of a random walk with Gaussian step width a = 1/3.
The first 20 of these values were taken as the training set
and used to extrapolate the final value. For the GPR
interpolation a squared exponential covariance function
k(x, y) = exp((−1/2)(x − y)2) was used. The squared
exponential covariance function is not able to accurately
capture the covariance of the random walk distribution,
so this again represents a conservative choice to examine
how the marginalised likelihood performs in the presence
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of un-modelled correlations. However, even in this un-
favourable case the marginalised likelihood still signifi-
cantly reduces the bias in the P-P plot.

The purpose of considering such a wide variety of dif-
ferent distributions for the waveform difference is to test
whether the marginalised likelihood is robust against dif-
ferent types of errors in the waveform models, which are
not correctly modelled by the Gaussian process. For
example, the marginalised likelihood assumes the wave-
form difference is a zero mean Gaussian process across
parameter space, therefore it is perhaps not surprising
that it performs well in the case of a zero mean Gaus-
sian distribution. However the list of distributions used
here also test the robustness of the method against non-
central distributions (e.g non-central Gaussian), skewed
distributions (e.g. skewed Gaussian), one-sided and non-
Gaussian distributions (e.g. Poisson or Gamma distribu-
tions), and the presence of un-modelled correlations in
the waveform difference (the random walk distribution).

By comparing the curves of the same colour between
the centre and right-hand panels of Fig. 1 it can be seen
that in all cases the P-P plot for the marginalised like-
lihood exhibits less of a bias, i.e., less of a “sag”, than
the approximate likelihood. In the ideal case where the
distribution of the waveform differences is precisely that
assumed by the GPR, a diagonal, unbiased P-P plot is
recovered; however the bias is also almost completely re-
moved for several of the other distributions considered.
In all cases a significant improvement in performance can
be seen when using the marginalised likelihood in place
of the standard approximate likelihood. These results
are summarised in Table I, which lists the total bias (de-
fined as the area between the sagging curve and the ideal
diagonal) for all the curves shown in Fig. 1.

V. DISCUSSION

The P-P plot provides a way to quantify the bias that
results when using inaccurate models to perform GW pa-

rameter estimation. For individual sources the system-
atic error in the parameters is independent of the SNR,
whilst the random errors scale as 1/SNR, and hence the
bias is most significant for the loudest sources. Even in
cases where, for each individual source, the systematic er-
ror is small compared to the random error, the bias can
still be significant when observing populations of sources,
since the statistical error in a parameter estimated from
combining a population of sources reduces as 1/

√
N as

more sources are added, while the systematic errors re-
main fixed.

In this paper several analytic expressions have been ob-
tained that predict the sag of the P-P plots that results
from different distributions of the model error. These re-
sults have been derived within the linear signal approxi-
mation, and are valid to O(1/SNR). These analytic ex-
pressions for the P-P plots may be viewed in the same
spirit as Fisher matrix estimates for the random errors,
or Cutler and Vallisneri’s [8] expression for the system-
atic error in a single measurement. This latter result has
also here been generalised (in Appendix A) to include
terms of O(1/SNR2).

It is now well established that model errors will present
significant problems for a range of GW sources. The au-
thors recently proposed a novel method for tackling this
problem; using a modified likelihood constructed using
Gaussian process regression on a training set of accu-
rate waveforms. In this paper the performance of this
marginalised likelihood was examined by comparing the
P-P plots (obtained both analytically and numerically)
with those obtained from the standard likelihood. In
particular, it was found that in favourable conditions the
marginalised likelihood was able to completely remove
the parameter estimation bias. More importantly, it was
found that the marginalised likelihood was robust against
a wide range of un-modelled features in the distribution
of waveform differences, and in all cases considered out-
performed the standard likelihood. These results provide
further illustration of the need to account for model un-
certainties (using GPR or other techniques) when draw-
ing inferences from near future GW observations.
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Appendix A: Systematic bias due to waveform errors

We assume that an approximate model H(~λ) is used
to recover the parameters of a gravitational wave signal

that is described by the true model h(~λ) with parameters

~λ0. The best fit parameters of the approximate model are
~λbf = ~λ0 + ∆~λ. These parameters minimise the squared
distance between the true and approximate model spaces,

〈
δh(~λ0) +H(~λbf)−H(~λ0)

∣∣δh(~λ0) +H(~λbf)−H(~λ0)
〉

(A1)

where δh(~λ0) = H(~λ0) − h(~λ0) (note the different sign
convention from [8]). Differentiating with respect to each
of the parameters in turn, we find that the best-fit pa-
rameters must satisfy the equations

〈δh(~λ0) +H(~λbf)−H(~λ0)|∂a
(
H(~λbf)−H(~λ0)

)
〉 = 0 .

(A2)
We use the notation ∂ax ≡ ∂x/∂λa and subsequently will
use ∂abx ≡ ∂2x/∂λa∂λb. If we now assume that the ap-

proximation is good, we can write δh(~λ) ∼ O(ε), a small

parameter, and ~λbf = ~λ0 + ~∆λ with ∆λi ∼ O(ε) ∀i. We
can then expand the difference between the approximate
waveforms as a Taylor series

H(~λbf)−H(~λ0) = ∂aH(~λ0)∆λa +

1

2
∂abH(~λ0)∆λa∆λb + · · · . (A3)

Eq. (A2) becomes

〈
δh(~λ0) + ∂bH(~λ0)∆λb +

1

2
∂bcH(~λ0)∆λb∆λc

∣∣∂aH(~λ0) + ∂adH(~λ0)∆λd
〉

= 0 . (A4)

where all derivatives are now evaluated at ~λ0. Keeping
only terms of order ε we find the Cutler and Vallisneri

result

∆λa1 = −
(
Σ−1

)ab 〈δh(~λ0)|∂bH(~λ0)〉 (A5)

where Σij ≡ 〈∂aH(~λ0)|∂bH(~λ0)〉 is the Fisher Matrix.
We now extend to the next order in ε by writing ∆λa =

∆λa1 +∆λa2 , where ∆λi1 is the previous solution, Eq. (A5).
Keeping terms to O(ε2) we obtain

∆λa2 = −
(
Σ−1

)ab [〈δh(~λ0)|∂abH(~λ0)〉∆λb1 + 〈∂acH(~λ0)|∂bH(~λ0)〉∆λb1∆λc1 +
1

2
〈∂aH(~λ0)|∂abH(~λ0)〉∆λb1∆λc1

]
. (A6)

A suitable validity criterion for the Cutler and Vallisneri
formula, (A5), is

maxa {|∆λa2/∆λa1 |} � 1. (A7)

We note also that Eq. (A6) provides an improved esti-

mate of the systematic bias and that we can readily ex-
tend this method to higher order in ε by including further
terms in the expansion in Eq. (A3).
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