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Abstract

A common technique for detection of gravitational-wave signals is searching for excess power

in frequency-time maps of gravitational-wave detector data. In the event of a detection, model

selection and parameter estimation will be performed in order to explore the properties of the

source. In this paper, we develop a Bayesian statistical method for extracting model-dependent

parameters from observed gravitational-wave signals in frequency-time maps. We demonstrate

the method by recovering the parameters of model gravitational-wave signals added to simulated

advanced LIGO noise. We also characterize the performance of the method and discuss prospects

for future work.
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I. INTRODUCTION

The Laser Interferometer Gravitational-wave Observatory (LIGO) [1], Virgo [2], and

GEO600 [3] detectors are part of a network of gravitational-wave (GW) detectors seeking

to make direct observations of GWs. Previous analyses of the data have included searches

targeting the coalescence of neutron stars or black holes [4, 5], short-duration bursts [6],

isolated neutron stars [7], and a stochastic background of GWs [8, 9]. LIGO and Virgo

are currently upgrading to Advanced LIGO (aLIGO) and Advanced Virgo (AdV), which

will improve their strain sensitivities by one order of magnitude over the strain sensitivites

achieved during previous science runs [10, 11]. These will be joined by GEO-HF [12] and

KAGRA [13]. To date, none of the above searches have resulted in a GW detection, although

with the current upgrades, the chances will increase significantly. In the event of a detection,

one can perform model selection and parameter estimation in order to further explore the

properties of the sources. Model selection and parameter estimation are topics of great

interest in the GW community (see e.g. [14–20]).

The binary coalescence of compact objects are well-studied sources of GWs, and the

most up-to-date models for the waveforms produced in these systems include most of the

physical effects that influence the signals, including tidal and spin effects [21]. Searches

and parameter estimation for these sources rely on matched filtering of the signal seen by

detectors using models of the signals. Because models for these sources are thought to be

reliable, a full Bayesian analysis utilizing matched filtering is possible for these sources, and

the ability to precisely estimate injected waveform parameters for these sources has been

demonstrated [18].

On the other hand, GW bursts cannot be modeled precisely (by assumption). GW

emission by core-collapse supernovae is one such example. A number of competing models

for the mechanism that drives the core-collapse exist, and each model produces qualitatively

different waveforms. Logue et al. demonstrated that a principal component analysis can be

used to determine the correct model of injected GW waveforms by the computation of the

Bayesian odds ratio [19]. Principle component analysis has also been used to reconstruct

the stellar core-collapse GW signal after finding the amplitude of the individual principle

components and arrival times [20].

Parameter estimation of signal models requires, at first, GW detection with high signif-
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icance. A common technique for detection of GW bursts is searching for excess power in

frequency-time (denoted ft) maps of GW detector data [22–24]. Matched filtering is not used

for these signal types because the precise waveforms are unknown. Excess power searches

provide an effective alternative to matched filtering for such signals. Some signals can be

well-approximated by parameterized spectrogram curves which incorporate the salient fea-

tures of the signals, and these curves can be used to focus the search with a “phase-less

template bank” [25, 26].

In this paper, we present a method for parameter estimation using GW tracks in ft-

maps. We explore the possibility of performing parameter estimation and model selection,

assuming that a search has been performed and a signal detected. We seek to address the

question of how to fit the model parameters. As a concrete example, we show the recovery

of parameters of an r-mode signal injected into simulated detector data. These GW sources

are unstable oscillation modes which dampen the rotation of neutron stars by the emission

of GWs [27]. We show how to estimate parameters such as the r-mode saturation amplitude,

which is the amplitude above which the emitting neutron star will collapse into a black hole.

The remainder of this paper is organized as follows. We discuss the methods used to

extract waveform parameters from tracks in ft-maps in section II. To demonstrate the

method and performance of parameter recovery, we perform sample injections into simulated

aLIGO colored Gaussian noise and recover their parameters in section III. We conclude with

a discussion of topics for further study in section IV.

II. FORMALISM

In this section, we discuss the methods used to extract waveform parameters from tracks

in ft-maps. To begin, we review the data products used in the detection of unmodeled GW

transients.

A. Frequency time maps

Many searches for GW bursts rely on searching for excess power in ft-maps of GW

detector data [22–24]. The maps are computed by dividing detector strain time series into

segments and computing a Fourier transform of each segment. Each column in the map
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corresponds to one of these segments. Searches for long-duration GW bursts in particular

use the cross-correlation of two GW strain channels from spatially separated detectors to

construct ft-maps of cross-power signal-to-noise ratio, ρ(t; f) [24].

ρ(t; f) ≡ Ŷ (t; f)/σ̂(t; f). (1)

where t is the time of the segment, f is the frequency, Ŷ (t; f) is an unbiased estimator for

GW power and σ̂2(t; f) is its variance. Arrays of ρ(t; f) are visualized as ft-maps.

GWs appear as tracks or blobs on ft-maps. The morphology of the GW track depends

on the source. If the signal is sufficiently loud, compact binaries appear as chirps of increas-

ing frequency, while continuous-wave isolated neutron star sources appear as narrowband,

horizontal lines. Fig. 1 shows ft-maps of example sine-Gaussian injections with different

durations (top row) and r-mode injections with different saturation amplitudes (bottom

row).

Given an ft-map, GW searches employ pattern recognition algorithms to identify po-

tentially significant clusters of pixels [24]. Next, the pattern-recognition algorithms are run

repeatedly on noise-only maps to generate background statistics. These noise-only maps are

created using GW detector strain data with a time-shift that removes any potential GW

signal. Using time shifts to study noise and injections to study detection efficiency, false

alarm and false dismissal rates can be estimated, and detections can potentially be made.

B. Waveform models

A metric perturbation, hab, can be written as a linear combination of two polarizations,

h+ and h×.

hab =

 h+ h×

h× −h+

 (2)

Far from an elliptically polarized source, we can write the metric pertubation as

h+(t) = hamp(t)(1 + cos2 ι) cosψ(t) (3)

and
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FIG. 1: ft-maps of ρ(t; f) with injected signals. The top row consists of sine-Gaussian injections

[6]; on the left is an injection with f0 = 1100 Hz and τ = 100 s and on the right is f0 = 1095 Hz

and τ = 80 s. The bottom row consists of r-mode injections [28]; on the left is an injection with f0

of 705 Hz and a saturation amplitude α = 0.3, and on the right is an injection with f0 of 695 Hz

and a saturation amplitude α = 0.1. The injections are performed at a distance at which a GW

signal can be observed above threshold with false alarm probability = 0.1% and false dismissal

probability = 50% using a seed-based clustering algorithm [29]. This corresponds to a matched

filter SNR of about 20 for the sine-Gaussian injections and about 30 for the r-modes [30].

h×(t) = 2hamp(t) cos ι sinψ(t), (4)

where hamp is the strain amplitude, ι is the inclination angle and ψ is the polarization angle.

In the analysis below, we assume that we have a face-on source, so ι = 0. We also assume

that ψ = 0. This is for the sake of simplicity; in theory, one may estimate ι and ψ as well,
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but an analysis involving these parameters is beyond the scope of this paper.

GW detectors measure strain, h0(t),

h0(t) = h+(t)F+(t) + h×(t)F×(t) (5)

where F+(t) and F×(t) are the detector antenna response functions to the two polarizations

[31]. GW amplitudes are sometimes characterized by the root-sum-square amplitude,hrss,

defined as

h2rss =
∫

[h2+(t) + h2×(t)]dt. (6)

Each GW burst creates a specific pattern in ft-maps which depends on astrophysical

parameters. In this study, three different models of GW signals are used. The first is a

sine-Gaussian, which is commonly used in searches for GW bursts [6]. This model depends

on four parameters: the waveform duration, τ , the start frequency, f0, the signal distance,

D, and the time of the maximum of burst, t0. It has the following form

h0(t) = k
exp(−( (t−t0)

2

4τ2
+ 2πi(t− t0)f0))

D (2πτ 2)1/4
, (7)

h+(t) = Re[h0(t)], h×(t) = Im[h0(t)]. (8)

where k is a constant. The second waveform represents a simple r-mode model, based on

a model by Owen et al. [28]. This model depends on three parameters: the saturation

amplitude, α, the start frequency, f0, and the signal distance, D. It has the following form

f(t) =

(
1

f−60 − 6kt

)1/6

, (9)

h+(t) = h0 cos(2πf(t)t), h×(t) = h0 sin(2πf(t)t) (10)

where

h0 = 3.6× 10−23α

(
f(t)

1000

)3

/D, (11)

k = −1.8× 10−21α2Hz−5. (12)

The third waveform is a slowly varying sinusoid waveform with a time-varying frequency,

f = f0 + ḟ t. This model is chosen here as its morphology is similar to the r-modes. This
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model depends on three parameters: the time derivative of signal frequency, ḟ , the start

frequency, f0, and the signal distance, D ∝ 1/hrss.

h0(t) = c
exp(2πi(f0 + ḟ t)t)

D
. (13)

where c is a constant. h+ and h× are calculated in the same way as the sine-Gaussian.

C. Likelihood

We use the above models to illustrate our method. Fig. 1 shows two pairs of ft-maps

of cross-power with sine-Gaussian and r-mode injections. Our goal is to determine, based

on the map structure, the parameters which best fit the models. In order to estimate the

parameters, we employ a likelihood formalism.

The first step is to compute the probability distribution of ρB(t; f) due to background,

fB(ρ). A distribution valid for Gaussian and stationary noise is derived in A. In cases for

which an analytic distribution is impractical to construct, it can be estimated from time-

shifted data. In the analysis below, we assume Gaussian noise for simplicity; the use of

time-shifted distributions will be explored in a future study. We also assume that ρB(t; f)

of each pixel is drawn from the same distribution. The second step is to determine the

contribution to ρ from a signal. We denote the expected ρ value due to a signal with

parameters θ by ρS(θ). We calculate the expected contribution using an approximation

described in B. The assumption leads to an approximate formulation, which can be made

more accurate by performing injection studies and computing the distributions with signals

present.

Armed with both the distribution of ρB(t; f) due to background as well as that of the

waveform models, ρS(t; f), we are able to construct our likelihood. The idea is to subtract

ρS(θ) from ρ, which would just leave detector noise if ρS(θ) was the correct waveform model.

Minimizing the residuals maximizes the likelihood function. The probability density function

describing the residuals is p(ρ − ρS(θ)), which is calculated by finding the probability that

ρ− ρS(θ) is due to noise, as given by fB(ρ). The likelihood is

L({ρi}|θ) = ΠN
i=1p(ρi − ρsi(θ)|θ) (14)
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where i is the pixel index and N is the number of pixels in the ft-map. The goal is to

maximize the likelihood in order to determine confidence intervals for θ.

Ideally, one would produce an ft-map of the GW signal and evaluate Eq. (14) for every

set of possible parameters. In this way, we could generate the posterior density functions

(PDFs) for the relevant model parameters. Because this is computationally intractable,

we use algorithms that efficiently sample the posterior while minimizing the computational

burden. In the examples below, we use flat, non-informative priors on the parameters of

interest. This could be modified, for example, in the event of an r-mode detection, where

models predict a small value of α.

There are three main algorithms presently used to rapidly evaluate the posterior in GW

parameter estimation and model selection: Markov Chain Monte Carlo (MCMC) [14, 18],

Nested Sampling [15, 32], and MultiNest [16, 17, 33]. Nested Sampling and MultiNest

calculate the Bayesian evidence for a given set of parameters, which can be used to assign

relative probabilities to different models. We use a MATLAB implementation of Nested

Sampling and MultiNest [34], which implements the MultiNest algorithm, as described in

[33], and Nested Sampling, as described in [32].

III. DEMONSTRATION

In this section, we present two examples of parameter estimation of toy model waveforms.

We inject GW signals into simulated aLIGO colored Gaussian noise and create ft-maps

based on the resulting timeseries. We use the design sensitivity aLIGO noise curve [10].

We perform injections at the waveform models’ detection distance, which we define as the

distance at which a GW signal can be observed above threshold with false alarm probability

= 0.1% and false dismissal probability = 50% using a seed-based clustering algorithm [29].

In order to construct parameter posterior distributions, we produce ft-maps containing only

GW signals for various sets of parameters. Eq. (14) is evaluated repeatedly for each set of

parameters. From the equation, the likelihood is maximized for those parameters that best

minimize the residuals. Parameter posterior distributions are constructed for parameter sets

of equal likelihood that maximize this likelihood.
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FIG. 2: PDFs of distributions for injected sine-Gaussian signals. Each injection is performed into

multiple simulated aLIGO colored Gaussian noise realizations. The injections are performed at a

distance at which a GW signal can be observed above threshold with FAP = 0.1% and FDP =

50%. This corresponds to a matched filter SNR of about 30 for these injections. The PDF for each

injection is plotted in a different color. The red dotted line shows the true injected value. The plot

on the left is the PDF of f0. The plot on the right is the PDF of τ . The top row corresponds to an

injection of f0 = 1100 Hz and τ = 100 s. The top row corresponds to an injection of f0 = 1095 Hz

and τ = 80 s. The uncertainty in f0 is negligible, while the τ sampling is within tens of percent.

A. Sine-Gaussian Burst

Fig. 2 shows the distribution of posterior samples for both f0 and τ for one of the

injections. The posteriors of the parameters are consistent with the injected values. In

general, the recoveries for f0 are within a few percent of the true value for all injections.

The recoveries for τ are within tens of percent.
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FIG. 3: PDFs of distributions for injected r-modes signals. Each injection is performed into

multiple simulated aLIGO colored Gaussian noise realizations. The injections are performed at a

distance at which a GW signal can be observed above threshold with FAP = 0.1% and FDP =

50%. This corresponds to a matched filter SNR of about 20 for these injections. The PDF for each

injection is plotted in a different color. The red dotted line shows the true injected value. The plot

on the left is the PDF of f0. The plot on the right is the PDF of α. The top row corresponds to

an injection of f0 = 705 Hz and α = 0.3, while the bottom row is an injection of f0 = 695 Hz and

α = 0.1.

B. R-mode

We perform injections of the r-mode waveforms with f0 = 705 Hz and α = 0.3, as well

as an injection of f0 = 695 Hz and α = 0.1. Fig. 3 shows the performance of the parameter

recoveries. In general, the recoveries for α and f0 are within a few percent for all injections.

We can ask whether the r-mode or the varying sinusoidal model is a better description of the

ft-map for the r-mode signal. This can be done by evaluating the Bayes factor, which is the

10



ratio of the evidences for the two models. The evidence computed by the search algorithm

for the r-mode model was 1.23× 104, while the evidence for the CW model was 1.15× 104,

meaning the Bayes factor is 700. This implies that the r-mode model is strongly favored

over the varying sinusoidal model. This is despite the fact that the varying sinusoid is a

good fit for the linear portion of the r-mode parameter space.

It is a well-documented fact that in the parameter estimation of compact binary coales-

cences non-Gaussian noise can significantly affect the posterior recoveries [35]. Therefore,

it is worthwhile to test the algorithm when the noise background is non-Gaussian and non-

stationary and thus violates the approximations that go into deriving the noise model used

in this analysis. For this reason, we repeat the test with initial LIGO noise which has been

recolored to match the design sensitivity of Advanced LIGO [1, 10]. We introduce an arti-

ficial time-shift in the initial LIGO data to remove any potential GW signals present [40].

Fig. 4 shows the performance of the recoveries for injections into the recolored noise, using

the noise model that assumes Gaussian noise. We find that the performance is similar to

that of the Gaussian noise case. Because the data segments analyzed and waveforms are

long, it is likely that our pipeline is less susceptible to noise transients than the compact

binary case.

IV. CONCLUSION

In this paper, we have demonstrated the ability to perform basic parameter estimation

on GW signals from their signature in ft-maps. We described the likelihood method used

and showed that these methods correctly recovered the parameters of waveform models and

were able to differentiate between two similar models.

In the future, we will move beyond the generic models presented here to more complicated

models. This will be necessary to identify the physics underlying a particular GW source

by distinguishing between different variations of similar models. Also, further studies of

the assumptions made in the paper will be conducted. We have assumed that the noise is

Gaussian and stationary and ignore the correlation between pixels in the maps. We have

also assumed that the cross terms when multiplying the noise and waveform signals are

zero. There are three complicating assumptions involved in the use of the likelihood here.

The first is that in reality the cross-terms of the noise and signal are non-zero (see B). The
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FIG. 4: Same as Fig. 3 for initial LIGO noise recolored to advanced LIGO noise. The parameter

recoveries are similar to the Gaussian noise case.

second is that the cross-power statistic uses adjacent PSD’s for the purpose of estimating σ

(from Eq. (1)), meaning there is a correlation between adjacent pixels (see A). As such, the

multiplication of the pixel probabilities in the ft-map, which requires that the probabilities

are all independent if one wants a true cumulative probability, is not valid. The third is

that real detectors have noise transients and non-stationary noise, which violate some of

the approximations used here. One way to rectify this is to perform many injections and

measure fS(θ) empirically (this distribution would change for each signal model). These

issues will be explored in the future.

The use of ft-maps to perform parameter estimation has the natural advantage over

matched filtering in terms of the speed at which it can be done. Because we fit the amplitude

of the waveform to the track in the ft-map (removing the phase information), it also means

that our signal models do not need to be quite as exact as for parameter estimation relying

on matched filtering. It is easier to match the amplitude of the signal than the phase, which
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is required by matched filtering. We can estimate the potential performance of matched

filtering parameter estimation using the Fisher Information Matrix (FIM), which is a tool

that has been used to estimate the potential accuracy of parameter estimates for GW signals

[36, 37]. In the limit of high signal-to-noise ratio, the inverse of the Fisher Information Matrix

is the variance-covariance matrix of the estimated signal parameters. It provides a first-order

estimate of the errors when measuring parameters. Applying this technique to the r-mode

model discussed above, this technique finds that the errors would be of order 0.1% for f0 and

1% for α, which is about an order of magnitude better than for the ft-map based technique.

This seems reasonable as the matched filtering technique includes phase information and

includes none of the approximations. We also expect this to be a reasonable estimate for the

signals used above because of the high matched filtering SNRs. This is important as it has

been previously shown that the Fisher Information Matrix is biased for near-threshold SNR

signals [38]. Further study may include a detailed comparison between matched filtering

and ft-map perform parameter estimation.
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Appendix A: Distribution of cross-power SNR

Cross-power signal-to-noise ratio ρ is defined as

ρ ≈ Re(s1(f)s2(f))√
P1adj(f)P2adj(f)

(A1)
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where s1(f) and s2(f) are Fourier transforms of times series from two detectors (hence

complex numbers) and P1adj(f) and P2adj(f) are the (averaged) PSDs calculated from

adjacent segments [24]. Up to a scaling factor, the numerator is known as Y, the signal

estimate, and the denominator σY , its error. s1(f) and s2(f) are each Gaussian variables

with mean 0 and variance σ2. The distribution of a new variable z defined as z = s1(f)s2(f),

known as a normal product, is given by the expression [39]

f(z) =
1

σ2
K0

(
|z|
σ2

)
(A2)

where K0(x) is the modified Bessel function of the second kind. As s1(f) and s2(f) are

complex vectors, this is actually the sum of two normal products, which is known as a

double exponential or Laplace distribution. This has a distribution of the form

fY (y) =
1

2σ2
exp

(
−|y|
σ2

)
. (A3)

This is the distribution of Y. The second step is to calculate the distribution of σY . P1adj

and P2adj are the average PSDs calculated from segments on either side of the segment used

to calculate Y

P1adj =
1

N

N∑
j=1

P1j, P2adj =
1

N

N∑
j=1

P2j. (A4)

In the frequency domain, each P1j and P2j are chi-squared distributed variables, the sum

of which have distributions of the form

fP (z) =
NN

2Nσ2NΓ(N)
exp

(
Nz

2σ2

)
zN−1 (z ≥ 0). (A5)

The distribution for σY is then

fσY (z) =
N2N

22N−2σ4N(Γ(N))2
K0

(
Nz

σ2

)
z2N−1. (A6)

The final step is to combine the distributions for Y and σY

fSNR(z) =
N2N

22N−1σ4N+2(Γ(N))2

∫ ∞
0
|x|e−|

xz
σ2
|K0

(
Nx

σ2

)
x2N−1dx. (A7)

Fig. 5 shows the probability density function (PDF) of the pixels of cross-power SNR

used in this analysis overlaid with a distribution of ρ(t; f) calculated from actual data.
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FIG. 5: Probability density function of the pixels in a ft-map of cross-power SNR with the theo-

retical distribution given by Eq. (A7) overlaid.

Appendix B: Error approximation

If the timeseries of two detectors, h1 and h2, are composed of the sum of a signal and a

noise part, (i.e., h1 = s1 + n1 and h2 = s2 + n2), when the two data streams are multiplied,

the result will be in the form of

h1h2 = s1s2 + s1n2 + s2n1 + n1n2 (B1)

The quantity h1∗h2 is proportional to ρ(t; f). The expectation values of the cross-terms, s1n2

and s2n1, are 0 because signal and noise are uncorrelated. To test the approximation that

on average the cross-terms, s1n2 and s2n1, will sum to 0, sets of 100 pixels with different

total SNRs associated with them are generated. The SNR for each set is computed by

performing a sum of the individual pixel SNRs. This process seeks to imitate the total error

accumulated due to the assumption above. In this case, the total error is the sum of s1n2

and s2n1 for all of the pixels.

Fig. 6 shows the percent difference between h1h2 and s1s2 + n1n2. For pixel sets with

moderate total SNR, 90% of the time, this approximation is within 25% of its true value.

Extremely high SNR events, which are an order of magnitude larger, yield errors on the
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FIG. 6: PDF of the percentage error of using s1s2 +n1n2 as an approximation for h1h2. The width

is the percentage error within which 90% of the distribution is contained.

order of 100%. Examining the cross-terms, their contribution becomes more significant as

the magnitude of the signal increases and the approximation breaks down in the high SNR

regime. Conversely, the bias when using signals of moderate SNR is shown to be small in

section III.
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