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In this work, we demonstrate a way to perform classical multiparty computing among parties with limited
computational resources. Our method harnesses quantum resources to increase the computational power of the
individual parties. We show how a set of clients restricted to linear classical processing are able to jointly compute
a nonlinear multivariable function that lies beyond their individual capabilities. The clients are only allowed to
perform classical XOR gates and single-qubit gates on quantum states. We also examine the type of security that
can be achieved in this limited setting. Finally, we provide a proof-of-concept implementation using photonic
qubits that allows four clients to compute a specific example of a multiparty function, the pairwise AND.
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I. INTRODUCTION

The ability to communicate and perform computations
between parties in a network has become the cornerstone of
the modern information age. As more parties with limited
resources become connected in wide-scale distributed systems,
a critical need is to develop efficient protocols for multiparty
computations (MPC), both in terms of communication load
and computing capability [1–4].

One approach to efficiently performing MPC is by ex-
ploiting quantum resources. It has been shown that mea-
surements on specific types of entangled states (GHZ states
[5]), when controlled by a linear computer, are sufficient
to compute nonlinear universal functions [6]. Based on that
result, it has been demonstrated that MPC under specific
assumptions (use of a trusted party, restricted adversaries)
is secure, by virtue of the quantum correlations of a GHZ
state [7]. Similar results have recently been shown in a
client-server scenario, where a client restricted to linear (XOR)
operations is enabled to securely delegate the computation
of a universal Boolean function to a quantum server [8,9].
The idea behind all these protocols is to use quantum
resources in order to compute classical functions more
efficiently, without having to build a fully fledged quantum
computer.

In this work, we propose a way of computing nonlinear
multivariable functions using only linear classical computing
and limited manipulation of quantum information. We examine
the scenario where a number of clients want to jointly compute
a Boolean function of their inputs. We consider that the clients
have limited computing capabilities, namely access to linear
(XOR) functionalities. We show how quantum resources can
enable such limited clients to securely compute nonlinear
functions, the complexity of which lies beyond their computing
capability. Since access to XOR gates alone is not sufficient
for universal classical computing, the clients’ computational
power is enhanced by means of manipulation of quantum
resources provided by a server.

To demonstrate this boost of computational capabilities
using quantum resources, we will focus on a particular example
of classical nonlinear multiparty computation (the pairwise
AND function) that requires as little as one single qubit
of communication between the clients. Because of the low
quantum communication cost required for the evaluation of
this function, the proposed protocol can be used as a building
block for more complex computations.

The basic idea of our approach is shown in Fig. 1. A
quantum server generates a single qubit that is sent through a
chain of clients. Each of the clients applies a rotation on the
received quantum state according to their classical input. The
quantum state is then sent back to the server, which performs
a measurement to obtain the result of the computation. Our
protocol is designed in such a way that the input of each client
remains hidden from the other clients and from the server.
Furthermore, the result of the computation remains hidden
from the server and is sent back to the clients in an encrypted
fashion, meaning that the server performs the computation
without learning anything about the result.

II. THEORY

Our aim is to compute a nonlinear Boolean function
f (x1, . . . ,xn) on input bits xi ∈ {0,1}. We focus on a particular
example of a basic multivariable Boolean function, the
pairwise AND:

f (x1, . . . ,xn) =
n⊕

j=1

[
xj+1 ×

(
j⊕

i=1

xi

)]
. (1)

The addition and multiplication are the XOR operation and the
logical AND operation respectively over the field F2. If the
function in Eq. (1) was linear, then a change in the assignment
of one of the variables would either always change the value
of the function or would never change it. However, it is easy
to verify that the function at hand does not follow this rule,
and as a nonlinear function, it cannot be computed using only
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Client 1, input x1
Server

Client 2, input x2

Client n, input xn

f(x1,x2,...,xn)
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Preparation of
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Single-qubit
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single qubit
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Single-qubit
gate
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FIG. 1. A sketch of our scheme for multiparty computation,
where a server computes a Boolean function f (x1,x2, . . . ,xn)
with inputs xi from different clients. The server generates simple
computational resources, such as single qubits, and sends them
consecutively to a number of different clients. Each client manipulates
the computational resources by performing single-qubit gates. At
the end, the server measures the output state. The result of this
measurement is sent to the clients, who can deduce the result of
the computation.

linear operations in F2, such as XOR, but necessitates the use
of nonlinear operations like NAND.

Now let us define by U = Ry(π/2) the rotation around
the y axis of the Bloch sphere (i.e., Ry(θ ) = e−iθσy/2). Then
the following equation can be used to compute the function
f = f (x1, . . . ,xn) in Eq. (1):

(U †)⊕i xi Uxn . . . Ux2Ux1 |0〉 = |f 〉. (2)

The fact that Eq. (2) uses only linear processing and operations
on a single qubit to compute a nonlinear function demonstrates
the computational power that quantum resources can provide.
Equation (2) can also be thought of in the clients-server setting
described in Fig. 1, where each client Ci has an input bit xi and
performs an operation on the received qubit before forwarding
it to the next client. By adding extra rotations V = Ry(π )
around the y axis, we can transform Eq. (2) in the following
way:

(U †)⊕i xi V rnUxn︸ ︷︷ ︸
Cn

... V r2Ux2︸ ︷︷ ︸
C2

V r1Ux1︸ ︷︷ ︸
C1

|0〉 = |r ⊕ f 〉, (3)

where ri ∈ {0,1} for i = 1, . . . ,n and r = ⊕
i ri . As we will

see in the following sections, this extra V operation will
provide some layer of security on top of the computational
boost of the clients’ power, in the case where there are
dishonest participants.

A. The protocol

The server generates a single qubit in the state |0〉 that is
sent to client C1. C1 applies V r1Ux1 on the received qubit,
according to input bit x1 and a randomly selected bit r1 and
sends the qubit on to the second client C2, who applies V r2Ux2 ;
this procedure continues until all the clients have applied their
gates to the qubit (see Fig. 2). The last operation U † depends
on the global XOR of the clients’ inputs, computed using a

Clients:
input xi, ri
+ single-qubit gates

Server:
generation 
+ measurement of qubits

01 01

single qubits in state 

Client 1

X
Y

X

Final rotation (client n)

X
Y

X
Y

Clients 2,3,..., n-1

measurement of 0 or 1

Z

X
Y

Result:

ZZ

ZZ XO
R 

ro
ut

ine

X
Y

Z

Client n

FIG. 2. Protocol for delegated multiparty computation. For a
description of the protocol, see the main text.

classical routine described below, and can be applied by any
client. The resulting state |r ⊕ f 〉 contains the value of the
function up to a random bit flip r [due to Eq. (3)].

The qubit is then sent back to the server where a
measurement is performed in the computational basis and
announces the outcome r ⊕ f . The clients then locally
compute the XOR of the random bits of the other clients and
perform the last XOR operation f = r ⊕ (r ⊕ f ) to retrieve
the result of the computation.

For the computation of the global XOR of both the inputs
and the random bits, we consider that the clients run a
classical routine that involves using their local XOR boxes to
share their classical information among them. During the XOR

routine, we assume that the clients communicate between
them via secure classical channels that have been established
by classical or Quantum Key Distribution (QKD) algorithms.

B. The XOR routine

For i,j = 1, . . . ,n, each client Cj uses his local XOR box
to choose random bits xi

j ,r
i
j ∈ {0,1}, such that xj = ⊕n

i=1 xi
j

and rj = ⊕n
i=1 ri

j and sends xi
j and ri

j to client Ci . Each client
Ci then uses his local XOR box to compute x̃i = ⊕n

j=1 xi
j and

r̃i = ⊕n
j=1 ri

j . When the designated client needs to perform the
operation U †, the rest of the clients send x̃i to that client, who
uses his local box to compute the global XOR (since

⊕n
i=1 xi =⊕n

i=1 x̃i).
At the end of the protocol, when the server announces the

value of the measurement r ⊕ f , all clients broadcast r̃i , so
that all clients can compute the value r . Of course, a sequential
announcement of the clients will give the last client the ability
to learn the output of the computation first and then abort
the protocol. More complicated ways of secret-sharing values
and broadcast channels using threshold schemes could be used
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instead, but that would defeat the purpose of this paper, which
is to show how simple manipulation of quantum states can
boost the computational power of limited clients.

C. Security

As mentioned, the goal of this work is to demonstrate how
quantum information can increase the computational abilities
of parties in a client-server setting; however, the introduction of
V rotations in Eq. (3) allows for some level of security in a pas-
sive adversarial model. More explicitly, we assume that both
the server and the clients are interested in completing the com-
putation, and will therefore act according to the protocol; they
might, however, leak some information to an attacker that gains
access to their records. We therefore assume that the server
sends |0〉 single-qubit states during the protocol, and no mul-
tiple copies of the same qubit or parts of entangled states, but
might leak the classical result of the measurement to an eaves-
dropper. The need to use single copies of quantum states in our
protocol is also what distinguishes this work from the previous
single-client single-server protocol [9], where using cobits
(i.e., systems capable of being in a coherent superposition
of two states) was sufficient for secure classical computing.

The privacy of the secret input bits of the clients is
maintained against someone who acquires a copy of the
server’s data, since all information that the latter can retrieve
is equivalent to the sequence of gates applied, which is
in turn equal to V r⊕f . Since the term in the exponent
represents padded information, the server cannot retrieve more
information than that contained in r ⊕ f , which is indeed the
expected outcome of measurement.

Furthermore, security against dishonest clients is also
maintained, even if we allow them to prepare quantum states
and perform measurements on the received states. This is again
due to the V rotation that is chosen uniformly at random and
performed by all honest clients on the qubit. To see this more
clearly, we examine the case when the first honest client in the
chain, Ci , applies his rotation on the received qubit. We can
assume without loss of generality that the qubit is prepared by
the dishonest clients in the XZ plane, since all rotations by
the honest clients are done on that plane, and therefore any
component outside the plane will not be affected. The honest
operation on any pure state |ψ〉 on the XZ plane results in the
totally mixed state

1

2

∑
ri

V ri Uxi |ψ〉〈ψ |(U †)xi (V †)ri = UxiI2(U †)xi ,

which ensures that no information is leaked to the next clients.
As in the case of the server, however, we need to restrict the
clients’ malicious behavior to sending single qubit states or
equivalently that the honest rotation is done on one qubit.
Finally, the client responsible for the last U † rotation will
unavoidably learn the parity of the inputs of the rest of the
clients, but as long as at least two clients are honest, it is
enough to guarantee the secrecy of the independent inputs.

D. Efficiency and comparison to previous protocols

A common way to perform multiparty computations is via
expressing the desired circuits as a sequence of smaller gates,

for example two-input universal gates. Previous work [8] can
therefore be reinterpreted as a protocol that computes the
NAND of the inputs of two clients. However, a straightforward
extension of this to a multivariable function would prove very
costly, requiring one qubit, up to two Ry rotations, and several
rounds of classical communication to compute the necessary
XORs, for each AND evaluation in the function. By just looking
at the quantum communication needed in the new protocol
(which requires a single qubit to compute the pairwise AND),
we observe an immediate gain in efficiency. Furthermore, a
straightforward implementation of a construction based on
[8] guarantees no security for the inputs of the parties, since
the XORs necessary for the application of U † are on two bits;
therefore, the client who performs the latter unavoidably learns
the input of the other client.

Finally, previous studies of Boolean function evaluation
in the measurement-based quantum computation model [10]
required an (n + 1)-extended GHZ state to compute the
pairwise AND function of Eq. (1) while to compute other
Boolean functions (i.e., n-tuple AND function), the resource
state should have 2n − 1 qubits. In contrast, the presented
protocol does not require any entanglement in the quantum
state and uses only one qubit to compute the pairwise AND

function, while for the n-tuple AND function, it requires at
most n − 1 qubits (one qubit for each AND operation), giving
an exponential decrease on the number of qubits used.

III. EXPERIMENT AND RESULTS

We implement the protocol using polarization-encoded
photonic qubits with |0〉 (|1〉) being the horizontal (vertical)
polarization state. Single photons are generated by pumping
a waveguided periodically poled potassium titanium oxide
phosphate crystal with a mode-locked Ti:sapphire laser (τ =
200 fs, λ = 775 nm, 250 kHz repetition rate). After spectral
filtering, we obtain pairs of photons at 1547 nm (horizontal
polarization) and 1553 nm (vertical polarization), each with
2-nm spectral bandwidth (FWHM). The photons are detected
using InGaAs avalanche photodetectors (APD) [11,12].

Using this source, the server generates heralded single
photons in state |0〉 which are sent to the clients’ side via
15-m-long polarization-maintaining (PM) fibers. Each client
Ci has access to a series of half-wave plates (HWPs) for
implementing the quantum gates Uxi and V ri (see Fig. 3):

Ci = UHWP

(π

4
ri

)
UHWP

(
−π

8
xi

)
, (4)

where UHWP (θ ) is a HWP with optical axis rotated by θ .
In order to demonstrate all the features of function f , we
choose to implement a setup with four clients. This could be
easily extended straightforwardly to a scheme with an arbitrary
number of clients. The overall unitary evolution of the system
is then described by the following sequence of operators:

UHWP (0)UHWP

(π

8
⊕i xi

)
︸ ︷︷ ︸

final rotation

C4 C3 C2 C1︸ ︷︷ ︸
client chain

|0〉, (5)

up to a global phase factor. For the purpose of our demon-
stration, UHWP (0) can be omitted as it has no effect on the
correctness of the demonstration.
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r1

x1

r2

x2

r3

x3

r4

x4

global
XOR

Polarization 
measurement

15m PM fiber

Heralded
single 
photons
1553nm

ClientsServer

HWPs

FIG. 3. Experimental scheme. The server generates heralded,
horizontally polarized photons, which are sent to the clients’ side.
Each client uses a pair of half-wave plates for applying the gates V ri

and Uxi . If xi or ri are equal to zero, the setting of the respective
half-wave plate is chosen to be zero. If xi or ri are equal to one,
the corresponding half-wave plate is rotated by an angle θ with
respect to the horizontal polarization state, where θ is given in the
figure. Finally, one of the clients performs a final conditional rotation
dependent on ⊕ixi . The photon is sent back to the server, where
a measurement in the computational basis is performed; this has
been implemented using a Wollaston prism and two single-photon
Avalanche photodiodes (APDs).

Finally, single photons are coupled into another PM fiber
and sent back to server. Here, they are measured in the

computational basis using a polarization splitter (extinction
ratio >60 dB) and two APDs connected to the output
arms.

We performed measurements on all possible 32 sequences
of the input bits xi . For each sequence, all possible combina-
tions of the padding bits ri have been tested. Figure 4(a) shows
statistics of the results for a subset of input configurations. The
average probability of finding the correct result was measured
(99.53 ± 0.03)%, where we assumed Poissonian statistics
for the errors. Imperfections arise from state preparation,
polarization manipulation and polarization measurements, and
darks counts. Figure 4(b) shows results for the same input, but
averaged over all combinations of random bits ri , resulting
in a flat distribution. The values we obtain for the average
outcome of the computation lie between (49.95 ± 0.03)%
and (50.06 ± 0.03)% with an average of (50.00 ± 0.03)%.
These values are computed from the raw counts corrected by
the coupling efficiencies. This shows that the server could not
infer any information from the outcomes of its measurements.
The main limiting factors in the correctness of the result
are the uncertainty in wave-plate positioning and polarization
crosstalk introduced by PM fiber connectors.

Figure 4(c) shows the long-time stability of our system:
We repeated the same computation several times over a
time interval of 13 h and studied drift in our experiment.
The average correctness over this time was 99.43% with a
standard deviation of 0.08%. The correctness decreases from
(99.52 ± 0.02)% to (99.27 ± 0.06)%; the drop in probability
is caused by drifts in the coupling to the fibers and polarization
drifts.

Security of implementation

In addition to the theoretical security aspects discussed
above, in our implementation we choose the wave-plate

Statistics of the outcomes without padding (normalized)

(0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)
99.6%

99.65%

99.7%

99.75%

99.8%

Statistics of outcome 0
Statistics of outcome 1

(0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)
49.9%

49.95%

50%

50.05%

50.1%
Statistics of the outcomes with padding (normalized)

0 2 4 6 8 10 12 14
99.2%

99.25%

99.3%

99.35%

99.4%

99.45%

99.5%

99.55%

Time [hours]

Stability test on long time scale

FIG. 4. (a) Measured outcomes of the computation after decoding r ⊕ (r ⊕ f ) for a sample subset (x1,x2,x3,x4) of the input bits tested
(horizontal axis). (b) Measured outcomes of the computation before decoding (r ⊕ f ), averaged over all possible combinations of ri , i =
1, . . . ,4. For each data point, we integrated over 15 s, yielding an overall statistics of about 3000 counts for each computation performed.
(c) Long-term stability of our experiment. The graph shows the probability of obtaining the correct outcome measured over 13 h of data
acquirement. Every point of the plot corresponds to the average over 1 h of measurement time. The combination of the clients’ input bits used
here is (x1,x2,x3,x4) = (1,1,1,1).
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settings in such a way that there is no phase shift between
the states |0〉 and |1〉 that could leak information about the
inputs. As already discussed in Ref. [9], global phase shifts
could leak information if the server, for example, sends
part of an entangled state. However, this approach would
require an interferometrically stable setup, which is an unlikely
condition for a real-life implementation. Furthermore, the
protocol requires the use of single qubits and a single-shot
implementation in order to be secure. For the purpose of
computing statistics for our proof-of-principle demonstration,
we averaged over several runs of the experiment that used
the same input settings. We note, however, that this would
leak information about the inputs or the result to a malicious
party; therefore in a realistic implementation, single-shot
experiments would be required.

IV. CONCLUSION

In general, linear function evaluation is considered efficient
and requires no prior shared randomness between the clients,
while nonlinear function evaluation requires such resources,
which increases the communication and computation cost. In
this work, we demonstrate a way to perform nonlinear classical
multiparty computation without any such requirements, by ex-
ploiting single qubits and access to restricted linear processes.
This is done through studying a specific Boolean function
that can be thought of as a building block for more complex
computations.

Even though the main focus of this work is the boosting of
the computational capabilities of limited clients manipulating
single qubits, by introducing some extra rotations we can
guarantee security under assumptions on the adversarial
behavior of the participants. This holds even in a realistic
setting where the noise in the system necessitates repetition of
the protocol for a single computation, since the rotations are
chosen uniformly at random in each repetition. In this setting,
the classical data obtained during the protocol do not leak any
information, given that the adversaries act in a restricted way.
Since the goal was to keep the clients’ quantum capabilities as

limited as possible, it would defeat the purpose of this study to
allow them to perform any check on the correct behavior of the
server or the other clients. If we would consider a setting where
the clients are enhanced with quantum measurement devices,
security of the protocol could be increased by checking the
mean photon number (however, see Ref. [13] for a discussion
on attacks and countermeasures on commercial devices).

Our work also offers many avenues for further research.
For example, are there more simple nonlinear functions like
the one presented here that can be used as subroutines for larger
computation protocols? And more generally, what is the most
efficient way to perform complex computations when we have
access to limited quantum and classical resources? Finally,
surprisingly enough, this boosting of computational power is
possible with the use of single qubits, and without the need
of the type of contextuality mentioned in Ref. [14], opening
a discussion on whether some other form of contextuality is
relevant in this setting.
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