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Abstract

We present a novel method for testing the hypothesis of equal-
ity of two correlation matrices using paired high-dimensional datasets.
We consider test statistics based on the average of squares, maximum
and sum of exceedances of Fisher transform sample correlations and
we derive approximate null distributions using asymptotic and non-
parametric distributions. Theoretical results on the power of the tests
are presented and backed up by a range of simulation experiments. We
apply the methodology to a case study of colorectal tumor gene expres-
sion data with the aim of discovering biological pathway lists of genes
that present significantly different correlation matrices on healthy and
tumor samples. We find strong evidence for a large part of the pathway
lists correlation matrices to change among the two medical conditions.

keywords correlation matrix, Fisher transform, hypothesis testing, high-
dimensional data, extreme values, dependent data, gene expression

1 Introduction
In recent years, the improvements in technology have made it possible to col-
lect and store reliable information for a large number of genes, metabolomics
or proteins, among others, on an organism in a single sample. This typically
generates datasets where the number of variables p is much larger than the
number of observations n. Statistical techniques that deal with this type of
data, commonly known as high-dimensional data, with the purpose of an-
swering biological questions, are well studied in the literature (Buhlmann
and van de Geer, 2011; Sánchez and Villa, 2008). One of the main challenges
relates to understanding how the genes function in a biological process and
how they interact between each others in a cell. In this regard, measuring
and assessing variations of gene interactions on the presence of an illness pro-
cess such as cancer is important to biologists as part of discerning the gene
regulatory mechanisms that control the disease.
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A statistical technique that is widely used to measure interaction between
pairs of genes from data is given by the Pearson correlation, which quantifies
the strength of the linear dependence between two random variables. The
main hypothesis testing (HT) problem we study in this chapter assesses the
evidence of equality of two correlation matrices R1 = [r

(1)
ij ] and R2 = [r

(2)
ij ]

that correspond to genomic data Y (1) and Y (2) measured in two different
conditions (e.g, healthy and tumor tissues),

H0 : R1 = R2 vs H1 : R1 6= R2

The likelihood ratio test statistic for testing equality of correlation matri-
ces (Kullback, 1967), when the vectors Y (1) and Y (2) are Gaussian, depends
on the determinant of the two sample matrices and is not well defined when
the sample size n is less than the dimension p. However, datasets that arise
from biological experiments are frequently high-dimensional, with p � n.
There are two main directions that address this hypothesis testing prob-
lem for high-dimensional data in the literature. The first is based on sum of
squares statistics, see Schott (2007) and Li and Chen (2012), who use the
Frobenius norm as a distance measure to compare the two sample correla-
tion matrices. The second is based on extreme value statistics, see Cai et al.
(2013), who derive the asymptotic null distribution of the maximum of the
square of sample correlation coefficient differences.

To the best of our knowledge, the tests considered so far in the literature
are applicable when the random vectors Y (1) and Y (2) are independent. Here
we study the implications of using the sample correlation matrices when
the two datasets are dependent, particularly when they come from paired
observations, in which case the cross-correlation is not zero. We propose
three different tests which apply to paired data, and that are based on the
average, maximum and threshold exceedances of the elementwise correlation
differences.

The proposed methodology is motivated by a genomic data set (Hinoue
et al., 2012) that contains the gene expression information of approximately
p ≈ 25× 103 genes in two different samples, from the same n = 25 patients,
corresponding to two different medical conditions. These are the gene ex-
pression of a tumor cell and its adjacent normal tissue. The gene pairwise
correlation is a reasonable measure to understand the relationship between
genes in a biological process, so our purpose in the analysis of these data
is to assess whether the correlation matrix varies or not when going from a
healthy to a tumor state. Even though the complete p× p correlation matrix
is expected to change considerably, testing the equality of linear dependence
structures for subgroups of the 25× 103 genes that are known to have func-
tions in a biological process is highly important. We test if the genes interact
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similarly in the two conditions for 1320 pathway lists of sizes going from 20
to 900 which contain groups of genes with known biochemical connections.

The article is structured as follows. In Section 2 we present the hypothesis
testing problem and we propose several test statistics which are motivated by
the type of statistics mentioned in the literature. In Section 3 we determine
approximate distributions of these test statistics under the null hypothesis
and we give lower bounds for their asymptotic powers. In Section 4 we use
simulated data in order to assess the accuracy of the tests under the null
hypothesis and to compare the power of the tests for several types of alter-
native hypothesis. Finally, in Section 5 we consider a case study on genomic
data where the proposed methodology is used to answer questions that arise
from a biological process. We have implemented the methodology presented
in this paper within the R package ldstatsHD (Caballe, 2016).

2 Hypothesis testing problem

2.1 Problem setting and Fisher transformation

Consider n independent and identically distributed (i.i.d.) 2p-dimensional
random vectors Yk = (Y

(1)
k , Y

(2)
k ), k = 1, . . . , n, where Y (1) and Y (2) are

associated with population I and population II, respectively, and that follow
a standard multivariate normal distribution with correlation R, i.e.,

(Y
(1)
k , Y

(2)
k )

iid∼ N2p(0, R), R = [rij] =

[
R1 R12

Rᵀ
12 R2

]
, (1)

where R1 and R2 are the category-specific correlation matrices and the cross-
correlationR12 is non-zero if the two random vectors Y (1) and Y (2) are linearly
dependent. We assume, without loss of generality, unit variances and zero
mean vector. The main goal of this section is to test whether the correlation
matrix R1 is equal to the correlation matrix R2 with hypothesis H0 : R1 =
R2 vs H1 : R1 6= R2. We denote the sample correlation matrix by R̂, which
is determined by R̂1 = [r̂

(1)
ij ] = Y (1)ᵀY (1)/n, R̂2 = [r̂

(2)
ij ] = Y (2)ᵀY (2)/n and

R̂12 = [r̂
(12)
ij ] = Y (1)ᵀY (2)/n. Given the symmetry in the correlation matrices,

we consider their lower triangular matrices instead using the same notation
with

M = {(i, j) ∈ {1, . . . , p} : i < j}, m = Card(M) = p (p− 1)/2. (2)

An approximate pivot for the correlation coefficient is given by the Fisher
transformation (Fisher, 1921), which is defined by g : (−1, 1) 7→ R, g(z) =
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log{(1 + z)/(1 − z)}/2, such that the elementwise Fisher transformation of
R̂K , K ∈ {1, 2}, weakly converges to a multivariate normal distribution

ÛK = g(R̂K)
√
n− 3 ∼ N(g(RK)

√
n− 3,ΨK), K ∈ {1, 2}, (3)

where ΨK = [ψ
(k)
th ] is the m×m correlation matrix between elements in ÛK

as ψ(k)
tt = 1 for any t ∈M and K ∈ {1, 2}.

2.2 Correlation of sample correlation coefficients

We assume here and throughout that rt < 1 for any t ∈ M . The non-zero
dependence structure between the two random vectors Y (1) and Y (2) leads
to correlation between elements in the estimator Û = [Û1, Û2] (Elston, 1975;
Steiger, 1980), which is found as in eq. (3). Take s = (h, i) and t = (j, l),
s, t ∈ M , as defined in eq. (2), following derivations from Dunn and Clark
(1969), the asymptotic correlation of ûs and ût, ψst = ψhi,jl = cor(ûs, ût), as
n→∞, is expressed by

ψst = ψhi,jl = (ωhh|l ωjj|l)
−1[(ωhj|i ωil|j +ωhj|l ωil|h) + (ωhl|i ωij|l +ωhl|j ωij|h)]/2,

(4)
where ωhi|j = rhi − rhjrij and ωhh|l = 1− r2

hl.
The difference of Fisher transformed coefficients also approximately fol-

lows a normal distribution ∆Û := (Û2 − Û1) ∼ N(U2 − U1,Ψ1 + Ψ2 − 2Ψ12)
where Ψ12 describes the correlation between coefficients in Û1 and Û2. The
diagonal elements (ψ

(12)
tt ), t ∈ M , are estimated by plugging-in the sample

correlation coefficients in eq. (4). This yields a consistent estimator of (ψ
(12)
tt )

for large n but produces non-negligible bias in the estimation for small n.
Let d̂t be the standardized expression of ∆ût, such that

d̂t = ∆ût{2(1− ψ̂(12)
tt )}−1/2, t ∈M, D̂ = (d̂t). (5)

Under the null hypothesis of equality in the correlation matrices, d̂t has zero
expected value and variance (σ2

t )n with (σ2
t )n → 1, n → ∞ for any t ∈ M .

Moreover, if ψ(12)
tt is known, then cov(d̂t, d̂k) is proportional to ψ(1)

tk + ψ
(2)
tk −

2ψ
(12)
tk , which is non-zero for some k 6= t, unless R = I.

2.3 Test statistics

The three test statistics considered here are based on the elementwise stan-
dardized differences between transformed sample correlation coefficients in
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eq. (5). These are average of squares (TS), extreme value (TM) and sum of
exceedances (TE) test statistics

TS = m−1
∑
t∈M

d̂2
t , TM = max

t∈M
|d̂t|, TwE (u) =

∑
t∈M

(|d̂t| − uw)2I(|d̂t| > u).

(6)
In the sum of exceedances test, w is either 0 or 1 and it is incorporated to
weight the importance of high values over the threshold u.

3 Null distributions and asymptotic power

3.1 Average of squares test

The next lemma provides expressions for the expected value and variance of
the average of squares test statistic TS, which is defined in eq. (6).

Lemma 1 (Expected value and variance of TS) Let µ2 = E(d̂2
t ) and µ4 =

E(d̂4
t ). Define γ̄2 = 2(m2−m)−1

∑
t<h cov(d̂

2
t , d̂

2
h).The expected value and vari-

ance of TS are expressed by

E[TS] = µ2; var(TS) = (µ4 − µ2
2)/m+ (1− 1/m)γ̄2. (7)

Proof The proof of lemma 7 can be found in Section 7.1 of the appendix.

Under H0, asymptotically with n→∞, d̂2
t ∼ χ2

1, for any t ∈M . Besides, for
sufficiently large n, it follows from the properties of χ2

1 that µ2
.
= 1 and µ4

.
=

3. Let ν =
∑

t<h I[cov(d̂2
t , d̂

2
h) 6= 0] be an integer ranging in [0,m(m− 1)/2].

If cov(d̂2
t , d̂

2
h) ≤ k, for any t < h, for a finite constant k, and ν/m → 0 as

m→∞, then it follows that var(TS) = (2/m)(1 +O(ν/m)).
However, for a finite dimension, if the correlation matrices are not highly

sparse, ν/m is not negligible and the dependence parameter γ̄2 must be incor-
porated to assure uniformity in the p-values of the test under H0. Moreover,
since an estimator for the covariance between Fisher transform sample cor-
relations ψ(12)

tt (defined in eq. (3)) is used, parameters µ2 and µ4 can differ
slightly from their limiting values (1 and 3) and should be estimated. For
sufficiently large m and n, TS is well approximated by a normal distribu-
tion with parameters µ = µ2 and σ2 = (µ4 − µ2

2)/m + (1 − 1/m)γ̄2 with
Pr(TS ≤ x | H0)

.
= Φ(x;µ, σ2) where Φ(·;µ, σ2) is the CDF of normal distri-

bution with parameters µ and σ2. Following the central limit theorem, the
Gaussian approximation can be appropriate even when n if parameters µ2

and µ4 are well specified (not approximated by their limiting values).
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Hence, the null hypothesis is rejected at significance level α if the observed
value of TS is greater than

tS,α
.
= µ2 + zα

√
(µ4 − µ2

2)/m+ (1− 1/m)γ̄2. (8)

The following theorem shows a lower bound for the power of the average of
squares test.

Theorem 1 (Power of the average of squares test) Let tS,α be asymp-
totic α-quantile of the distribution for TS under H0 defined by (8) with 0 <
α < 1/2. Under the alternative hypothesis, let γ̄′2 = 2(m2−m)−1

∑
t<h cov(d̂

2
t , d̂

2
h |

H1) and δt = |g(rYt) − g(rXt)| with Sd = {t ∈ M : δt 6= 0}. Denote
δ2

0 =
∑

t∈Sd δ
2
t . If condition

δ2
0 > zα

√
2m{1 + (m− 1)γ̄2/2)}1/2/(n− 3) (9)

holds, then, as n,m→∞,

Pr(TS ≥ tS,α | H1) ≥ 1− exp(−A2/2)(1 + o(1)).

with

A =

(n−3)
m

δ2
0 − zα

√
2
m
{1 + (m− 1)γ̄2/2}

(m−1/2{2 + 4s(n−3)
m

δ2
0 + (m− 1)γ̄′2}1/2)

Corollary 1 For γ̄2 < ν k and ν/m = o(1), condition (9) becomes δ2
0 & m1/2

n

as (n,m)→∞. Under condition (9), when (n/
√
m)δ2

0 →∞, Pr(TS ≥ tS,α |
H1)→ 1.

3.2 Extreme value test

In this section we provide a heuristic approach to approximating the limiting
distribution of TM , defined in eq. (6), based on two key assumptions: (i) we
suppose that the sample size n is sufficiently large so that (d̂t : t ∈ M) has
a Gaussian distribution with standard N(0, 1) margins and (ii) we assume

max
t<s∈M

|cov(d̂t, d̂s)|< 1 and νt =
∑
s∈M\t

I{cov(d̂t, d̂s) 6= 0} = O(mηt),(10)

for some ηt ∈ (0, 1), t ∈ M . Condition (10) implies that no two elements of
(d̂t) are perfectly dependent and that there is sufficiently weak dependence
structure in the process. If condition (10) holds, then adapted versions of
extreme value limits for non-stationary Gaussian processes apply (Leadbetter
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et al., 1983), i.e., there exist location and scale functions µ(m) ∈ R and
σ(m) > 0, such that

lim
m→∞

Pr

(
TM − µ(m)

σ(m)
< x

∣∣∣H0

)
= exp {− exp (−x)} , (11)

describes a Gumbel distribution with µ(m) + σ(m)x → ∞, as m → ∞, for
all x. We note that a similar type of extreme value limits are obtained in Cai
et al. (2013) for the less general setting where (Y

(1)
k , Y

(2)
k ) in expression (1) are

independent. Additionally, our empirical findings from simulations confirm
that this is a reasonable approximation for the distribution of TM provided n
and m are sufficiently large. To back up this result, we illustrate in Appendix
7.3 how condition (10) links with Leadbetter et al. (1983) conditions for
convergence of the maximum of non-stationary Gaussian processes.

In real applications, where m is finite, limit expression (11) may fail to
approximate the distribution of TM in two respects. Firstly, it is known that
the rate of convergence to the limit distribution is very slow. Secondly, its
form is independent of the dependence structure of the process (d̂t : t ∈M),
a result that stems from the joint tail properties of the multivariate Gaussian
distribution (Sibuya, 1959; Tiago de Oliveira, 1962).

An improved approximation that does take into account the dependence
characteristics can be obtained from a sub-asymptotic correction (Eastoe and
Tawn, 2012),

Pr

(
TM − µ(m)

σ(m)
< x

∣∣∣H0

)
.
= exp

{
−
(mE

m

)
exp (−x)

}
, for large m,

(12)
where mE = mE(m,x) satisfies mE/m → 1, as m → ∞, for all x ∈ R, and
describes the effective sample size of independent and identically distributed
N(0, 1) random variables whose maximum has the same distribution with
TM . Note that the distribution of TM in eq. (12) is a Gumbel distribution
as in eq. (11) but with an updated location parameter, say µmE(m), which
depends on mE.

Hence, the null hypothesis is rejected at significance level α if the observed
value of TM is greater than

tM,α
.
= µmE(m)− σ(m) log(− log(α)) (13)

∼
√

2 log(2m)− [log θm + log{− log(α)}]/
√

2 log(2m).

The following theorem shows a lower bound for the power of the extreme
value test

7



Theorem 2 (Power of the extreme value test) Assume (10) holds. Let
tM,α be the asymptotic α-quantile of the distribution for TM under H0 de-
fined by (13) with 0 < α < 1/2. Under the alternative hypothesis, let δt =
|g(rYt)− g(rXt)| with Sd = {t ∈M : δt 6= 0}. If the following condition holds

max
t∈Sd

δt >
1√
n− 3

[√
2 log(2m)− log{− log(α)}√

2 log(2m)

]
, (14)

then, as n,m→∞,

Pr(TM ≥ tM,α | H1) ≥ 1− exp

−(n− 3)

2

{
max
t∈Sd

δt −

√
2 log(2m)

(n− 3)

}2
 (1 + o(1)).

If s = |Sd| → ∞ and

min
t∈Sd

δt >
1√
n− 3

[√
2 log(2m)− log{− log(α)}√

2 log(2m)

]
, (15)

then, as n,m→∞,

Pr(TM ≥ tM,α | H1) ≥ 1− exp

{
−e−
√

2(n−3) log(2s)
[
mint∈Sd δt−

√
2 log(2m)
(n−3)

]}
(1 + o(1)).

Corollary 2 As n,m→∞, condition (14) becomes maxt∈Sd δ
2
t & (2 log 2m)/(n−

3). Under this condition, if
√
n(maxt∈Sd δt−

√
2 log(2m)/n)→∞, Pr(TM ≥

tM,α | H1)→ 1.
Similarly, as n,m → ∞ and s = |Sd| → ∞, condition (15) becomes

mint∈Sd δ
2
t & (2 log 2m)/(n−3). Under this condition, if

√
n log s(mint∈Sd δt−√

2 log(2m)/n)→∞, Pr(TM ≥ tM,α | H1)→ 1.

3.3 Sum of exceedances test

Let Su = {t ∈M : |d̂t| ≥ u} be the set of exceedances above some threshold
u ≥ 0, let Nu = Card(Su) be the number of elements in Su and recall that
m = p(p − 1)/2. The cumulative distribution function of the test statistic
TE under H0 is

Pr(TwE (u) < x | H0) =
m∑
k=1

[Pr(Nu = k | H0) Pr(TwE (u) < x | H0, Nu = k)] .

(16)
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We define several parameters that are used to determine the limiting distri-
bution of TE:

γ(w)
utj

= cov((|d̂t| − uw)2, (|d̂j| − uw)2 | d̂2
t > u, d̂2

j > u, dt = dj = 0),

η0 = Pr(|d̂t| > u | dt = 0), (17)
φtj = Pr(d̂2

t > u2, d̂2
j > u2 | dt = dj = 0), φ̄ = [m(m− 1)]−1

∑
t6=j

φtj.

Let ϕ and Φ be the density and cumulative distribution function of the
standard normal distribution, respectively. For sufficiently large expected
number of exceedances, the central limit theorem yields Pr(TwE (u) < x |
H0)

.
= Φ{x, µ(m,w), σ2(m,w)} for any w = {0, 1}, with{
µ(m,w) = mη0 µw

σ2(m,w) = m {η0σ
2
w + µ2

w(η0 − φ̄)}+m2µ2
w(φ̄− η2

0) +
∑

t6=j γ
(w)
utj φtj,

(18)
where µw and σ2

w are defined for w = 0 by{
µ0 = 1 + uϕ(u)/{1− Φ(u)}
σ2

0 = 3 + (u3 + 3u)ϕ(u)/{1− Φ(u)} − µ2
0,

(19)

whereas for w = 1 these are{
µ1 = u2 + 1− uϕ(u)/{1− Φ(u)}
σ2

1 = 3 + u4 + 6u2 − (5u+ u3)ϕ(u)/{1− Φ(u)} − µ2
1.

(20)

[The derivation of equations (18), (19) and (20) can be found in Section 7.2
of the Appendix]. Note that if the elements in D̂ are near independence, then
φ̄ ≈ η2

0, making the third term in the expression for the variance in eq. (18)
approximately zero, and the whole expression simplifies to σ2(m,w)

.
= mη0{(1−

η0)µ2
w + σ2

w}.
The null hypothesis is rejected at significance level α if the observed value

of T (w)
E is greater than

t
(w)
E,α

.
= µ(m,w) + zασ(m,w). (21)

The following theorem shows a lower bound for the power of the sum of
exceedances test.

Theorem 3 (Power of the sum of exceedances test) Let t(w)
E,α be the asymp-

totic α-quantile of the distribution for T (w)
E under H0 defined by (21) with

9



0 < α < 1/2 and w being either 0 or 1. Consider µ0 and µ1 defined
by eq. (19) and eq. (20), η0 defined by eq. (17) and σ2(m,w) defined by
eq. (18). Under the alternative hypothesis, let δt = |g(rYt) − g(rXt)| with
Sd = {t ∈ M : δt 6= 0}, s = |Sd|, ηt = Pr(|d̂t| > u | dt 6= 0) and
µtw = E((|d̂t| − wu)2 | |d̂t| > u, dt 6= 0). If the following condition holds∑

t∈Sd

µtwηt > sη0µw − zασ(m,w), (22)

then the lower bound for the asymptotic power of sum of exceedances test,
with w = {0, 1}, as n,mη0 →∞, is

Pr(T
(w)
E ≥ t

(w)
E,α | H1) ≥ 1− exp(−B(δt, s, u, n,m,w)2/2)(1 + o(1)),

with

B(δt, s, u, n,m,w) =

∑
t∈Sd µtwηt − s η0 µw − zα σ(m,w)

σH1(m,w)
, (23)

where σ2
H1

(m,w) is defined in Section 7.5.3 of the appendix.

Note: Gaussian approximation represents well the asymptotic power if and
only if mη0 is sufficiently large, with u <

√
2 log 2m being a necessary condi-

tion.

Corollary 3 Assume σ2(m,w)
.
= mη0{(1−η0)µ2

w+σ2
w}. Let u = u(β) with

β = 2(1 − Φ(u)), and let Sdu = {t ∈ M, |dt| � u} with su = |Sdu|. When
(m,n, u) → ∞, under condition (22), if su = kmax(1, sη0, (2mη0)1/2) for
some integer k > 0, and δ2

t (n/u2) → ∞ for some t ∈ Sdu, Pr(T
(w)
E ≥ t

(w)
E,α |

H1)→ 1.

1. u = 0: recovery conditions coincide with the average of squares test
(Section 3.1).

2. u =
√

2 log 2m− o(1): recovery conditions are similar to extreme value
test (Section 3.2).

3.4 Threshold selection for sum of exceedances test

The threshold u is key to find the test statistic that maximizes the power
and its selection is the focus of attention of this section. Under notation in
Theorem 3, B(δt, s, u, n,m,w) depends on parameters n,m,w, u (known),
and s, δt (unknown). Let ρs = s/m be the proportion of non-zero elements
in R2 − R1. To show the influence that ρs has in the asymptotic power,
the function f , defined in eq. (23), is evaluated for several values of ρs,

10



u, with fixed sizes n = 100, m = 10000 and generating values of δt from a
Gamma(a, b) distribution with parameters a = 3 and b = 10. In Figure 1, the
optimal threshold, defined by the value of u that maximizes B, is decreasing
with ρs for both w = 0 and w = 1.
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Figure 1: Relative power of sum of exceedances test with respect to threshold
(u) and proportion of non-zero correlation differences (ρs) for (a) w = 0 and
(b) w = 1. The black line corresponds to the threshold with highest power.

Moreover, in panels (a) and (b) of Figure 2, the optimal values for u using
a range of sample sizes and three different values for ρs ∈ {0.01, 0.1, 0.3} are
obtained. We also considered several dimension sizes, but their impact on the
threshold selection was very low and for simplicity we only show the cases
for m = 1000, which corresponds to p ≈ 43 − 44. For w = 0, the optimal
threshold increases with the sample size, whereas for w = 1, the optimal
threshold decreases with the sample size. In panel (c) of Figure 2, we show
the lower bound of the power differences between w = 0 and w = 1. We
consider the best power for both w = 0 and w = 1 and then we take the
difference between the two. In the figure we present the average sign of such
power differences over 1000 simulations for the set of parameters (δt : t ∈ Sd).
Only for small sample sizes (n < 100) and low ρs, w = 1 reaches better rates
than w = 0. Otherwise, w = 0 dominates the asymptotic power.

As Figure 1 and Figure 2 show, the fraction of zero elements in R2 − R1

denoted by ρs is essential to find the best threshold. We propose to find an
estimator for ρs using the q-values approach of Storey (2015) where the input
are approximated p-values 2(1− Φ(|d̂t|)) for all t ∈M . Even though testing
if ρs = 0 is the same as our hypothesis testing of R1 = R2, here we only use
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Figure 2: Optimal threshold in sum of exceedances test with respect to
several values of the sample size for (a) w = 0 and (b) w = 1. In (c) is shown
the average sign for the difference between best power using w = 1 and
best power using w = 0 over 1000 simulated sets of differential correlation
coefficients.

this testing procedure to find a first crude estimation of ρs. This estimator
is shown to be asymptotically unbiased with n →∞ but biased downwards
when δt

√
n− 3 is small for all t ∈ Sd under mild dependence assumptions.

However, in the application to biological data we generally have a relatively
small n and we have seen that the dependence process in (d̂t : t ∈ M) can
bias quite heavily the testing procedures in simulated data.

The other unknown parameters are the Fisher transform correlation dif-
ferences δt, for all t ∈ Sd. Below we propose a prior specification for δt
to control the amount of elements that might be masked by the coeffi-
cients d̂k, k 6∈ Sd, when δk = 0. However, other distributions or other
specifications for the hyper-parameters could be employed instead. We as-
sume that (δt) are i.i.d. random variables with a known distribution, for
instance we explore δt ∼ gamma(a, b), with hyper-parameters satisfying
mode = (a−1)/b = Zα (n−3)−1/2, so the mode is assumed to be at the 1−α
quantile of the marginal distribution of d̂t (n − 3)−1/2 under H0. Moreover,
we set the variance of the prior, var = a/b2, so a and b are fully defined.

We numerically integrate out δt from the function B(δt, s, u, n,m,w) de-
fined in eq. (23) for threshold selection, i.e.,

ûw = arg max
u

∫
Ωδt

B(δt,mρ̂s, u, n,m,w)p(δt) dδt.
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As final estimate we use the minimum between the optimal threshold and the
1−α quantile of a standard normal distribution with default value α = 0.05
in order to prevent cases with infinite thresholds.

3.5 Estimation of dependence parameters and permu-
tations based distributions

Under H0, X1, . . . , Xn ∼ N(0, RX) and Y1, . . . , Yn ∼ N(0, RY ) with RX =
RY . In caseXk and Yk were independent for all k ∈ {1, . . . , n}, the elements in
[X1, . . . , Xn, Y1, . . . , Yn] would be exchangeable (i.e., permutation invariant).
For paired datasets, RXY 6= 0 and standard permutation methods are not
suitable. Alternatively, we consider a resampling method which keeps paired
observations together: find [(Zπ1

1 , . . . , Zπn
n ), (Z π̄1

1 , . . . , Z π̄n
n )] where π̄k = 1−πk,

and Zπk
k = Xi if πk = 0 or Zπk

k = Yk if πk = 1, with πk ∼ Bern(1/2). The
permutation process is repeated B times and for each replicate (i = 1, . . . , B)
the difference of Fisher transform correlation matrices, defined in eq. (5), is
calculated and denoted by D̂(i). Finally, a B × m matrix D̃ is considered
where row i contains the lower triangular matrix of D̂(i).

We denote D̃2 by the elementwise product of the matrix D̃ and D̃4 by
the elementwise product of the matrix D̃2. The parameters µ2, µ4 and γ̄2 for
the average of squares test defined in eq. (7) are estimated using permuted
samples such that

µ̂2 =
1

mB

B∑
i=1

m∑
t=1

D̃2
it, µ̂4 =

1

mB

B∑
i=1

m∑
t=1

D̃4
it,

ˆ̄γ2 =
2

Bm(m− 1)

B∑
i=1

∑
t<h

cov(D̃2
it, D̃

2
ih).

Regarding the extreme value test, for each replicate of the permutation pro-
cess, i = 1, . . . , B, the maximum T̂

(i)
M = maxt∈M |D̃it| is computed so that

for sufficiently large sample size n, T̂ (i)
M for all i = 1, . . . , B can be consid-

ered as an independent replicate of a Gumbel distributed random variable
with parameters µmE(m) and σ(m). The location parameter µmE(m) of the
Gumbel distribution is estimated by maximum likelihood. Besides, for the
sum of exceedances test, the parameter σ2(m,w) defined in eq. (18) is esti-
mated by maximum likelihood using permuted samples such that Pr(TwE (u) <
x | H0)

.
= Φ{x, µ(m,w), σ̂2(m,w)} where the parameter µ(m,w) is also ex-

pressed in eq. (18).
A non-parametric null distribution for TQ, Q ∈ S,M,E, based on per-

muted samples is also considered by recording the value of B test statistics
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computed by T̂ (i)
S = m−1

∑m
t=1 D̃

2
it, T

(i)
M = maxt∈M |D̃it| or T̂ (i)

E =
∑

t∈Su(D̃it−
uw)2, for i = 1, . . . , B, with Pr(TQ ≤ x | H0)

.
= B−1

∑B
i=1 I(T̂

(i)
Q ≤ x).

3.6 Comparison of the tests

Extreme value test is more powerful when it comes to sparse alternatives
whereas sum of squares test is useful when the differential correlation matrix
is non-sparse and the magnitude of the coefficients is small. The sum of
exceedances test lies in between the other two tests. For threshold u near zero,
the test statistic is similar to the average of squares test and for u ≈

√
2 logm

it finds similar powers to the extreme value test. The weight w is added to
the expression of the sum of exceedances since the underlying test powers are
complementary regarding sample sizes and number of non-zero correlation
differences. For instance, for w = 1 the test is powerful for highly sparse
differential correlation matrix and small sample sizes (or small magnitude
for the difference coefficients). Otherwise, w = 0 achieves the most powerful
test of the two. We consider a default value of w = 0. The theoretical results
obtained in this section are completed empirically using simulated data in
Section 4.

4 Comparison of the tests for simulated data
We analyze the accuracy of the proposed methods in simulated data sets. We
study different structures for the correlation matrix R directly (Section 4.1)
or indirectly by setting different graph structures for the precision matrix
Ω = R−1 (Section 4.2).

4.1 Independent datasets, dense correlation matrices

We can observe in real data, some groups of highly dependent genes whose
underlying correlation matrix is non-sparse. In such a case, we argue that
asymptotic independence tests are not reliable under H0 even when the
datasets are independent. We show this in simulated data by considering
a dense correlation matrix denoted by R̃. This matrix is obtained by the
sample correlation matrix of a subset of 50 variables from the real dataset
described in Section 5. In order to obtain a positive definite matrix, we reg-
ularize R̃ by

Σ = R̃ + Iλ, (24)

where λ > 0. Note that as we increase λ, off-diagonal elements of the corre-
lation matrix decrease.
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Data Y (1)
k ∼ N(0,Σ1) and Y (2)

k ∼ N(0,Σ2), i.i.d. for all k = 1, . . . , n are
generated using the following specifications for the covariance matrices: (i)
under H0, we consider Σ1 = Σ2 = Σ; (ii) under H1, we consider Σ1 = Σ and
for Σ2, we create a two-block diagonal matrix of sizes 40 and 10 by setting to
zero the between-block covariance elements of the matrix Σ. We refer to this
model in the results presented in Sections 4.3 as model 1, which is applied
for n = 50, 100 and λ = 1/2, 1, 2, 3.

4.2 Dependent datasets, sparse correlation matrices

Sparse correlation matrices are obtained by setting almost-block diagonal
precision matrices, where each block has a power-law underlying graph struc-
ture (Peng et al., 2009) and some extra random connections between blocks.
Let A be the adjacency matrix with the non-zeros of the precision matrix,
the coefficients of the precision matrix are simulated by

Ω(0) = [ω
(0)
ij ], ω

(0)
ij =


Unif(0.5, 0.9) if Aij = 1 with probability 0.5 ;
Unif(−0.5,−0.9) if Aij = 1 with probability 0.5 ;
0 if Aij = 0.

(25)
Data (Y

(1)
k , Y

(2)
k ) ∼ N(0,Ω−1), i.i.d. for all k = 1, . . . , n are generated using

a direct effect model (Wit and Abbruzzo, 2015) with the following specifi-
cations for the joint precision matrix Ω: (i) under H0, Ω is determined by
Ω1 = Ω(0), Ω2 = Ω(0) and Ω12 being a diagonal matrix with (Ω12)ii = 0.6 for
bp/2c diagonal elements and (Ω12)ii = 0 for the other dp/2e; under H1, let D1

and D2 be two different precision matrices which are generated with the same
model as for Ω(0). We consider Ω1 = diag(Ω(0), D1, I), Ω2 = diag(Ω(0), I,D2)
and the same specification for Ω12 given under H0. In both setting, to obtain
a positive definite matrix, we regularize Ω by Ω = Ω + λI, with λ such that
the condition number of Ω is less than the number of nodes (Cai and Liu,
2011). We use p = 70, 120, 210 and sample sizes n = 25, 50, 100, 200. We
refer to this model in the results presented in Section 4.3 as model 2.

4.3 Power and size of the tests

We use the average of squares test -S-, the extreme value test -M- and the
sum of exceedances test -E- for both w = 0 and w = 1 (see definition in
eq. (6)) with threshold selected as defined in Section 3.3. We compute the
empirical power of the tests defined as Pr(Reject H0 | H1 true) as well as the
test size described by Pr(Reject H0 | H0 true) using significance level of α =
0.05. We approximate the null distributions by assuming linear independence
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Table 1: Size, uniformity and power of the test using model 1 -dense corre-
lation matrices- (×103). Test statistics S (average of squares), M (extreme
values) and E (exceedances with w = 0 or w = 1), and null distributions
AI (asymptotic independence), AD (asymptotic dependence) and NP (non-
parametric) are compared at α = 0.05 level.

n=50 n=100
λ 0.5 1 2 3 0.5 1 2 3

Empirical size
S(AD) 62 50 58 53 52 59 60 52
S(NP) 61 47 54 52 53 54 57 50
S(AI) 306 238 192 133 304 254 192 126
M(AD) 45 43 49 61 42 48 54 50
M(NP) 51 44 47 59 50 50 51 48
M(AI) 68 58 59 66 62 54 59 61
E(AD)(0) 49 54 59 48 52 50 48 54
E(NP)(0) 54 50 60 55 46 60 46 58
E(AI)(0) 103 126 92 86 200 158 121 88

ks.test p-value to test for uniformity in the correlation test p-values
S(AD) 247 23 716 317 72 400 151 79
S(NP) 432 15 134 181 62 432 500 148
S(AI) 0 0 0 0 0 0 0 0
M(AD) 865 121 835 426 147 52 245 646
M(NP) 936 69 400 969 181 48 288 181
M(AI) 0 0 24 27 0 0 193 150
E(AD)(0) 51 416 779 211 231 123 532 883
E(NP)(0) 288 618 241 500 400 723 648 785
E(AI)(0) 0 0 0 0 0 0 0 0

Empirical power
S(AD) 890 690 342 240 998 992 802 542
S(NP) 897 684 380 250 998 992 806 574
M(AD) 667 270 110 109 996 758 250 122
M(NP) 652 280 106 105 996 766 254 118
E(AI)(0) 950 735 374 202 998 992 790 447
E(NP)(0) 943 723 380 223 998 992 787 442
E(NP)(1) 940 692 304 143 998 992 687 413

Estimated θ
θ̂m .593 .843 .915 .955 .574 .828 .912 .953

between elements in D̂ (denoted by AI) since it is computationally very
fast. Moreover, we approximate the distributions estimating the dependence
parameters using permuted samples (AD) and also using a non-parametric
distribution (NP) as described in Section 3.5. For w = 1 we only show the
power of the non-parametric null distribution which is labeled by E(NP)(1).
Nevertheless, test sizes when w = 1 are seen to be similar to the ones provided
when w = 0.

In Table 1 we present the empirical approximations of power and size
for the dense correlation matrices scenario (model 1). Generally, tests show
a good trade off between false rejection and true rejection rates. For low
regularization λ, as defined in (24), asymptotic linear independence tests are
not suitable with empirical sizes being larger than the expected 0.05. The
average of squares test is the one that dominates the powers in this model
for λ ≥ 2 and gives similar results to the sum of exceedances test (with
w = 0) for λ < 2. Sum of exceedances test with w = 1 achieves worse powers
than the test with w = 0 for large λ.

In Table 2 we show a similar analysis for dependent datasets with sparse
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Table 2: Size, uniformity and power of the test using model 2 -sparse cor-
relation matrices- (×103). Test statistics S (average of squares), M (extreme
value) and E (sum of exceedances with w = 0 or w = 1), and null distribu-
tions AI (asymptotic independence), AD (asymptotic dependence) and NP
(non-parametric) are compared at α = 0.05 level.

p=70 p=120 p=210
n 50 100 200 500 50 100 200 500 50 100 200 500

Empirical size
S(AD) 50 50 50 52 49 42 56 52 38 46 48 54
S(NP) 58 54 50 52 55 48 58 50 52 50 50 53
S(AI) 32 58 78 78 22 40 62 69 4 26 44 62
M(AD) 55 46 51 58 48 54 46 48 48 50 56 44
M(NP) 55 44 51 57 48 54 46 47 47 51 54 44
M(AI) 60 41 47 54 56 57 47 47 62 54 58 42
E(AD)(0) 50 50 52 51 56 54 56 44 50 43 46 53
E(NP)(0) 47 48 49 49 52 53 54 44 48 46 47 52
E(AI)(0) 56 42 38 66 66 47 46 52 64 52 54 46

ks.test p-value to test for uniformity in the correlation test p-values
S(AD) 1 376 37 895 0 929 351 31 0 0 886 286
S(NP) 5 536 29 794 0 648 370 48 0 0 500 164
S(AI) 0 0 0 0 0 0 0 1 0 0 0 0
M(AD) 58 662 528 266 701 836 917 423 5 837 50 498
M(NP) 87 500 466 341 648 859 936 241 3 723 33 341
M(AI) 173 255 19 798 513 241 298 78 435 701 19 267
E(AD)(0) 888 58 914 374 155 819 725 349 598 191 85 42
E(NP)(0) 43 536 913 263 43 648 794 466 610 988 241 466
E(AI)(0) 138 360 10 135 28 207 856 39 0 5 100 42

Empirical power
S(AD) 60 144 437 730 78 88 178 398 4 78 152 439
S(NP) 62 150 430 720 96 106 182 404 86 94 160 440
M(AD) 76 220 715 944 68 76 176 722 42 72 180 651
M(NP) 82 228 706 950 60 58 174 710 44 72 174 649
E(AD)(0) 101 200 631 910 80 82 170 520 70 74 180 550
E(AI)(0) 102 204 615 960 82 80 180 544 72 76 182 534
E(NP)(1) 94 316 800 984 102 94 272 816 70 84 232 836

Estimated θ
θ̂m .790 .871 .908 .943 .788 .848 .913 .945 .770 .841 .903 .937

correlation matrices. Null distributions accounting for dependence (AD and
NP) achieve better estimates of the size than asymptotic linear independence
tests. Particularly, in the average of squares and sum of exceedances tests
adjusting for dependence is desired to obtain a good representation of the null
distribution. The asymptotic linear independence extreme value test finds
good estimates for the size. It is slightly conservative for large p-values but
these do not affect the evidence interpretation. Hence, for sparse dependence
structures, the asymptotic extreme value test could be used to speed up the
process. The sum of exceedances test with w = 1 (i.e., see NP) produces
consistently the highest powers among the three tests. Contrarily of what we
observe in Table 1, the test with w = 1 gives better results than the one
with w = 0. Moreover, the extreme value test provides higher powers than
the average of squares for large sample sizes.

We also analyze the behavior of the tests with respect to the proportion
of non-zero correlation differences ρs. In a global analysis, we compute the
average power for small proportions (ρs ≤ 0.3) and large proportions (ρs >
0.3) using the three test statistics. The sum of exceedances test has average
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powers 0.426 and 0.543 respectively, the extreme value test obtains 0.373
and 0.465, and the average of squares produces 0.312 and 0.477. It is TS that
benefits the most from the increase of difference coefficients.

For model 1 (dense difference correlations matrix), the correlation be-
tween p-values for the same test statistic using both non-parametric and
asymptotic null distributions is very high (around 0.994 in average) whereas
the average correlation between extreme value and average of squares p-
values is [0.61, 0.48, 0.36, 0.30] in the four regularization parameters used.
The p-values for the sum of exceedances test (for both w), seem to be more
correlated to the p-values for the other two tests with [0.91, 0.88, 0.82, 0.75]
against the average of squares and [0.75, 0.63, 0.55, 0.52] against the extreme
value. For model 2 (sparse difference correlation matrix), the correlations
are smaller with an average of [0.19, 0.12, 0.07] between average of squares
and extreme value p-values for the three dimensions used, [0.55, 0.39, 0.27]
between average of squares and exceedances and [0.49, 0.49, 0.48] between
extreme value and exceedances.

We estimate the extremal index θm, which quantifies the dependence
structure over high exceedances, and it is defined in Section 3.2. In the sparse
model 2, the average estimated θm gets close to 1 as the sample size increases.
For large n, we could assume that θm is equal to 1 and use the asymptotic
approximation which would speed up the results. However, for dense corre-
lations as in model 1, θm can be quite small (≈ 0.6 for small regularization
λ) and permutations-based tests should be used instead.

5 Application to colon cancer gene expression
data

We apply the methods to a case study of gene expression data which can
be downloaded at http://www.ebi.ac.uk/arrayexpress/ and that it is
presented in Hinoue et al. (2012). A total of 25 patients are examined, the
gene expression profiling is obtained in each one of them for a colorectal
tumor sample and its healthy adjacent colonic tissue: in total 50 samples
and 24, 526 genes.

We use the equality between correlation matrices tests for multiples sub-
group of genes (of the 25× 103). We are particularly interested in knowing
how standard gene pathways change in different medical conditions. To as-
sess which biological processes might be linked to changes in the gene con-
nections we download 1, 320 gene sets from the MSig database (Subramanian
et al., 2005), which represent canonical pathways compiled from two sources:
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KeGG (Kanehisa et al., 2016) and Reactome (Milacic et al., 2012). Then we
compare correlations in the two medical conditions by only considering genes
in each of the pathways. Hence, we test 1,320 different correlation matrices.
Note that in the original data some genes are represented by more than one
probe/sequence (these are not identical, so they are not merely technical
replicates), in order to compare correlation matrices, we take the average of
these probe/sequence for the same gene.

In Figure 3(a) we present the approximated p-values using the three
dependence-correction tests. In the sum of exceedances test we give the
results for w = 0, although they are quite similar to the p-values found for
w = 1. The 18% of the average of squares test p-values, the 9% of the ex-
treme value test p-values and the 19% of the sum of exceedances test p-values
are smaller than 0.01 and under H0 we were expecting only 1%. About 4%
of the lists have the three tests with p-values smaller than 0.01. Moreover,
about 35% of the lists have the three p-values larger than 0.10, indicating
some similarity in the correlation matrices even with conditions as different
as cancer and healthy. We further adjust the p-values for multiple testing by
controlling the false discovery rate, and in Figure 3(b) we present a Venn’s
diagram of the adjusted p-values smaller than 0.05. Moreover, in Table 3 we
highlight some of the pathways lists that had significant adjusted p-values in
the three tests.
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Figure 3: P-values for equality of correlations on 1,320 pathway lists of genes. Venn’s
diagram shows the number of rejected lists with an adjusted p-value smaller than 0.05.
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Table 3: Lists with p-values smaller than 0.0003 for all the tests. Highly
overlap label corresponds to pathways lists that contain more than 50% of
their genes common to another list.

1- "KEGG_SPLICEOSOME"
2- "KEGG_JAK_STAT_SIGNALING_PATHWAY"
3- "BIOCARTA_INFLAM_PATHWAY" (highly overlaps with [2])
4- "BIOCARTA_ERYTH_PATHWAY" (highly overlaps with [3])
5- "BIOCARTA_STEM_PATHWAY" (highly overlaps with [2] and [3])
6- "REACTOME_SIGNALING_BY_GPCR"
7- "REACTOME_GPCR_DOWNSTREAM_SIGNALING"
8- "REACTOME_SIGNALING_BY_ILS"
9- "REACTOME_CYTOKINE_SIGNALING_IMMUNE_SYSTEM"
10- "REACTOME_TELOMERE_MAINTENANCE"

We preferred to use the dependence-correction tests rather than the asymp-
totic independence ones since the dependence in the sample correlation ma-
trices for each of the lists resulted to be quite strong. Besides, the obtained re-
sults assuming non-parametric distributions were very similar to dependence-
correction, and for simplicity we only show the p-values for the latter.

The sample correlations between test p-values are also remarkably large,
0.59 between average of squares and extreme value, 0.87 between extreme
value and exceedance and 0.75 between average of squares and exceedance
(these are more similar to the values obtained in the simulation study from
the dense scenario described in Section 4.1 than to the sparse one in Section
4.2).

6 Discussion

In this article we propose three tests for equality of two correlation matrices:
average of squares, extreme value and sum of exceedances tests. These are
especially useful for high-dimensional dependent datasets. We further suggest
considering dependence-correction or non-parametric tests instead of asymp-
totic linear independence tests when the correlation matrices are known to
be dense. Asymptotic tests, which assume independence among sample cor-
relation coefficients, are much faster than the other two tests and could be
used for highly sparse correlation matrices to speed up the process. For dense
correlation matrices though, asymptotic tests can produce a non-negligible
bias in the approximated p-values when the null hypothesis is true.

The idea of dependence-correction tests diverges with the methods seen
so far in the literature. For instance, the extreme value test proposed in this
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paper contrasts with the results by Cai et al. (2014) who test the equality
of mean vectors by employing the maximum of the square value of element-
wise differences. The authors, as we have also done in Section 7.3 of the
appendix, prove that the limiting distribution of the maximum of dependent
samples converges to the extreme value distribution of type I under very mild
conditions and they examine this limiting distribution to assess the evidence
of the test. We estimate the parameters given permuted samples since its
known that the convergence of the parameters to the asymptotic ones is slow
and we account for bias that arise in dependent datasets due to estimating
correlation of sample correlation coefficients (Olkin and Finn, 1990).

In terms of test power, for a sensible selection of the exceedance threshold,
sum of exceedances test is shown to be the most powerful test for sparse
alternatives. If the sparsity levels are high, the extreme value also provides
competitive results. In contrast, for dense alternatives and small sample size,
the average of squares dominates the asymptotic power.

We use 1,320 pathway lists to test equality of gene dependence’s structures
between normal and cancer human samples in groups of genes that are known
to interact together in a cell. A large part of the total number of lists has
significantly small p-values. Especially, this happens in the average of squares
and sum of exceedances tests. The extreme value test also gives smaller p-
values that expected under the null hypothesis but it is more inclined to not
reject H0 than the other two tests. This could be an indication, if H1 is true,
that dependence structures are closer to the dense alternative scenario rather
than the sparse scenario.

As future work, we intend to use the sum of exceedances test statistic
for higher criticism testing (Donoho and Jin, 2004) as a way to avoid the
threshold selection problem and maximize the power of the test.
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7 Appendix

7.1 Variance of mean of squares for dependent samples

Here we proof the result in Lemma 1 that gives the expression of the variance
of the average of squares for dependent random variables. Consider n depen-
dent random variables Z = (z1, . . . , zn) which marginally follow a standard
normal distribution. Take E[z2

i ] = µ2 = 1 and E[z4
i ] = µ4 = 3 for any zi ∈ Z

and γ̄2 = 2(n(n− 1))−1
∑

i<j cov(z2
i , z

2
j ) which is function of the dependence

structure between variables.
The mean square of elements in Z is found by S2 = n−1

∑n
i=1 z

2
i and has

variance var[S2] = E[S4]−E[S2]2. The second term is determined by µ2 such
that E[S2]2 = µ2

2. Moreover, the first term is expressed as

E[S4] = E[n−2(
n∑
i=1

z2
i )

2] = µ4/n+ (γ̄2 + µ2)(n− 1)/n.

Hence, var[S2] = (µ4 − µ2
2)/n+ γ̄2(n− 1)/n.

7.2 First and second order statistics for estimated ex-
ceedances

We show the expected value and variance of (|d̂t| − wuu)2|d̂2
t > u2 for a

general case of dt being any value. This is used in the paper to obtain the
lower bound of the power of the sum of exceedances test, and also to select
the threshold u.

7.2.1 Scenario wu = 0

Take xt = d̂t ∼ N(dt, 1). Expected value is determined by

E[x2
t | x2

t > u2] =

∫∞
u
x2
t (2π)−1/2e−

(xt−dt)
2

2 dxt +
∫ −u
−∞ x

2
t (2π)−1/2e−

(xt−dt)
2

2 dxt

Φ(dt − u) + Φ(−dt − u)

= 1 + d2
t +

(u− dt)ϕ(u− dt)
Φ(dt − u) + Φ(−dt − u)

+
(u+ dt)ϕ(−u− dt)

Φ(dt − u) + Φ(−dt − u)

+ 2dt
ϕ(u− dt)− ϕ(−u− dt)
Φ(dt − u) + Φ(−dt − u)

= 1 + d2
t + A+B,

(26)
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where A = u{ϕ(u − dt) + ϕ(u + dt)}/{Φ(dt − u) + Φ(−dt − u)} and B =
dt{ϕ(u − dt) − ϕ(u + dt)}/{Φ(dt − u) + Φ(−dt − u)}. If |dt| > u, then
E[x2

t | x2
t > u2] ≥ d2

t + 1. Under H0, where dt = 0, µ0 = 1 + u ϕ(u)
1−Φ(u)

.
The expression for the variance is

var[x2t | x2t > u2] =
(2π)−1/2[

∫∞
u
x4t e
− (xt−dt)

2

2 dxt +
∫ −u
−∞ x4t e

− (xt−dt)
2

2 dxt]

Φ(dt − u) + Φ(−dt − u)
− E[x2t | x2t > u2]2

= d4t + d3tD + d2t (6 + uC) + dt(u
2 + 5)D + (u3 + 3u)C + 3

− E[x2t | x2t > u2]2,

(27)

where C = {(ϕ(u + dt) + ϕ(u − dt)}/{Φ(dt − u) + Φ(−dt − u)} and D =
{(ϕ(u + dt) − ϕ(u − dt)}/{Φ(dt − u) + Φ(−dt − u)}. Under H0, σ2

0 = 3 +

(u3 + 3u) ϕ(u)
1−Φ(u)

− µ2
0.

7.2.2 Scenario wu = 1

Take xt = d̂t ∼ N(dt, 1). Expected value is determined by

E[(|x| − u)2t | x2t > u2] =
1√
2π

∫∞u (xt − u)2e−
(xt−dt)

2

2 dxt +
∫ −u
−∞(−xt − u)2e−

(xt−dt)
2

2 dxt

Φ(dt − u) + Φ(−dt − u)


= E[x2t | x2t > u2] + u2 − 2u

ϕ(dt − u) + ϕ(−dt − u)

Φ(dt − u) + Φ(−dt − u)

− 2dtu
Φ(dt − u)− Φ(−dt − u)

Φ(dt − u) + Φ(−dt − u)

= 1 + d2t + u2 +A+B − E,
(28)

where A and B are defined above, and

E = 2u
ϕ(dt − u) + ϕ(−dt − u)

Φ(dt − u) + Φ(−dt − u)
− 2dtu

Φ(dt − u)− Φ(−dt − u)

Φ(dt − u) + Φ(−dt − u)
.

Note that if |dt| > u, then E[(|x| − u)2
t | x2

t > u2] ≥ (|dt| − u)2 + 1 can be
used as a lower bound. Under H0, µ1 = (u2 + 1)− u ϕ(u)

1−Φ(u)
.

The expression for the variance is

var[(|x| − u)2t | x2t > u2] =
1√
2π

∫∞u (xt − u)4e−
(xt−dt)

2

2 dxt +
∫ −u
−∞(−xt − u)4e−

(xt−dt)
2

2 dxt

Φ(dt − u) + Φ(−dt − u)


− E[(|x| − u)2t | x2t > u2]2

=E[x4t | x2t > u2] + 6uE[x2t | x2t > u2] + u4 + 4u3(dtC −D)− F,
(29)

23



where

F = 8uC + 12ud2tC + (4ud3t + 12dtu)(Φ(dt − u)− Φ(−dt − u))/{Φ(dt − u) + Φ(−dt − u)}

+
4u{(u− dt)2ϕ(u− dt) + (u+ dt)ϕ(u+ dt)}+ 12dtu{(u− dt)ϕ(u− dt)− (u+ dt)ϕ(u+ dt)}

Φ(dt − u) + Φ(−dt − u)
.

Under H0, σ2
0 = 3 + u4 + 6u2 − (5u+ u3) ϕ(u)

1−Φ(u)
− µ2

1.

7.3 Gumbel approximation of extreme value test statis-
tic

Let Vtj = cov(d̂t, d̂j) be the covariance between two elements in the matrix
D̂. For op ∈ {=, 6=}, we define

νop
t =

∑
j∈A

I(Vtj op 0), A = M \ {t},

so ν=
t + ν 6=t = m − 1. Following sparsity constrains in Meinshausen and

Bühlmann (2006), the sparsity level ν 6=t is assumed to be

ν 6=t = O(mη
t ) = L(m)mηt ,

where 0 ≤ ηt < 1 and L(m) is a slowly varying function, i.e., lim
m→∞

L(mx)/L(m)→
1. Moreover,

ν=
t = m− 1−O(mη

t ) = m (1−m−1−L(m)mηt−1) = m (1 + o(1)) = L(m)m.

Assume that maxi<j |Vtj| < 1 and that there exists a permutation D̂∗ of
elements in D̂ such that V ∗ = [cov(d̂∗t , d̂

∗
j)] is block diagonal. Then for all

rows in V ∗ there exists h such that for all j > h : V ∗tj = 0. Let εn ∈ o(1/ log n)
and take ε any positive number such that maxi<j |V ∗ij |+ ε < 1. Define

ρn =

{
maxt<j |Vtj|+ ε, n < |j − t|
εn, n ≥ |k − t|.

It then follows that |V ∗tj| < ρ|j−t|, and ρn log n → 0 as n → ∞. This is a
sufficient condition (Leadbetter et al., 1983) for the distribution of TMAX =
max
t∈M
|d̂t| to converge weakly to a Gumbel distribution.
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7.4 Sub-asymptotic model for structured non-stationary
processes

The heuristic approach proposed in this section follows results and notation
from Aldous (1989). Let Sx = {t ∈ M : |d̂t| ≥ x} be a random set that, for
large x, defines a sparse mosaic on the sub-integer lattice Z2 corresponding to
the lower triangular matrix M (defined in eq.(2)). We assume a structured
dependence structure on the process (d̂t : t ∈ M) such that Sx contains
several (near) independent clusters defined by a compound Bernoulli process
with cluster intensity λx(t). Let Cx(t) denote the cluster area (or cardinality)
at point t, and assume that as the number of variables increase, Cx(t), in any
position t ∈ M , is finite and does not exceed a given constant κ. Besides,
assume that λx(t) and Cx(t) do not vary much as t moves around the same
cluster. For x(m) = µ(m) + σ(m)x, x ∈ R, the distribution of TM =
maxt∈M |d̂t| can be approximated by

Pr(TM < x(m)) = Pr(Sx(m) ∩M empty)

.
= exp

(
−
∫
M

λx(m)(t) dt

)
.
= exp

{
−
∫
M

Pr(|d̂| > x(m))

E(C
x(m)
t )

dt

}

= exp

{
−Pr(|d̂| > x(m))

∫
M

1

E(C
x(m)
t )

dt

}

= exp

{
−Pr(|d̂| > x(m))

∑
t∈M

1

E(C
x(m)
t )

}
,

where d̂ ∼ N(0, 1), E(Cx
t ) is the expected cluster area at cell t and threshold

level x. The result obtained above is equivalent to the cumulative distribution
function of the cluster maxima for sub-asymptotic models ( u < sup{|d̂t| :
Φ(|d̂t|) < 1}) in a stationary process (Eastoe and Tawn, 2012),

Pr(TM < x) = exp
{
−mθx Pr(|d̂t| > x)

}
.
= exp [−mpuθx exp{−(x− u)/σu}] , (x ≥ u)

when mθx =
∑m

t=1
1

E(Cxt )
and with pu = Pr(|d̂t| > u).

7.5 Asymptotic power

Let’s first acknowledge the Mill’s ratio which approximates Φ(−x)
.
= ϕ(x)

x
,

where ϕ(x) = e−
1
2
x2 , when x is large. We recall that we use the set of variables
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(d̂t : t ∈ M), with m = card(M) such that Sd = {t ∈ M : dt 6= 0} and
s = Card(Sd) is the sparsity level. We assume that |g(rYt)− g(rXt)| = δt for
all t ∈ Sd with dt =

√
n− 3δt. Moreover, we consider normality for the Fisher

transform correlation differences such that for all t ∈ Sd, d̂t ∼ N(δt, (n−3)−1)
and for all t 6∈ Sd, d̂t ∼ N(0, (n− 3)−1).

The power of the test is given by the probability of rejecting the null
hypothesis when the H1 is true. Hence, the objective is to find the test
that provides the maximum power. For all tests (q = s,m, e), we define a
rejecting level tq,α such that we reject the null hypothesis when the observed
test statistic is larger than tq,α at significance level α.

7.5.1 Asymptotic power for average of squares test

Here we assume that the test statistic TS defined in eq. 6 of the main paper
is well approximated by a normal distribution under both H0 and H1. We
define µH0 and σ2

H0
as the expected value and variance of TS when H0 holds.

Moreover, µH1 and σ2
H1

are the correspondent expected value and variance
of TS when H1 holds. The power of the average of squares test is

Pr(TS ≥ tS,α | H1)
.
= Pr

Z ≥ µH1 − tS,α√
σ2
H1

 , (30)

approximated using the Mill’s ratio, with rejecting level given by tS,α =

µH0 + zα

√
σ2
H0
.

Denote δ2
0 =

∑
t∈Sd δ

2
t and recall that γ̄2 = 2(m2−m)−1

∑
t<h cov(d̂2

t , d̂
2
h |

H0). Under H0, the parameters µH0

.
= 1 and σ2

H0

.
= 2

m
{1 + (m − 1)γ̄2/2}.

The expected value of TS under H1 is found by a weighted average µH1 =
(m − s)µ0/m + sµ1/m with µ0 = E[d̂2

t | t 6∈ Sd]
.
= 1 and µ1 = var[d̂t | t ∈

Sd]+E[d̂t | t ∈ Sd]2
.
= 1+d2

t . Similarly, the parameter σ2
H1

can be found by the
variance of a weighted average, so σ2

H1
= 2/m(1+2s(n−3)δ2

0/m+(m−1)γ̄′2/2)

where γ̄′2 = 2(m2 −m)−1
∑

t<h cov(d̂2
t , d̂

2
h | H1). Note that γ̄′2 is different to

γ̄2 as it depends on the values (dt, t ∈ Sd). Plugging in the expressions for
tS,α, µH1 and σ2

H1
in (30), we obtain the stated expression for the power.

7.5.2 Asymptotic power of the extreme value test

We assume (d̂t) ∼ MVN , t ∈ M under both H0 and H1. Hence, the
maximum TM = maxt∈M |d̂t|, in the limit, is well represented by a Gum-
bel distribution. We further define the parameters µt = E[d̂t | t ∈ Sd],
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σ2
t = var[d̂t | t ∈ Sd] with |µt| being sufficiently large. Assume independence

on the sequence (d̂t), the power of the extreme value test is defined by

Pr(TM ≥ tM,α | H1) = 1− Pr(|dt| < tM,α, ∀t) ≥ 1− Pr(|dt| < tM,α : t ∈ Sd)

= 1− Pr

(
−tM,α − µt

σt
< Zt <

tM,α − µt
σt

, t ∈ Sd
)

≥ 1− Pr

(
Zt <

tM,α − |µt|
σt

, t ∈ Sd
)
,

where Zt = (|dt|−µt)/σt. The rejecting level tM,α is found using the quantile
function of the Gumbel distribution that in the limit ascertains that

QG(α)
.
= (2 log 2m)1/2 − log log 2m+ log(4π log2 2)

2(2 log 2m)1/2
− log(− log(α))

(2 log 2m)1/2
.

We use the main term of the expression to find QG(α) such that

tM,α = (2 log 2m)1/2 − log(− log(α))

(2 log 2m)1/2
> QG(α).

For the expected value of the test statistic under H1 we use |µt|
.
= δt
√
n− 3,

and for the variance we approximate σ2
t
.
= var(d̂t)

.
= 1, for all t ∈ Sd.

If s = |Sd| → ∞ and the conditions of the Gumbel approximation de-
scribed in Section 7.3 hold (namely that the maximum correlation between
pairs of dt, t ∈ Sd, is bounded above by a constant strictly less than 1), we
have

Pr(TM ≥ tM,α | H1) ≥ 1− Pr

(
Zt <

tM,α −mint∈Sd |µt|
σt

, t ∈ Sd
)

≥ 1− exp{− exp{−(2 log 2s)1/2[(n− 3)1/2 min
t∈Sd

δt − (2 log 2m)1/2 + (2 log 2s)1/2]}}

≈ 1− exp{− exp{−(2 log 2s)1/2[(n− 3)1/2 min
t∈Sd

δt − (2 log 2m)1/2]}}.

If s = |Sd| is a constant, then, using the Mill’s ratio to approximate the
normal probabilities,

Pr(TM ≥ tM,α | H1) ≥ 1− Pr

(
Zt <

tM,α − |µt|
σt

, t ∈ Sd
)
≥ 1− min

t∈Sd
Pr

(
Zt <

tM,α − |µt|
σt

)
≥ 1− min

t∈Sd
exp

[
−1

2

{
(n− 3)1/2δt −

(
(2 log 2m)1/2 − log(− log(α))

(2 log 2m)1/2

)}2
]

≈ 1− min
t∈Sd

exp

[
−1

2

{
(n− 3)1/2δt − (2 log 2m)1/2

}2
]
.
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7.5.3 Asymptotic power of the exceedances test

We set an arbitrary large threshold u, such that we define set Su = {t ∈
M : |d̂t| > u}. We define the probabilities η0 = Pr(t ∈ Su | t 6∈ Sd)
and ηt = Pr(t ∈ Su | t ∈ Sd) as well as the standard normal distribution
density function at quantile u which we denote by ϕ(u). Under both H0 and
H1, we approximate the test statistic T (w)

E described in eq. (6) by a normal
distribution. We define µH0(m,w) and σ2

H0
(m,w) as the expected value and

variance of T (w)
E when H0 holds. Moreover, µH1(m,w) and σ2

H1
(m,w) are

the correspondent expected value and variance of T (w)
E when H1 holds. To

find both µH1(m,w) and σ2
H1

(m,w), we redefine the measures in eq.(17) by
assuming that the expected value of d̂t can be different from zero for some
t ∈M :

γ(H1,w)
utj

= cov((|d̂t| − uw)2, (|d̂j| − uw)2 | d̂2
t > u, d̂2

j > u),

ηt = Pr(|d̂t| > u),

φH1
tj = Pr(d̂2

t > u2, d̂2
j > u2),

The power is described by

Pr(T
(w)
E ≥ t

(w)
E,α | H1)

.
= Pr

Z ≥ µH1(m,w)− t(w)
E,α√

σ2
H1

(m,w)

 ,

where µ
(w)
H1

= (m − s)η0µw +
∑

t∈Sd ηtµtw , rejecting level t(w)
E,α = µ

(w)
H0

+

zα

√
σ2
H0

(m,w), and

σ2
H1

(m,w) =
∑
t∈Sd

ηt{(1− ηt)µ2
tw + σ2

tw}+ (m− s)η0{(1− η0)µ2
w + σ2

w}+ Cw,

where Cw =
∑

t,h∈M,t6=h(γ
(H1,w)
uth +µtwµhw)φH1

th − ηtµtwηhwµhw is different from
zero if elements in D̂2 are dependent. Let µH0(m,w) = µ(m,w) and σ2

H0
(m,w) =

σ2(m,w) defined by eq. (18). The lower bound for the asymptotic power of
sum of exceedances test, with w = {0, 1}, is

Pr(T
(w)
E ≥ t

(w)
E,α | H1) ≥ 1− exp

{
−1

2

(∑
t∈Sd µtwηt − s η0 µw − zα σH0(m,w)

σH1(m,w)

)2
}
.

Let Sdu = {t ∈ M, |dt| � u} with su = |Sdu|. For w = 0, when
(n,m, u)→∞, under weak independence, i.e., Cw � σ2

H1
(m,w), the asymp-

totic power leading terms ares∑
t∈Sdu d

2
t −B0(sη

1/2
0 + zα(2m)1/2)√∑

t∈Sdu d
2
t +mB2

0

,
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where B0 = u2η
1/2
0 . Let δ2

00 = s−1
u

∑
t∈Sdu d

2
t , asymptotic recovery condition

is

δ2
00 �

u2

n

max(1, sη0, (2mη0)1/2)

su
,

If su = kmax(1, sη0, (2mη0)1/2), for any positive integer k, and d2
t/u

2 →∞,
for any t ∈ Sdu, Pr(T

(0)
E ≥ t

(0)
E,α | H1)→ 1.

Similarly for w = 1, when (n,m, u) → ∞, µ1 ≈ 2/(u2 − 1) and σ2
1 ≈

4/(u2 − 1)2 (these rates can be found using L’Hospital rule), and similar
weak independence conditions, the asymptotic power leading terms are∑

t∈Sdu |dt| − u
2 −B1(suη

1/2
0 + zα(2m)1/2)√∑

t∈Sdu |dt| − u
2 + 2mB2

1

,

where B1 = 2η0/(u
2− 1). Let δ2

01 = s−1
u

∑
t∈Sdu (|dt| − u)2, asymptotic recov-

ery condition is

δ2
01 � 2/(u2 + 1)

max(1, sη0, (2mη0)1/2)

sdu
,

If su = kmax(1, sη0, (2mη0)1/2), for any positive integer k, and d2
t/u

2 →∞,
for any t ∈ Sdu, Pr(T

(1)
E ≥ t

(1)
E,α | H1)→ 1.
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