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The flow of a fluid over isolated topography in the long wavelength, weakly nonlinear

limit is considered. The upstream flow velocity is assumed to be close to a linear

long wave velocity of the unforced flow, so that the flow is near resonant. Higher

order nonlinear, dispersive and nonlinear-dispersive terms beyond the Korteweg-de

Vries approximation are included, so that the flow is governed by a forced extended

Korteweg-de Vries equation. Modulation theory solutions for the undular bores gen-

erated upstream and downstream of the forcing are found and used to study the

influence of the higher-order terms on the resonant flow, which increases for steeper

waves. These modulation theory solutions are compared with numerical solutions of

the forced extended Korteweg-de Vries equation for the case of surface water waves.

Good comparison is obtained between theoretical and numerical solutions, for prop-

erties such as the upstream and downstream solitary wave amplitudes and the widths

of the bores.

PACS numbers: 02.30.Jr,47.35.Fg, 92.10.Hm

Keywords: Korteweg-de Vries equation, soliton, resonant flow, modulation theory,

dispersive shock waves, undular bores
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I. INTRODUCTION

The waves generated by the flow of a fluid over topography or by a forcing, such as a

ship, on the surface of a fluid or submarine within a stratified fluid, is a classical topic in

fluid mechanics and wave theory1,2. The majority of this classical theory is based on small

amplitude, linear waves, for which there exists a number of detailed accounts3–6. However,

when the speed of the imposed flow or the speed of the forcing is near the speed of a linear

wave mode, energy accumulates at the forcing, so that the flow becomes nonlinear with

unsteady nonlinear wavetrains propagating upstream and downstream of the forcing. This

flow regime is termed resonant, or transcritical, in the terminology of hydraulic theory6.

Experimental work by Baines5,7,8 on the flow of a stratified fluid over topography found

large amplitude upstream waves when the flow is near resonance. Baines5 also noted that

the upstream wavetrain took the form of an undular bore. These experimental results for a

stratified fluid were confirmed by ship tank experiments9 and in wave tank experiments on

the resonant forcing of surface waves by an obstacle10. These experimental studies generated

interest in theoretical and numerical analyses of resonant flow. In the weakly nonlinear, long

wave regime it has been shown by a number of authors that in the resonant, or transcritical,

regime the flow is governed by a forced Korteweg-de Vries (KdV) equation, with the forcing

due to the topography or the imposed forcing, such as a pressure distribution10–14.

As noted, in the resonant regime, undular bores propagate upstream and downstream of

the topography or forcing. In general, an undular bore is a modulated periodic wavetrain

with solitons at one edge and linear dispersive waves at the other15–17. While such modulated

wavetrains are generally termed undular bores in fluids applications, the term dispersive

shock waves tends to be used in other nonlinear wave applications17. This terminology is a

reference to an undular bore being a structure linking two different flow levels, in analogy

with a shock wave linking two different flow states in compressible flow. An undular bore

differs from a shock in that dispersion resolves the initial jump discontinuity between the

two levels, while for compressible flow viscosity plays this role. Dispersion then results in an

undular bore spreading as it evolves, while a compressible shock does not spread. Cnoidal

waves are the nonlinear travelling wave solutions of the KdV equation and are expressed in

terms of Jacobian elliptic functions2. In the limit in which the modulus m of the elliptic

function approaches unity, the cnoidal wave becomes the KdV soliton solution and in the
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limit in which the modulus goes to zero the cnoidal wave becomes a small amplitude, linear

dispersive wave2. One edge of the KdV undular bore then consists of solitons with m = 1

and the other edge consists of linear waves with m = 015,16. However, in general, the bore

resulting from resonant flow has a variation from this general structure as the trailing edge

of the bore can be fixed at the forcing13,18. For instance, near exact resonance, the upstream

propagating bore is not a full undular bore, but a partial bore with a minimum modulus

m0 > 0 at the forcing, where the bore is generated, and m = 1 at its leading edge18.

A full range bore is not generated as part of this bore would propagate downstream. As

the minimum modulus m0, which is related to the wavenumber of the modulated wave, is

close to unity in this exact resonance case, the upstream undular bore can be approximated

by a train of solitons, which has been a useful approximation10,13,19. However, away from

exact resonance, particularly as the flow becomes subcritical in hydraulic terminology, the

upstream bore becomes detached from the forcing and propagates upstream. It is then a full

undular bore with linear waves at its trailing edge, so that the train of solitons approximation

ceases to be valid18. The soliton approximation is less useful for the downstream propagating

bore as it is a full undular bore for most of the resonant regime13,18. This issue of the different

flow regimes in which the upstream bore is partial or full will be taken up in detail in this

work.

The solution for resonant flow in the weakly nonlinear, long wave regime has then been

fully developed in terms of the undular bore solution of the KdV equation and its gener-

alisations. Whitham developed modulation theory to describe slowly varying modulated

wavetrains2,20,21. In particular, he derived modulation equations for the single phase cnoidal

wave solution of the KdV equation2,20. These modulation equations form a hyperbolic system

for the amplitude, wavenumber and mean height of a modulated cnoidal wave. A particular

solution of the modulation equations is a simple wave solution, which corresponds to an

undular bore15,16. This weakly nonlinear, long wave theory based on the KdV equation has

been successful in describing resonant flow. However, there is the question of the influence

of higher order corrections to the KdV approximation on the solution for resonant flow, par-

ticularly in terms of relating these theoretical solutions to experimental results6,10. Lamb

and Yan22 compared numerical solutions of the equations for internal waves in the Boussi-

nesq approximation with solutions of the KdV equation and the extended Korteweg-de Vries

(eKdV) equation with the next higher order nonlinear, dispersive and nonlinear-dispersive
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FIG. 1. Solution of the forced eKdV equation (1). Shown is a perspective view in the x− t plane

(top) and the surface profile u and bathymetry G versus x at t = 25 (bottom). The numerical

solution of (1) with the initial condition u = 0 is shown. The parameters are α = 0.15 and ∆ = 0.

terms included. The initial condition was a depression which developed into an undular

bore, so that this work has connections with resonant flow over topography. It was found

that the inclusion of these higher order terms resulted in better agreement with numerical

solutions, except when the waves are of high amplitude, as would be expected. Various

studies of resonant flow in the weakly nonlinear, long wave limit have included higher order

corrections to the KdV equation under a number of different approximations. Resonant

flow governed by the KdV equation with a third order nonlinearity correction, the Gardner
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equation, has been studied based on extended modulation equations23. Resonant flow based

on this eKdV equation with third order nonlinearity, the Gardner equation, was also studied

numerically and using hydraulic theory24. Finally, a complete description of resonant flow

as governed by the Gardner equation has been given26 as the Gardner equation is integrable

and its full Whitham modulation equations can be derived, from which its undular bore

solution can be found27. A study of fully nonlinear resonant flow was based on the Su-

Gardner system29,30. This system results from assuming a long wave approximation of the

water wave equations, but with no small amplitude expansion in the wave amplitude, so

that nonlinearity is included exactly31. This work confirmed the qualitative predictions of

KdV theory, even for finite amplitude waves.

In the present work the resonant flow of a fluid over topography will be considered in the

weakly nonlinear, long wave limit. The next higher order nonlinear, dispersive and nonlinear-

dispersive corrections to the KdV approximation will be included, so that the flow is governed

by a forced eKdV equation. As for resonant flow governed by the forced KdV equation, the

forcing generates undular bores which propagate upstream and downstream of it. This is

balanced by a flat depression downstream of the forcing to which the downstream bore is

attached, so that the total flow consists of a bore upstream of the forcing and a flat depression

downstream, followed by the downstream bore. Solutions for the upstream and downstream

flows are derived from the Whitham modulation equations for the eKdV equation. These

modulation equations are found via an approximate transformation which transforms the

eKdV equation to the KdV equation33,34. This transformation is approximate in that it

does not transform the eKdV to the KdV equation exactly, but the error is of higher order

than the eKdV expansion. This transformation also means that the modulation equations

for the eKdV equation can be found from those for the KdV equation. As discussed above,

the upstream bore is either a full or partial undular bore18. Unless the flow is sufficiently

supercritical, part of the trailing edge of a full bore would flow downstream of the forcing,

which is not observed13. This is resolved by making the upstream bore a partial undular

bore, that is a full bore which is terminated at the forcing18. Similarly, if the flow is not

sufficiently subcritical, part of a full downstream bore would propagate upstream. As for the

upstream bore, this is resolved by making it a partial bore in this case, so that it is attached

to the forcing. In the case of a partial downstream bore, there is no downstream depression.

In §II the higher order modulation theory for the forced eKdV equation is developed. In
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§III the results of the higher order modulation theory are compared with numerical solutions

and excellent agreement is found. The eKdV equation is also used to quantify the effect of

the higher order nonlinear, dispersive and nonlinear-dispersive terms on resonant flow. The

effect of only certain of these higher order terms has been studied in the past23,24,26. In §IV

conclusions are given.

II. HIGHER-ORDER MODULATION THEORY

A. The forced extended Korteweg-de Vries equation

Let us consider the waves generated by the flow of a stratified flow over an isolated

topographic feature13,23 or by a pressure distribution moving with constant velocity on the

surface of a fluid10–12. We consider the special case of the flow of an uniform fluid of finite

depth. We use a non-dimensional spatial variable X, scaled by the fluid depth h and a non-

dimensional time T scaled by
√
gh−1, where g is the acceleration due to gravity. We take

the upstream velocity to be U in the X direction, with the z direction upwards, opposite

to the direction of gravity. For waves generated by a surface forcing, we take the forcing to

move at velocity U in the negative X direction, which is equivalent to flow of velocity U in

the X direction in the frame of reference moving with the forcing. The weakly nonlinear,

long wave limit is considered so that the height of the waves is much less than the fluid depth

and the wavelength of the waves is much greater than the length scale of the topography.

Let α and ε be small parameters, where the amplitude of the topography is O(α2) and ε−1

is a measure of the horizontal length scale of the topography13. The flow will be taken in

the resonant regime so that the imposed flow speed U is close to the linear long wave speed,

c = 1 in non-dimensional variables. If the forcing amplitude and horizontal length scales are

such that α = ε2, then the flow is governed by a forced KdV equation13, as considered in

previous work10–13,18. In this scaling the parameter ∆, U = c+ α∆, measures how close the

flow is to exact resonance, with ∆ = 0 corresponding to exact resonance. Let us take the

topography or forcing to have the functional form α2G(x), x = εX, due to the assumption

about its length and amplitude scales. G is assumed to have its maximum at x = 0 and

to have amplitude g0, so that G(0) = g0. In the present work, we shall be interested in

the influence of the next order nonlinear, dispersive and mixed nonlinear-dispersive terms
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in the KdV approximation to the resonant flow23,24. At this order, the non-dimensional,

normalised equation governing the resonant flow of a fluid over topography is the forced

eKdV equation23

−ut −∆ux + 6uux + uxxx − αc1u
2ux + αc2uxuxx + αc3uuxxx + αc4uxxxxx

= −(1 + αc8∆)Gx − αc6uGx − αc5Gux − αc7Gxxx. (1)

Here, α� 1 is the square root of a typical non-dimensional topography height. The flow is

assumed to start from the rest state, so that u(x, 0) = 0. The coefficients of the higher-order

terms, ci, i = 1, . . . , 8, are calculated from the background stratification and have been

explicitly calculated for the case of surface water waves23, for which

c1 = 1, c2 =
23

6
, c3 =

5

3
, c4 =

19

60
, c5 = −4

3
, c6 = −7

6
, c7 =

5

12
, c8 =

1

4
. (2)

This work focuses on resonant flow for surface water waves. Hence, the coefficients (2)

appropriate for surface water waves are used for all the solutions and figures presented in

this paper. Modulation theory for resonant flow over topography for internal waves with

general higher-order coefficients is also available25.

Figure 1 shows a typical solution of the forced eKdV equation (1). Shown are a perspective

view of the solution in the x − t plane (top) and the surface profile u and bathymetry G

versus x at t = 25 (bottom). The numerical solution of (1) with the initial condition u = 0

is shown. The other parameters are ∆ = 0 and α = 0.15, so that the flow is at exact

resonance. The solution consists of three parts, a steady hydraulic flow over the topography,

a partial undular bore which propagates upstream and a full undular bore downstream of

the obstacle. Mass is transported upstream, so a flat depression occurs downstream of the

obstacle to conserve mass overall. The downstream bore returns the mean level to zero

downstream of the depression. Solutions for the flow in these three regions will be derived

in this section.

B. Steady hydraulic flow over the forcing

The solution of the forced eKdV equation (1) displayed in Figure 1 shows that over

the forcing the flow is steady and non-dispersive, as found by Grimshaw and Smyth13 and

Smyth18. The flow over the forcing is then the solution of the non-dispersive form of the
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forced eKdV equation (1), which is

−ut −∆ux + 6uux − αu2ux + (1 + α
1

4
∆)Gx − α

7

6
uGx − α

4

3
Gux = 0. (3)

This hyperbolic equation has two steady solutions and the appropriate solution for the

steady flow in this context is

us =



1
6
[∆ + α 4

3
(g0 − ∆2

12
) + (1 + α 1

8
∆)N(x)]− α 5

108
[∆2 + ∆N(x) + 4(g0 −G)]

+α 5
72

[∆2 + ∆
2
N(x)], x < 0,

1
6
[∆ + α 4

3
(g0 − ∆2

12
)− (1 + α 1

8
∆)N(x)]− α 5

108
[∆2 −∆N(x) + 4(g0 −G)]

+α 5
72

[∆2 − ∆
2
N(x)], x > 0.

, (4)

where N(x) =
√

12(g0 −G). This solution is comprised of the upper branch for negative x

and the lower branch for positive x and is continuous at x = 0 at the peak of the forcing.

It approaches a positive constant as x → −∞ and a negative constant as x → ∞; this

limiting behaviour is required so that the steady flow over the forcing matches with the

bores propagating upsteam and downstream13,18.

The steady solution (4) terminates in a positive jump upstream of the forcing and a

negative jump downstream. As the eKdV equation (1) is a nonlinear, dispersive wave

equation, these jumps are smoothed by evolving into undular bores, also termed dispersive

shock waves6,15–17. It is this dispersive resolution of the discontinuities resulting from the

resonant response of the flow over the forcing which generates the upstream and downstream

propagating undular bores13,18. To match with the upstream and downstream flows, we take

the limiting forms of the steady flow (4) as x→ ±∞, giving

us =
1

6

[
∆ + α

4

3

(
g0 −

∆2

12

)
±
(

1 + α
1

8
∆

)√
12g0

]
− α 5

108

[
∆2 ±∆

√
12g0 + 4g0

]
+ α

5

72

[
∆2 ± ∆

2

√
12g0

]
, x→ ∓∞. (5)

These limiting values us → uu as x → −∞ and us → ud as x → ∞ will be matched to

the upstream and downstream bores in the next section. The resonant flow, characterised

by strong upstream and downstream responses in the form of undular bores, only exists for

a finite range of ∆ around the exact resonance at ∆ = 013,18. As ∆ increases from zero,

the flow eventually becomes supercritical with a localised trapped hump over the forcing

and transient waves propagating upstream and downstream6,13,18. On the other hand, as ∆

decreases from zero, the flow eventually becomes subcritical with a localised trapped dip over
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the forcing, a steady lee wavetrain downstream and a transient propagating upstream6,13,18.

The range of the resonant regime can be quantified from the requirement of matching the

steady flow (4) over the forcing to the upstream and downstream propagating bores. This is

easiest to determine by looking at the limiting values of us as x→ ±∞. The upstream and

downstream states (5) are physically valid when uu > 0 and ud < 0. These requirements

give that resonant flow will occur when ∆ lies in the range

−
√

12g0 + α
1

9
g0 < ∆ <

√
12g0 + α

1

9
g0. (6)

Note that at O(α) the width of the resonant band, 2
√

12g0, is unchanged from that given by

the forced KdV equation, but is translated by α 1
9
g0 towards the supercritical regime. Only

the coefficients associated with the higher-order non-dispersive terms in (3) contribute to

this correction of the resonant range.

C. Upstream and downstream wavetrains

It was found by Marchant32–34 that solutions of the eKdV equation

−ut −∆ux + 6uux + uxxx − αc1u
2ux + αc2uxuxx + αc3uuxxx + αc4uxxxxx = 0, (7)

can be transformed by

u = η + αc9η
2 + αc10ηxx + αc11ηx

∫ x

Ut

(η(p, t)− β) dp,

τ = t+ α
c4

3
x, ξ = x+ αc11β(x− Ut) + αc11Dt (8)

c9 =
1

6
(c1 + c3 + 4c4), c10 =

1

12
(c1 + c2 − 6c4), c11 =

1

3
(8c4 − c3), D = Uu− 3u2 − uξξ,

to solutions of the standard KdV equation

∂η

∂τ
+ 6η

∂η

∂ξ
+
∂3η

∂ξ3
= 0, (9)

when terms of O(α2) are neglected. In this transformation β and U are the mean level and

phase speed of the cnoidal wave solution2 of the KdV equation (9). This transformation will

be used to derive the undular bore solution of the unforced eKdV equation from that of the

KdV equation15,16.

Note that there is an exact transformation between the modulation equations of the

KdV equation and of the Gardner equation, but which is non-invertible26,27. The Gardner

9



equation has a number of different solution types, such as trigonometric bores and solibores,

which have no KdV counterparts. In addition, Sprenger and Hoefer28 considered a fifth-order

KdV equation and found new types of undular bore solutions due to a resonance between

radiation and the bore. The eKdV equation (1) contains both the third order nonlinear term

u2ux of the Gardner equation and the fifth order dispersive term uxxxxx of the fifth order

KdV equation. However, the near-identity transformation (8) only generates a classical KdV

bore type solution for the eKdV equation as the amplitude parameter α is assumed small.

Hence, the novel bore types which occur for the Gardner and fifth-order KdV equations

cannot be found using the methods of the present work.

Modulation theory2,20,21, or the method of averaged Lagrangians, is based on finding dif-

ferential equations for the parameters, such as the mean height, wavenumber and amplitude,

of a slowly varying wavetrain. Modulation theory for the KdV equation2,20 is based on its

periodic cnoidal wave solution2

η = β +
2a

m

[
1−m− E(m)

K(m)
+m cn2(

K(m)

π
θ,m)

]
. (10)

Here the phase is θ = kξ − ωτ . This travelling wave has wavenumber k, frequency ω,

phase speed U = ω
k
, mean height β and amplitude a. K(m) and E(m) are complete elliptic

integrals of the first and second kinds, respectively, while m is the modulus squared of the

elliptic integrals. In the limit m→ 1 the cnoidal wave solution (10) becomes the KdV soliton

and in the limit m→ 0 it becomes the linear travelling wave solution of the KdV equation.

A particular solution of the hyperbolic KdV modulation equations is a simple wave so-

lution, which corresponds physically to the undular bore solution of the KdV equation15,16.

This undular bore solution is a modulated cnoidal wave which links the level A behind the

bore to the level B in front of the bore, with A > B. The undular bore is then the modulated

cnoidal wave

η = A− (A−B)m+ 2(A−B)m cn2(
K

π
θ,m), (11)

with the modulated wave parameters given by

a = 2(A−B)m, β = 2B − A+ (A−B)

(
2
E(m)

K(m)
+m

)
,

k = K−1π
√
A−B, U = 2A+ 4B + 2(A−B)m, (12)

p = A+ (A−B)m, q = A− (A−B)m,

on
ξ

τ
= λ = U − 4(A−B)

m(1−m)K(m)

E(m)− (1−m)K(m)
, 12B − 6A ≤ ξ

τ
≤ 4A+ 2B. (13)
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In this undular bore solution the modulus squared m varies from m = 1 at the leading edge

to m = 0 at the trailing edge of the bore. At the leading edge solitons of amplitude 2(A−B)

with velocity 4A + 2B propagate on a mean level β = B. At the trailing edge, there are

sinusoidal waves of small amplitude on a mean level β = A. Undular bores only occur if

there is a step down in mean height, i.e. A > B. The quantities p and q are the peak and

trough heights of the wave and are the envelopes of the wavetrain.

The transformation (8) can now be used to transform the KdV undular bore solution (11)

into the undular bore solution of the unforced eKdV equation for surface water waves23. The

amplitude a, wavenumber k and mean height β of the eKdV undular bore are then

a = (A−B)m+ α

[
59

90
m+

22

45
(m2 − 2m)

]
(A−B)2,

β = 2B − A+ (A−B)

(
2
E(m)

K(m)
+m

)
+ α

59

270
(A−B)2

[
3m2 − 5m+ 2 + 2(2m− 1)

E(m)

K(m)

]
+ α

52

135
(A−B)2

[
3

(
1− E(m)

K(m)

)2

− 2

(
1− E(m)

K(m)

)
(m+ 1) +m

]
, (14)

k = πK−1
√
A−B

[
1 + α

13

45
(2A(A−B)m− (A−B)2m2 − A2 + 4AB)

− α
19

90
(A+ 2B + (A−B)m)− α 59

180
(A+B)

]
.

This is also the undular bore solution of the forced eKdV equation (1) if the sign of the

characteristic λ (13) is reversed to account for −ut and a shift ∆ is added to account for

−∆ux in this equation. The undular bore solution of the forced eKdV equation (1) is then

(14) on

x

t
= ∆− 2A− 4B − 2(A−B)m+ 2(A−B)S + α

59

45

[
A2 + 2B2 + (A2 −B2)m− (A2 −B2)S

]
− α 19

180
[U − 2(A−B)S]2 + α

13

45

[
2A(A−B)m− (A−B)2m2 − A2 + 4AB

]
(15)

− α26

45
(A−B)S

[
2B − A+ (A−B)m+ 2(A−B)

E(m)

K(m)

]
,

where S(m) =
2m(1−m)K(m)

E(m)− (1−m)K(m)
.

Here the higher order phase speed is

U = 2A+ 4B + 2(A−B)m− α13

45

[
2A(A−B)m− (A−B)2m2 − A2 + 4AB

]
+ α

19

90
[A+ 2B + (A−B)m]2 − α59

45

[
3B2 +

(
A2 −B2

)
(1 +m)

]
. (16)
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The envelopes p and q of this cnoidal wave are then given by

p = A+ (A−B)m+ α
59

90

[
(A−B)2m2 + 2A(A−B)m−

(
A2 −B2

)
m
]

(17)

−α44

45
(A−B)2m,

q = A− (A−B)m+ α
59

90

[
(A−B)2m2 − 2A(A−B)m+

(
A2 −B2

)
m
]

(18)

+α
44

45
(A−B)2m(1−m).

At the leading edge of the extended undular bore the solitary waves have amplitude

2(A− B)− α 1
3
(A− B)2 and velocity 4A + 2B − α 14

15
A2 + α 128

45
AB − α 53

45
B2 and propagate

on a mean level β = B. At the trailing edge, there are sinusoidal waves of small amplitude

on a mean level β = A.

The extended undular bore solution can now be used to determine the bores propagating

both upstream and downstream of the forcing. Let us first consider the upstream propagat-

ing bore, as seen in Figure 1. It is clear from matching with the steady solution over the

forcing (5) that the upstream propagating bore has B = 0 to match with the initial undis-

turbed flow. However, it can be seen from the characteristic velocity (15) that the linear

trailing edge of the bore propagates downstream if ∆ > −6A+O(α) as m→ 0, which is un-

physical and contradicts what is seen in the numerical solution of Figure 1. This is resolved

by stopping the upstream undular bore solution at x = 0, so that the upstream undular bore

is a partial bore18. The partial bore then has modulus in the range m0 ≤ m ≤ 1, with m0

the characteristic velocity (15) which sets x
t

= 0. Waves of modulus m0 are then generated

at the forcing18, which is what is seen in Figure 1. This gives, on using the characteristic

velocity (15), that the minimum modulus m0 is the solution of

∆ = 2A(1 +m0 − S0) + α
19

45
A2(1 +m0 − S0)2 − α59

45
A2(1 +m0 − S0) (19)

+α
13

45
A2(1− 2m0 +m2

0)− 26

45
S0A

2

(
1−m0 − 2

E(m0)

K(m0)

)
,

where S0 =
2m0(1−m0)K(m0)

E(m0)− (1−m0)K(m0)
.

The jump height A can then be found by setting the mean level β, given by (14), of the

bore at the forcing x = 0, so that m = m0, equal to the upstream limit uu (5) of the steady

12



solution over the forcing. This results in A being the solution of

1

6

[
∆ + α

4

3

(
g0 −

∆2

12

)
+

(
1 + α

1

8
∆

)√
12g0

]
− α 5

108

[
∆2 + ∆

√
12g0 + 4g0

]
(20)

+α
5

72

(
∆2 +

∆

2

√
12g0

)
= m0A− A+ 2A

E(m0)

K(m0)
+ α

59

270
A2

[
3m2

0 − 5m0 + 2 + 2(2m0 − 1)
E(m0)

K(m0)

]
+ α

52

135
A2

[
3

(
1− E(m0)

K(m0)

)2

− 2

(
1− E(m0)

K(m0)

)
(m0 + 1) +m0

]
.

Equations (19) and (20) for the minimum modulus m0 and the upstream jump height A

can be solved in the limit of small α to give

A = A0 + αA1, A0 =
∆ +

√
12g0

6T
, T = m0 − 1 + 2

E(m0)

K(m0)
, (21)

A1 =
1

216T

[
9

2
∆
√

12g0 − 10
(

∆2 + ∆
√

12g0 + 4g0

)
+15

(
∆2 +

∆

2

√
12g0

)
+ 48

(
g0 −

∆2

12

)]
(22)

− 1

108T 3

(
∆ +

√
12g0

)2
[

59

90

(
3m2

0 − 5m0 + 2 + 2(2m0 − 1)
E(m0)

K(m0)

)
+

13

15

(
3

(
1− E(m0)

K(m0)

)2

− 2

(
1− E(m0)

K(m0)

)
(m0 + 1) +m0

)]
.

On solving equation (19) for the minimum modulus m0 it is found that when

∆ = −1

2

√
12g0 + α

4

9
g0, (23)

m0 = 0, so that the partial upstream undular bore becomes a full bore with A = uu. For ∆

below the value (23), a full undular bore propagates upstream. The upstream propagating

partial and full undular bores have now been determined. On noting the resonant range (6),

we have that for

−
√

12g0 + α
1

9
g0 < ∆ ≤ −1

2

√
12g0 + α

4

9
g0, (24)

a full undular bore propagates upstream, while for

−1

2

√
12g0 + α

4

9
g0 < ∆ <

√
12g0 + α

1

9
g0, (25)

a partial undular bore propagates upstream. As the upper resonant bound in (25) is ap-

proached, m0 → 1 and the partial bore becomes a train of solitons. Even at exact resonance

∆ = 0, m0 = 0.64 + O(α)18, so that the upstream undular bore can be well approximated

by a train of solitary waves13,18. For this reason, the upstream wavetrain is often termed a

13



train of solitons10,19, even though this is just an approximation which in fact breaks down

as the lower limit of the resonant range is approached.

The downstream propagating bore seen in Figure 1 can be determined in a similar manner.

In this case, to match with the undisturbed flow downstream of the forcing we have A = 0

with B < 0. In the case of a full downstream undular bore the trailing solitary wave edge

of the bore with m → 1 matches with the downstream level ud of the steady flow given by

(5), as seen from Figure 1. The mean level (14) then gives

B =
1

6

[
∆ + α

4

3

(
g0 −

∆2

12

)
−
(

1 + α
1

8
∆

)√
12g0

]
− α 5

108

(
∆2 −∆

√
12g0 + 4g0

)
+ α

5

72

(
∆2 − ∆

2

√
12g0

)
. (26)

Finally, the general undular bore solution (14) and (15) gives that the amplitude, mean

height and wavenumber of the downstream propagating undular bore in the range (6) are

given by

a = |B|m+ α

[
59

90
m+

22

45

(
m2 − 2m

)]
B2,

β = 2B −B
(

2
E(m)

K(m)
+m

)
+ α

59

270
B2

[
3m2 − 5m+ 2 + 2(2m− 1)

E(m)

K(m)

]
+ α

52

135
B2

[
3

(
1− E(m)

K(m)

)2

− 2

(
1− E(m)

K(m)

)
(m+ 1) +m

]
, (27)

k =
π
√
|B|

K(m)

[
1− α13

45
B2m2 + α

19

90
Bm− 3

4
B

]
,

on the characteristics

x

t
= ∆− 2B(2−m+ S)− α19

45
B2(2−m+ S)2 + α

59

45
B2(2−m+ S) (28)

−α13

45
B2m2 + α

26

45
SB2

(
2−m− 2

E(m)

K(m)

)
.

This full downstream undular bore has 0 ≤ m ≤ 1, and so has extent

∆− 2B + α
3

5
B2 6

x

t
6 ∆− 12B − α22

3
B2. (29)

This solution gives the full downstream undular bore seen in Figure 1 for ∆ = 0. However,

the solution is only valid if the velocity of the trailing solitary wave edge is positive. It can

be found from the characteristic velocity (28) that when

∆ = −1

2

√
12g0 − α

16

45
g0, (30)
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1
2 versus α(12

g0
)
1
2 plane for full and partial undular

bores for surface water waves. Compared are eKdV (blue solid line) and KdV (red dashed lines)

modulation theory.

the solitary wave, trailing edge of the bore with m = 1 is stationary and attached to the

forcing. For subcritical ∆ less than this value, the solitary wave edge of the downstream bore

would propagate upstream. For example, at the subcritical limit of the resonant range for

the KdV case ∆ = −
√

12g0 and the trailing edge of the full bore has the negative velocity

−1
3

√
12g. This is resolved by making the downstream bore a partial bore in this highly

subcritical range. The downstream bore is then a full undular bore for ∆ in the range

−1

2

√
12g0 − α

16

45
g0 < ∆ <

√
12g0 + α

1

9
g0 (31)

and is a partial bore for

−
√

12g0 + α
1

9
g0 < ∆ ≤ −1

2

√
12g0 − α

16

45
g0. (32)

In the subcritical regime, the solution must match to the linear lee wave solution, which

is a stationary wavetrain attached to the forcing, preceded by a transient front18. The

downstream solution in the range of ∆ given by (32) is then a stationary cnoidal wavetrain

15



of modulus m0d preceded by a partial bore with modulus squared in the range m0d > m > 0

to match with this stationary wavetrain at its trailing edge. The details of this downstream

lee wave limit are given in18. In particular, the phase velocity of the waves of the partial bore

does not approach 0 as the upper limit (32) of the partial bore range is approached, so that

a partial bore as for the upstream case is not possible. The stationary cnodial wavetrain

then as mean level βl and phase velocity Ul given by

βl = 2B −B
(

2
E(m0d)

K(m0d)
+m0d

)
+ α

59

270
B2

[
3m2

0d − 5m0d + 2 + 2(2m0d − 1)
E(m0d)

K(m0d)

]
+ α

52

135
B2

[
3

(
1− E(m0d)

K(m0d)

)2

− 2

(
1− E(m0d)

K(m0d)

)
(m0d + 1) +m0d

]
, (33)

Ul = 2B(2−m0d) + α
13

45
B2m2

0d + α
19

45
B2 (2−m0d)

2 − α59

45
B2(2−m0d),

where the mean level of the stationary wavetrain is the same as the leading edge of the

partial undular bore and is equal to the downstream limit of the steady hydraulic flow, i.e.

βl = us. Also, the wavetrain must be stationary, so that U = ∆. Equations (33) form a

pair of equations determining the parameters m0d and B for the partial downstream undular

bore. The modulation theory solutions for the full and partial undular bores upstream and

downstream of the forcing are now complete.

Figure 2 shows the parameter ranges in the ∆(12g0)−
1
2 versus α(12

g0
)
1
2 plane for full and

partial undular bores for surface water waves. Compared are eKdV and KdV modulation

theory. The figure illustrates the ranges (24) and (25) for the upstream bore and (31) and

(32) for the downstream bore. Moving from left to right, the three sets of curves show the

subcritical limit of the bore, the transition between the partial and full bore and the super-

critical limit of the bore. The upstream and downstream bores have the same subcritical

and supercritical resonant limits; as α increases these limits move toward the supercritical

range. A full upstream bore is predicted by KdV theory for strongly subcritical flows and a

partial bore for weakly subcritical and all supercritical flows. The transition point in KdV

theory between full and partial bores occurs at ∆ = −1
2

√
12g0. For the downstream bore

the KdV transition point is the same, but the regimes are reversed. A partial downstream

bore is predicted by KdV theory for strongly subcritical flows and a full bore for weakly

subcritical and all supercritical flows. In the eKdV theory the transition point between the

full and partial bores is no longer the same for the upstream and downstream bores. For

the upstream bore the transition point moves towards the supercritical range as α increases,
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while for the downstream bore it moves towards the subcritical range. Figures 1 and 5-7,

that display bore profiles, all have parameters that correspond to the Figure 2 regime of

partial upstream and full downstream undular bores. It appears from the figure that the

eKdV subcritical limit and eKdV downstream bore boundaries cross at α ≈ 0.30. However,

it should be noted that the extended theory is only valid for small α and the exact curves

will deviate from the small α predictions as α increases.

Figure 3 shows (a) the modulus squared, m0, and (b) the leading and trailing edges

of the downstream undular bore, x
t
, versus the detuning parameter ∆ for surface water

waves. Compared are modulation theory for the forced eKdV and KdV equations. The

other parameter is α = 0.15. Figure 3(a) shows that the upstream undular bore lies in the

range m0 ≤ m ≤ 1. If m0 = 0, a full bore occurs upstream, while as m0 → 1 the bore

becomes a train of solitary waves. At exact linear resonance ∆ = 0 the modulus squared,

m0 = 0.64, is the same for both the eKdV and the KdV theories. In the supercritical case,

for positive ∆, the modulus squared m0 of the eKdV theory is slightly greater than that

for KdV theory. For example at ∆ = 3, m0 = 0.87 and 0.84 for eKdV and KdV theories,

respectively. For the subcritical case, for negative ∆, modulus squared m0, of the eKdV

theory is slightly lower than the KdV theory. For example, at ∆ = −0.5, m0 = 0.53 and

0.54 for the eKdV and KdV theories, respectively. Also, the resonant regimes, for a partial

upstream bore, are slightly different, −1.73 < ∆ < 3.46 and −1.67 < ∆ < 3.48 for the KdV

and eKdV cases, respectively.

In Figure 3(b) the comparison is given for the ranges of the full downstream bore, which

are −1.73 < ∆ < 3.46 and −1.78 < ∆ < 3.48 for the KdV and eKdV equations, respectively.

The trailing edge has zero velocity and is at the forcing when ∆ = −1.73 and ∆ = −1.78

for the KdV and eKdV cases, respectively. Modulation theory shows the eKdV bore is up

to 12% narrower than the KdV bore and that the velocity of the trailing edge of the eKdV

bore is significantly lower. This result is in agreement with the internal wave bore22. Partial

downstream bores occur in the ranges −3.46 < ∆ < −1.73 and −3.44 < ∆ < −1.78 for

the KdV and eKdV equations, respectively. In these ranges the trailing edge is a steady

cnoidal wave of modulus squared m0d. Solving equations (33) gives m0d = 1 at the transition

between a full and partial bore, with 1 > m0d > 0.99 over the whole range of ∆ for which

the bore is partial. Hence, the stationary wavetrain is composed of near solitary waves.
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FIG. 3. (a) The modulus squared m0 and (b) the leading and trailing edges of the downstream

undular bore, x
t , versus the detuning parameter ∆ for surface water waves. Compared are eKdV

(blue solid line) and KdV (red dashed lines) modulation theory. The other parameter is α = 0.15.
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III. COMPARISON WITH NUMERICAL RESULTS

In this section the higher order modulation theory solution will be compared with nu-

merical solutions of the forced eKdV equation (1). The forced eKdV equation was solved

numerically by the classical explicit leapfrog method of Zabusky and Kruskal35, which has

truncation error O(∆t2,∆x2) and is stable for small ∆t = O(∆x3). The forcing G(x) was

chosen as

G(x) = g0 sech2(Wx), (34)

see Grimshaw and Smyth13. The parameter values g0 = 1.0 and W = 0.3 were used for the

numerical solutions of the present work. These values give solutions which are representative

of the general behaviour13,18. Also the higher-order coefficients (2) for surface water waves

are used for all the examples.

Figure 4 shows the upstream (a) and downstream (b) solitary wave amplitudes versus

the detuning parameter ∆, for surface water waves. Compared are the eKdV and KdV

modulation theories and the corresponding numerical results. The other parameter is α =

0.15. The upstream solitary wave amplitudes as predicted by eKdV modulation theory are

greater than the KdV predictions. The predictions are similar in the subcritical regime,

but the difference between the theoretical predications increases in the supercritical regime,

with a difference of 10% at ∆ = 3.46. The variations between the numerical and theoretical

results are small for the strongly subcritical and supercritical cases, but are slightly larger

in the middle of the resonant band, with errors up to 10%. Overall, the amplitude results as

given by modulation theory are in agreement with the numerical values. The downstream

solitary wave amplitudes as predicted by the eKdV theory are similar to the KdV theory

for supercritical flows and higher than KdV theory for subcritical flows, by up to 3%. There

are small variations between the theoretical and numerical results for both theories, with a

maximum error of 3%. The results show that for lower amplitude waves, the KdV and eKdV

predictions are very similar. However, as wave amplitudes increase, for upstream solitary

waves when the flow is supercritical, and for downstream solitary waves when the flow is

subcritical, then the higher-order terms included in the eKdV model play a more significant

role, with the eKdV predictions higher than the KdV ones.

Marchant and Smyth23 drew similar graphs for the case when only the higher-order

nonlinear term c1u
2ux was included in their Gardner-type eKdV equation, see their Figure
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FIG. 4. (a) The upstream and (b) downstream solitary wave amplitudes versus the detuning

parameter ∆ for surface water waves. Compared are eKdV (blue solid line) and KdV (red dashed

lines) modulation theory and eKdV (•) and KdV (�) numerical solutions. The other parameter is

α = 0.15.
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FIG. 5. The solution u versus x at t = 30, for surface water waves. Compared are numerical

solutions of the forced eKdV equation (blue solid line) and the forced KdV equation (red dashed

line). The other parameters are α = 0.15 and ∆ = 0. Also shown are the wave envelopes for

the upstream and downstream undular bores for eKdV (blue solid line) and KdV (red dashes)

modulation theories.

3. They found that the upstream eKdV solitary wave amplitudes were higher than KdV

theory for supercritical cases, which is qualitatively similar to the results found here for

the eKdV theory which includes the full set of higher-order terms. For the downstream

solitary wave amplitude, they found their eKdV results to be higher (lower) for supercritical

(subcritical) cases which is different to the results obtained here. Hence the full set of higher-

order terms included in the eKdV theory results in qualitatively different results to those

for the Gardner equation, which only includes the higher-order nonlinear term.

Figure 5 shows the solution u versus x at t = 30, for surface water waves. Compared

are numerical solutions of the forced eKdV and KdV equations and the wave envelopes for

the upstream and downstream KdV and eKdV modulation theory wavetrains. The other

parameters are ∆ = 0 and α = 0.15. The upstream solitary wave amplitude from eKdV
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modulation theory is A = 1.29, compared with the numerical value of An = 1.19. For the

KdV theory, A = 1.25 and An = 1.15. The eKdV results are about 3% higher than the KdV

results for both the theoretical and the numerical solutions, while the variation between the

theoretical and the numerical results is about 8%. It should be noted for the comparison

shown in Figure 5 that the approach of the leading edge of the upstream bore to the steady

state is slow. If the upstream bore is propagated until its leading edge amplitude settles

to its steady state, then the variations between the theoretical and numerical solutions are

reduced to 5%. The downstream solitary wave amplitude as given by the eKdV modulation

theory is B = 1.16, while the steady numerical value is Bn = 1.19. Furthermore, the

downstream solitary wave amplitude given by KdV modulation theory is B = 1.15, whereas

the numerical value is Bn = 1.15. The errors for the downstream solitary wave amplitude

as given by the eKdV and KdV modulation theories are 3% and 0%, respectively.

The eKdV theory predicts that the downstream bore is located in the region 36 < x < 195

and has width w = 159, while KdV theory gives 35 < x < 208 and w = 173. The eKdV

numerical solution lies in the region 44 < x < 184 with width w = 140, while the KdV

numerical solution lies in 44 < x < 224 with width w = 180. It is noted that the width

of the downstream eKdV bore is significantly smaller than that of the KdV bore by more

than 10%, again in agreement with the results of Lamb and Yan22 who compared results

for KdV and eKdV internal wave undular bores. The higher-order coefficients are different

to those for surface water waves, but their eKdV results indicate a much narrower bore, in

agreement with the results found here.

Figure 6 shows a supercritical solution u versus x at t = 30 for surface water waves.

Shown are numerical solutions for the forced eKdV and KdV equations. Also shown are

the wave envelopes for the upstream and downstream modulated wavetrains as given by

the eKdV and KdV modulation theories. The parameters are α = 0.15 and ∆ = 1. The

upstream solitary wave amplitude for the eKdV modulation theory is A = 1.79, compared

with the numerical value of An = 1.65. For the KdV theory, A = 1.72 and the numerical

value is An = 1.56. The eKdV amplitudes are then 5% higher than the KdV amplitudes,

indicating that the higher order corrections to the KdV equation have a moderate effect on

the upstream wavetrain. The difference between the theoretical and the numerical results

is about 8%, which reduces to 5% for steady state numerical solutions. The downstream

solitary wave amplitude given by eKdV modulation theory is B = 0.81, compared with the
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FIG. 6. Solution u versus x at t = 30 for surface water waves. Compared are numerical solutions

of the forced eKdV equation (blue solid line) and the forced KdV equation (red dashed line). The

other parameters are α = 0.15 and ∆ = 1. Also shown are the wave envelopes for the upstream

and downstream undular bores given by eKdV (blue solid line) and KdV modulation theories (red

dashes).

numerical value Bn = 0.82. The value for the KdV equation given by both modulation

theory and the numerical solution is B = 0.82. There is then only a 2% difference between

the downstream solitary wave amplitudes as given by the eKdV and KdV equations, so

that the higher order corrections to the KdV equation do not have a great effect on the

downstream wave amplitude in the supercritical regime. Modulation theory for the eKdV

equation gives that the downstream bore lies in 55 < x < 168 with width w = 113, while

modulation theory for the KdV equation gives 55 < x < 178 and width w = 123. These

are compared with the eKdV numerical results 65 < x < 181 with width w = 116 and KdV

numerical results 64 < x < 192 with width w = 128. Higher order effects again result in a

narrowing of the bore22,29.

23



-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-100 -50  0  50  100  150  200

u

x

FIG. 7. Solution u versus x at t = 30 for surface water waves Compared are numerical solutions

of the forced eKdV equation (blue solid line) and the forced KdV equation (red dashed line). The

other parameters are α = 0.15 and ∆ = −0.5. Also shown are the wave envelopes for the upstream

and downstream undular bores given by eKdV (blue solid line) and KdV modulation theories (red

dashes).

Figure 7 shows a subcritical solution u versus x at t = 30, for surface water waves.

Compared are numerical solutions for the forced eKdV and KdV equations. Also shown

are the wave envelopes for the upstream and downstream modulated wavetrains from the

eKdV and the KdV modulation theories. The other parameters are α = 0.15 and ∆ = −0.5.

The amplitude of the lead solitary wave of the upstream bore as given by eKdV modulation

theory is A = 1.07 compared with the numerical value An = 1.01. These amplitudes given

by the KdV theory are a modulation amplitude A = 1.04 and a numerical amplitude An =

0.97. The eKdV theory then gives amplitudes which are 3% higher than the KdV results,

indicating the effect of higher order corrections to the KdV equation. The difference between

the theoretical and the numerical results is about 7%, which reduces to 2% for steady state
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numerical solutions. The downstream solitary wave amplitude as given by eKdV modulation

theory is B = 1.34, while the numerical amplitude is Bn = 1.36. Numerical solutions and

modulation theory for the KdV equation give the equivalent amplitude B = Bn = 1.32.

Again, the higher order corrections to the KdV equation give small changes in the upstream

and downstream amplitudes, 3% from numerical solutions and 1% from modulation theory.

In addition, modulation theory gives that the downstream eKdV bore lies in 27 < x < 207

with width w = 180 and the KdV bore lies in 25 < x < 223 with width w = 198, as

compared with the numerical values 34 < x < 181 with width w = 147 for the eKdV

equation and 35 < x < 208 with width w = 173 for the KdV equation. As for the previous

exactly resonant and supercritical examples, higher order effects again result in a narrower

bore22,29.

IV. CONCLUSIONS

In this paper we have studied resonant flow over topography using the framework of the

forced eKdV equation (1) in order to gauge the effect of higher order corrections to the

standard KdV approximation for weakly nonlinear long waves. Our results show that the

eKdV predictions, which include these higher order terms, vary from the KdV predictions

when the wave amplitudes are large. This occurs in the supercritical regime for upstream

waves and the subcritical regime for downstream waves; in both cases the eKdV predictions

are higher than the KdV ones. The widths of the eKdV downstream undular bores are

significantly reduced compared with KdV theory, in agreement with results based on the

higher-order internal wave bore22. This reduction is predicted in both flow settings even

though the internal wave bore has different higher-order coefficients to those for surface

water waves. It was further found that the inclusion of higher order corrections to the KdV

approximation has greater effects on the upstream bore than on the downstream bore. For

the amplitude scale α = O(0.1) the effects of the higher order corrections are up to 10%.

These differences can be significant when comparisons are made with solutions of the full

water wave equations and with experimental and observational results.
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