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ABSTRACT2

Statistical modelling of the evaluation of evidence with the use of the likelihood ratio has a3
long history. It dates from the Dreyfus case at the end of the nineteenth century through the4
work at Bletchley Park in the Second World War to the present day. The development received5
a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian6
hierarchical random effects model for the evaluation of evidence with an example of refractive7
index measurements on fragments of glass. Many models have been developed since then. The8
methods have now been sufficiently well-developed and have become so widespread that it is9
timely to try and provide a software package to assist in their implementation. With that in mind, a10
project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios ) was funded11
by the European Network of Forensic Science Institutes through their Monopoly programme to12
develop a software package for use by forensic scientists world-wide that would assist in the13
statistical analysis and implementation of the approach based on likelihood ratios.14

It is the purpose of this document to provide a short review of a small part of this history. The15
review also provides a background, or landscape, for the development of some of the models16
within the SAILR package and references to SAILR as made as appropriate.17

Keywords: Bayes Theorem, Evidence evaluation, Forensic Science, Hierarchical Models, Likelihood Ratios, Random Effects, SAILR,18
Statistics19

1 INTRODUCTION

Statistical analyses for the evaluation of evidence have a considerable history. It is the purpose of this20
document to provide a short review of a small part of this history. It brings together ideas from the last21
forty years for statistical models when the evidence is in the form of measurements and thus of continuous22
data. The data are also hierarchical with two levels. The first level is that of source, the origin of the data.23
The second level is of items within a source. The models used to represent the variability in the data are24
random effects models. The models are chosen from analyses of samples of sources from some relevant25
population. Finally, the analysis is Bayesian in nature with prior distributions for the parameters of the26
within-source distributions. The nature of the prior distributions is informed from training data based on27
the samples from the relevant population.28

1
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The remainder of the document is structured as follows. Section 2 provides a general introduction to29
the likelihood ratio as a measure of the value of evidence. Section 3 provides a framework for models for30
comparison and discrimination. Section 4 discusses the assessment of model performance. An Appendix31
gives formulae for some of the more commonly used models.32

2 THE VALUE OF EVIDENCE

Part of the role of a forensic scientist is to interpret evidence found at a crime scene in order to aid33
fact-finders in a criminal case (e.g., the judge or jury) in their decision making. The forensic scientist34
may be asked to comment on the value of the evidence in the context of various competing statements35
about the evidence, each of which may be true or false. Generally, a forensic scientist must consider two36
competing statements relating to the evidence, one put forward by the prosecution in a criminal case, and37
one put forward by the defence [Cook et al., 1998b]. These statements are known as propositions1. They38
generally come in pairs that are mutually exclusive, though not necessarily exhaustive. For a debate about39
the requirement, or otherwise, for the propositions to be exhaustive see Fenton et al. [2014a], Biedermann40
et al. [2014], Fenton et al. [2014b].41

One member of the pair is associated with the prosecution and conventionally denoted Hp. The other
member of the pair is associated with the defence and conventionally denoted Hd. The evidence to be
evaluated is denoted E2. The value of evidence is taken to be the relative values of the probability of the
evidence if a proposition put forward by the prosecution is true and the probability of the evidence if a
proposition put forward by the defence is true. However, evidence is not evaluated in isolation. There is
always other information to be taken into account, including, for example, personal knowledge of the
fact-finder. Denote this information by I . The value of the evidence, denoted V say, can then be written
formulaically as

V =
Pr(E | Hp, I)

Pr(E | Hd, I)
,

where Pr denotes Probability. This ratio is known as the likelihood ratio.42

The likelihood ratio is the method used by SAILR to evaluate evidence. SAILR (Software for the43
Analysis and Implementation of Likelihood Ratios) is a user-friendly Graphical Interface (GUI) to calculate44
numerical likelihood ratios in forensic statistics and its development under the direction of the Netherlands45
Forensic Institute (NFI) was funded by the European Network of Forensic Science Institutes through their46
Monopoly programme. The likelihood ratio is a generally accepted measure for the value of evidence in47
much forensic case-work.48

This representation of the value of evidence has a very good intuitive interpretation. Consider the odds49
form of Bayes’ Theorem in the forensic context of the evaluation of evidence. The odds form of Bayes’50
Theorem then enables the prior odds (i.e., prior to the presentation of E) in favour of the prosecution51
proposition Hp relative to the defence proposition Hd to be updated to posterior odds given E, the evidence52
under consideration. This is done by multiplying the prior odds by the likelihood ratio. The odds form of53
Bayes’ Theorem may then be written as54

1 Other writers use the term hypothesis (see Section 2.7). The term proposition will he used except when there is an explicit need for the term hypothesis; see,
for example, Section 3.1
2 In ENFSI guidelines ENFSI [2015] ‘findings’ are distinguished from ‘evidence’. ‘Findings are the result of observations, measurements and classification that
are made on items of interest.’ ‘[E]vidence refers to outcomes of forensic examinations (findings) that, at a later point, may be used by legal decision-makers in a
court of law to reach a reasoned belief about a proposition.’ However, the word ‘evidence’ will be used in this document to refer to both situations for ease of
nomenclature.

This is a provisional file, not the final typeset article 2
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Table 1. Effect on prior odds in favour ofHp relative toHd of evidenceE with value V of 1,000. Reference
to background information I is omitted.

Prior odds V Posterior odds

Pr(Hp)/Pr(Hd) Pr(Hp | E)/Pr(Hd | E)

1/10,000 1,000 1/10
1/100 1,000 10

1 (evens) 1,000 1,000
100 1,000 100,000

Pr(Hp | E, I)

Pr(Hd | E, I)
=

Pr(E | Hp, I)

Pr(E | Hd, I)
×

Pr(Hp | I)

Pr(Hd | I)
. (1)

The likelihood ratio (LR) is the ratio55

Pr(Hp | E, I)/Pr(Hd | E, I)

Pr(Hp | I)/Pr(Hd | I)
(2)

of posterior odds to prior odds. It is the factor which converts the prior odds in favour of the prosecution56
proposition to the posterior odds in favour of the prosecution proposition. The representation in (1) also57
emphasises the dependence of the prior odds on other information I . Values of the LR > 1 are supportive58
of Hp, the proposition put forward by the prosecution. Values of the LR < 1 are supportive of Hd, the59
proposition put forward by the defence. The word ‘odds’ should be used advisedly. If Hp and Hd are not60
exhaustive then the component probabilities Pr(Hp | E, I) and Pr(Hd | E, I) cannot be derived from this61
ratio. All that can be said is that the posterior ratio is different from the prior ratio by a factor V .62

An advantage of this formulation of evidence evaluation is the ease with which the effect of the addition63
of new evidence can be determined. The posterior odds for one piece of evidence, E1 say, can be the prior64
odds for a second piece of evidence, E2 say. Then (1) may be rewritten as65

Pr(Hp | E1, E2, I)

Pr(Hd | E1, E2, I)
=

Pr(E2 | Hp, E1, I)

Pr(E2 | Hd, E1, I)
×

Pr(Hp | E1, I)

Pr(Hd | E1, I)
, (3)

where the conditioning of the evaluation of E2 on E1 is made explicit.66

An illustration of the effect of evidence with a value V of 1,000 on the odds in favour of Hp relative to67
Hd is given in Table 1.68

The following quote is very pertinent.69

‘That approach does not ask the jurors to produce any number, let alone one that can qualify as a70
probability. It merely shows them how a “true” prior probability would be altered, if one were in fact71
available. It thus supplies the jurors with as precise and accurate an illustration of the probative force72
of the quantitative data as the mathematical theory of probability can provide. Such a chart, it can be73
maintained, should have pedagogical value for the juror who evaluates the entire package of evidence74

Frontiers 3
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solely by intuitive methods, and who does not himself attempt to assign a probability to the “soft”75
evidence.’ Kaye [1979].76

The ‘it’ in this context is a chart depicting, in numerical terms, how much the prior odds in favour77
of a proposition is enhanced by the evidence being evaluated. This is a graphical equivalent of Table 1.78
The mathematical tool for devising such a chart is Bayes’ Theorem. These remarks of Kaye’s refer to79
characteristics of the general method for the evaluation of evidence that is the likelihood ratio. They do80
not refer to a particular case. For example, it is not possible to comment on the accuracy of a likelihood81
ratio estimation in a particular case because the true value of the likelihood ratio is not known nor can it be82
known. It is, however, possible to refer to the accuracy of a method and performance assessment in general83
is discussed in Section 4.84

The use of a likelihood ratio for the evaluation of evidence is not a new idea. In the Dreyfus case85
[Champod et al., 1999], it was argued that86

. . . since it is absolutely impossible for us [the experts] to know the a priori probability, we cannot87
say: this coincidence proves that the ratio of the forgery’s probability to the inverse probability is a88
real value. We can only say: following the observation of this coincidence, this ratio becomes X times89
greater than before the observation. [Darboux et al., 1908]90

The ‘ratio’ in this quotation is the odds in favour of one proposition over another, The X refers to the91
likelihood ratio. The posterior odds in favour of the proposition is then X times the prior odds.92

The ideas were also used in the work of I.J. Good and A.M. Turing as code-breakers at Bletchley Park93
during World War II [Good, 1979].94

2.1 Background Information95

The likelihood ratio updates the prior odds, those before consideration of evidence E, to posterior odds,96
which take E into account. The posterior odds are the odds with which, ultimately, the fact-finder is97
concerned. If the likelihood ratio multiplied by the prior odds is larger than one, then the probability of98
Hp given the evidence is larger than that of Hd given the evidence. As these propositions may not be99
exhaustive their explicit values, rather than their relative value, may not be known. It is the responsibility100
of the fact-finder to determine a value for the prior odds. The prior odds can then be combined with101
the likelihood ratio to obtain posterior odds. A forensic scientist is concerned only with the value of the102
evidence as expressed by the likelihood ratio so cannot usually comment on the value of the posterior odds.103
The likelihood ratio is considered as the strength of support of the evidence for one of the two propositions104
Hp or Hd.105

The application of this form to a specific case is crucially dependent on the background information106
I . However, the background information available to each person is different. In part, this is because107
each person is different. In part it is because of professional differences. The information that a forensic108
scientist should use for their determination of the likelihood ratio is different from that which a fact-finder,109
such as judge or jury member, should use for their determination of the odds in favour of the prosecution110
proposition. There are differences in the background information available to these participants in the111
judicial process but these differences have no effect on the posterior odds in favour of the prosecution112
proposition113

Let I = Ia∪Ib where Ia is background information available to the forensic scientist and Ib is background
information available to the fact-finder. There will be information available to both, the intersection Ia ∩ Ib

This is a provisional file, not the final typeset article 4
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is not empty. It can then be shown [Aitken and Nordgaard, 2017] that the posterior odds may be written in
the form

Pr(Hp | E, I)

Pr(Hd | E, I)
=

Pr(E | Hp, Ib)

Pr(E | Hd, Ib)
×

Pr(Hp | Ia)
Pr(Hd | Ia)

.

The fact-finder and the forensic scientist have to treat the common information (Ia ∩ Ib) with appropriate114
discretion.115

2.2 Uniqueness of the Likelihood Ratio116

The role of the likelihood ratio as the factor that updates the prior odds to the posterior odds has a very117
intuitive interpretation. There is also a mathematical derivation that shows it, or a function of it such as the118
logarithm, is the only way to update evidence. It was shown many years ago by I.J.Good in two brief notes119
in the Journal of Statistical Computation and Simulation [Good, 1989a,b] repeated in Good [1991] and120
in Aitken and Taroni [2004] that, with some very reasonable assumptions, the assessment of uncertainty121
inherent in the evaluation of evidence leads inevitably to the likelihood ratio as the only way in which this122
can be done.123

Consider evidence E which it is desired to evaluate in the context of two mutually exclusive propositions124
Hp and Hd. Denote the value of the evidence by V . As always, the value will depend on background125
information I but this will not be stated explicitly. There are other assumptions implicit in this approach,126
namely that there is a probability that can be associated with evidence and one that is dependent on127
propositions and only on propositions (and background information). Another assumption is that V is a128
function only of the probability of E, given Hp to be true, and of the probability of E, given Hd to be true.129

Let x = Pr(E | Hp) and y = Pr(E | Hd) where I is omitted for ease of notation. The assumption that V
is a function only of these probabilities can be represented mathematically as

V = f(x, y)

for some function f .130

Now, consider another piece of evidence T which is irrelevant to E, to Hp and to Hd. Irrelevance is taken131
in the probabilistic context to be equivalent to independence so that T may be taken to be independent of132
E, of Hp and of Hd. It is then permissible for Pr(T ) to be given notation which does not refer to any of133
E,Hp or Hd. Thus, let Pr(T ) be denoted by θ. Then134

Pr(E, T | Hp) = Pr(E | Hp) Pr(T | Hp) by the independence of E and T
= Pr(E | Hp) Pr(T ) by the independence of T and Hp

= x θ.

Similarly,
Pr(E, T | Hd) = y θ.

The value of (E, T ) is f(θx, θy) by the definition of f . However, evidence T is irrelevant and has no135
effect on the value of evidence E. Thus, the value of the combined evidence (E, T ), f(θx, θy), is equal to136
the value V of E, f(x, y), and137

V = f(x, y) = f(θx, θy)

Frontiers 5
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for all θ in the interval [0,1] of possible values of Pr(T ).138

The only class of functions of (x, y) for which this can be said to be the case is the class which are
functions of x/y or

Pr(E | Hp)/Pr(E | Hd)

which is the likelihood ratio. Hence the value V of evidence has to be a function of the likelihood ratio. It139
has been argued [Lund and Iyer, 2017] that the forensic community view the likelihood ratio as only one140
possible tool for communication with decision makers. The argument of Good shows that it is the only141
logically admissible form of evaluation.142

2.3 Weight of Evidence143

An interesting note of terminology can be mentioned here. It is common in some legal circles to talk of144
the weight of evidence. The concept of weight of evidence is an old idea. The term weight of evidence145
should be used for the logarithm of the likelihood ratio. The terminology was first used by Charles Sanders146
Peirce [Peirce, 1878]. The likelihood ratio is the value of the evidence and its logarithm is the weight of the147
evidence. The logarithm of the likelihood ratio has the pleasingly intuitive operation of additivity when148
converting the logarithm of the prior odds in favour of a proposition to the logarithm of the posterior odds149
in favour of the proposition.150

log

{
Pr(Hp | E)

Pr(Hd | E)

}
= log

{
Pr(E | Hp)

Pr(E | Hd)

}
+ log

{
Pr(Hp)

Pr(Hd)

}
, (4)

with I omitted. When considering the scales of justice it is the logarithm of the probabilities of the evidence151
given each of the two competing propositions that should be put in the scales, not the probabilities.152

2.4 Terminology for evidence153

The evidence under consideration in this document and within the SAILR project is evidence that could154
have been transferred either from the crime scene to the criminal or from the criminal to the crime scene.155
Evidence that could have been so transferred is in the form of traces. Thus it has two names transfer or156
trace evidence. The evidential material discussed here is in the form of individual items. Thus, there may157
be a finite number of items, such as tablets or sachets of drugs or fragments of glass. Alternatively, the158
evidence may be a single measurement such as that of a DNA profile.159

Consider the situation in which a crime has been committed, there is a crime scene and the investigation160
has reached the stage where a suspect has been identified. Trace evidence, denoted E, of a particular161
type has been found at the crime scene and on the suspect and its value is of interest. The evidence E162
may be partitioned into two parts, that found at the crime scene and that found in association with the163
suspect. In practice, the terminology takes a different form which depends on whether the source of the164
evidence is known or not known. A distinction is also drawn between evidential material and the evidence165
for evaluation. Evidence for evaluation is the observations made on the material. Only evidence which is166
in the form of measurements and thus represented by continuous data is considered here. Other factors167
such as the locations in which the material was found and the quantity of the material are not considered.168
Evidence of a discrete nature such as binary data as in the presence or absence of striation marks is also not169
considered.170

Evidence whose source is known is called control evidence Ec. Evidence whose source is not known is171
called recovered evidence Er. Measurements on Ec are conventionally denoted x where x = (x1, . . . , xm)172

This is a provisional file, not the final typeset article 6
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are m sets of measurements and where xi, i = 1, . . . ,m may be univariate or multivariate. Measurements173
on Er are conventionally denoted y where y = (y1, . . . , yn) are n sets of measurements and where174
yj , j = 1, . . . , n may be univariate or multivariate 3.175

For an evaluative comparison of x and y, background data z are needed. These background data should176
be a representative sample of all possible sources from the population of interest, known as the relevant177
population. Ideally, the sample should be a random sample but this is rarely possible for practical reasons.178
The sample is often what might be called a convenience sample. If the convenience sample can be179
demonstrated to be composed of sources chosen in a manner independent of the case under investigation180
then the inference based on the comparison of x and y informed on z should be valid. Computation of the181
likelihood ratio requires data files from x,y and z182

One example of evidence in the form of multivariate data relates to glass elemental content. Such data183
are often subjected to a logarithmic transformation after taking the ratios of a particular elemental content184
to the oxygen content, for example, log10(NaO) = log10(Na/O). These measurements can be for each185
of m fragments of control evidence and for each of n fragments of recovered evidence [Zadora et al.,186
2014]. This evidence can be multivariate as there can be several ratios measured for each fragment, e.g.,187
log10(NaO), log10(MgO) and log10(AlO) . The control evidence is the measurements from a number188
m of fragments of glass from a broken window at a crime scene; the source of the fragments is known189
to be the window, items within source are the fragments. The recovered evidence is the measurements190
from a number n of fragments of glass found in association with a suspect, for example on clothing191
identified as theirs. The source of the fragments of glass from the suspect is unknown. It may or may not192
have come from the window at the crime scene . A second example could be the measurements of colour193
chromaticity coordinates on fibres and the evidence is bivariate [Martyna et al., 2013]. There are three194
colour chromaticity coordinates. The sum of their values is fixed so given the values of any two, the third195
is known. Control evidence is the measurements of colour chromaticity coordinates from a number m of196
fibres from an article of clothing belonging to a suspect; the source is the article, the items are the fibres.197
Recovered evidence is the measurements of colour chromaticity coordinates from a number n of fibres198
found at a crime scene. Thus control evidence may be found at a crime scene or in association with a199
suspect. Similarly, recovered evidence may be found at a crime scene or in association with a suspect.200

Often the number m of control items can be chosen by the investigator. The number n of recovered items201
may be determined by what is available and the investigator has little choice in the selection of this number.202
If the number of recovered items is large, in some sense, and perhaps so large as for it to be impractical to203
count or analyse them, then the investigator may decide to select n items where n is less than the number204
available. Procedures for the choice of n and the manner of selection of the items are not discussed in205
this document or SAILR other than to note that the evidence selected should be representative of the total206
evidence available as far as is possible. Further information is available in Aitken and Taroni [2004] and207
references therein.208

The likelihood ratio V for the comparison of {x,y} where E is replaced by {x,y} is then209

V =
Pr(x,y | Hp)

Pr(x,y | Hd)
, (5)

where again the conditioning on I , the background information, has been omitted for clarity of notation.210

3 The use of x and y here is not to be confused with the use of x = Pr(E | Hp) and y = Pr(E | Hd) in Section 2.2.

Frontiers 7
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Often, the propositions being considered areHp that the control and recovered evidence are from the same211
source and Hd that the control and recovered evidence are from different sources. In such a circumstance,212
x and y may be assumed independent if Hd is true as they come from different sources. Then (5) may be213
written as214

V =
Pr(x,y | Hp)

Pr(x | Hd) Pr(y | Hd)
. (6)

If x and y are continuous data, as is the case when the evidence is in the form of measurements rather than215
counts, the probabilities in the numerator and denominator are replaced by probability density functions,216
denoted say f(x,y) for the joint density and f(x) and f(y) for the marginal distributions. The continuous217
analogue of (6) can then be written as218

V =
f(x,y | Hp)

f(x | Hd)f(y | Hd)
. (7)

In most cases, the full specification of the probability density function is unknown. The form of the219
distribution may be known or a reasonable assumption of its form may be made. For example, it may220
be known or can be assumed that the appropriate distribution is a Normal distribution. This assumption221
may be based on the unimodal, symmetric nature of the distribution. If the distribution has a positive222
skew then a transformation to normality with a logarithmic transformation of the data may be possible223
before consideration of the likelihood ratio. However, the parameters may neither be known nor able to be224
assumed known.225

The numerator of (7) may be written as f(x,y | Hp) = f(y | x) | Hp)f(x | Hp). Since the distribution
of x is independent of whether Hp or Hd is true, f(x | Hp) = f(x | Hd) and (7) may be written as

f(y | x, Hp)/f(y | Hd).

See (18) for an example.226

2.5 Training data227

When parameters are not known, information about their possible values may be obtained from data228
independent of the crime but thought to be relevant for consideration of the variability in the measurements229
of the data comprising the evidence. These data are the training data or background data and are230
conventionally denoted z. These data are considered to be a sample from a population, known as a231
relevant population. There is considerable continuing debate as to how to choose a population that is232
relevant for a particular crime and, once chosen, how a sample may be chosen from it to be a representative233
sample of the population. See, for example, R. v. T [2010] EWCA 2439, where the debate related to the234
choice of populations of shoes relevant for the consideration of evidence of shoeprints. Often the sample is235
a convenience sample; see Section 2.4.236

An alternative procedure would be to sample anew each time from a population deemed relevant to the237
case under investigation. A relatively early example of this is the investigation of a murder in Biggar, a238
town near Edinburgh, in 1967. A bite mark found on the breast of a young girl who had been murdered had239
certain characteristic marks, indicative of the conformation of the teeth of the person who had bitten her.240
A 17-year-old boy was found with this conformation and he became a suspect. Examination of 90 other241
boys of the suspect’s age showed that the particular conformation was not at all common. The 90 other242

This is a provisional file, not the final typeset article 8
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boys could be considered as a sample from a relevant population. Further details are available in Harvey243
et al. [1968]. However, in most individual investigations it is not practical to obtain such a bespoke relevant244
population.245

2.6 Hierarchy of evidence246

Often, with measurements, the training data can be thought of as a set of sources of items. Measurements247
are made of one or more characteristics of the items. For example, consider again the composition of the248
elemental ratio of various elements of glass to oxygen for glass fragments from a set of windows. The249
items are glass fragments. A source would be a window. The training set is a set of windows. The set of250
windows is a sample from some population of windows, deemed relevant for crimes involving windows.251
The measurements are said to be hierarchical with two levels. One level is the fragment of glass within252
a window. Variation amongst measurements of fragments within a window is known as within-group253
or within-source variation. The second level is the window. Variation amongst measurements between254
windows is known as between-group or between-source variation. Measurements are taken from an item255
(fragments of glass) within a source (window). Notationally, the training data z has two indices, one for each256
level and may be represented as z = {zk`; k = 1, . . . , g, ` = 1, . . . , h} where g is the number of sources257
in the training set and h is the number of measurements within sources. The number of measurements258
within sources need not necessarily be constant though it is computationally convenient if this can be259
arranged during the compilation of the training set. Occasionally there may be further levels, for example260
measurement error.261

2.7 Propositions262

As well as evidence (E) and background information I , evidence evaluation depends on propositions Hp263
and Hd. There are different types of propositions, also known as levels. Both propositions (Hp and Hd) in264
any particular situation for the evaluation of evidence are at the same level. There are four different levels265
of propositions, known respectively as offence level, activity level, source level and sub-source level (Cook266
et al. [1998a]; Evett et al. [2000]).267

The levels, with examples, are described as follows.268

• Offence level: the propositions may be that the defendant is guilty of an offence (truly guilty, not just269
declared guilty) and that the defendant is innocent (truly innocent, not just declared not guilty).270

• Activity level: the propositions concern an activity by the defendant which may or may not be a criminal271
act. An example of a pair of activity level propositions could be that the defendant hit the victim and272
that the defendant did not hit the victim.273

• Source level: the propositions concern the source of evidential material. There is no consideration274
of the activity that may have led to the material being where it was found. An example of a pair of275
source level propositions could be that blood found at the scene of a crime came from the defendant276
and that the blood found at the scene of the crime came from some other source, unrelated to the277
defendant. Note that this example is one in which the two propositions are not exhaustive; relatives of278
the defendant are not included. SAILR can only be used for likelihood ratio computation on source279
level.280

• Sub-source level: the propositions concern material for which it is not possible to identify a source. An281
example of a pair of sub-source level propositions could be that DNA found at a crime scene came282
from the defendant and that DNA found at the crime scene came from some other source, unrelated to283
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the defendant. The quantity of material found is insufficient to identify its source, e.g., whether it came284
from blood or semen.285

3 FRAMEWORK FOR MODELS

The likelihood ratio may be used in the context of forensic science in two different ways, that of comparison286
and that of discrimination. For comparison, two pieces of evidence found in different places are compared287
to see if they had a common source. For discrimination, one piece of evidence is compared with several288
sets of training or background data from different sources to see from which source the evidence may have289
come.290

Most of the models described here are so-called feature-based models. These are models developed from291
the measurements (features) on the evidential material. Other models described are so-called score-based292
models. There may be occasions with multivariate data when a feature-based model is not tractable, e.g.,293
multidimensional binary data where the number of possible models is unmanageable. On such occasions,294
the distance, denoted d(x,y), between control (x) and recovered (y) data can be used instead.295
3.1 Comparison for feature-based models296

3.1.1 The likelihood ratio approach for continuous univariate evidential data with Normal297
distributions for the means and known variances298

A common problem occurs in forensic science when the prosecution and defence propositions concern299
whether two objects are from the same source or from different sources. For example, if a glass fragment is300
found on a suspect and there is a broken window at the crime scene, one proposition might be that the glass301
fragment found on the suspect came from the window at the crime scene, and the other proposition might302
be that the glass fragment came from some other window. The evidence is given by a set of measurements303
from the glass fragment found on the suspect (the recovered sample) and a set of measurements from one304
or more glass fragments from the crime scene (the control sample). The problem is one of comparison.305

The structure of these models reflects the hierarchical nature of the underlying data (measurements and306
variation within a source and then variation between sources). Using a distribution for the means θ1 and θ2307
in this way accounts for variance within source (σ2) and variance between sources (τ2).308

The problem for the fact-finder is to determine which of the two propositions (Hp or Hd) is more likely,309
given all of the evidence in the case. Denote the other evidence and background information by I as before.310
The fact-finder can consider which proposition is more likely by considering the relative size of the two311
probabilities Pr(Hp | x̄, ȳ, I) and Pr(Hd | x̄, ȳ, I) (technically, in cases where the statistical assumptions312
include knowledge of the variances σ2 and τ2 and of a Normal distribution for the measurements, the means313
of the control and recovered samples are sufficient statistics so can be used in place of the measurements x314
and y). Let f(x̄, ȳ | Hp, I) be the joint probability density function of x̄ and ȳ, given proposition Hp and I315
and let f(x̄, ȳ | Hd, I) be the joint probability density function of x̄ and ȳ given proposition Hd and I . In316
this context (1) may be represented as317

P (Hp | x̄, ȳ, I)

P (Hd | x̄, ȳ, I)
=
f(x̄, ȳ | Hp, I)

f(x̄, ȳ | Hd, I)
×
P (Hp | I)

P (Hd | I)
, (8)

where E is replaced by (x̄, ȳ). For examples where the within-source variance is not known, the sample318
variances of x and y will also be included in the representation.319
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Denote the common mean of the measurements under the prosecution proposition by θ1 = θ2 = θ. The320
likelihood ratio V is given by (7). This may be rewritten as321

V =

∫
f(x̄ | θ)f(ȳ | θ)f(θ)dθ∫

f(x̄ | θ1)f(θ1)dθ1

∫
f(ȳ | θ2)f(θ2)dθ2

, (9)

where the dependence on I has been supressed for ease of notation. The analytical form of this likelihood322
ratio, given the independence and Normality assumptions detailed above, is given by Lindley [1977]. The323
density functions f(x̄ | θ) and f(ȳ | θ) are taken to be density functions of a Normal distribution. Note that324
when the prosecution proposition is chosen the random variables X̄ and Ȳ , of which x̄ and ȳ are realisations,325
are conditionally independent, conditional on θ. They are independent if it is known they are from the same326
source. The distributions associated with these density functions are termed the within-source distributions,327
because they account for the within-source variability. The distribution associated with the density function328
f(θ) is termed the between-source distribution because it accounts for between-source variability, and it is329
a prior distribution for θ. The use of a between-source distribution allows the rarity of the data x and y to330
be taken into account when assessing the strength of the evidence; see (13) for an example. Information331
to assist with the estimation of the prior distribution is contained in the training set. If the control and332
recovered samples have similar means, and the mean is unusual, then the strength of evidence supporting333
the proposition that the samples are from the same source should be stronger than if the mean is relatively334
common.335

A solution to this problem of the comparison of sources in the case where the measurements are univariate336
and are assumed to be independent and Normally distributed was developed by Lindley [1977]. Some337
details are given in the Appendix; see (12) and (13). Denote the m measurements on the control sample by338
x = (x1, . . . , xm) and the nmeasurements on the recovered sample by y = (y1, . . . yn). The corresponding339
means of each of these samples are denoted x̄ and ȳ. The two propositions to be considered are at the340
source level and are:341

• Hp: the control and recovered sample are from the same source.342

• Hd: the control and recovered sample are from different sources.343

Lindley’s solution assumes that the means x̄ and ȳ of the control and recovered samples are sample344
means of data, whose corresponding random variables have Normal distributions with means θ1 (control)345
and θ2 (recovered), respectively, and variances σ2/m (control) and σ2/n (recovered). The variance σ2 is a346
within-group (e.g. within window) variance. The means θ1 and θ2 are the means of the groups associated347
with x and y in the terminology of hierarchical data. Variability between groups has also to be considered.348
This is done with consideration of the variation in the group means. The two means θ1 and θ2 are also349
assumed to be realisations of a random variable which is Normally distributed, this time with mean µ and350
variance τ2. At present the variances σ2 and τ2 are assumed known. Also, the within-group variance σ2 is351
assumed constant within groups. An expression for the likelihood ratio if the between-group distribution is352
not Normal but is represented with a general distribution p(·), with second derivative p′′(·) is given by (14).353

An extension using kernel density estimation has been derived to allow for a general non-Normal between-354
group distribution (15). Checks of the distributional assumptions and estimation of hyperparameters are355
made using a training set of groups which are assumed to be a random sample of groups (sources) from356
some relevant population. Later work (e.g., Bozza et al. [2008] with an extension to multivariate data, (24))357
relaxes the assumption that σ2 and τ2 are known.358
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The likelihood ratio can be used to assess evidence in a criminal trial and hence is a solution to the359
comparison of sources problem; Lindley [1977].360

This approach for evidence evaluation based on the likelihood ratio is different from an approach based361
on hypothesis testing. The likelihood ratio approach has many advantages; a discussion of these can be362
seen in Aitken and Stoney [1991] and Aitken and Taroni [2004]. One such advantage is that the likelihood363
ratio has no dependence on an arbitrary cut off point (e.g., 5% significance). Another advantage is that the364
use of a likelihood ratio reduces the risk that a transposition of the conditional probabilities (also known365
as the prosecutor’s fallacy) occurs, a transposition which confuses the probability of finding the evidence366
on an innocent person with the probability of the innocence of a person on whom the evidence has been367
found. In addition, the likelihood ratio provides a method of comparing the likelihood of the evidence368
under the propositions of both the prosecution and the defence. This guards against potentially misleading369
situations when the likelihood under only one of these propositions is considered. Finally, an approach370
based on the likelihood ratio ensures equality of treatment of both propositions. In a procedure based on371
hypothesis testing, a null hypothesis is assumed true unless sufficient evidence is found to reject it at a372
pre-specified significance level. Often, the null hypothesis is that of a common source, θ1 = θ2 in Lindley’s373
example. This is the prosecution proposition. Thus the burden of proof is placed on the defence to put374
forward sufficient evidence to enable rejection of the prosecution proposition, contrary to the dictum of375
‘proof beyond reasonable doubt’. The prosecution need prove nothing.376

3.1.2 The likelihood ratio approach for other forms of continuous evidential data, including377
multivariate data378

Later work on evidence evaluation has extended the work done in Lindley [1977] to cover other data379
types, allowing for different forms of the within and between source distributions (Aitken and Lucy [2004];380
Aitken et al. [2006]; Aitken et al. [2007a]). In Bozza et al. [2008] and Alberink et al. [2013], extensions are381
given so that the between-source distribution in (9) becomes a function of both the mean and the variance.382
This allows for variation in the variance of samples from different sources. All of these extensions assume383
that the m measurements x are independent and that the n measurements y are independent. Methods for384
autocorrelated data types, such as measurements associated with drug traces on banknotes are described in385
Wilson et al. [2014, 2015].386

For multivariate measurements which are independent and which have a multivariate Normal distribution387
the analytical form is derived in Aitken and Lucy [2004]. The likelihood ratio is given for two forms of the388
distribution of the mean between sources. The first form assumes multivariate Normality, and the second389
form uses nonparametric kernel density estimation. The within-source variance is assumed constant over390
all sources.391

When there are several variables graphical models may be used to reduce the number of parameters392
needing to be estimated. The kernel density approach given in Aitken and Lucy [2004] can then be393
used to calculate likelihood ratios for the subsets of variables as indicated by the graphical models. The394
graphical model considers partial correlations amongst the variables and partitions these variables into395
overlapping subsets known as cliques. The overall distribution may then be represented as a function of the396
distributions over the cliques. These clique distributions have very few variables each (e.g., one, two or397
three; and the overall likelihood ratio is then a product of likelihood ratios which are based on one-, two- or398
three-dimensional data (Aitken et al. [2007]). Such a process for the reduction of dimension is necessary to399
avoid the curse of dimensionality whereby very large data sets are needed for the estimation of parameters400
in a multi-dimensional parameter set.401
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In Aitken et al. [2006] the multivariate methods used in Aitken and Lucy [2004] assuming Normality402
are extended further to allow for another level of variance (e.g., measurement error) to be taken into403
account, giving a three-level model. A model assuming an exponential distribution for between-sources in404
a three-level model is assumed in Aitken et al. [2007a] and the analytical form of the likelihood ratio is405
derived. Variation between the means of samples from different sources, variation between the means of406
different samples taken from the same source and variation within repeated measurements on the same407
sample are taken into account.408

Relaxation of the assumption that samples from different sources will have the same variance means that409
an analytical solution is not available. Measurements are assumed multivariate and independently Normally410
distributed as before but the between-source (prior) distribution is taken to be the product of a multivariate411
Normal distribution (for the mean of the between-source distribution) and an inverse Wishart distribution412
(for the covariance of the between-source distribution). In this way, variation of covariances, as well as413
means, between different sources is taken into account. An analytical form of the likelihood ratio is not414
available so Markov chain Monte Carlo (MCMC) methods are used to estimate it [Bozza et al., 2008] (24.415

A similar approach to Bozza et al. [2008] for the evaluation of the likelihood ratio for the comparison416
of sources problem is used by Alberink et al. [2013] in that variation in the variance parameter between417
sources is modelled as well as variation in the mean parameter, although in Alberink et al. [2013] the data418
are univariate. As with all of the other approaches discussed, the within-source distribution is Normal,419
and the data are assumed independent. There are two main extensions seen in Alberink et al. [2013]. The420
first is that three different distributions are used for the between-source distribution. One is the univariate421
equivalent of the between-source distribution used in Bozza et al. [2008] (a semi-conjugate prior), one is a422
non-informative prior, proportional to the inverse of the variance, and one is the conjugate prior distribution423
seen on p. 74 of Gelman et al. [2004]. This conjugate prior distribution gives a between-source distribution424
for the parameter (µ, σ2), denoting group mean and variance, of425

µ ∼ N(µ0, σ
2/κ0)

σ2 ∼ Inv-χ2(ν0, σ
2
0)

where µ0, κ0, ν0 and σ2
0 are hyperparameters to be estimated and the notation Inv-χ2 corresponds to426

a scaled inverse chi-squared distribution. The difference between this and the univariate equivalent of427
the between-source distribution used in Bozza et al. [2008] is that the variance of the parameter µ is428
proportional to σ2. An analytical form of the likelihood ratio for the two cases when the between-source429
distribution is given by the non-informative prior and when the between-source distribution is given by the430
conjugate prior [Alberink et al., 2013] who also show that no analytic solution exists if a semi-conjugate431
prior is used (16, 17).432

As in Bozza et al. [2008], Alberink et al. [2013] use MCMC methods to evaluate the likelihood ratio433
when the between-source distribution is given by the semi-conjugate prior, although there are differences434
in the implementation, leading to the second main extension. Alberink et al. [2013] use prior distributions435
on the hyperparameters of the between-source distribution and then combine these prior distributions with436
training data to obtain a posterior distribution for the hyperparameters, conditional on the training data.437
All of the other methods discussed estimate the parameters of the between-source distribution directly438
from the training data using summary statistics. The methods used in Alberink et al. [2013] allow for a439
Bayesian approach for the estimation of the between-source distribution. One disadvantage of this approach440
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is that the method for estimating the likelihood ratio used in Bozza et al. [2008] is no longer feasible441
because, instead of having a known analytic form for the between-source density function, draws from442
the between-source distribution are obtained using MCMC methods. Monte Carlo integration is used by443
Alberink et al. [2013] to estimate the likelihood ratio.444

All of the literature discussed in Sections 3.1.1 and 3.1.2 evaluates likelihood ratios for continuous445
evidential data. There are some common assumptions. All assume that measurements are independent446
and that the within-source distribution is Normal (univariate or multivariate). Constant variation between447
sources of the within-source distribution is assumed by Lindley [1977], Aitken and Lucy [2004], Aitken448
et al. [2007] and Aitken et al. [2006]. This assumption is relaxed by Bozza et al. [2008] and Alberink et al.449
[2013], allowing the variance to vary between sources. A Bayesian approach is used by Alberink et al.450
[2013] to obtain the parameters of the between-source distribution.451

Methods for the evaluation of continuous, autocorrelated data are described in Wilson et al. [2014] and452
Wilson et al. [2015]. The data used for illustration are the quantities of drugs on banknotes where quantities453
on adjacent notes cannot be considered independent. Some work has also been done on the evaluation of454
evidence for discrete data, particularly in the field of DNA profiling [Buckleton et al., 2005] and more455
recently on data relating to clicks in speech [Aitken and Gold, 2013] and the presence or absence (binary456
data) of striation marks for screwdrivers [Aitken and Huang, 2017].457

3.2 Discrimination458

Forensic scientists are not only interested in comparisons of two pieces of evidence, such as control459
and recovered evidence, under different propositions, that of same source versus that of different source,460
without attention being paid to the identity of the source. There is also interest in the source of one piece of461
evidence. The support of the evidence for a proposition of source is of interest. The problem concerns the462
determination of whether a sample of data is more likely to be from one population (source) or another. Of463
course, such a determination is the concern of the fact-finder. The scientist is concerned with the probability464
of the measurements on the evidential material if the material came from one source or if it came from465
another. If there are more than two possible sources, then prior probabilities, that is, probabilities for each466
source under consideration before the material is examined, are needed in order to obtain a likelihood ratio.467
In this problem there is only one set of evidential data compared with the two sets (control and recovered)468
in the comparison problem. The aim is to assist the decision-maker as to the population of origin of the469
evidential data. This is a problem of discrimination, as distinct from a problem of comparison.470

An example of the use of likelihood ratios in a problem of this sort can be seen in Zadora et al. [2010]471
which looks at the discrimination of glass samples and in Wilson et al. [2014, 2015] which considers472
discrimination between banknotes assocated with a person associated with criminal activity and banknotes473
associated with a person not associated with criminal activity. As with the problem of comparison of474
sources, the likelihood ratio alone cannot determine whether a set of data is more likely from one population475
or another; it must be considered in conjunction with the prior odds. The derivation of the likelihood ratio476
for such discrimination problems is discussed in Taroni et al. [2010] (Chapter 8). The likelihood ratio for a477
set of evidence consisting of n measurements, z = (z1, . . . , zn), under two propositions, Hp and Hd, is478
considered.4 The two propositions are given by479

• Hp : data z are from population 1, and480

• Hd : data z are from population 2.481

4 Note the change of use of notation. In this Section, z refers to evidential data and not to training data.
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The likelihood ratio V for the discrimination problem, where I is the background information as usual, is482
given in Taroni et al. [2010] by483

V =
f(z | Hp, I)

f(z | Hd, I)
. (10)

This expression can be compared with (7) and the comparison problem. In the comparison context, the484
joint density function of control and recovered data is considered. In the discrimination problem, two (or485
more) possible sources (populations) are identified.486

Assume as for the comparison problem that the data are hierarchical and that there are two possible487
sources. The probability density function of groups of data from source i is parameterised by θi, i = 1, 2488
(possibly multivariate). If the value of θi (for i ∈ {1, 2}) varies between different groups in population i489
then by conditioning on θ1 in the numerator and θ2 in the denominator, the likelihood ratio V can be written490

V =

∫
f(z | θ1)f(θ1)dθ1∫
f(z | θ2)f(θ2)dθ2

. (11)

The probability density function f(θi) models the variability of the parameter θi between groups in491
population i, and is termed the between-group density function (the associated distribution function will be492
termed the between-group distribution function). This is analogous to the between-source distribution used493
to model variability between sources in the comparison of sources problem. Similarly, the density function494
f(z | θi) is termed the within-group density function (with the associated distribution function termed the495
within-group distribution function).496

Using this formulation for the likelihood ratio, the methods discussed previously for the evaluation of the497
likelihood ratio for the comparison of sources problem can be adapted to evaluate the value of evidence for498
discrimination problems. The limitations and assumptions of these methods still apply.499

In the context of discrimination, training data are a random sample of groups from each or both of the500
sources. Variation is between groups within each of the sources. There is an abuse of terminology here.501
In the comparison problem with the proposition of common source, the control and recovered evidence502
are deemed to be from the same source but without specification of the source. The source is a member503
of a population of sources. In the discrimination problem, support for a particular source is assessed.504
The distinction between comparison and discrimination problems is emphasised in Zadora et al. [2014]505
where the two problems are discussed in different chapters (and note that discrimination is there noted as506
classification).507

3.3 Score-based models508

Return now to consideration of the problem of comparison of sources with a p-dimensional control
measurement x = (x1, . . . , xp) and a p-dimensional recovered measurement y = (y1, . . . , yp). For those
occasions when a feature-based model is not tractable (e.g., multidimensional binary data), the distance
d(x,y), known as a score can be used instead. The value of the evidence is then

V =
f(d(x,y) | Hp, I)

f(d(x,y) | Hd, I)
.
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Rarity is not considered. Inference may then continue as before but using the score, which is univariate, as509
the statistic of interest. Score-based approaches estimate the probability distribution function of a calculated510
score. Score-based approaches have been used for handwriting (Hepler et al. [2012]) and speech recognition511
(Gonzalez-Rodriguez et al. [2006], Brümmer and Du Preez [2006], Morrison [2011]). Score-based methods512
do not require the distributional assumptions (such as within-source Normality) needed to fit the models513
described above but do still require a function to be chosen to model the probability distribution function514
of the score.515

There are various distance measures that may be used. Three examples are516

• Euclidean: d =
√∑p

i=1(xi − yi)2;517

• Manhattan: d =
∑p

i=1 | xi − yi |;518

• Pearson correlation distance: 100(1− r)/2 with

r =

∑p
i=1(xi − x̄)(yi − ȳ)√∑p

i=1(xi − x̄)2
∑p

i=1(yi − ȳ)2
.

Other examples are available in SAILR. For multiple control and recovered data xi, i = 1, . . . ,m and519
yi, i = 1, . . . , n, respectively, pairwise score measurements or means can be used.520

For the calculation of score-based likelihood ratios, distributions of scores of same-source comparisons521
and of different-source comparisons are required. Determination of the same-source distribution can522
be made by comparing every measurement in a training set z with every other measurement within its523
own source except with itself for which the distance is zero. For the different-source distribution, every524
measurement is compared with all measurements from other sources. These results may then be used525
to estimate the distributions of same-source and between-source comparisons. The distributions can be526
represented initially by histograms. They may then be smoothed with a kernel density estimation or an527
appropriate parametric distribution. The current choice of parametric distribution in SAILR is a Gamma528
distribution or a Weibull distribution. The chosen distribution functions, one for same-source comparisons529
and one for different-source comparisons, then can be used to determine the density calculation of the530
evidence score for both distributions and hence calculate a likelihood ratio.531

3.4 Comparison of feature-based and score-based models532

Models for discrimination and for comparison that use the original data are feature-based models. The533
models discussed in Sections 3.1 and 3.2 are all feature-based. Feature-based multivariate Normal models534
compare the probability of observing the evidence given that the evidential samples (control and recovered)535
measured, and compared, come from the same source or come from different sources. In contrast, the536
score-based model compares the probability of observing the pairwise similarity between two samples537
(control and recovered) given that they come from the same source with the probability of the pairwise538
similarity given that the samples come from different sources. A comparison of the performances of539
score-based and frequency-based likelihood ratios for forensic MDMA comparisons is given in Bolck et al.540
[2015].541

The benefits and shortcomings of both methods are given by Bolck et al. [2015] as:542

• Feature-based benefits:543

• Original data dimensionality preserved; no information loss.544
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• Rarity and similarity of the features relate directly to the magnitude of the likelihood ratio.545

• Feature-based shortcomings:546

• Covariance estimation is difficult when limited data are available relative to the dimensionality of547
the variables.548

• The feature-based method is often less robust than the score-based model when there are limited549
population samples.550

• Score-based benefits:551

• Covariance estimation between sources is possible with few samples available.552

• The method is robust and able to be generalised to new samples.553

• Score-based shortcomings:554

• There is a loss of information because of a reduction of dimensionality.555

• The value of the likelihood ratio is based on the similarity of pairwise scores rather than the similarity556
and rarity of features.557

3.5 Summary of feature-based models558

References for details of a selection of feature-based two-level models with within-group measurements559
independent and Normally distributed are listed here. Equation numbers are given for models for which560
further details are given in the Appendix.561

• Univariate:562

• Within-group Normal,563
Between-group Normal for between-group mean (assume within-group variance known)564
(Lindley [1977], (12), (13)).565

• Within-group Normal,566
Between-group Taylor expansion for between-group mean (assume within-group variance known)567
(Lindley [1977], (14)).568

• Within-group Normal,569
Between-group kernel for between-group mean (assume within-group variance known),570
(Aitken and Taroni [2004], (15)).571

• Within-group Normal,572
Between-group distribution:573
(a) Normal distribution - semi-conjugate prior,574
(b) Non-informative prior, proportional to the inverse of the variance,575
(c) Conjugate prior - Normal, scaled inverse chi-squared576
(Alberink et al. [2013], (16), (17))577

• Bivariate:578
Numerator (predictive distribution) [Bernardo and Smith, 1994],579
Denominator (kernel),580
(Evett et al. [1987], (18)).581

• Multivariate, within-group measurements independent and Normally distributed582

• Within-group Normal,583
Between-group kernel for distribution of group means,584
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Within-group variance assumed common and estimated from training data. (Aitken and Lucy [2004],585
(4.1), (19)).586

• Within-group Normal587
Between-group Normal for distribution of group means,588
Inverse Wishart for the covariance of within-source distribution, (Bozza et al. [2008], (24)).589

• With graphical models:590
See Section 3.1.1; Aitken et al. [2007].591

• In the presence of zeros, that is when no measurement of a specific characteristic has been made on592
certain members of the control data set, the recovered data set or the training data set: both Normal593
and kernel between-group distributions considered. Estimation of covariance matrices by imputation594
and by available cases (Zadora et al. [2010]).595

• In addition, when within-group measurements are autocorrelated and Normally distributed see596
Wilson et al. [2014, 2015].597

4 MODEL PERFORMANCE

Model performance for the comparison problem is assessed with a training set and associated data z as598
discussed in Section 2.6. If possible, another set, known as a validation set could be used. The training set599
and validation set should both comprise several sources of data from a relevant population. Within each600
source, measurements are taken on each of several items. The source of each member of the two sets is601
known. Models and parameters can be fitted using the training set. The performance can be assessed using602
the validation set. Thus when a method for comparison or discrimination is tested using members of the603
data set it is known if the correct answer is given. In the absence of a validation set, the performance can be604
assessed through a second use of the training set (e.g., with a leaving-one-out method). Validation enables605
the provision of measures of performance based on calculated likelihood ratios.606

For a comparison of two members of the validation (or training) set a likelihood ratio is calculated. There607
are two conclusions that may be drawn by the fact-finder: they are from the same source or they are not608
from the same source. If the likelihood ratio is greater than 1, then this is support for the proposition of a609
common source for the two members of the validation (training) set being compared. If they are truly from610
the same source then this is counted as a correct result. Similarly, if its value is less than 1, then this is611
support for the proposition of different sources for the two members of the validation (training) set being612
compared. If they are truly from different sources then this is counted as a correct result. However, if the613
two members have a value for the likelihood ratio of greater than 1 when they are from different sources,614
this is an incorrect result and the result is known as a false positive. Similarly, if the two members have a615
value for the likelihood ratio of less than 1 when they are from the same source, this is an incorrect result616
and the result is known as a false negative.617

For discrimination with two groups, say A and B, the member of the data set may be classified by the618
fact-finder as belonging to group A or to group B. False positives and false negatives can be defined in619
a manner analogous to that of the comparison procedure. A likelihood ratio is calculated. If its value is620
greater than 1, then this is support for the proposition that the member of the training set belongs to group621
A, say. If the member is truly from group A then this is counted as a correct result. Similarly, if its value622
is less than 1, then this is support for the proposition that the member is from group B. If it is truly from623
group B, then this is counted as a correct result. However, if the member has a value for the likelihood624
ratio of greater than 1 when it is from group B, this is an incorrect result and the result is a false positive,625
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say. Similarly, if the member has a value for the likelihood ratio of less than 1 when it is from group A, this626
is an incorrect result and the result is a false negative.627

For both comparison and discrimination problems, the strength of the support is measured by the value628
of the likelihood ratio. As noted in Section 2.3 if the logarithm is taken this is known as the weight of629
evidence. Given the existence of a validation (training) set it is possible to measure the performance of a630
method for comparison or discrimination as the correct answer is known. It is not possible to assess the631
result in an individual case; the correct answer in an individual case is not known.632

The likelihood ratio, or a function of it such as the logarithm, has been shown by [Good, 1989a,b]633
(Section 2.2) to provide the best (only) value of the evidence. Attempts to express the uncertainty associated634
with this assessment (e.g. with a confidence interval) are attempts to put a probability on a probability and635
should not be done [Taroni et al., 2016]. This view is not universally agreed, see discussion issues of Law,636
Probability and Risk (2016, volume 15, issue 1) and Science and Justice (2017, volume 56). Note also the637
quote from Kaye [1979] in Section 2: ‘It thus supplies the jurors with as precise and accurate an illustration638
of the probative force of the quantitative data as the mathematical theory of probability can provide’. It is639
not necessary to provide an interval estimate.640

There are several measures of performance.641

• The percentage of false positives and of false negatives amongst all the comparisons or discriminations642
tested. Often, in a criminal case, one of the propositions is associated with the prosecution, hence the643
notation Hp, and other is associated with the defence, with the notation Hd. In such a circumstance,644
the burden of proof lies with the prosecution. It is a more serious error to support the prosecution645
proposition wrongly than to support the defence proposition wrongly. Let support for the prosecution646
proposition be known as a positive result. Thus, when considering the performance of a test, it is better647
to choose a test in which there is a low false positive rate and a high false negative rate rather than one648
in which there is a high false positive rate and low false negative rate. Ideally, zero false positive and649
zero false negative results are best but such an ideal is rarely achieved.650

• A Tippett plot. See Evett and Buckleton [1996] and Tippett et al. [1968]. This is a graphical measure of651
rates of misleading evidence for comparisons. It is the complement of empirical cumulative distribution652
functions for same-source and different-source comparisons. The plots come in pairs, one for same-653
source comparisons and one for different-source comparisons. The log(LR) is plotted on the x-axis654
and, for a particular value x0 of the log(LR), the y-axis is the relative frequency of the number of655
comparisons greater than x0. For same-source comparisons, it is to be hoped that all log(LR) values656
are greater than 0. Thus for x < 0, it is hoped the corresponding value on the y-axis will be 1 (or657
100%). Similarly, for different-source comparisons, it is to be hoped that all log(LR) values are less658
than 0. Thus for x > 0, it is hoped the corresponding value on the y-axis will be 0 (or 0%).659

The vertical distance from the intersection of the same-source plot with the line log(LR) = 0 and the660
line y = 1(100%) is the rate of misleading evidence for same-source comparisons, the proportion of661
same-source comparisons that have a value of log(LR) < 0 (LR = 1). The vertical distance from the662
intersection of the different-source plot with the line log(LR) = 0 and the line y = 0(0%) is the rate of663
misleading evidence for different-source comparisons, the proportion of different-source comparisons664
that have a value of log(LR) > 0 (LR = 1).665

• Detection error trade-off (DET) curves. See Meuwly et al. [2017]. A detection error trade-off (DET)666
plot is a 2-dimensional graphical representation in which the proportion of false positives is plotted667
as a function of the proportion of false negatives. The closer the curves to the coordinate origin, the668
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better are the discriminating capabilities of the method. The intersection of a DET curve with the main669
diagonal of the DET plot marks the Equal Error Rate (EER) which is the point when the proportions670
of false positives and false negatives are equal.671

• Empirical cross-entropy. See Meuwly et al. [2017], Ramos et al. [2013] and Ramos and Gonzalez-672
Rodriguez [2013]673

The performance of probabilistic assessments has been addressed by strictly proper scoring rules674
(SPSR). Consider two propositions about a parameter θ, one that θ = θp and one that θ = θd, with675
Pr(θ = θp) = 1− Pr(θ = θd) For evidence evaluation, the logarithmic SPSR is used and defined as676

C(Pr(θp | I), θ) = − log2(Pr(θp | I)) if θ = θp,

= − log2(1− Pr(θd | I)) if θ = θd,

The measure of accuracy for evidence evaluation based on SPSR is a weighted average value of the677
logarithmic scoring rule, and is known as the empirical cross-entropy (ECE):678

ECE = −
Pr(θp | I)

Np

∑
θ(i)=θp

log2 Pr(θp | Ei, I)

−Pr(θd | I)

Nd

∑
θ(j)=θd

log2 Pr(θd | Ej , I)

=
Pr(θp | I)

Np

∑
θ(i)=θp

log2

(
1 +

1

LRi ×O(θp)

)
+

Pr(θd | I)

Nd

∑
θ(j)=θd

log2

(
1 + LRj ×O(θp)

)
,

where LRi(LRj) is the likelihood ratio for the i-th (j-th)Ei (Ej) piece of evidence where θ = θi(θj),679
respectively, and O(θp) denotes the prior odds Pr(Hp)/Pr(Hd). For the discrimination problem with680
two sources, the parameters θp and θd represent the parameters of the two sources. For the comparison681
problem θp represents same-source comparisons and θd represents different-source comparisons in the682
validation dataset.683

This measure tends to indicate better performance when the likelihood ratio leads to the correct684
decision. The numerical value will be lower as the performance increases. The ECE can be represented685
as an ECE-plot, showing its value for a certain range of priors.686

4.1 Conclusion687

The development of methods for the evaluation of evidence for frequency-based continuous two-level688
models is described from the hierarchical model for univariate continuous data developed by Lindley [1977]689
to multivariate models with unknown means and covariances [Bozza et al., 2008]. This development is of690
interest in its own right as a compilation of some thirty years of development. However, it also provides a691
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background to the development of the SAILR package, a package which extends these ideas to include692
score-based models.693

Formulae for many of these are given in the Appendix and may also be found in many books on the694
subject (e.g. Aitken and Taroni [2004]; Zadora et al. [2014]).695

There is much more that can be reviewed. References for some of the omissions of this paper are given696
here. It is hoped they are useful. There have been few papers on models for discrete data; see Aitken and697
Gold [2013] for an example. Score-based models have received a lot of attention recently and are included698
in SAILR; see Bolck et al. [2015] for examples. Graphical models provide an approach for a reduction in699
the dimensionality of multivariate problems; see Zadora et al. [2014] for examples.700

Appendix: Inventory of frequency-based continuous two-level models701

The purpose of the inventory is to illustrate the development of methods for the evaluation of evidence702
for frequency-based continuous two-level models. The formulae that are given are for the likelihood ratio,703
denoted V (9), with the purpose of illustrating how rarity and similarity are assessed within the same704
formula and how uncertainty in means and variances is considered.705

There are no derivations of formulae. Source references where the derivations may be found are given706
in association with each model. Whilst SAILR provides a software package for evaluation of evidence,707
appropriate R code is also available elsewhere, e.g., Zadora et al. [2014].708

General notation for univariate models (Lindley [1977])709

Measurements are Normally distributed about the true values with a known, constant variance σ2. For710
m measurements x1, . . . ,xm) of a control item, the mean X̄ (the random variable corresponding to711
observation x̄ is Normally distributed with mean θ1 and variance σ2/m. For n measurements (y1, . . . , ym)712
of a recovered item, the mean Ȳ is Normally distributed with mean θ2 and variance σ2/n. If the control and713
recovered items come from the same source, the prosecution proposition Hp, then θ1 = θ2. If the control714
and recovered items come from different sources, the defence proposition Hd, then θ1 6= θ2.715

Assume θ ∼ N(µ, τ2) and let

a2 =
1

m
+

1

n
, σ2

1 = τ2 + σ2/m, σ2
2 = τ2 + σ2/n, σ2

3 = τ2 + σ2/(m+ n),

and
W = (mX̄ + nȲ )/(m+ n), Z = (σ2

2X̄ + σ2
1Ȳ )/(σ2

1 + σ2
2).

Formulae are given below for realisations of these random variables: thus X̄, Ȳ ,W and Z are replaced716
by x̄, ȳ, w and z717

Value of evidence for univariate models718

• The distribution of the true values θ is Normal, mean µ and variance τ2, where τ2 is assumed known.719

V =
σ1σ2

aσσ3
exp

{
− (x̄− ȳ)2τ2

a2σ2(σ2
1 + σ2

2)

}
exp

{
− (w − µ)2

2σ2
3

+
(z − µ)2(σ2

1 + σ2
2)

2σ2
1σ

2
2

}
. (12)
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• The between-group standard deviation τ � σ such that σ2
1 = σ2

2 = σ2
3 = τ2 and z = (x̄+ ȳ)/2 and720

m = n = 1 without loss of generality then721

V =
τ

σ
√

2
exp

{
− (x̄− ȳ)2

4σ2

}
exp

{(z − µ)2

2τ2

}
. (13)

The term (x̄− ȳ)2/4σ2 is a measure of similarity. The more similar (closer together) x̄ and ȳ are, the722

smaller (x̄− ȳ)2/4σ2 is and hence the larger the term exp
{
− (x̄− ȳ)2/4σ2

}
is (note the negative723

sign) and hence the larger V is. The term (z − µ)2/2τ2 is a measure of rarity. The overall mean of the724
population from which the measurements are assumed to have come is µ. The mean z of the control725
mean x̄ and recovered mean ȳ, weighted by their variances so that the mean with the smaller variance726
is given the larger weight is compared with the overall mean. The further z is from µ, the larger the727
term (z− µ)2/2τ2 is and hence the larger the term exp(z− µ)2/2τ2 is (note the implicit positive sign)728
and hence the larger V is.729

• The between-group distribution is not Normal but is represented with a general distribution p(·), with730
second derivative p′′(·) then731

V =
1

aσ
√

2π
exp

{
− (x̄− ȳ)2

2a2σ2

} p(w) + 1
2p
′′(w) σ2/(m+ n){

p(x) + 1
2p
′′(x̄)σ2/m

}{
p(ȳ) + 1

2p
′′(y)σ2/n

} . (14)

• The between-group distribution is represented by a kernel density estimate (Aitken and Taroni [2004],
p. 338). Consider background data of the form {zij , i = 1, . . . , k; j = 1, . . . , l} where k is the number
of groups and l is the number of members of each group, assumed constant amongst groups. Let z̄i
denote the mean of the i-th group and z̄ the overall mean. The within-group variance is then estimated
by

σ̂2 =
k∑
i=1

l∑
j=1

(zij − z̄i)2/(kl − k)

and the between-group variance τ2 by732

s2 =
k∑
i=1

(z̄i − z̄)2/(k − 1)− σ̂2/l.

V =
K exp{− (x̄−ȳ)2

2a2σ2
}
∑k

i=1 exp{− (m+n)(w−zi)2
2[σ2+(m+n)s2λ2]

}∑k
i=1 exp{− m(x̄−zi)2

2(σ2+ms2λ2)
}
∑k

i=1 exp{− n(ȳ−zi)2
2(σ2+ns2λ2)

}
(15)

where733

K =
k
√

(m+ n)
√

(σ2 +ms2λ2)
√

(σ2 + ns2λ2)

aσ
√

(mn)
√
{σ2 + (m+ n)s2λ2}

.

• The distribution of the true values θ is Normal, mean µ and variance τ2, where τ2 is not assumed
known (Alberink et al. [2013]). Conjugate priors are chosen for θ and σ2. The prior distribution for
θ, or more rigorously, θ | τ2 is N(µ, τ2/κ0), for parameters µ and κ0. In this situation, a prior is
introduced for τ , which is such that ν0τ

2
0 /τ

2 ∼ χ2(ν0) for parameters ν0 and τ0. Formulaically, the
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joint prior is

p2(θ, σ2) = c−1
2 (σ2)−(ν0+3)/2 exp

(
− 1

2
σ−2(ν0τ

2
0 + κ0(τ − τ0)2)

)
,

with c2 a normalising constant. Let

ρ0 = ν0τ
2
0 , ρk = ν0τ

2
0 + nks

2
k +

κ0nk
k0 + nk

(x̄k − µ0)2,

with k = 1, 2, and

ρ1,2 = ν0τ
2
0 +

2∑
k=1

nks
2
k +

2∑
k=1

κ0nk
k0 + nk

(x̄k − µ0)2 +
n1n2

κ0 + n
(x̄1 − x̄2)2.

The likelihood ratio is then734

LR =
Γ(ν0/2)Γ((ν0 + n)/2)

Γ((ν0 + n1)/2)Γ((ν0 + n2)/2)

((κ0 + n1)(κ0 + n2)

κ0(κ0 + n)

)
×
( ρ1

ρ1,2

)n1/2( ρ2

ρ1,2

)n2/2( ρ1ρ2

ρ0ρ1,2

)ν0/2
, (16)

[Alberink et al., 2013].735

• A semi-conjugate prior can be chosen for θ and σ2 (Alberink et al. [2013]) such that θ ∼ N(µ0, τ
2
0 )736

and σ2 has an inverse chi-squared distribution with parameters (ν0, σ
2
0) such that ν0, σ0, µ0 and τ0 and737

the mean and variance are statistically independent. Then738

p3(µ, σ2) = c−1
3 (σ2)−(ν0+2)/2 exp

(
− 1

2
(ν0σ

2
0σ
−2 + τ−2

0 (µ0 − µ)2)
)

(17)

with c3 the normalising constant, [Alberink et al., 2013]739

Value of evidence for multivariate models740

• An early approach to the estimation of the likelihood ratio for multivariate data was used in the case741
of bivariate colour chromaticity co-ordinates for fibres (Evett et al. [1987]). Let y denote a bivariate742
vector of complementary chromaticity co-ordinates measured from a fibre found at the crime scene and743
assumed to come from an article of clothing worn by the criminal. Let x = (x1, . . . ,xm) denote a set744
of bivariate vectors of complementary chromaticity co-ordinates measured from m fibres taken to be a745
representative sample from a garment belonging to a suspect. The propositions are Hp : the recovered746
fibre came from the suspect’s garment, and Hd: the recovered fibre came from some other source.747

The numerator of the likelihood ratio is taken to be f(y | Hp,x) and the denominator to be f(y | Hd);748
see (2.4).749

The measurements were assumed to have distributions f(y | µ,Σ) and f(xi | µ,Σ), i = 1, . . . ,m
that were bivariate Normal with mean µ and covariance matrix Σ. Vague priors are chosen for µ and Σ:

f(µ | Σ) ∝ c for µ and f(Σ) ∝| Σ |−3/2 for Σ,
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where c is a constant, independent of µ. The probability density function for f(y | x, Hp) is then a750
bivariate Student density function of the form:751

Γ(m/2)

πΓ((m− 2)/2)

/{∣∣∣∣(m− 1)(m+ 1)

m
Sx

∣∣∣∣1/2[1+(y− x̄)′
(m− 1)(m+ 1)

m
S−1
x (y− x̄)

]m/2}
(18)

where x̄ and Sx are the sample mean and covariance matrix, respectively, for the measurements752
(Aitchison and Dunsmore [1975], Aitchison et al. [1977]). The denominator f(y | Hd) is taken as753
a kernel density estimate. Further work on likelihood ratios for fibre evidence of complementary754
chromaticity co-ordinates is described in Wakefield et al. [1991].755

• Likelihood ratio with the assumption of constant within-source variation and between-source normality;756
see (Aitken and Lucy [2004]).757

Let Ω denote a population of p characteristics of items of a particular evidential type. Background
data are measurements of these characteristics on a random sample of m members from Ω with
n(≥ 2) replicate measurements on each of the m members. The background data are denoted as
xij = (xij1, . . . , xijp)

T , i = 1, . . . ,m, j = 1, . . . , n with

x̄i =
1

n

n∑
j=1

xij .

The control and recovered measurements are denoted by {yl} = (ylj , j = 1, . . . , nl, l = 1, 2) where
ylj = (ylj1, . . . , xljp)

T , with

ȳl =
1

nl

nl∑
j=1

ylj .

For within-source variation, the mean vector within source i is denoted by θi and the within-source758
covariance matrix by U and (Xij | θi, U) ∼ N(θi, U), i = 1, . . . ,m, j = 1, . . . , n.759

For between-source variation, the mean vector between sources i is denoted by µ and the between-760
source covariance matrix by C and (θi | µ,C) ∼ N(µ,C), i = 1, . . . ,m..761

The means (Yl | θl, Dl) ∼ N(θl, Dl) where Dl = n−1
l U and for between-source normality,762

(Yl | µ,C,Dl) ∼ N(µ,C +Dl), l = 1, 2.763
The value of the evidence is the ratio of

| 2π{(n1 + n2)U−1 + C−1}−1 |1/2 exp{−1

2
(H2 +H3)}

to764

| 2πC |−1/2| 2π{n1U
−1 + C−1}−1 |1/2| 2π{n2U

−1 + C−1}−1 |1/2

× exp{−1

2
(H4 +H5)} (19)

where765
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H2 = (y∗ − µ)T

(
U

(n1 + n2)
+ C

)−1

(y∗ − µ),

H3 = (ȳ1 − ȳ2)T (D1 +D2)−1(ȳ1 − ȳ2),

H4 = (µ− µ∗)T{(Dl + C)−1 + (D2 + C)−1}(µ− µ∗),
H5 = (ȳ1 − ȳ2)T (D1 +D2 + 2C)−1(ȳ1 − ȳ2),

y∗ =
n1ȳ1 + n2ȳ2

n1 + n2
,

µ∗ = {(D1 + C)−1 + (D2 + C)−1}−1{(D1 + C)−1ȳ1 + (D2 + C)−1ȳ2}.

The notation is chosen to match that in Aitken and Lucy [2004]5766
The form of presentation is also chosen to be comparable with the univariate case described in Lindley767

[1977]. This emphasises the factors for rarity and similarity. The terms H2 and H4 are measures of768
rarity of means of the control and recovered measurements, first weighted by sample sizes and second769
weighted by covariances. The terms H3 and H5 are measures of similarity of the control and recovered770
measurements.771

• Likelihood ratio with the assumption of constant within-source variation and kernel density estimation772
of between-source variation ; the formula for the likelihood ratio is not given here, for reasons of space,773
but is available in Aitken and Lucy [2004].774

• Likelihood ratio when the assumption of the constant within-source variability is relaxed; see (Bozza775
et al. [2008]).776

Consider background data of p-variables, with m groups and ni measurements {zij =777
(xij1, . . . ,xijp, i = 1, . . . ,m; j = 1, . . . ,ni)} in each group. Denote the mean vector within-group778
i by θi and the matrix of within-group variances and covariances by Wi and let ψ = (θ,W ) with779
θ = (θ1, θ2) and W = (W1,W2). Given θi and Wi, the distribution of Zij is taken to be Normal780
with Zij ∼ N(θi,Wi). The distribution of the within-group mean θ is taken to be Normal, such that781
θi ∼ N(µ,B), i = 1. . . . ,m. The distribution of the within-group matrix W is taken to be an inverted782
Wishart distribution, such that Wi ∼ IW (U, nw), i = 1, . . . ,m where the number of degrees of783
freedom nw is chosen to reduce the variability of the Wishart distribution.784

A number n of measurements are available: n1 measurements y1 = (y11, . . . , y1n1) from a recovered785
source and n2 measurements y2 = (y21, . . . , x2n2) from a control source; n1 + n2 = n and let y786
denote (y1,y2) 6.787

Consider the proposition that the control and recovered measurements have the same source. Then
θ1 = θ2 and W1 = W2. The density function of the data is

f(y | ψ,H1) =
2∏
l=1

nl∏
j=1

(2π)−p/2 | W |1/2 exp
{
− 1

2
(ylj − θ)′W−1(ylj − θ)

}
.

The prior density of ψ is788

5 The notation of x for training data and y1 and y2 for control and recovered data is used here for consistency with Aitken and Lucy [2004] in contrast to
z,x and y in the rest of the paper. Also, H1 denotes

∑2
l=1 trace(SlU

−1) where Sl =
∑nl

j=1(ylj − ȳl)(ylj − ȳl)
T , an expression used in intermediate

calculations but not in the final result.
6 For notational convenience, both control and recovered data are denoted with y; often x denotes control data and y denotes recovered data.
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π(ψ | H1) = (2π)−p/2 | B |−1/2 exp

{
− 1

2
(θ − µ)′B−1(θ − µ)

}
×

c | U |(nw−p−1)/2

| W |nw/2
exp

{
− 1

2
tr(W−1U)

}
.

The complete conditional density of θ is then789

π(θ | W,y) ∝ exp

[
− 1

2

{
2∑
l=1

nl∑
j=1

(ylj − θ)′W−1(ylj − θ) + (θ − µ)′B−1(θ − µ)

}]
. (20)

The complete conditional density of W is790

π(W | θ,y) ∝ | W |−n/2 exp

{
− 1

2

2∑
l=1

∑
j=1

nl(ylj − θ)′W−1(ylj − θ)

}
×

| W |−nw/2 exp
{
− 1

2
tr(W−1U)

}
. (21)

The function π(ψ | y, Hk) is obtained from (20) and (21) with the use of Gibbs sampling.791
Consider the proposition H2 that the control and recovered measurements have different sources.

The density function of the data y is then

f(y | ψ,H2) =
2∏
l=1

[
nl∏
j=1

(2π)−p/2 | Wl |−1/2 exp
{
− 1

2
(ylj − θl)′W−1

l (ylj − θl)
}]
.

The complete conditional densities of θ and W are, for l = 1, 2,792

π(θl | Wl,y) ∝ exp

{
− 1

2
(θl − µ∗l )′B∗−1

l (θl − µ∗l )

}
. (22)

and793

π(Wl | θl,y) ∝ | Wl |−(nl+nw)/2 exp

{
− 1

2
exp

(
− 1

2
tr
[
W−1
l

{
nl(θl − ȳl)(θl − ȳl)

′

+SlU
}])

. (23)

with794
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B∗l = (B−1 + nlW
−1
l )−1,

µ∗l = B∗l (B−1µ+ nlW
−1
l ȳl),

Sl =

nl∑
j=1

(ȳlj − ȳl)
′(ȳlj − ȳl),

where ȳl =
∑nl

j=1 ylj/nl.795
The function π(ψ | y, H2) is obtained from (22) and (23) with the use of Gibbs sampling.796
The marginal likelihood is then given from the equation797

m(y | Hk) =
f(y | ψ,Hk)π(ψ | Hk)

π(ψ | y, Hk)
. (24)

Further details are available in Bozza et al. [2008]798
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