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ABSTRACT 

As a detailed inspection of a concrete structure in service, core samples are usually drilled out and then 

mechanical properties are measured.  In this study, damage estimation of structural concrete from 

concrete-core samples is developed, applying acoustic emission (AE) method.  By the authors, the 

quantitative damage evaluation of concrete has been proposed, by applying AE and damage mechanics in 

the compression test.  The procedure is named DeCAT (Damage Estimation of Concrete by Acoustic 

Emission Technique), which is based on the rate process analysis and is applied to theoretically estimate 

the intact modulus of elasticity in concrete.  Prior to the compression test, distribution of micro-cracks in 

a concrete-core sample is inspected by helical X-ray computer tomography (CT).  Then, freeze-thawed 

damaged samples are tested by the compression test.  Concrete-core samples were taken out of a water 

canal which is extremely developed cracking damage.  Thus, it is demonstrated that the concentration of 

material damage could be evaluated by comparing geometrical characteristics of cracks with the “rate” of 

AE generation, which is analyzed by AE rate process.  A relation between AE rate and damage 

parameters is correlated in the DeCAT system, and thus the damage of concrete is quantitatively 

estimated. 

INTRODUCTION 

The durability of concrete structures decreases easily due to such environmental effects, as 

freeze-thawed process (JCI-C65, 2005).  The degree of damage in concrete is, in most cases, evaluated 

by an unconfined compression test or ultrasonic test.  For effective maintenance and management of 

concrete structures, it is necessary to evaluate not only the strength of mechanical properties but also the 

degree of damage.  Quantitative damage evaluation of concrete is proposed by applying acoustic 

emission (AE) method and damage mechanics (Ohtsu and Suzuki, 2004; Suzuki et al., 2007).  The 

procedure is named DeCAT (Damage Estimation of Concrete by Acoustic Emission Technique), which 

is based on estimating an intact modulus of elasticity in concrete (RILEM TC-212ACD, 2010; Suzuki et 

al. 2010; Suzuki and Othsu, 2014a). 

In this study, damage estimation of structural concrete from concrete-core samples is developed, 

applying DeCAT system.  Concrete-core samples taken from reinforced concrete of an existing concrete 

canal wall were tested.  These samples were strongly influenced by freeze-thawed process (Suzuki et al. 

2010).  The crack distribution of concrete was inspected with helical CT scans.  After helical CT scan, 

damage of freeze-thawed samples was evaluated, based on fracturing behavior under unconfined 

compression with AE.  The AE generation behavior is associated with crack volume responsible for 



damage in concrete.  The decrease in physical properties could be evaluated by comparing geometrical 

characteristics of cracks with AE generation behavior in compression test.  These values are affected by 

the internal actual cracks.  Thus, the damage of concrete could be quantitatively evaluated by damage 

parameters based on detected AE. 

 

ANALYTICAL PROCEDURE 

AE Rate-Process Analysis 

The AE activity of a concrete core under compression is associated with the rate process theory which 

was introduced (Ohtsu and Suzuki, 2004).  In DeCAT system, detected AE waves are treated by AE 

rate-process analysis.  AE behavior of a concrete sample under compression is associated with the 

generation of micro cracks.  These cracks tend to gradually accumulate until final failure.  Since this 

process could be referred to as stochastic, the following equation of the rate process is introduced to 

formulate the number of AE events, dN, due to the increment of strain from ε to ε+dε, 

N

dN
df  )( ,                             (1) 

where N is the total number of AE events and ƒ(ε) is the probability function of AE at strain level ε %.   

For ƒ (ε) in Eq. 1, the following exponential function is assumed, 

  exp)( f ,                          (2) 

where α and β are empirical constants.  Here, the value β is named the rate (Fig. 1).  The probability 

varies in particular at low strain level, depending on whether rate β is positive or negative.  If rate β is 

negative, the probability of AE events is high at low strain   level.  This indicates that the testing 

concrete may be damaged.  If the rate is positive, probability is low at low strain level and the concrete 

is in stable condition.  Therefore, it is possible to quantitatively evaluate the damage in a concrete using 

AE under uniaxial compression by AE generation behavior.  In this study, quantitative damage 

evaluation of freeze - thawed concrete are analyzed by comparison of AE ‘β’ and X-ray CT ‘Ci’. 
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Fig. 1 Two possible relations of probability function f (ε). 

 

Damage Mechanics for Quantification of Cracking Effects in Concrete 

The concrete damage is defined as decrease of effective area in cross-section (Kochanov, 1986), which 

is able to be detected by X-ray CT test.  Quantification of concrete damage is performed using X-ray CT 

images which is analyzed by spatial statistics parameters with damage mechanics (Suzuki and Ohtsu, 



2014b; Suzuki and Shiotani, 2015). 

  Damage parameter Ω in continuum damage mechanics is defined as a relative change in the modulus of 

elasticity, as follows, 

*
1

E

E
 ,                               (3) 

where E is the modulus of elasticity and E* is the modulus of concrete which is assumed to be intact and 

undamaged.  Loland (1989) assumed that the relationship between damage parameter Ω and strain ε 

under uniaxial compression is expressed, 

00 A ,                            (4) 

where Ω0 is the initial damage at the onset of the uniaxial compression test, and A0 and λ are empirical 

constants of the concrete.  The following equation is derived from Eqs.3 and 4, 

  )*( 00 AEE  .                        (5) 

The damage of concrete is evaluated by damage parameter “λ”.  The equation of λ is expressed (Fig. 2), 

c

c

EE

E




0

 .                              (6) 

 

In this study, accumulation of concrete damage is evaluated by damage parameter “λ”, detected AE and 

X-ray CT image.  The X-ray CT parameters are based on quantification of detected CT numbers, which 

is obtained in Hounsfield Units (HU) represents the mean X-ray absorption associated with each area on 

the CT image.  The CT numbers vary according to the material properties (i.e. crack concentration of 

concrete), generally adjusted to 0.0 for water and to -1,000 for air.  The detected X-ray CT images are 

analyzed by roundness parameter Ci which is defined as spatial statistics parameter for quantitative 

evaluation of characteristics of geometric properties.  The following equation of roundness parameter Ci 

is introduced to formulate the ratio of the area of cracking damage, A, and these round length P, 

A

P
Ci

2

 .                             (7) 

The roundness parameter Ci is analyzed by binary treatment of X-ray CT image (threshold level: 73, 

average max value).  The crack detection accuracy is approximately 200μm in each X-ray CT images. 
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Fig. 2 Stress-strain relation and determination of Young’s modulus. 



EXPERIMENTAL PROCEDURE 

Specimens 

Cylindrical samples of 5cm in diameter and about 10cm in height were composed of taken from the 

freeze-thawed damage structures which is constructed after about 40 years (Figs. 3 and 4).  Test samples 

are classified into three types by cracking damage conditions based on X-ray CT image characteristics 

(see Fig. 4).  The heavy cracked core-sample is named “Type A”.  The little cracked core-samples are 

named “Type B”.  The normal samples are named “Type C”.  These samples are comparison of 

mechanical properties, X-ray CT parameter and AE. 

 
 

 
Fig. 3 Overview of local crack distribution of core sampling wall. 

 

 

X-ray CT image Binary image

Type A

Type B

Type C

Air void

Crack

 
Fig. 4 X-ray CT and binary image of testing samples. 

 

 

 



Visualization of cracked damage using X-Ray CT Images 

The cracked core samples were inspected with helical CT scans at the Medical Center, Niigata 

University.  The helical CT scan was undertaken at one-millimeter intervals before the compression test.  

The measurement conditions are shown in Table 1(Suzuki and Ohtsu, 2014b; Suzuki and Shiotani, 2015).  

The output images were visualized in gray scale where air appears as a dark area and the densest parts in 

the image appear as white.  The exact positioning was ensured using a laser positioning device.  

Samples were scanned constantly at 0.5mm pitch overlapping.  A total of 200 to 400 2D-images were 

obtained from each specimen depending on the specimen length.  These 2D images can be assembled to 

provide 3D representation of core specimens. 

 

Table 1 Setting used for helical CT scan. 

Helical Pitch 15.0 

Slice Thickness 1.0mm 

Speed 7.5mm/rotation 

Exposure 120kV and 300mA 

Recon Matrix 512×512 

Field of View 100-200mm 
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(b) Image analysis using DICM 

Fig.5 Test setup for AE and DICM monitoring in compression test. 

 



Fracture monitoring by AE in core test 

After the ultrasonic test and X-ray CT measurement, the compression test was performed, measuring 

AE activities and stress-strain relation. The AE monitoring was conducted by employing AE sensor of 

150 kHz resonance (R15α, PAC) which was attached at the 6 part of the specimen (Fig. 5 (a)).  

Amplification was 60 dB gains in total.  The frequency range was set from 60 kHz to 1 MHz.  AE hits 

were detected at threshold level 42 dB by an AE system (SAMOS-AE, PAC).  The strain monitoring was 

conducted by DICM in core test (Fig. 5 (b)). 

 

RESULTS AND DISCUSSION 

Mechanical Properties of Testing Concrete 

The mechanical properties of testing samples are shown in Table 2, with the maximum and the 

minimum values of all specimens.  6 samples are strongly influenced by freezing and thawing effect. 

The compressive strength is 7.0 N/mm2 in the heavy cracked condition (Type A), while that of the 

non-cracked condition is 27.9 N/mm2 as the average (max: 27.6 N/mm2, min: 28.2 N/mm2).  Thus, the 

decrease in the mechanical properties is clearly observed in Type A.  On the other hand in the little 

cracked condition (Type B), the compressive strength is 5.1 N/mm2 as the average (Type B<Type A<Type 

C).  The damage parameter λ is detected 0.64 in Type A.  In Type B and C, increase trend of average λ 

is detected. 

AE generating behavior in core test is evaluated by AE parameter β.  Type A and Type B samples are 

evaluated the negative β value in AE rate-process analysis (Type A: -1.4×10-2, Type B: -0.5×10-2 

(average)).  The rate β is negative; the probability of AE activity is high at a low strain level in 

compression test.  It is indicating that the sampling structure is developed by heavy freeze-thawed 

damage.  Therefore, these results is suggested that the sampling structure is developed local damages 

and damage level is qualitatively evaluated by AE parameter β.  

 

Table 2 Mechanical propertied of testing core samples. 

 

Compressive 

strength 

(N/mm2) 

Maximum 

strain 

(μ) 

Tangent 

modulus of 

elasticity 

(GPa) 

AE parameter β 

(β<0.0: Damage) 

Damage 

parameter λ 

 

Sample  

size 

Type A   

Heavy Cracked Concrete 

7.0 3,000  5.9 -0.014 0.64 
1 

[ - ] [ - ] [ - ] [ - ] [ - ] 

Type B   

Little Cracked Concrete 

5.1  2,783  2.9 -0.005 2.85 
3 

[3.8~7.3] [1,060~3,365] [0.2~5.6] [-0.009~-0.0003] [1.23~5.53] 

Type C   

Non-Cracked Concrete 

27.9  1,250 35.8 +0.015 1.89 
2 

[27.6~28.2] [1,050~1,450] [27.7~43.9] [+0.014~+0.016] [1.58~2.20] 

Average [Max-Min] 

Evaluation of Concrete Damage using X-ray CT Image 

The X-ray CT data is analyzed by the roundness parameter Ci which is defined as the spatial statistics 

parameter.  Analytical results are shown in Table 3.  The roundness parameter Ci is calculated from 

X-ray CT image with binary treatment.  In Type A, Ci is detected 78.6 on the average, with 47,548 at the 

dispersion.  On the other hand, Type B is 26.1 on the average, which is 0.33 times lower than Type A 



sample.  In Type C, average Ci is detected 13.7, which is 0.17 times lower than Type A sample.  

Frequency of Ci value is shown in Fig. 6.  The Ci value is frequently detected 40 under value in all type 

samples.  This is because, these evaluated Ci is affected by distribution of normal air void characteristics.  

In Type A sample, range of Ci is distributed in 200 or more over.  Comparison of Type A and Type C, 

analytical Ci range is detected concentration of 10 to 20.  The average Ci value is compared with air void 

ratio in Fig. 7.  It can be clearly separated in each sample type by using relation between average Ci and 

air void ratio.   Our recent studies, the concentration of crack damage in concrete was positively 

correlated with decrease trend of CT value (Suzuki et al., 2010).  Thus, the results of Type A and Type B 

are plotted in high Ci value part (Ci > 20), it is considered that these samples have been fairly damaged. 

 

Table 3 Air void and crack properties of testing core samples. 

  

 

 

 

 

 

 

 

 

Average (Dispersion) 

Sample Type 
Aspect ratio 

(-) 

Roundness 

(-) 

Ares 

(mm2) 

Void perimeter 

(mm) 

CT value 

(-) 

Air void ratio 

(%) 

Type A 

 

3.46  

(6.62) 

78.62  

(47,548) 

13.2 

(2,499.6) 

30.9 

(10639.3) 

1,557.9 

(104,554.5) 
11.4 

Type B 

 

2.68  

(4.91) 

26.14 

( 1,742) 

 3.4 

( 127.6) 

 8.3 

(  413.6) 

1,617.1 

( 66,429.1) 
4.8 

Type C 

 

1.66  

(0.63) 

13.66 

(   31) 

1.8 

(  7.2) 

 4.3 

(    9.4) 

1,662.1 

( 52,982.9) 
1.0 
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Fig. 6 Characteristics of roundness parameter Ci in Type A, B and C. 
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Fig. 7 Relation between roundness parameter Ci and air void ratio. 



AE generation behavior in core test 

Mechanical properties are summarized in Table 

2, with average and range of detected values of all 

specimens.  The AE generation behavior in core 

test is shown in Figs. 8 and 9.   

In Fig. 8, it is clearly observed that compressive 

fracture process of damage concrete (Type A and 

B) appeared increase trend of low amplitude AE 

(42-59dB) which is generated from friction of inner 

cracks.  On the other hand, non-cracked concrete 

(Type C), high amplitude AE was frequently 

detected in core test.  As discuss in the previous 

researches, increase of low energy AE can be 

thought of ‘Secondary AE’ which is generated from 

inner damaged part, such as cracks (JSNDI, 2006).   

In Fig. 9, comparison of AE generation behavior 

in fracture process by non-damaged and 

freeze-thawed conditions.  In general of AE rate 

process theory, concrete damage condition is 

defined as detection of high AE generation 

behavior in low strain level.  Non-damaged 

concrete sample was detected low AE probability 

function f (ε) in low strain level.  In Type B, little 

cracked concrete was detected high AE probability 

function f (ε) in low strain level.  AE generating behavior of Type A and B showed the negative β in AE 

rate-process analysis (β<0.0, damage condition) which was fairly damaged by freeze-thawed process.  

So, all the freeze-thawed samples (Type A and B) are found to be damaged.  These results of f (ε) 

suggest that decreasing trend of β value is in good agreement with the increase in damage.  Thus, the 

results of damage estimation using AE is useful for concrete structure.    
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Fig. 9 Comparison of AE generation behavior by non-damaged concrete and freeze-thawed samples. 

Type A

Type B

Type C

9.8 kN 16.3 kN 26.0 kN

Stress level 16.7 % 29.2 % 45.8 %

Stress level 30.0 % 50.0 % 80.0 %

Stress level 4.2 % 7.3 % 11.5 %
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Fig.8 Characteristics of AE generation behavior  

in core test. 

 



Damage Estimation by AE and X-ray CT parameters 

The accumulation of crack damage in testing samples is positively correlated with decrease trend of 

‘Ci’ and ‘β’.  The damage index β and P-wave velocity are compared with Ci in Fig. 10.  In β<0.0 

condition, AE generation behavior is high at low strain level.  This results indicates that the testing 

concrete may be damaged.  The P-wave velocity is detected same trend of AE index β in core test.  The 

standard of P-wave velocity in concrete is defined as 4,000m/s (JSNDI, 1994).  The decrease trend of P 

wave velocity is correlated with inner damage (JSCE, 2004).  In β=0.0 condition, estimated P-wave 

velocity is analyzed about 3,053m/s (<4km/s, 76.3%=3,053/4,000).  Therefore, these results detect that 

negative value of β with the increase in damage.  And, AE index in core test is estimated by 

non-destructive P-wave monitoring. 
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Fig. 10 Relation between AE parameter β and P-wave velocity. 

 

CONCLUSION 

For quantitative estimation of damage in concrete, AE monitoring is applied to the uniaxial 

compression test of concrete samples.  Analytical procedure is based on the rate-process theory.  In this 

study, AE rate-process analysis is applied to damage estimation of concrete-core samples taken from a 

concrete water-canal which is affected by freeze-thaw process.  It is quantitatively demonstrated that 

testing concrete-core samples are damaged.  In addition, applying the X-ray CT test, spatial distribution 

of the cracking damage in core sample is readily determined.  Reasonable agreement with spatial 

distribution of cracks in concrete is confirmed by the results of AE generation behavior in core test.  The 

results are summarized as follow. 

（1） To assess the damage of concrete subjected to freeze-thawed effects, a method to monitor AE 

generation behavior of core samples under uniaxial compressive loading was investigated.  The 

degree of damage was evaluated using AE parameter β. 

（2） From the results of core samples taken out of a deteriorated concrete canal, it is confirmed that 

with the decrease in evaluation parameters β, Ci of the micro-cracks responsible for the concrete 



damage.  This demonstration that AE parameter β could give a qualitative reference on damage 

level of concrete. 

（3） The AE parameter β is an obtained as a damage index in core test, while the P-wave velocity is 

determined by UT.  These experimental values was correlated with X-ray CT parameter Ci. 
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