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Light as a Broad-Spectrum
Antimicrobial
Peter J. Gwynne* and Maurice P. Gallagher*
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Antimicrobial resistance is a significant and growing concern. To continue to treat even
simple infections, there is a pressing need for new alternative and complementary
approaches to antimicrobial therapy. One possible addition to the current range of
treatments is the use of narrow-wavelength light as an antimicrobial, which has been
shown to eliminate a range of common pathogens. Much progress has already been
made with blue light but the potential of other regions of the electromagnetic spectrum
is largely unexplored. In order that the approach can be fully and most effectively
realized, further research is also required into the effects of energy dose, the harmful
and beneficial impacts of light on eukaryotic tissues, and the role of oxygen in eliciting
microbial toxicity. These and other topics are discussed within this perspective.
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INTRODUCTION

The rise of antibiotic resistance has been (Jawetz, 1963; Lyon and Skurray, 1987; Neu, 1992) and
continues to be (Goff et al., 2017; Manaia, 2017; Schroeder et al., 2017) extensively reported.
Although new antibiotics are still being discovered (Ling et al., 2015; Zipperer et al., 2016), new
discoveries are increasingly challenging and success in clinical trials is rare. In addition, the
prevalence of pre-existing resistance systems in the environment (Bhullar et al., 2012), and the
rapid rate of bacterial evolution (von Wintersdorff et al., 2016) mean that, even if adopted clinically,
such compounds will only ever constitute a temporary reprieve. Thus, there is a clear need for
alternative antimicrobial therapies which can be effective and sustainable in the longer term.

To prevent the emergence of resistance and to maximize treatment efficacy, novel therapies
should ideally impact on a range of cellular targets. Whereas resistance to traditional antibiotics
can arise through alteration of just a single amino acid residue in the antimicrobial target (Vila
et al., 1994; Tsiodras et al., 2001), resistance becomes considerably less likely where a range of
processes are targeted. The appeal of such a strategy is obvious and exemplified by broad-spectrum
disinfectants (Russell, 2003).

Being widely found in a range of medical applications (Figure 1), electromagnetic radiation
offers a promising avenue as an abiotic form of antimicrobial therapy. Currently two distinct
light-mediated bactericidal techniques have been widely studied. The first of these, photodynamic
therapy, has shown great potential against numerous pathogens and uses light of specific
wavelength to stimulate an exogenously supplied photosensitizer, eliciting formation of toxic levels
of reactive oxygen intermediates (Wainwright et al., 2016). In this perspective, we focus on the
alternative approach in which light directly interacts with endogenous photosensitizers of the target
microbe. This approach – eliminating the requirement for an additional third factor – removes a
level of complexity in research, regulation, and application. It does, however, require a detailed
knowledge of the interactions of biological systems (both prokaryotic and eukaryotic) with light.
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THE PARADIGM OF BLUE LIGHT

The 1903 Nobel Prize was awarded to Niels Ryberg Finsen
for the use of blue light (Møller et al., 2005) in the treatment
of tuberculosis of the skin. Having been largely neglected
through the subsequent era of antibiotic discovery, interest in
antimicrobial light was renewed toward the end of the 20th
century. Blue light [typically 400–450 nm (Figure 1)], which
is absorbed by porphyrins and is thought to cause cell death
by the generation of toxic reactive oxygen species, has largely
remained the focus of research since the 1980s (Kjeldstad and
Johnsson, 1986; Koenig et al., 1992). While initial experiments
required addition of exogenous porphyrins (Bertoloni et al., 1984;
Nitzan et al., 1987) or enhancement of endogenous porphyrin
production (Sailer et al., 1997; van der Meulen et al., 1997), it
latterly became clear that natural levels of porphyrin are sufficient
to elicit toxicity (Ashkenazi et al., 2003).

The bactericidal effect of blue light has been shown in
many pathogenic species (Gupta et al., 2015; Halstead et al.,
2016). Energy doses in the 10 or 100s of J cm−2 are typically
sufficient to kill Staphylococcus aureus, for example (Maclean
et al., 2008a; Halstead et al., 2016). Moreover, while few studies
have rigorously explored the kinetics of killing using blue light,
there appears to be a correlation between energy dose and
reduction in viability, suggesting that total energy (rather than
power, duration, or wavelength) is the major factor (Maclean
et al., 2008b; Ramakrishnan et al., 2014).

The oxygen-dependence of the antimicrobial effect has
been demonstrated repeatedly (Gourmelon et al., 1994;
Feuerstein et al., 2005). However, experiments in a high-oxygen
environment showed no additional benefit (Bumah et al., 2015),
suggesting that oxygen availability does not limit toxicity. The
limiting factor seems likely to be the concentration of absorptive
porphyrins: efficacy can be enhanced by induction of porphyrin
production, and toxicity in different species has been found to
correlate with their accumulation of the pigment (Nitzan et al.,
2004; Hamblin et al., 2005; Choi et al., 2011). More recent studies
have investigated the precise contribution of different porphyrin
species as well as other photosensitizers such as flavins and
nicotinamides (Cieplik et al., 2014; Battisti et al., 2017; Kim and
Yuk, 2017).

Oxidative damage may not be the sole cause of cell death,
however. It has long been suggested that other mechanisms
may contribute (Kjeldstad, 1987; Henry et al., 1995), and
oxygen scavengers cannot completely protect against toxicity
(Feuerstein et al., 2005; Maclean et al., 2008b). In addition to
damage to protein and lipid components, infrared spectroscopy
has revealed that DNA cleavage caused by blue light is
similar to that seen in UVA-treated cells (Bumah et al.,
2016), which is unsurprising given the spectral proximity
of UVA and blue light (Figure 1). A completely different
mechanism of toxicity was suggested by a recent transcriptomic
study, which implicated the upregulation of phage proteins
after irradiation (Yang et al., 2017). Inhibition of phage
maturation completely prevented cell death, suggesting that this
pathway (or components thereof) may be of great significance.
A phage-dependent mechanism has important implications for

antimicrobial selectivity, although may also limit the possible
spectrum of targets.

THERAPEUTIC POTENTIAL OF BLUE
LIGHT

While studies in the 1980s and 1990s typically focused on
Propionibacterium acnes, recent research has been largely
focused on Staphylococcus aureus. The immediate appeal of
both organisms is their colonization of the skin, which is
easily illuminated, although it is notable that one of the few
published patient trials was carried out against Helicobacter
pylori infection of the stomach (Lembo et al., 2009). While
relatively little research has been translated into human clinical
trials to date, animal models have been established (Yang et al.,
2017; Zhu et al., 2017), demonstrating blue light killing of
infecting cells a few hours after inoculation. These models are
an encouraging development and further experiments showing
successful treatment of an established infection featuring biofilm,
persister cells, and intracellular bacteria will be a significant step
toward clinical application.

Promisingly, however, reduction of cell numbers in
established biofilms has been shown in vitro (Halstead et al.,
2016; Wang et al., 2016). Tissue models also offer encouraging
signs. Selectivity of the toxic effect for bacteria over mammalian
cells has been demonstrated (Dai et al., 2013; Ramakrishnan
et al., 2014). Different cell types appear variably tolerant to blue
light, however: osteoblasts were killed above 36 J cm−2 whereas
keratinocytes survived > 100 J cm−2. Given this difference
in sensitivity across cell types, dose may have to be tailored
depending on specific clinical application.

Currently few studies have investigated in detail the
relationship between energy dose and killing. The available data
(Maclean et al., 2008a, 2009; Endarko et al., 2012) suggest
a sigmoidal dose–response curve implying that, as similarly
observed with low-level oxidative stress (Kumar and Imlay,
2013), a sub-lethal light dose may be indefinitely tolerated by
organisms with appropriate detoxifying systems. The existence of
adaptive tolerance is supported by the finding that growth in low
levels of blue light protects somewhat against subsequent high-
intensity challenge (Tomb et al., 2017). With repeated sub-lethal
dosage, resistance to blue light has been reported (Guffey et al.,
2013) although this point remains contentious (de Sousa N.T.
et al., 2015; Tomb et al., 2017). The importance of appropriate
dosing and considerations of light transmission through tissue
are clearly of particular importance given that blue light can
promote biofilm formation (Tschowri et al., 2009; Mussi et al.,
2010). Further work to understand the mechanisms of killing
and the dose–response relationships is needed to provide a
quantitative basis for widespread and effective implementation.

Although therapeutic treatment of established infections may
be the primary aim, preventative intervention may also be of
value and more readily achievable. Toward this aim, extended
exposure at low (mW) power has been shown to slow bacterial
growth (de Sousa D.L. et al., 2015; Ramakrishnan et al., 2016).
The technology has also been trialed in a hospital setting,
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FIGURE 1 | Representation of the electromagnetic spectrum, with regions of interest discussed in the text indicated. Current applications of certain wavebands also
shown. (a) (Hill et al., 2014); (b) (Chang et al., 1985); (c) (Tanzi et al., 2003); (d) (Jin et al., 2010); (e) (Cobb, 2006).

TABLE 1 | Optical properties of selected wavelengths in skin.

Wavelength (nm) Absorption coefficient in
skin (cm−1)

Scattering coefficient in
skin (cm−1)

Approx penetration depth
(µm)

Major interactions in
tissue

300 45.0 260.0 6.0 Mutagenic

350 25.0 220.0 60.0 Mutagenic

400 13.5 34.3 90.0 Mutagenic, photochemical

500 6.2 25.1 230.0 Photochemical

600 3.8 18.6 550.0 Photochemical

700 2.4 14.8 750.0 Photochemical, thermal

800 1.9 12.4 1200.0 Photochemical, thermal

1000 1.6 9.2 1600.0 Thermal

1200 1.8 7.1 2200.0 Thermal

In general, shorter wavelengths scatter and are absorbed more in tissues, limiting penetration depth. Data from Anderson and Parrish (1981) and Bashkatov et al. (2011).

producing modest reductions in bacterial counts on surfaces
(Maclean et al., 2013).

ALTERNATIVE PHOTOSENSITIZERS

Several factors may complicate the widespread use of blue
light. Sensitivity varies across species (Maclean et al., 2009)
and has been shown to be dependent on the accumulation of
particular intracellular porphyrins (Hamblin et al., 2005). Indeed,
even within the same species, susceptibility can vary (Kim and
Yuk, 2017) and both porphyrin accumulation and subsequent
toxicity are affected by growth medium (Henry et al., 1995).
Blue light is also absorbed strongly by many mammalian cell
types, limiting its tissue penetration (Table 1) and therefore
application to surface tissues. Additionally, mammalian cells
have been shown to produce reactive oxygen under blue light
illumination (Ramakrishnan et al., 2016), and singlet oxygen
is a known mutagen (Hiraku et al., 2007), suggesting that

power levels will require careful titration to avoid damage
to tissues. Longer wavelengths, by contrast, are more readily
transmissible.

Research on other parts of the electromagnetic spectrum
is currently sparse but encouraging: Enterococcus (apparently
resistant to blue light) has been shown to be sensitive to near- and
mid-infrared (IR) light (Licata et al., 2015; D’Ercole et al., 2016),
while the infectivity of Chlamydiaceae can be reduced with near-
IR (Marti et al., 2015). Red light has been shown to reduce cell
numbers in some pathogens (König et al., 2000; Martins et al.,
2015; de Sousa et al., 2016), possibly due to the same porphyrin
mechanism as blue light: porphyrins absorb most strongly in the
blue region, but also absorb other visible wavelengths (Battisti
et al., 2017). Additionally, infectivity of virus particles can be
reduced by exposure to visible light (Richardson and Porter,
2005) Together, these data suggest that blue light is only one
of a number of potential therapies, with the most obvious
opportunities for development of antimicrobials exploiting other
endogenous photosensitizers.
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Flavins (Eichner et al., 2015; Makdoumi et al., 2017) and
vitamin A (El-Agamey et al., 2017) can both be photosensitized
to produce reactive oxygen. Other possibilities exist in the
visible range, however – there are examples of visible and
IR-photoinduced production of oxygen species in prokaryotes
(Kohli and Gupta, 2003; Lubart et al., 2011) and eukaryotes
(Hayashi et al., 1997; Karu, 2008), suggesting that suitable
chromophores exist, although they have yet to be identified.
DNA damage in red- and nIR-irradiated Escherichia coli has
been shown to require other cellular components, rather than
occurring as a direct effect of light interacting with DNA
(Rocha Teixeira et al., 2014; Martins et al., 2015). While the
chromophores in these cases are unknown, there is also molecular
evidence for light-mediated cell damage. Ferritin is excited by
visible light and can modify numerous substrates including
proteins (Nikandrov et al., 1997; Saenz et al., 2016). As well as
porphyrin, other tetrapyrroles may also have potential. Vitamin
B12 is known to absorb in the visible region (Wang et al., 2015),
while hematoporphyrin is used as a photosensitizer (Tanaka et al.,
2011).

One noteworthy example of this principle is in the use
of green light to treat the fungal infection onychomycosis.
Trichophyton rubrum, one of the causative agents, produces
a characteristic red pigment xanthomegnin (Gupta et al.,
2000) which can be targeted with 532 nm light, causing
significant inhibition of growth (Vural et al., 2008). Numerous
wavelengths in the visible and infrared have been used to
treat onychomycosis with some success (Gupta and Versteeg,
2017). As is the case with the use of blue light against
bacteria, there remains little consensus on the mechanism
of toxicity, or the optimal treatment wavelength, power, or
duration.

Food spoilage organisms such as Aspergillus and Phytophthora
are often pigmented, which may allow similar selective targeting.
A significant body of work exists regarding the use of light as a
sterilizing agent in food and water processing (Song et al., 2016;
Fan et al., 2017), much of it based around ultraviolet light. UV,
however, also penetrates poorly (Table 1), limiting its application
to surface decolonization. Although UV predominates, visible
light wavelengths have also been suggested for application in
the food industry (Imada et al., 2014; Gunther et al., 2016).
Thus, other antimicrobial wavelengths may find use in a range
of applications.

OXYGEN-INDEPENDENT MECHANISMS

The reliance on oxygen intermediates for toxicity may also limit
the application of blue light, with deep tissues and biofilms
often microaerophilic or anaerobic. Many pathogens also possess
sophisticated, protective oxidative stress responses, which can
contribute to virulence (Coady et al., 2015; Cheng et al., 2017). In
Staphylococcus, the presence of antioxidant carotenoid pigments
such as staphyloxanthin affects the killing efficiency of blue
light (Halstead et al., 2016). Similar carotenoids are induced by
exposure to blue light in Myxococcus (Galbis-Martínez et al.,
2012). Again, the applicability of antimicrobial light would

be enhanced by identification of wavelengths with oxygen-
independent toxicity.

Despite the well-known dangers of UV, more recent results
suggest that the waveband should not be overlooked. UVC,
which directly results in DNA damage, has been shown to be a
very effective antimicrobial, reducing cell numbers with as little
as 2 mJ cm−2 (Dean et al., 2011). Clinical applications have
been trialed, with ultraviolet lighting shown to reduce surgical
site infections (Ritter et al., 2007). The full range of ultraviolet
wavelengths is little explored, with most studies employing
broad-band sources. Certain specific wavelengths have been
reported to offer selectivity for bacteria over mammalian cells
(Buonanno et al., 2013; Narita et al., 2018), highlighting the
need for studies with greater wavelength resolution. UV’s potent
antimicrobial effect may be most easily applied to disinfection
and sterilization, where patient compatibility is not required
and positive results have already been seen (Anderson et al.,
2017).

As well as DNA, bacterial proteins can be damaged
irreversibly by UV light in a manner similar to that seen with
oxidative damage (Bosshard et al., 2010). Other spectral bands
may have similar effects, with exposure to green and red light
altering protein folding, possibly by inducing reorganization
of hydrogen bonds (Espinoza et al., 2015). Protein function
can similarly be modulated by nIR light (Vojisavljevic et al.,
2007), which in turn has been shown to cause DNA damage in
plasmid DNA (Fonseca et al., 2012). Evidence for direct effects
on cell components by wavelengths outside the ultraviolet range
remains sparse, however, and the ubiquity of macromolecules
such as DNA and protein may make selectivity against bacterial
over host cells challenging (although potential targets exist).
Metalloproteins (an emerging antibiotic target) may be potential
targets here, being frequently virulence-associated and with
characteristic absorbance properties (Dell’Acqua et al., 2011;
Shumilina et al., 2014).

The killing mechanism of ultraviolet light is not entirely
photochemical. Cells and spores have been shown to lyse under
pulsed UV light as a result of localized transient temperature
rise and water vaporization (Wekhof, 2000; Takeshita et al.,
2003). The localized heating is dependent on higher absorption
by the target cells than the surrounding environment (Fine and
Gervais, 2004). In the case of UV light, DNA and amino acids
are known to be absorptive chromophores, but other absorbers
may also be identified. Successful development of this selective
thermolysis approach depends on the identification of suitable
bacterial chromophores and their activating wavelengths.

Biological macromolecules such as proteins (Barth, 2007),
polysaccharides (Černá et al., 2003), and lipids (Hull et al.,
2005) as well as small molecules (Amerov et al., 2004) all
have characteristic absorbance spectra in the near- and mid-
IR. Polysaccharides have broadly similar spectra but distinctive
differences exist (Langkilde and Svantesson, 1995; Bekhit et al.,
2016). Relatively minor chemical modifications can produce
significant changes in absorbance (Hamcerencu et al., 2007),
suggesting that the many variations found in bacterial capsules
[E. coli alone has over 70 capsular subtypes (Whitfield, 2006)]
may provide unique spectral differences to target. Indeed,
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bacteria (Tidwell et al., 2015; Almasoud et al., 2016) and
fungi (Kogkaki et al., 2017) can be subtyped or differentiated
from a eukaryotic host (Wang et al., 2010) by diagnostic
fingerprint regions in their infrared spectra (Maity et al.,
2013). Peptidoglycans, an obvious antimicrobial target, also have
characteristic strain-specific spectra (Naumann et al., 1982).
Such identifying peaks and regions, however, are by definition
unique to particular species, suggesting that multiple therapeutic
wavelengths could be required to maximize the range of possible
target organisms.

Another approach to cellular disruption is the induction of
damaging vibrational energy in the target. Such a disruption
strategy may be of particular interest as an antiviral. The
regular geometry of many viruses results in consistent vibrational
frequencies (Dykeman and Sankey, 2010). If the intrinsic
vibrational frequency of a viral particle is matched by that of
an incident electromagnetic wave, the photons resonate and are
absorbed, causing disruptive vibrations in the particle (Liu et al.,
2009). This phenomenon can be exploited to destroy viruses with
relatively low-powered microwave energy (Yang et al., 2015). It
has been reported that very short (femtosecond) pulsed lasers can
disrupt viruses and bacteria by a similar transfer of vibrational
energy. The precise mechanisms underpinning this phenomenon
are unclear, however, and findings to date have been inconsistent
(Wigle et al., 2014) suggesting that considerable further work is
required. Although not shown to reduce cell numbers, pulsed
laser light has been shown to liberate biofilms from surfaces,
possibly facilitating subsequent antibiotic therapy (Kizhner et al.,
2011).

PERSPECTIVES

Blue light undoubtedly has the potential to become a highly
effective antimicrobial. Key questions remain to be answered,
however, including around the mechanisms of toxicity and
in particular the contribution of porphyrin-independent
mechanisms. Opportunities are not limited to widely studied
blue light, necessitating the continued exploration of other
antimicrobial wavelengths. The development of alternative or
complementary methods is vital to expanding the range of target
organisms and clinical applications, as well as to reducing the
risk of the development of resistance. To maximize efficacy,
a realistic light-based therapy seems likely to require use of
multiple wavelengths with several distinct targets.

While other possibilities for therapies certainly exist, their
development is limited at present by a paucity of knowledge
regarding properties such as absorbance, reflectance, and scatter
in biological systems. The fundamental optical properties of
bacterial cell components and of cells are all vital to exploiting
the physicochemical (and resultant biological) interactions
between light and cells but currently only understood in
the context of a few specific systems. Even among those
studies involving antimicrobial light, most are focused on a
handful of narrow wavebands (Kim et al., 2013; Kumar et al.,
2016). Thus, the vast majority of the electromagnetic spectrum
remains to be explored but holds tremendous potential. The
required research may be built on existing techniques and
knowledge. Spectroscopic techniques are improving rapidly
and come with a wealth of data about the absorptive
and scattering properties of cells, which could be of great
value.

Development of an optimal treatment regime also represents
a significant barrier to translating research into the clinic.
Current studies differ widely in their exploration of wavelength,
power, and treatment duration, with very few giving evidence
of an empirical process of optimization. Nevertheless, two
complementary modalities prevail. High-power, short-duration
treatments could be used for directed therapy such as wound
disinfection, together with the use of lower powers to reduce
resident bacterial load in wards or operating theaters. Either
case brings unique challenges in terms of the relationship
between lethality and required energy dose, much of which
are still only poorly understood. Although widespread use
of antimicrobial light may be limited by such practicalities
or issues of dose and administration, even limited clinical
implementation will assist in prolonging the lifespan of existing
antibiotics. Moreover, as our understanding of the underlying
mechanisms develop, opportunities for other applications such
as in agriculture and food production are likely to present
themselves and may lead to technological transformations
in these industries. However, in order to maximize such
opportunities, further research into the underlying science is a
necessary requirement.
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