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Solving  Lukasiewicz µ-terms

K. Kalorkoti

School of Informatics, University of Edinburgh, 10 Crichton Street
Edinburgh EH8 9LE, U.K. (kk@inf.ed.ac.uk)

Abstract

 Lukasiewicz µ-calculus was introduced by Mio and Simpson and is an extension

of  Lukasiewicz logic, introducing scalar multiplication and least as well as great-

est fixed points. A key question is how to evaluate terms of this calculus, i.e.,

find the values of bound variables occurring in a term. In this paper we provide

an algorithm that is single exponential in the size of the term (this takes into

account the size of rationals occurring in the term and the interpretation of free

variables, the number of operators as well as the number of bound variables).

We also show that the solutions are polynomially bounded in the size of the

input term and interpretation of free variables. The core technique used is the

solution of a set of affine fixed point equations with inequalities as side condi-

tions for which a polynomial time algorithm is given. The techniques introduced

here may be of wider interest in model checking and distributive systems.

Keywords: Fixed points, probabilistic µ-calculus, algorithm for evaluating

µ-terms.

2010 MSC: 03C80, 68Q60, 68W05, 03D15

1. Introduction

Mio and Simpson [1] introduced the set of  Lukasiewicz µ-terms given by

x | qe | e1 t e2 | e1 u e2 | e1 ⊕ e2 | e1 � e2 | µx.e | νx.e

where x denotes a variable and q a rational number from [0, 1]. We refer to µ, ν

as quantifiers and the associated variables as being bound, the rest being free.
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The free variables are given values from the rationals by an interpretation ρ.

The semantics of such terms are given by:

JxKρ = ρ(x), JqeKρ = qJeKρ

Je1 t e2Kρ = max{Je1Kρ, Je2Kρ}, Je1 u e2Kρ = min{Je1Kρ, Je2Kρ}

Je1 ⊕ e2Kρ = min{1, Je1Kρ + Je2Kρ}, Je1 � e2Kρ = max{0, Je1Kρ + Je2Kρ − 1}

Jµx.eKρ = lfp(a 7→ JeKρ(a/x)), Jνx.eKρ = gfp(a 7→ JeKρ(a/x)).

In the above lfp and gfp denote the least and greatest fixed points, respectively,

of the monotonic function a 7→ JeKρ(a/x); the existence of the fixed points is

guaranteed by the Knaster-Tarski Theorem (see Arnold and Niwiǹski [2]). In

examples we will use stand alone constants q since, e.g., they are shorthand5

for q νx.x.

By the solution to a term we mean the unique values of the bound variables

that the term denotes. By a candidate solution we mean any assignment to the

bound variables (from [0, 1]) that satisfies the term but ignoring quantifiers, that

is each value is a fixed point but not necessarily a greatest or least such. For the10

sake of simplicity we may assume that the bound variables are given distinct

names; so µx.(νy.(y⊕1/2)�x) is used rather than µx.(νx.(x⊕1/2)�x). In the

following we will use σ to denote an unknown quantifier µ or ν. The number of

operators of a term e is the number of occurrences of any one of t, u, ⊕, �.

We say that a term is reduced if whenever it has a sub-term qe where q ∈ Q15

then e is either a variable or a term that involves at least one operator; this

rules out sub-terms of the form q1q2 · · · qre where r > 1 which can be replaced

by qe where q = q1 × q2 × · · · × qr. We also say that a natural number B is a

magnitude bound for a rational number u/v (where u, v ∈ Z) if |u|, |v| ≤ B, it

is said to be strict if |u|, |v| < B. The number B is a (strict) magnitude bound20

for a term e and interpretation ρ if it is such for all numbers occurring in e and

all numbers assigned by ρ. We will prove the following:

Theorem 1.1. Assume that B is a strict magnitude bound for a reduced term e

and interpretation ρ. Assume also that e has m operators and n bound variables.

If m = 0 then the value of each variable can be represented in O(n lgB) bits25
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and the values of the variables can be found in time O(n2 lg2B). If m > 0 then

the value of each variable can be represented in O(m(m+ n)2 lgB) bits and the

values of the variables can be found in time 2O((m+n)(m+lg(m+n)+lg lgB)).

Mio and Simpson [1] provide an elegant algorithm for solving terms but their

runtime upper bound has non-elementary growth. It is possible that this al-30

gorithm has much better runtime. They also point out that the problem can

be solved in triple exponential time using the quantifier elimination methods of

Ferrante and Rackoff [3] or double exponential time using the decision procedure

for linear arithmetic of Boigelot et al. [4]. Thus while the bound in Theorem 1.1

is rather high it does represent a significant improvement. This result and its35

proof is the private communication from the author referred to on p.343 of [1];

the author is grateful to Alex Simpson for raising the question with him. Mio

and Simpson [1] also ask if finding the values of the variables can be shown to

be in NP∩co-NP in analogy with the modal µ-calculus introduced by Kozen [5].

Resolving this question seems very hard but at least the bound on the size of40

the variables shows that the solutions are polynomially bounded in the size of

the input term e and interpretation ρ.

2. Terms as equation sequences

Let e be a term with an interpretation ρ. We can convert the term to a

sequence of equations by the following standard approach. If e is a term without45

quantifiers the corresponding equation sequence is just µz = e where z is a new

variable (the quantifier is irrelevant and ν could be used). If e = qe1 , where e1

has a quantifier, let S be the sequence of equations corresponding to e1 and z1

the variable on the left hand of the first equation of S. The sequence of equations

for e is µz = qz1, S where z is a new variable. Suppose now that e = e1 ◦ e250

where ◦ is one of t, u, ⊕, � and at least one of e1, e2 has a quantifier. If e1 does

not have a quantifier then let S be the sequence of equations corresponding to

e2 and z1 the variable on the left hand of the first equation of S. The equation

sequence is µz = e1 ◦ z1, S where z is a new variable. Similarly if e2 does not
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have a quantifier. If both e1 and e2 have quantifiers let S1, S2 be the equation55

sequences corresponding to e1, e2 respectively. Let z1, z2 be the variables on the

left hand of the first equation of S1, S2 respectively and let z be a new variable.

Then the equation sequence for e is µz = z1 ◦ z2, S1, S2 (again the quantifier is

not relevant). Finally, if e = σx.e1 and e1 is free of quantifiers then the sequence

is just σx = e1. Otherwise let S be the sequence of equations corresponding to60

e1 and z the variable on the left hand of the first equation of S. The sequence

of equations for e is σx = z, S.

In practice we can avoid many of the extra variables by substituting their

values directly. For example the term e = σ1x.(xuσ2y.(xty)) can be translated

as

σ1x = x u y,

σ2y = x t y.

Thus for any term e we obtain a sequence of n equations in n unknowns (n is

generally bigger than the number of bound variables in e).

σ1 x1 = f1(x1, x2, . . . , xn),

σ2 x2 = f2(x1, x2, . . . , xn),

...

σn xn = fn(x1, x2, . . . , xn).

(†)

Here each fi is a monotonic function [0, 1] → [0, 1] involving the operators

t, u, ⊕, � (which translate to max, min possibly with arithmetic operators)

and scalar multiplication. If we denote this system by E and let r ∈ Q the65

notation E[x1/r] denotes the system obtained by removing the first equation

and substituting r for x1 in the remaining equations.

Lemma 2.1. Suppose e is reduced and has m operators and b bound variables.

Let n be the number of equations in its translation (†). Then n ≤ 1 + 2(m+ b).

Moreover the equations have a total of m operators in the terms appearing on70

the right hand side. Finally the rational numbers appearing in the equations are

the same as those that appear in e.
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proof. The second and third claims are clear from the nature of the translation

so we consider the first part only.

We call a multiplication by a rational essential if it occurs as qe′ where the75

sub-term e′ has at least one bound variable and denote the number of essential

multiplications by em(e). We claim that em(e) ≤ m + b. This is established

by induction on m + b. If e has no bound variables then we are done since

em(e) = 0. Suppose now that e = qe′. Since e is reduced, we must have

e′ = σx.e1 or e′ = e1 ◦ e2 where ◦ is one of t, u, ⊕, �. If e′ = σx.e1 then the80

claim follows since em(e) = em(e1) + 1. Suppose now that e′ = e1 ◦ e2. Let mi

and bi be the number of operators and bound variables respectively in ei, for

i = 1, 2. Now em(e) = 1 + em(e1) + em(e2) ≤ 1 + (m1 + b1) + (m2 + b2) = m+ b.

A similar argument applies if e = σx.e1 or e = e1 ◦ e2.

We prove by induction on the size of e that n ≤ 1+m+b+em(e), the bound85

on n then follows from the preceding paragraph. If e has no bound variables

the claim is immediate. Thus we may assume that e has one of the forms qe′,

σx.e′ or e1 ◦ e2. In each case one of our three parameters drops by 1 while the

number of equations needed for the translation of e is just one more than the

number of equations needed for the corresponding subexpression(s). �90

We proceed to translate the semantics for a term to sequences of equations.

If S is a subset of [0, 1] we use µS to denote its infimum and νS to denote its

supremum. Given a system (†) its solution is defined as follows:

1. If n = 1, set

S = {r ∈ [0, 1] | r = f1(r)}.

Note that S 6= ∅ since f1 : [0, 1] → [0, 1] is monotonic and [0, 1] is a

complete lattice under ≤. The solution is σ1S.95

2. If n > 1 then for each r ∈ [0, 1] apply the substitution x1 7→ r to the last

n− 1 equations of the sequence to obtain the system E[x1/r] consisting of

the resulting n− 1 equations. By induction, E[x1/r] has a unique solution

(v2r, . . . , vnr). Set

S = {(r, v2r, . . . , vnr) | r = f1(r, v2r, . . . , vnr)}.
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Again S 6= ∅. The solution is (r, v2r, . . . , vnr) where r = σ1{s | (s, v2s, . . . ,

vns) ∈ S}.

This definition is a direct translation of the semantics for terms; see Kalorkoti [6]

where a similar translation is used for the modal µ-calculus. Note that the

process could be generalised by allowing the different variables to take values100

from different complete lattices but we will not pursue this here other than to

observe that the methods described below apply to the general situation quite

readily.

Remark: Suppose that T ⊆ [0, 1] includes the first coordinate r of the solution

to the system and set

R = {(t, v2t, . . . , vnt) | t ∈ T and t = f1(t, v2t, . . . , vnt)}.

Then it is clear from above that r = σ1{t | (t, v2t, . . . , vnt) ∈ R}. Our strategy

will be to find a finite such set T and indeed |T | ≤ 2m where m is the number105

of operators in the term e.

3. Linear Equations with Side Conditions

Consider a set C of inequalities in x1, . . . , xn together with a sequence E of

equations

σ1 x1 = f1(x1, x2, . . . , xn),

σ2 x2 = f2(x1, x2, . . . , xn),

...

σn xn = fn(x1, x2, . . . , xn),

(‡)

where

fi = ai1x1 + ai2x2 + · · ·+ ainxn + bi,

for 1 ≤ i ≤ n (the coefficients and each bi being from Q). The system E, C is

either inconsistent or has a unique solution determined by an obvious adaptation

of the semantics given in §2. First we identify the solution, if any, of E:110
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1. If n = 1 let

S = {r ∈ [0, 1] | r = f1(r)}.

If S is empty then the system is inconsistent. Otherwise the solution is

σ1S.

2. If n > 1 then for each r ∈ [0, 1] substitute x1 7→ r in the last n−1 equations

of the sequence to obtain the system E[x1/r] consisting of the resulting n−1

equations. If E[x1/r] has a solution denote it by (v2r, . . . , vnr) and denote

the set of all such solutions obtained as r varies by S′. If S′ is empty then

the system is inconsistent, otherwise set

S = {(r, v2r, . . . , vnr) ∈ S′ | r = f1(r, v2r, . . . , vnr)}.

If S is empty then the system is inconsistent. Otherwise the solution is

(s, v2s, . . . , vns) where s = σ1{r | (r, v2r, . . . , vnr) ∈ S}.

Finally, if E has a solution (s, v2s, . . . , vns) and all inequalities in C are satisfied115

by substituting (x1, x2 . . . , xn) 7→ (s, v2s, . . . , vns) then (s, v2s, . . . , vns) is the

solution to E, C. Otherwise E, C is inconsistent.

The motivation for such systems is as follows. Suppose that e is a term.

Each operator t, u, ⊕, � of e involves taking the maximum or minimum of

two arguments, i.e., deciding an inequality involving affine linear expressions.120

The term e denotes a unique solution which itself determines which of the two

arguments can be picked for each operator. Suppose that we know this choice,

then the term gives rise to a consistent system (†) whose solution is precisely

that of e. This can be established by an obvious induction on the size of e.

Example. Consider the term

e = µx.
(
νy.(y �

(
x⊕ 1

2
)
)
t 1

2

)
,

which is given as a simple example by Mio and Simpson [1]. It can be seen that

the solution is x = 1, y = 1, e.g., by iteration. We can write the term as follows:

µx = max{y, 1/2},

νy = max{0, y + min{1, x+ 1/2} − 1}.

7



Thus the choice of inequalities is from:

y R1/2,

1 Rx+ 1/2,

0 Ry + min{1, x+ 1/2} − 1,

with the choice in the second inequality determining min{1, x + 1/2}. These

simplify to

y R1/2,

x R1/2,

y + min{1, x+ 1/2} R1,

Once a choice of inequalities is made we can replace each occurrence of max and

min in the equations by an affine linear expression in the variables with rational

coefficients and constants. A choice of inequalities can be denoted by a triple

such as (≥,≥,≥) which indicates that the chosen inequalities are y ≥ 1/2, x ≥

1/2, y + min{1, x + 1/2} ≥ 1. These simplify to y ≥ 1/2, x ≥ 1/2, y ≥ 0. The

system becomes

µx =y.

νy =y,

with C = {y ≥ 1/2, x ≥ 1/2, y ≥ 0}. The solution to the equations is x = 1,125

y = 1 and C is satisfied.

Another possible system is obtained by the choice (≤,≤,≥) which yields the

system

µx =1/2,

νy =y + x− 1/2.

with C = {y ≤ 1/2, x ≤ 1/2, y + x ≥ 1/2}. The solution to the equations is

clearly x = 1/2, y = 1 but of course C is not satisfied.

Naturally there can be more than one correct translation since in the case

where the solution makes the arguments to an operator equal we can take the

corresponding inequality either way round. One might hope that if the wrong

choice of inequalities is made then the resulting system would have no solution

8



but this is not the case. For example suppose we choose (≤,≥,≤) which yields

the system

µx = 1/2,

νy = 0

with conditions C = {y ≤ 1/2, x ≥ 1/2, y ≤ 0}. The system is clearly consis-

tent.130

4. Full translation

In this section we give a method of organising the choices discussed in §3.

Consider a term e as in §2 with the corresponding equation sequence (†). We

convert (†) to a system of equations E with side conditions C. The equations

in E are of the form σixi = gi(x1, x2, . . . , xn) where gi is affine linear in the135

variables x1, x2, . . . , xn and affine multi-linear in a finite set of new t-variables

that take values from { 0, 1 }. The same holds for the terms in C.

Given two functions a, b and a variable t we define leq(a, b, t) by

leq(a, b, t) =

a ≤ b, if t = 1;

a ≥ b, if t = 0.

This is a place holder until values are provided for the variables in a, b as well

as t (which could occur in a or b) at which time a boolean value for leq(a, b, t)

is obtained. Of course if we have a value for t only then we obtain an inequality140

in x1, x2, . . . , xn and possibly other t-variables. An alternative is to make one

of the inequalities above strict but this does not give us any advantage with the

algorithm presented in this paper.

The translation is applied to each fi in (†) in turn. First set C to be the

empty set. The recursive definition of the translation π is as follows, in each145

case t is a new variable.

1. π(x) = ρ(x), where x is a free variable of the original term, else π(x) = x.

2. π(qe) = qπ(e).

3. π(e1 t e2) = (1− t)π(e1) + tπ(e2); C := C ∪ { leq(π(e1), π(e2), t) }.
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4. π(e1 u e2) = tπ(e1) + (1− t)π(e2); C := C ∪ { leq(π(e1), π(e2), t) }.150

5. π(e1⊕ e2) = t+ (1− t)(π(e1) +π(e2)), C := C ∪{ leq(1, π(e1) +π(e2), t) }.

6. π(e1 � e2) = t(π(e1) + π(e2)− 1); C := C ∪ { leq(1, π(e1) + π(e2), t) }.

If there are m operators t, u, ⊕, � in the term e then we have m t-variables

which we denote by t1, t2, . . . , tm. The cost of producing π(e) is just linear in

the size of e and the size of numbers assigned by ρ. In order to find the values155

of the bound variables in e we can now assign each ti its possible values in turn

and solve the resulting system of linear equations with side conditions; so we

solve at most 2m systems. This yields a set of candidate solutions that includes

the actual solution.

A possible way to avoid the exponential search inherent in trying out all160

values of the t-variables is to treat them as unknowns and work with underlying

multilinear equations as well as the inequalities symbolically. However this is in

itself very costly in general.

For a given assignment of the t-variables, we need to put the translation of

a term into the form of (‡), i.e., the translation of each term is a linear affine165

expression in the variables and the translation of each inequality is of the form

l ≤ 0 where again l is a linear affine expression in the bound variables. This will

have the possible effect of increasing the size of the numbers involved. In going

from a given term to a system (†) none of the numbers changes so we can focus

on a term e that appears on the r.h.s. of (†). This will produce a single linear170

affine form and a set of inequalities. Let ||e|| denote the maximum absolute

value over the numerators and denominators of all numbers that occur in the

linear affine forms produced by the translation π(e) and a choice of values for

the t-variables.

Lemma 4.1. Assume that B is a strict magnitude bound for a reduced term e175

on the r.h.s. of (†) and the interpretation ρ. Then ||e|| < 3mB4m+2 where m is

the number of operators in e.

proof. Suppose that e has r multiplications by rationals with terms that are

not variables. We use induction on r+m to show that ||e|| < 3mB2(r+m+1). The
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claimed bound follows since r ≤ m, which can be seen by a simple induction on180

m. For the main bound note that if m = 0 then r = 0 and the claim is obvious

as e is either x or qx for a free variable x and rational q. Suppose now that

m > 0, there are 5 cases to consider. If e = qe1 where e1 is not a variable then

||e|| < B||e1|| < B · 3mB2(r−1+m+1) ≤ 3mB2(r+m+1). The inequalities in π(qe1)

are those of π(e1) which satisfy the bound by the induction hypothesis.185

If e = e1 t e2 then π(e1 t e2) = (1 − t)π(e1) + tπ(e2) so this is either

π(e1) or π(e2), according as t = 0 or t = 1. The induction hypothesis shows

that, for i = 1, 2, the rationals in π(ei) all have magnitude bounded strictly

by 3mi−1B2(ri+mi+1) where mi is the number of operators in ei and ri is the

number of multiplications by rationals in ei with terms that are not variables.190

There is only one new inequality involved which is leq(π(e1), π(e2), t). this can

be expressed as π(e2) − π(e1) ≤ 0 or π(e1) − π(e2) ≤ 0, according as t = 0

or t = 1. Let ai/bi be a coefficient of some given variable in the translation

of ei, for i = 1, 2 (or a constant in each case). The corresponding coefficient

or constant in leq(π(e1), π(e2), t) has absolute value |a1/b1 − a2/b2|. Now by195

induction |a1b2| + |a2b1| < 2 · 3m1B2(r1+m1+1) · 3m2B2(r2+m2+1) < 3mBr+m+1.

The bound for |b1b2| follows more simply.

We now deal with the case e = e1�e2. Here π(e1�e2) = t(π(e1)+π(e2)−1).

The inequality for the coefficients of variables follows as above. Let the constants

in π(e1), π(e2) be u1/v1, u2/v2 respectively where u1, u2, v1, v2 ∈ Z. Thus the200

numerator of the constant of π(e) is (u1v2 + u2v1 − v1v2)/v1v2. By induction

|u1v2 +u2v1− v1v2)| ≤ 3 ·3m1B2(r1+m1+1) ·3m2B2(r2+m2+1) = 3mBr+m+1. The

bound for the denominator follows more simply. The bound for the inequalities

follows similarly. The remaining two cases are straightforward. �

Lemma 4.2. Let e be a term with m operators and no variables with B a mag-205

nitude bound on the numbers appearing in e. Then 3mBm+1 is a bound on the

value of e

proof. Straightforward induction on m. �
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4.1. An example

Consider again the term

t = µx.
(
νy.(y �

(
x⊕ 1

2
)
)
t 1

2

)
,

from Mio and Simpson [1]. The equations are:

µ x = (1− t1) y + t1/2,

ν y = t2 (y + t3 + (1− t3) (x+ 1/2)− 1) .

The inequalities consist of

leq(y, 1/2, t1).

leq(1, y + t3 + (1− t3) (x+ 1/2) , t2),

leq(1, x+ 1/2, t3),

Consider the choice t1 = 0, t2 = 0, t3 = 0. This yields the equations

µx = y,

ν y = 0,

so that x = 0 and y = 0. The inequalities are

leq(y, 1/2, 0), leq(1, y + x+ 1/2, 0), leq(1, x+ 1/2, 0).

These assert that

1/2 ≤ y, x+ y ≤ 1/2, x ≤ 1/2

the first of which is inconsistent with y = 0.210

The choice t1 = 1, t2 = 1, t3 = 1 yields the equations

µx = 1/2,

ν y = y,

so that the solution is x = 1/2 and y = 1. The inequalities are

leq(y, 1/2, 1), leq(1, y + 1, 1), leq(1, x+ 1/2, 1)

which assert

y ≤ 1/2, 0 ≤ y, 1/2 ≤ x,

12



once again the first of these is inconsistent with y = 1.

The choice t1 = 0, t2 = 1, t3 = 0 yields the equations

µx = y,

ν y = y + x− 1/2.

The second equation reduces to x − 1/2 = 0 thus x = 1/2 and y = 1/2. The

inequalities are

leq(y, 1/2, 0), leq(1, y + x+ 1/2, 1), leq(1, x+ 1/2, 0).

These assert that

1/2 ≤ y, 1/2 ≤ y + x, x ≤ 1/2,

all of which hold.

Proceeding in this way we obtain the set {(1/2, 0), (1/2, 1/2), (1, 1)} for the

candidate solutions. The solutions correspond to the choices (1, 0, 0), (0, 1, 0)

and (0, 1, 1) for (t1, t2, t3) with the solution (1/2, 0) also corresponding to (1, 0, 1)215

and and the solution (1/2, 1/2) to (1, 1, 0); these duplications are removed if we

use a strict inequality for one branch in the definition of leq.

5. Algorithm for solving a linear system

First of all we look at the case when a system (‡) with n bound variables

is derived from a term e that has no operators t, u, ⊕, �; the bounds here

are simpler than for the general case. Under this assumption there are no

inequalities and the equations are of the form

σ1 x1 = q1xi1 ,

...

σn xn = qnxin ,

where q1, . . . , qn ∈ [0, 1] ∩Q and ij ∈ { 1, . . . , n }, for 1 ≤ j ≤ n. If in = n then

it follows from the semantics of §3 that xn = 0 if σn = µ. On the other hand220

if σn = ν then xn = 1 if qn = 1 otherwise xn = 0. If in 6= n we may substitute
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qnxin for xn in all but the last equation, solve these and then the value of xn

is just qnxin . We now give an upper bound for the cost of this process. Let B

be a strict magnitude bound for all the rationals q1, . . . , qn. A straightforward

argument shows that the value of each variable has magnitude strictly less than225

Bn and the overall cost of the algorithm is O(n2 lg2B). Thus the value of each

variable can be represented in O(n lgB) bits.

Consider now a system (‡) with n bound variables derived from a term e

that has m > 0 operators. We look for a solution by initially ignoring the

inequalities C and focusing on the equations E. This yields either no solution

or exactly one solution at which point we check the inequalities. From the last

equation we have

(1− ann)xn = an1x1 + · · ·+ an,n−1xn−1 + bn.

If 1− ann 6= 0 then xn = (a11x1 + · · ·+ an,n−1,xn−1 + bn)/(1− ann). Hence as

soon as the other variables are assigned values the value of xn will be fixed by the

expression given. Following the semantics of §3 it follows that we may substitute230

the expression into the remaining equations, eliminating xn, to obtain a system

of n− 1 equations in n− 1 variables (this claim can be established by a simple

induction on n). Suppose now that 1− ann = 0 then there is a solution only if

an1x1 + · · ·+ an,n−1xn−1 + bn = 0 and no matter what values are given to the

other variables the value of xn will, according to the semantics of §3 be σn{ 0, 1 }.235

Thus we may delete the final equation, add an1x1 + · · ·+ an,n−1xn−1 + bn = 0

to the side conditions C and substitute the value of xn into the first n − 1

equations.

Continuing in this way we either find that the linear equations are inconsis-

tent or obtain the unique solution. To be precise, as the algorithm progresses240

we either find the only possible value of the current variable or an expression

for it in terms of the variables remaining to be processed.

The process is essentially Gaussian elimination. As is well known, a naive

analysis leads to exponential growth for the magnitude bound of the result-

ing coefficients, see §5.5 of von zur Gathen and Gerhard [7]; the approach of
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Bareiss [8] leads to polynomial bounds. In order to facilitate the analysis of the

algorithm given above we consider a slight variant. We think of the equations

as being given in the form

A10x0 +A11x1 + . . .+A1nxn = 0,

...

An0x0 +An1x1 + . . .+Annxn = 0,

where Aij ∈ Z for 1 ≤ n and 0 ≤ j ≤ n. The new variable x0 will be set to 1

at the end. We call it reserved , as the algorithm proceeds we might designate

other variables as being reserved. We start as before, if Ann 6= 0 then we245

eliminate xn from the system and set aside Annxn = −(An0x0 +An1x1 + . . .+

An−1,n−1xn−1) as the defining equation for xn. If, on the other hand, Ann = 0

then we designate xn as another reserved variable and record the determined

value of xn as well as add An0x0 + An1x1 + . . . + An,n−1xn−1 = 0 to the set

of inequalities. At the end, assuming the system of equations is consistent,250

we substitute the values of the reserved variables determined by the process

(and 1 for x0) so that the remaining variables are determined by their defining

equations, it then remains to check the inequalities.

Assuming that |Aij | ≤ D, for 1 ≤ i ≤ n and 0 ≤ j ≤ n, the elimination

performed using the method of Bareiss [8] costs O(nc lgcD) for some (moder-255

ate) c, provided that D ≥ 2 (we will ensure this later). Moreover the resulting

coefficients have absolute value at most nn/2Dn since each such coefficient is a

determinant of a sub-matrix of size at most n×n of the matrix of the input co-

efficients (Hadamard’s bound now completes the claim). Note that this bound

applies also to the coefficients of equations added to the set of side conditions C.260

If the system of equations E is inconsistent we discover this during the process

of elimination so the cost in this case is O(nc lgcD). From now on we assume

that the system of equations is consistent.

We can put a bound on the value of each variable as follows. Let x0, xi1 , . . . , xir

be all the reserved variables by the end of the algorithm. Let xj1 , . . . , xjs be all

the non-reserved variables by the end of the algorithm; of course r + s = n. If
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s = 0 then each variable has value 0 or 1, so assume that s > 0. We can rewrite

the linear equations as
Aj1j1 Aj1j2 . . . Aj1js

Aj2j1 Aj2j2 . . . Aj2js
...

...
. . .

...

Ajsj1 Ajsj2 . . . Ajsjs




xj1

xj2
...

xjs

 =


L1

L2

...

Ls


where each Li is a linear combination of the reserved variables with each vari-

able having the same but negated coefficient that it had in the original lin-265

ear system. Once we assign the reserved variables the value determined for

them the resulting system has a unique solution and so the displayed matrix

is non-singular. There are at most n − 1 reserved variables each of which has

a value from { 0, 1 }. Hence, after substituting the values of the reserved vari-

ables, we have |Li| ≤ (n − 1)D. The determinant of the coefficient matrix270

for the non-reserved variables is bounded by nn/2Dn ≥ (n − 1)D, while the

adjoint has entries bounded by (n − 1)(n−1)/2Dn−1. It follows that the value

of each xjr has denominator bounded by nn/2Dn and numerator bounded by

(n− 1) · (n− 1)D · (n− 1)(n−1)/2Dn−1 ≤ n(n+3)/2Dn. Hence the value of each

variable has magnitude bounded by n(n+3)/2Dn.275

Next we need to check the inequalities C as well as any new conditions added.

We assume that each inequality in C has been expressed in fraction free form

and D is an upper bound on the size of all coefficients and constants that occur.

As seen above, the coefficients of the added equalities are bounded by nn/2Dn.

At the start C has m linear inequalities and by the end of the algorithm we280

have added at most n new equations to C. Let Ui/Vi be the value of xi found

in solving E where Ui, Vi ∈ Z, for 1 ≤ i ≤ n. As shown above, |Vi| ≤ nn/2Dn

and |Ui| ≤ n(n+3)/2Dn, for 1 ≤ i ≤ n. It follows that n(n+3)/2Dn is an upper

bound on the absolute value of all the integers involved. Consider testing an

equality A1x1 + · · · + Anxn = A0, similar considerations apply to inequalities.285

Set M = V1 · · ·Vn and Mi = V1 · · ·Vi−1UiVi+1 · · ·Vn, for 1 ≤ i ≤ n. Thus the

equality is equivalent to A1M1 + · · ·+AnMn = A0M . Each of the products can
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be computed in time O(n4 lg2 nD) using the school method and a divide and

conquer approach (our final analysis does not benefit from using faster integer

multiplication algorithms). Thus the multiplications for the single equality cost290

O(n5 lg2 nD) in total. The cost of the sum and comparison is dominated by

the cost of the multiplications. Since there are at most m + n inequalities and

equalities in C the cost of checking them is O((m+ n)n5 lg2 nD). By taking d

large enough in the runtime of Bareiss elimination we deduce that the total

runtime of the algorithm presented is O((m+ n)nd lgd nD).295

It remains to express the cost of the algorithm in terms of the input size of

the reduced term e. Assume that e is has m operators, n bound variables and B

is a strict magnitude bound for e and the interpretation (hence B ≥ 2). Let (‡)

be the system obtained from e and denote the number of equations by N . Then

N ≤ 1 + 2(m + n), by Lemma 2.1, and |C| ≤ m while each coefficient has

strict magnitude bound 3mB4m+2, by Lemma 4.1. After clearing fractions the

coefficients are bounded by D = 3m(N+1)B(4m+2)(N+1). We may now substitute

into the magnitude bound found above for the values of the variables, this yields

M = (2m+ 2n+ 1)m+n+23m(2m+2n+2)(2m+2n+1)B(4m+2)(2m+2n+2)(2m+2n+1).

Taking logarithms we see that each value can be represented with O(m(m +

n)2 lgB) bits, which is the bound on representation length claimed in Theo-

rem 1.1. For the runtime we obtain a bound of O(md(m+n)2d+1 lgd(m+n)B)

which can be expressed as O((m+ n)c lgcB) for a large enough c.

6. Finding the solution to  Lukasiewicz µ-terms300

Suppose now that e is a reduced  Lukasiewicz µ-term. We convert it to a

system (†) denoted by E and from this find a set S of candidate solutions that we

know includes the solution to e. Recall that |S| ≤ 2m where m is the number of

operators in the term e. We can now find the solution by the recursive algorithm

of Figure 1. The correctness of the algorithm follows from the Remark at the

end of §2. The runtime of the algorithm is dominated by the cost of finding S
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T ← ∅

for t ∈ π1S do

Find (recursively) the solution (t, v2t, . . . , vnt) of E[x1/t]

if t = f1(t, v2t, . . . , vnt) then T ← T ∪{ (t, v2t, . . . , vnt) }

r ← σ1π1T

return (r, v2r, . . . , vnr)

Figure 1: Identifying the solution to E form the candidates S.

and the loop with the recursion. Finding S for a reduced term e can be done by

the algorithm discussed in §5 and costs 2O(lg(m+n)+lg lgB), where B is a strict

magnitude bound for e and the interpretation ρ. Before analysing the cost of the

recursive algorithm we note that the solutions we are seeking all have magnitude

bounded strictly from above by M , where M is defined at the end of §5. Thus

we can amend the algorithm so that as soon as any candidate solution (during

an invocation of the recursion) would have magnitude greater than this then it

is skipped. This does not affect the asymptotic runtime. Suppose that E has N

equations. When substituting a value t for a variable, x1 say, to obtain E[x1/t]

we carry out at most N multiplications; this does not affect the asymptotic

runtime. All other numbers in E are unchanged. Thus BM is strictly bigger

than the magnitude of any number that occurs in any term constructed during

the recursive algorithm. Hence the runtime for finding the candidate solutions

at any stage is

O((m+ n)c lgcBM) = O(mc(m+ n)3c lgcB)

= 2O(lg(m+n)+lg lgB).

We may now analyse the recursive algorithm without further reference to the

size of coefficients.

Let L(m,N) denote the runtime of the algorithm given above for a system

E of N equations and m operators. Now

L(m,N) ≤ 2O(lg(m+n)+lg lgB)2mL(m1, N−1) = 2O(m+lg(m+n)+lg lgB)L(m1, N−1),
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where m1 ≤ m. It follows that

L(m,N) = 2O(N(m+lg(m+n)+lg lgB))L(m, 0),

for some m ≤ m or

L(m,N) = 2O(m(m+lg(m+n)+lg lgB))L(0, N),

for some N < N . A simple argument, using the bound of Lemma 4.2, shows

that L(m, 0) = O(m2 lgBM)) and we have L(0, N) = O(N
2

lg2BM) from §5.

Since N ≤ 1 + 2(m+ n), by Lemma 2.1, it follows that

L(m,N) = 2O((m+n)(m+lg(m+n)+lg lgB)),

which is the runtime bound stated in Theorem 1.1.

6.1. A heuristic for identifying the solution

The process discussed in §3 leads to a set S of candidate solutions for a305

system (†) derived from a term e with |S| ≤ 2m where m is the number of

operators in e. The set S is known to include the actual solution to (†), the key

problem is to identify it. Assume that (†) has n equations and that free variables

have been replaced with their values given by the interpretation. Consider the

algorithm:310

Sn+1 ← S

for i← n downto 1 do

Si ← {(s1, . . . , sn) ∈ Si+1 | si = σixi.fi(s1, . . . , si−1, xi, si+1, . . . , sn)}

A simple argument shows that the solution to the system is in S1. Thus if S1 is

a singleton set then its element is the solution to e, while if S1 is empty (for an315

arbitrary S) then S does not contain the solution to (†). As a practical point,

we can stop the algorithm as soon as a singleton set is obtained provided we

know that S contains the solution.

Example. Consider the term e = µx.(x u νy.(x t y)) from above, yielding the

equations.

µx = x u y = min{x, y},

νy = x t y = max{x, y}.
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Then S = {(0, 0), (0, 1)}. The solution to the term is easily seen to be (0, 1), e.g.,

by iterating from x = 0. The algorithm sets S2 = {(0, 1)} so we can stop here.320

Note that we could include (1, 1) as a candidate solution (this is not included by

the algorithm of §5). In this case S3 = {(0, 0), (0, 1), (1, 1)}, S2 = {(0, 1), (1, 1)},

and S1 = {(0, 1)}.

Unfortunately the algorithm need not terminate with a singleton set (as-

suming that S contains the solution). Consider e = µx.(x t νy.(x u y)) with

corresponding equations

µx = max{x, y},

νy = min{x, y}.

The set of all candidate solutions is S = {(0, 0), (1, 1)}. Then S2 = {(0, 0), (1, 1)}

and S1 = S2. Nevertheless, in many cases the process does indeed lead to a325

singleton set or at least a smaller set of canditates. In pragmatic terms it is

wroth running before using the recursive algorithm of §6.

The selection step of the algorithm involves solving a single variable fixed point

problem. This can be carried out using the algorithm of §5 or by the process

given in the next section, the worst case cost is bounded by a single exponential330

in the size of the equation. The method presented in the next section has the

potential to terminate quickly.

7. Terms in one variable

As is well known the solution to µx.f(x) can be obtained as the limit of

the iteration f(0), f2(0), f3(0), . . . (and similarly for νx.f(x) by replacing the

argument 0 with 1), see Arnold and Niwiński [2]. Unfortunately this might not

converge after finitely many steps even for simple expressions. Consider, for

example, µx.(1/2 t (2/3x ⊕ 1/3)). Setting f(x) = 1/2 t (2/3x ⊕ 1/3) we see

easily that

f(x) =


1
2 , for x ∈ [0, 14 ];

2
3x+ 1

3 , for x ∈ [ 14 , 1].
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Clearly f(x) has exactly one fixed point at x = 1. Now

fn+1(0) =
1

2

(
2

3

)n
+

1

3

((
2

3

)n−1
+

(
2

3

)n−2
+ · · ·+ 1

)
= 1− 1

2

(
2

3

)n
,

for all n ≥ 0. Thus the iteration converges to 1, as stated by the Knaster–Tarski

theorem, but not after finitely many steps. The same will happen if the iteration335

reaches any line segment with gradient strictly less than 1.

Consider a term σx.e where e involves only x as a bound variable and has

no free variables. The term e denotes a piecewise linear function so that if we

express it explicitly as such then it is easy to find the least or greatest fixed

point. Unfortunately the number of pieces can be exponential in the size of e.340

Thus we not only face exponential time by this approach but also exponential

space. If we use the translation of §4 we obtain a polynomial f(x, t1, . . . , tm)

that is affine linear in x and affine multilinear in t1, . . . , tm. We also obtain side

conditions leq(g1, t1),. . . , leq(gm, tm) where gi involves only t1, . . . , ti−1 and x.

The expressions are of the same order of size as e. We can find the relevant345

fixed point by trying all 2m assignments of t1, . . . , tm but this commits us to

exponential time no matter what happens.

It is possible to combine the two approaches and often avoid exponential

time as follows. For the sake of definiteness assume that we want the least fixed

point. First of all assume x = 0. This determines the value of t1. Substituting350

this into the remaining inequalities we determine the values of t2, . . . , tm in turn.

This yields m inequalities involving only x and rationals; the inequalities are

consistent due to the choice of the values of the t-variables. We thus obtain a

closed interval [0, a1] over which these inequalities do not change. Substituting

the values of t1, . . . , tm into f(x, t1, . . . , tm) yields an affine linear function in x355

alone thus we can determine if it has a fixed point and if so determine the least

such. If there is such a point then we are done. Otherwise we consider x to have

the value a1+ε where ε is an arbitrarily small positive number (an infinitesimal).

This now yields new values for the t-variables and a closed interval [a1, a2] over

which the inequalities do not change. Once again we can determine if there360

is a fixed point. Continuing in this way we are guaranteed to find the least
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fixed point. Moreover we need only ever keep the end point of the last interval

constructed in order to construct the next one. This method is efficient provided

the fixed point occurs on an early linear piece of the piecewise linear function

denoted by the term.’365

Example. Consider the term e = µx.((1/2x t 1/4) t (x u 3/8)). The body of

this translates to

f = (1− t3)(1/2 (1− t1)x+ 1/4 t1) + t3(t2x+ 3/8− 3/8 t2),

with side conditions

leq(1/2x, 1/4, t1), leq(x, 3/8, t2), leq(1/2 (1−t1)x+1/4 t1, t2x+3/8−3/8 t2, t3).

Setting x = 0 we obtain t1 = 1 and t2 = 1 from the first two side conditions.

The third condition now becomes leq(1/4, x, t3) and so t3 = 0. To sum up

t1 = 1, t2 = 1, t3 = 0;

f = 1/4;

x ≤ 1/4, x ≤ 3/8, x/2 ≤ 1/4.

Thus the interval over which the inequalities do not change is [0, 1/4]. this yields

x = 1/4 as the first, and hence least, fixed point.

As an illustration we construct the whole piecewise linear function. Setting

x = 1/4 + ε we obtain again that t1 = 1, t2 = 1 but this time t3 = 1. The

situation is now

t1 = 1, t2 = 1, t3 = 1;

f = x;

1/4 ≤ x, x ≤ 3/8, x/2 ≤ 1/4.

The new interval is [1/4, 3/8].

For the next stage we set x = 3/8 + ε, obtaining t1 = 1, t2 = 0 and t3 = 1.

The situation is now

t1 = 1, t2 = 0, t3 = 1;

f = 3/8;

1/4 ≤ 3/8, 3/8 ≤ x, x/2 ≤ 1/4.
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Figure 2: Plot for the function of (1/2x t 1/4) t (x u 3/8).

The new interval is [3/8, 1/2]. There is thus another fixed point at x = 3/8.

For the next stage we set x = 1/2 + ε, obtaining t1 = 0, t2 = 0 and t3 = 1.

The situation is now

t1 = 0, t2 = 0, t3 = 1;

f = 3/8;

x/2 ≤ 3/8, 3/8 ≤ x, 1/4 ≤ x/2.

The new interval is [1/2, 3/4].370

Now we set x = 3/4 + ε, obtaining t1 = 0, t2 = 0 and t3 = 0. The situation

is now

t1 = 0, t2 = 0, t3 = 0;

f = x/2;

3/8 ≤ x/2, 3/8 ≤ x, 1/4 ≤ x/2.

The new interval is [3/4, 1]. The graph of the function is shown in Figure 2.

By completing the process we have also shown that the greatest fixed point
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is at x = 3/8, however this is not a good way to find it. For this we would start

at x = 1 and if the current interval is [a, b] we set x = a− ε to find the next one.

Finally, note that the process described does not necessarily yield the small-375

est number of pieces; in the example the third and fourth ones can be combined

into one.
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