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Abstract 17 

Sheep are an important part of the global agricultural economy. Growth and meat 18 

production traits are significant economic traits in sheep. The Texel breed is the most 19 

popular terminal sire breed in the UK, mainly selected for muscle growth and lean 20 

carcasses. This is a study based on a genome-wide association approach that 21 

investigates the links between some economically important traits, including Computed 22 

Tomography (CT) measurements, and molecular polymorphisms in UK Texel sheep. 23 

Our main aim was to identify Single Nucleotide Polymorphisms (SNP) associated with 24 

growth, carcass, health and welfare traits of the Texel sheep breed. This study used 25 

data from 384 Texel rams. Data comprised 10 traits, including 2 CT measured traits. 26 

The phenotypic data were placed in four categories: growth traits, carcass traits, health 27 

traits and welfare traits. De-regressed estimated breeding values (EBV) for these traits 28 

together with sire genotypes derived with the Ovine 50K SNP array of Illumina were 29 

jointly analysed in a genome wide association analysis. Eight novel chromosome-wise 30 

significant associations were found for carcass, growth, health and welfare traits. Three 31 

significant markers were intronic variants and the remainder intergenic variants. This 32 

study is a first step to search for genomic regions controlling CT based productivity 33 

traits related to body and carcass composition in a terminal sire sheep breed using a 34 

50K SNP genome-wide array. Results are important for the further development of 35 

strategies to identify causal variants associated with CT measures and other 36 

commercial traits in sheep. Independent studies are needed to confirm these results 37 

and identify candidate genes for the studied traits. 38 

Keywords: Sheep, Texel, CT, Associated, GWAS. 39 

http://www.gsejournal.org/authors/instructions/research#formatting-abstract
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Implications 40 

Sheep are an important part of the global agricultural economy. To the best of our 41 

knowledge GWAS for CT based productivity traits, for a UK terminal sire breed, has not 42 

been widely researched. The main aim of this work was to exploit improved genotypic 43 

tools, specifically the Illumina OvineSNP50 chip, allowing a simultaneous genotyping 44 

for up to 54,241 SNPs to identify those SNPs associated with growth, carcass 45 

composition, health and welfare traits of Texel sheep using de-regressed estimated 46 

breeding values of rams.  47 
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Introduction 48 

Sheep are an important part of the global agricultural economy. They are particularly 49 

well adapted to convert short herbage to meat, milk and wool and they are very 50 

important to meet global needs for food security for an increasing population around 51 

the world (Hopkins and Lobley, 2009).  52 

Currently the Texel breed is the most popular terminal sire breed in the UK accounting 53 

for 30% of all purebred rams used for crosses to maternal sheep breeds (Pollott, 2014) 54 

and is mainly selected for muscle growth and lean carcasses (Hopkins and Lobley, 55 

2009).  56 

There are only a few methods to predict body composition in live sheep. Over the last 57 

few decades mainly ultrasound technologies had been used on farm animals for 58 

evaluation of carcass composition (Silva, 2016). However, computed tomography (CT), 59 

a non-invasive imaging technology, can accurately measure carcass traits in vivo such 60 

as muscle and fat (Bünger et al., 2011), muscularity (Jones et al., 2002) and tissue 61 

weights (Macfarlane et al., 2006). Additionally, it has been evidenced the potential of 62 

CT scanning to improve eating quality and tissue distribution of sheep meats 63 

(Macfarlane et al., 2009). As CT scanning is however more expensive than ultrasound, 64 

a two-step-procedure is recommended. Only the best 15-20% of selection candidate 65 

ram lambs measured by ultrasound would be subsequently CT scanned (Lewis, 2004). 66 

Sheep genetics studies 67 

Breeders focus sheep selection on production traits, including carcass composition and 68 

growth traits but also integrate other traits such as meat quality, disease resistance, 69 

lambing ease and survival (Bünger et al., 2011). According to the animal QTL database 70 
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there are currently (06/2017) 1,515 sheep QTLs curated in the animal QTL database 71 

(Hu et al., 2013) representing 222 different sheep traits, reported in 126 publications. 72 

However, one of the main limitations of unscrambling the genetic architecture 73 

underlying production traits in sheep has been the relative lack of information on the 74 

sheep genome in addition to the lack of accurate phenotypic data obtained (Zhang et 75 

al., 2013). 76 

Currently, knowledge of the major genes or QTL associated with carcass composition 77 

and growth traits in sheep is limited (Zhang et al., 2013). Walling et al. (2004) 78 

pioneered the first accounts of QTL studies for growth and carcass conformation traits 79 

in domesticated sheep covering several genomic regions, which led to characterization 80 

of the Texel muscling QTL (TM-QTL). 81 

With the advent of genome-wide panels of single nucleotide polymorphisms (SNPs) 82 

and using the approach of a genome-wide association study (GWAS), it has become 83 

possible to identify and localize QTLs for complex traits in many livestock species 84 

(Georges, 2007). However, to date, only a small number of GWASs in sheep have 85 

been conducted because of either limited information available for the sheep genome 86 

and funding. These studies have been mainly focused on sheep growth, ultrasound-87 

measured meat traits and body composition traits (Cavanagh et al., 2010, Zhang et al., 88 

2013, Bolormaa et al., 2016, Matika et al., 2016) 89 

Moreover, GWAS with high accuracy CT measured body composition traits are still 90 

very rare in the literature. Donaldson et al. (2014) used spine characteristics measured 91 

from X-ray computed tomography (CT) scans in order to investigate if there were any 92 

subsequent associations between TM-QTL inheritance and underlying spine 93 

characteristics (Donaldson et al., 2014). Also, Cavanagh et al. (2010) performed a QTL 94 
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mapping study in sheep based on in vivo obtained CT data providing predictions for 13 95 

traits describing major fat depots, lean muscle, bone, body proportions and body 96 

weight; they identified 3 highly significant, 15 significant, and 11 suggestive QTL on 97 

eleven chromosomes. But, no tissue-specific QTL were identified. Furthermore, Matika 98 

et al. (2016) conducted recently a genome-wide association study (GWAS) for carcass 99 

composition phenotypes, including bone, fat and muscle components, which were 100 

captured using CT. The GWAS analyses revealed multiple SNPs and quantitative trait 101 

loci (QTL) that were associated with effects on carcass composition traits and were 102 

significant at the genome-wide level. 103 

In this study we performed a genome wide association study to identify those SNPs 104 

associated with growth, carcass composition, health and welfare traits, including 2 CT 105 

measured phenotypes, of Texel sheep using de-regressed EBVs of rams.  106 
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Material and Methods 107 

Traits and phenotypes 108 

A total of 384 Texel rams descended from 252 sires and 351 dams were analysed for 109 

10 productivity traits including 2 CT measured traits. These rams represent a group of 110 

well-monitored animals as only a proportion (10-20%) of the initial selection candidates 111 

will be put forward to CT scanning based on ultrasound results. 112 

The phenotypic data were provided by the Signet Sheep breeder Service and 113 

comprised EBVs progeny test derived for: birth weight (BW), eight week body weight 114 

(EWW) and scan weight (SW), which is the live weight at US scanning at about 21 115 

weeks of age. These were considered as growth traits. As carcass traits were used US 116 

measured fat depth (FD) and muscle depth (MD) which are obtained by US-scanning at 117 

the at the third lumbar vertebra at 90 degrees to the backbone. The CT measured 118 

carcass traits:  fat weight (FW), CT lean weight (LW) and the muscularity score (MU), a 119 

measure of carcass shape (Bünger et al., 2011), were also included. Details on the CT 120 

measured traits have been reported earlier (Bünger et al., 2011). Faecal egg count 121 

(FEC) as a measure of worm egg count in sample from lambs at 21 weeks of age, and, 122 

Lambing ease (LE) as a direct assessment of the ease with which ram progeny will be 123 

born. 124 

GWAS accuracy can also be affected by systematic environmental effects. De-125 

regressed EBVs are an alternative to raw phenotypic measurements, because they 126 

represent aggregate phenotypes adjusted for systematic environmental effect. The 127 

phenotypic data used therefore consisted of de-regressed estimated breeding values 128 

(EBVs) of standard commercial traits. 129 

 130 

http://www.gsejournal.org/authors/instructions/research#formatting-methods
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Statistical model for de-regressed breeding values 131 

The official Texel EBVs were used, those breeding values were derived from the 132 

following model: 133 

y = Xb + Za + e, 134 

where y is the vector of phenotypic observations for one of the analysed traits, b is the 135 

vector of fixed effects with design matrix X (relating observations to fixed effects), which 136 

varied depending on the trait, a is the vector of random animal effects, with design 137 

matrix Z (relating observations to random effects) and e is the vector of random 138 

residuals. The list of effects is summarized in Supplementary Table S1. 139 

Random effects are assumed to be normally distributed with zero means and the 140 

following covariance structure: 141 

2

2

0

0

a

e

Var




  
   

   

a A

e I
 142 

where A is the pedigree-based relationship matrix, 2

a  is the genetic variance, and 2

e  143 

is the residual variance. 144 

The software package MIX99 was used for de-regression (Lidauer M, 2011), using a 145 

full animal pedigree with effective offspring contributions (EOC) as weighting factors. 146 

The de-regression procedure was based on the method published by Jairath et al. 147 

(1998), involving solving the mixed model equations with a full pedigree to obtain the 148 

right-hand side or de-regressed EBVs. Thus DRPs represent daughters averages 149 

adjusted for fixed effects and contributions from parents and relatives in the pedigree 150 

(Jairath et al., 1998).  151 

 152 
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 153 

EOC were calculated as: 154 

2

2

1

4

i
i

i

rel kdau
EOC

rel

h
kdau

h









 155 

where reli is the reliability of EBV for animal i and h2 is the heritability of one of the 156 

analysed traits. 157 

The use of effective daughter or progeny contribution as a weighting factor is used to 158 

avoid biases in sire variances (Fikse and Banos, 2001). The EOC provides a measure 159 

of the precision of the daughter information used to compute the de-regressed EBV of 160 

the animal as the estimates of reliability used in the computation accounts for factors 161 

such as contemporary group (CG) structure for the ram's daughters, the correlation 162 

between observations on the same daughter and the reliability of the performance of 163 

the daughters' dams.  164 

A Shapiro and Wilk's W-statistic test, conducted using the R-package (R Core Team, 165 

2013) was used to test data distribution for normality (Royston, 1995). Traits not 166 

normally distributed were rank transformed to a normal distribution for their use in 167 

subsequent analysis. This rank-transformation method has been reported to give a 168 

consistent performance in identifying causal polymorphisms with a slight increase in 169 

false positive rate (Goh et al., 2009). This method was used because according to Goh 170 

et al. (2009) for small sample size or genetic effects, the improvement in sensitivity for 171 

rank transformation outweighs the slight increase in false positive rate. 172 

Genotyping 173 
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All rams were genotyped with the ovine 50k SNP chip (54,241 SNPs across the 174 

genome with an average of 20.4 SNPs per Mb) by AgResearch. The order of the SNPs 175 

was based on the Ovis_aries_4.0 assembly released by the International Sheep 176 

Genomics Consortium (Jiang et al., 2014).  177 

Quality control (QC) was performed with the GenABEL R package by considering 178 

genotypes of all rams (Aulchenko et al., 2007). The QC excluded 1,564 SNPs with call 179 

rates lower than 95%, 3,891 SNPs with minor allele frequencies less than 1%, 98 X-180 

linked SNPs that were likely to be autosomal (cut off odds > 1000) and 777 SNPs not in 181 

Hardy-Weinberg equilibrium (p-value <1x10e-5). The call rate per individual was always 182 

higher than 90% so no animal was removed from the analysis. After applying these 183 

quality control criteria 48,433 SNPs (89%) located on 26 autosomes and on the X 184 

chromosome were used in the subsequent analyses. 185 

Statistical Model for GWAS 186 

A Multidimensional Scaling Analysis (MDS) was performed first to evaluate the genetic 187 

structure of the population. For each trait, SNP effects were then tested, by a single 188 

marker regression, with a mixed animal model including the genomic kinship matrix 189 

(identity by state) between the genotyped animals, adjusted for allele frequencies. 190 

Kinship was computed based on the method proposed by  Astle and Balding (2009), 191 

using GenABEL, to control for population structure or polygenic effect (Astle and 192 

Balding, 2009). The following model was used: 193 

y=Xβ+Zu+e 194 

where y is the vector of de-regressed EBV of rams, β is a vector of coefficients for the 195 

SNP effects, u is the vector of random animal effects, e is the vector of random residual 196 

effects, and X and Z are incidence matrices relating observations to fixed and random 197 



11 
 

animal effects, respectively. Random animal effect followed a normal distribution 198 

MVN(0, Gσ2
u) where G is the genomic kinship matrix and σ2

u is the polygenic variance; 199 

and the random residual effects of the model was assumed to be MVN(0, Iσe
2), where 200 

σe
2 is the residual variance and I is an identity matrix. Each trait was analysed 201 

separately and all analyses were run with GenABEL. 202 

This procedure consisted of two steps: firstly it estimated the polygenic and residual 203 

variance, not accounting for marker effects and fitting the genomic kinship matrix in the 204 

model. Secondly, these estimated variance components were used to estimate all the 205 

marker effects (fitting in the model the genotypes and the previously estimated 206 

residuals). The j-th marker was fitted in the single-marker-based linear mixed model 207 

without removing the j-th marker from the G matrix. Evidence has shown analytically 208 

that, if variance components are kept constant, the estimation of the regression of 209 

phenotype on m markers is invariant with respect to whether or not the marker(s) tested 210 

for association is(are) included when constructing the G matrix (Gianola et al., 2016). 211 

Significance of the results was tested at genome-wise and chromosome-wise levels, 212 

including a strict Bonferroni correction for multiple-testing, corresponding to 1x10−6 and 213 

3.5x10-5, respectively. 214 

In order to address possible population stratification problems, the inflation in the test 215 

statistic was monitored with factor lambda, which does not depend on allele 216 

frequencies (Aulchenko et al., 2007). The allele effects estimated by GenABEL refer to 217 

the least frequent allele in the population and are expressed in trait phenotypic 218 

standard deviation (STD) units. Genes located on or around the identified SNPs were 219 

examined using the ENSEMBL database and the Ovis_aries_3.1 and 4.0 assembly 220 

released by the International Sheep Genomics Consortium (Jiang et al., 2014). And 221 
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finally JBrowse was used to identify previously associated QTLs in the tagged regions 222 

(Skinner et al., 2009).  223 
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Results 224 

 225 

Descriptive statistics 226 

For the 10 analysed traits (de-regressed EBVs) the means and standard deviations are 227 

shown in Table 1. The normal distributions of the 10 traits were tested with the Shapiro-228 

Wilk's test (Table 1). For EWW, FD, FW, FEC and LE traits the null hypothesis of 229 

following a normal distribution was rejected according to a p value ≤ 0.1, which has 230 

been previously suggested as an acceptable threshold for this type of analysis 231 

(Royston, 1995). These records were rank-transformed to a normal distribution for their 232 

use in the subsequent analyses.  233 

 234 

Genome Wide Association Analysis 235 

A multidimensional scaling analysis using the GenABEL package showed that no 236 

genetic stratification was present in this population. Also, the average inflation factor (λ) 237 

was 1.008 ± 0.007, with a maximum value of 1.021 for FEC and a minimum of 1 for FD, 238 

FW and MU. Therefore, the population structure is not expected to affect the results of 239 

GWAS in the present study.  240 

No genome-wise significant associations were found between any SNP and trait. 241 

However, 8 chromosome-wise significant SNPs were found for EWW, FD, MD, LW, 242 

FEC, and LE (Figure 1). These SNPs were located on chromosomes 3, 4, 6, 11, 16 243 

and 17, respectively (Table 2). None of the associated SNPs found had been 244 

previously associated with any trait in sheep.  245 

The proportion of total variance explained by each SNP was obtained by first scanning 246 

using the score test and then revaluating best hits, individually, using Maximum 247 
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Likelihood with significant SNP allelic effect fitted as covariate. The variance explained 248 

for chromosome wise significant SNP associated with EWW, FD, LW, MD and FEC 249 

were 0.029, 061, 0.062, 0.060 and 0.051, respectively. And for LE, each significant 250 

marker explained a variance of 0.006, 0.038 and 0.013.   251 
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Discussion 252 

Until very recently, limited information on the sheep genome and lack of phenotypic 253 

data for many important traits have resulted in only a few studies on SNPs associated 254 

with production and welfare traits in sheep (Zhang et al., 2013). It has been suggested 255 

that the use of more precise phenotypes derived from CT measures will lead to more 256 

accurate phenotypes for genetic analyses (Cavanagh et al., 2010). 257 

To date, only a small number of GWAS in sheep have been conducted, those have 258 

been mainly focused on sheep growth, ultrasound-measured meat traits and body 259 

composition traits (Cavanagh et al., 2010, Zhang et al., 2013, Bolormaa et al., 2016, 260 

Matika et al., 2016). Moreover, genetic analyses with high accuracy CT-measured body 261 

composition traits are still very rare in the literature (Walling et al., 2004, Donaldson et 262 

al., 2014, Bolormaa et al., 2016, Matika et al., 2016). 263 

The main aim of the present study was to identify SNPs associated with traits currently 264 

in the selection index for a UK Terminal sire breed (Texel Sheep), including CT based 265 

productivity traits. In the UK, CT scanning has been used in sheep breeding programs 266 

since 2000. However, as CT scanning is more expensive than ultrasound, a two-step-267 

procedure is recommended. Only the best 15-20% of selection candidate ram lambs 268 

measured by ultrasound are usually subsequently CT scanned (Lewis, 2004, Bünger et 269 

al., 2011).  270 

A total of 384 Texel rams were analysed for 10 productivity traits including 2 CT 271 

measured traits. It should be noted that the dataset used in the present study was 272 

limited in its size, largely due to the restricted availability of CT-measured rams, due to 273 

CT costs. However, because this study analysed a small group of preselected animals 274 
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we acknowledged that the power to detect genome wide significant associations was 275 

diminished.  276 

Genome Wide Association Analysis 277 

In the current study no genome-wise significant association for any of the analysed 278 

traits was found. However, 8 chromosome-wise significant SNPs were found for: EWW, 279 

FD, MD, LW, FEC and LE. These SNPs were located on chromosomes 3, 4, 6, 11, 16 280 

and 17, and were found to be either intronic or intergenic variants. None of the 281 

significant SNPs had been previously associated with any trait in sheep. However, 282 

chromosomes 11 and 16 have been previously tagged by SNPs associated with 283 

muscle, body and carcass weight (Cavanagh et al., 2010).  284 

We identified as candidate genes, those which were either directly tagged by a 285 

significant SNP (intronic variant) or those located within genomic regions of 30 kb up 286 

and downstream of an associated marker (Bolormaa et al., 2016). However, due to the 287 

current relatively poor status of the ovine genome annotation, little information 288 

regarding the function of the tagged genes was obtained. 289 

Regions tagged for EWW and LE have not been previously associated with any 290 

significant growth or welfare traits. However, two identified markers for LE, on 291 

chromosomes 6 and 17 (OAR6_108683365.1 and OAR17_11963200.1), belong to 292 

suggestive QTLs previously associated with parasite resistance (Beh et al., 2002, 293 

Marshall et al., 2009). Former studies have reported a low to moderate genetic 294 

correlation between lambing ease and birth weight (Brown, 2007), while a moderate 295 

genetic correlation between birth weight and parasite resistance has been suggested 296 

(Verbeek et al., 2011). However, more information would be needed to estimate the 297 

genetic correlation between parasite resistance and welfare traits such as LE. 298 
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The region tagged by OAR16_20147789.1, significantly associated with FD, is an 299 

intronic variant of the NDUFAF2 gene, which encodes a NADH dehydrogenase 300 

(ubiquinone) complex I, assembly factor 2, a molecular chaperone for mitochondrial 301 

complex I assembly. OAR16_20147789.1 is located in a QTL region, which has been 302 

previously associated with final body weight, percent lean and subcutaneous fat area 303 

(Cavanagh et al., 2010).  304 

SNP s26074.1 was found to be significantly associated with LW. This SNP, is an 305 

intergenic variant, which is located in a QTL region formerly associated with body and 306 

carcass weight (Cavanagh et al., 2010).  307 

The region identified by SNP OAR11_12972551.1, was significantly associated with 308 

MD. This SNP is an intronic variant of the ACACA gene. ACACA encodes an acetyl-309 

CoA carboxylase alpha, which is considered as a key enzyme of fatty acid synthesis in 310 

the mammary gland by catalysing the first step of fatty acid synthesis in mammalian 311 

cytosol. This gene has been described as a candidate gene for fat content in sheep, 312 

due to an observed significant association with variation in milk fat content, and change 313 

of fat composition in several sheep breeds (Bolormaa et al., 2016). Moreover, 314 

OAR11_12972551.1 is located in QTL regions associated with body weight (Raadsma 315 

et al., 2009), fat synthesis (Bolormaa et al., 2016), internal fat amount and hot carcass 316 

weight (Cavanagh et al., 2010). 317 

Thus, results of significant associations with carcass traits provide evidence of a 318 

possible effect on FD, LW and MD by QTLs previously reported.by Raadsma et al. 319 

(2009), Cavanagh et al. (2010) and Bolormaa et al. (2016). 320 

Finally, SNP s30868.1 associated with FEC, is an intronic variant of the ZNF227 gene, 321 

which encodes a zinc finger protein 227, probably involved in transcriptional regulation. 322 
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This gene is a paralogue of the ZNF229 gene, which has been previously associated 323 

with tuberculosis susceptibility in African human populations (Thye et al., 2010). Also, 324 

s30868.1 tags a QTL region formerly reported to be associated with Immunoglobulin A 325 

level, an antibody that plays a crucial role in the immune function (Atlija et al., 2016). 326 

This suggests that there might be a worm resistance QTL on chromosome 4.  327 

A large number of QTLs have been identified for traits related to parasite resistance in 328 

sheep (Beh et al., 2002, Marshall et al., 2009, Atlija et al., 2016) suggesting that those 329 

traits are not determined by individual genes acting alone but rather by complex 330 

multigene interactions. Thus, further identification of SNPs in strong LD with the casual 331 

variants, could contribute to the implementation of these results in breeding schemes 332 

for the Texel breed population.  333 

The proportion of total variance explained by the significant SNPs was low, which is in 334 

agreement with Hayes and Goddard (2010), who explained that a small number of 335 

markers with validated associations would explain a small portion of the genetic 336 

variance in complex traits (Hayes and Goddard, 2010). This suggests that if alleles of 337 

large effect were present in our data, those would be in such a low frequency that they 338 

individually could only explain a small proportion of the variance.  339 

Further improvement in sheep GWAS could be achieved by increasing the sample size 340 

and using the new ovine 700K HD chip, which has a much denser distribution of SNPs 341 

across the genome and thus should have higher LD with the potential QTLs controlling 342 

the traits of interest.  343 

The present study found 8 chromosome-wise significant SNPs for 6 traits among them 344 

a CT measured trait (LW). Tagged regions on chromosomes 4, for worm resistance 345 

(FEC), 11 and 16, for carcass traits (MD, LW and FD), are consistent with other 346 
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studies, where QTL regions have been found for Immunoglobulin A level and meat and 347 

carcass traits, respectively. Whereas regions tagged on chromosomes 3, 6 and 17 for 348 

LE and EWW can be considered novel. 349 

Among the tagged genes ZNF227, ACACA and NDUFAF2 were found. Hence, these 350 

genes could be considered as candidate genes for future research to further dissect the 351 

genomic architecture of the traits. 352 

Conclusions 353 

This study is one of very few studies using CT-derived carcass traits and other 354 

productivity traits already integrated in the selection index for terminal sire sheep 355 

breeds. It revealed some significant associations between genomic markers and 356 

important traits in sheep production.  Further fine mapping the regions around these 357 

markers could lead to the identification of causative genes and better molecular 358 

predictors of CT based carcass composition, which might help to decrease phenotyping 359 

costs in the longer term. Results may also be integrated and inform genomic selection 360 

approaches and future SNP chip designs. The result may also guide similar studies in 361 

the other important Terminal Sire Breeds in the UK and beyond. 362 
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Tables  496 

Table 1 Descriptive statistics for the de-regressed EBVs of the analysed traits. 497 

Trait Unit Acronym Mean SD Minimum Maximum p value 

Growth Traits        

Birth Weight kg BW 0.48 0.81 -2.19 2.89 0.88 

Eight Week Weight kg EWW 3.24 11.30 -27.01 43.26 0.10 

Scan Weight kg SW 7.17 7.60 -14.69 35.22 0.17 

Carcass Traits        

Fat Depth mm FD -0.08 1.74 -6.1 5.78 0.07 

Muscle Depth mm MD 1.73 3.42 -8.64 12.4 0.16 

Fat Weight kg FW 0.79 1.75 -4.05 6.50 0.10 

Lean Weight kg LW 2.17 2.01 -3.53 8.70 0.74 

Muscularity Ratio MU 3.3 5.85 -12.94 18.14 0.33 

Health Trait        

Faecal Egg Count Log 

values 

FEC 0.12 0.58 -2.72 4.77 < 0.001 

Welfare Trait        

Lambing Ease Score 

units (1-

6) 

LE 0.05 11.98 -70.11 24.83 <0.001 

SD = Phenotypic standard deviation, 384 tested individuals, Significant p values, for Shapiro 498 

and Wilk's W-statistic test, (p ≤ 0.1) in bold. Fat and Lean weights were measured by CT (as 499 

described by Bunger et al. (2011))  500 
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Table 2 Chromosome-wide significant SNPs associated with important economic traits 501 

and size of estimated effects. 502 

SNP Chr Position 

OAR v3.1 / 

OAR v4.0 

Allele 

Effect 

SD P-value Trait Nearest 

Gene 

(Code) 

Nearest 

Gene (Name) 

OAR17_22884911.1 17 20425356 / 

20428283 

-

0.388 

0.09 3.9E-05 EWW PCDH18 

[454.22]  

Protocadherin 

18 

OAR16_20147789.1 16 18368560 / 

18365229 

-

0.439 

0.10 1.3E-05 FD NDUFAF2  Ubiquinone 

oxidoreductase 

complex 

assembly factor 

2 

s26074.1 11 8271088 / 

8261942 

0.673 0.15 2.6E-05 LW CUEDC1 

[37.38] 

CUE domain 

containing 1 

OAR11_12972551.1 11 13110133 / 

13079564 

-

1.115 

0.25 1.7E-05 MD ACACA  Acetyl-CoA 

carboxylase 

alpha 

s30868.1 4 56089343 / 

56074079 

-

0.336 

0.07 2.0E-05 FEC ZNF227  Zinc finger 

protein 227 

OAR6_108683365.1 6 98702734 / 

98597850 

0.341 0.07 6.8E-06 LE NKX6 

[193.99] 

NK6 homeobox 

1 
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s23722.1 3 178956951 

/178727572 

0.519 0.11 9.3E-06 LE MB [92.5] Myoglobin 

OAR17_11963200.1 17 10808289 / 

10794783 

-

0.363 

0.08 1.6E-05 LE TTC29 

[295.07] 

Tetratricopeptide 

repeat domain 

29 

Chr (Chromosome); Allele effect (deviations from the mean); SD (standard deviation) of the 503 

allele effect; P-value for the significance of the association; Units for FEC and LE on the 504 

transformed scale; SNPs located within known ovine genes are highlighted in bold; the nearest 505 

genes were identified using the ENSEMBL Genome Browser; the number in brackets is the 506 

distance from SNP to the nearest gene. 507 

 508 

Figure Captions 509 

 510 
Figure 1: Manhattan plots for EWW, FD, LW, MD, FEC and LE traits, blue line refers to 511 

the genome-wise threshold and the red line to the chromosome-wise significance 512 

threshold. 513 
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