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MMSE Adaptive Waveform Design for Active
Sensing with Applications to MIMO Radar

Steven Herbert, James R. Hopgood, Member, IEEE, Bernard Mulgrew, Fellow, IEEE

Abstract—Minimising the expected mean squared error is one
of the fundamental metrics applied to adaptive waveform design
for active sensing. Previously, only cost functions corresponding
to a lower bound on the expected mean squared error have been
expressed for optimisation. In this paper we express an exact cost
function to optimise for minimum mean squared error adaptive
waveform design (MMSE-AWD). This is expressed in a general
form which can be applied to non-linear systems.

Additionally, we provide a general example for how this
method of MMSE-AWD can be applied to a system that estimates
the state using a particle filter (PF). We make the case that there
is a compelling reason to choose to use the PF (as opposed to
alternatives such as the Unscented Kalman filter and extended
Kalman filter), as our MMSE-AWD implementation can re-use
the particles and particle weightings from the PF, simplifying the
overall computation.

Finally, we provide a numerical example, based on a simpli-
fied multiple-input-multiple-output radar system, which demon-
strates that our MMSE-AWD method outperforms a simple
non-adaptive radar, whose beam-pattern has a uniform angular
spread, and also an existing approximate MMSE-AWD method.

Index Terms—Adaptive waveform design, minimum mean
squared error, active sensing, MIMO, radar, Bayesian, particle
filters, optimal design.

I. INTRODUCTION

IN active sensing systems, the information we acquire about
the targets can inform the design of future waveforms

to be transmitted in order to maximise, in some sense, the
future information we expect to obtain about those targets. For
example, if the angle of a point target is to be estimated by a
multiple-input-multiple-output (MIMO) radar system, then as
the angle estimate variance decreases the power can be steered
predominantly in the direction of the target in a manner which
has an appearance similar to beam-steering. This simple and
intuitive principle is the basis for adaptive waveform design.

In this paper, we focus on adaptive waveform design for
radar systems, however it should be appreciated that the
framework used and consequent optimisation function derived
herein is more generally applicable. Adaptive waveform design
for radar systems is also known as cognitive radar and Haykin
[1], Ender and Brüggenwirth [2], and Sira et al [3] provide
general introductions to the subject. Additionally, Huleihel
et al [4, Fig. 1] show the basic architecture of a cognitive
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radar system. In this paper, we primarily address adaptive
waveform design in MIMO radar systems, as the resultant
angular distribution of the transmitted waveform provides a
nice visual demonstration of the adaptive waveform design.
However the same principle could also be applied to, for
example, waveform design in the frequency domain, as is the
subject of existing literature tackling related problems [5], [6].

There are various approaches to adaptive waveform design
for estimation of parameters associated with one or more
targets, including transmitting the conjugate of the previously
received signal [7] and steering the waveform towards the
direction of the current estimate of the target, as considered by
Huleihel et al [4]. A more sophisticated method it to design the
waveform to maximise mutual information (MI) [6], [8], [9]
and the related method of maximising signal to interference
and noise ratio [10]–[13]. Another approach is designing
the waveform to minimise mean squared error (MMSE), in
which linear and non-linear systems are typically addressed
separately. Linear systems have been extensively studied [14]–
[16], however there is less literature on non-linear systems.
The most promising approach to MMSE adaptive waveform
for non-linear systems is that of Huleihel et al [4], who
optimise a lower bound of the mean squared error. There exist
special cases where these two approaches (i.e., maximising
MI and MMSE) yield the same result [9], [17], however in
general they do not, and thus they can be considered to be
complementary approaches to the same problem.

In this paper we address MMSE adaptive waveform design
for systems that are, in general, non-linear, in particular we
express and optimise the cost function stated by Huleihel et
al [4, equation (4)], of which the authors optimise a lower
bound. As acknowledged by Huleihel et al when justifying
their approach of optimising the lower bound, ‘it is difficult
to obtain an analytic expression’ for this cost function; to our
knowledge the analytical expression we provide in this paper
is novel.

We consider the target parameter estimation to be conducted
in a Bayesian framework and, in addition to contributing the
aforementioned analytical cost function expression, we also
demonstrate how the cost function can be optimised in the case
where the posterior target probability density function (PDF)
is approximated by a particle filter (PF). This is noteworthy
owing to the fact that the particle weightings in the PF can be
re-used in the adaptive waveform design algorithm, making
it an efficient implementation. Given that we have already
excluded the linear Gaussian case (i.e., for which the posterior
could be analytically calculated using a Kalman filter) this is a
compelling reason to use a PF for target parameter estimation,
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rather than alternatives such as an extended Kalman filter or
an Unscented Kalman filter.

Our cost function is not generally convex, however it is
differentiable and thus we derive an expression for the gradient
of the cost function and show how the cost function can be
locally optimised using gradient descent. We apply this to a
numerical MIMO radar example and, whilst the results from
this optimisation are promising and demonstrate the principle
of our approach as well as potentially being sufficient for
some applications, it is of future interest to investigate whether
more sophisticated optimisation techniques can exploit the cost
function surface more effectively. This is especially relevant
when considering the fact that our analytical cost function has
been expressed in a completely general form, and thus can
apply to a broad range of fields in which adaptive waveform
design can be applied, for example sonar [18] and tomography
[19].

It is also relevant to consider whether in the future ap-
proximate MMSE waveform design methods could adequately
improve the target parameter estimation performance without
requiring as large a computational load as the method proposed
in this paper. For example if an approximate cost function
were proposed that yielded a convex optimisation surface. To
this end an additional application of the exact, general cost
function presented herein is that it provides a benchmark to
measure the performance of any future approximate MMSE
waveform design methods.

A. Contributions

In this paper, we make the following main contributions:
• We express analytically a cost function to optimise for

MMSE adaptive waveform design in non-linear systems.
• We provide a general implementation where the target

parameters are estimated using a PF, and the waveform
is adaptively optimised using gradient descent.

• We provide a numerical example, based on a MIMO
radar system, that demonstrates a decrease in root mean
squared error of the target parameter estimation, com-
pared to a non-adaptive system as well as the method
proposed by Huleihel et al. Moreover, we reason that
this specific implementation may suffice in its current
form for some applications, and thus has intrinsic value,
as well as acting as a proof of principle for our adaptive
waveform method.

B. Notation

Throughout the paper we have strived to use standard and
simple notation as much as possible. On occasion, we express
functions and variables as some letter ‘primed’, for example
x′, which denotes a variation (usually simple and/ or only
briefly required) of the primed function or variable and is
not used in this paper to denote either differentiation, which
is always explicitly expressed, or the Hermitian transpose,
which is expressed (·)H . Other notation used in this paper
includes transpose, which is expressed as (·)T and complex
conjugation, which is expressed as (·)∗.

The system model is defined in terms of the kth pulse, and
vectors and matrices corresponding to the kth pulse only are
denoted by subscript k, i.e., Xk. The short-hand superscript
k − 1 is used to denote the inclusion of the corresponding
matrix/ vector for all steps up to k − 1, i.e., Xk−1. This
use of superscript is not to be confused with the ith sample
of a random variable, which is denoted by a parenthesised
superscript i, i.e., θ(i)k . To aid readability, we dispense with
limits on integrals when the integral is performed over the
entire support of the relevant variable. Throughout the paper
p(·) is used for probability density.

C. Paper organisation

The remainder of the paper is organised as follows: in
Section II we define the system model; in Section III we
derive and express a general form of the cost function to be
optimised; in Section IV we provide further derivations for a
particular, but still quite general, implementation using a PF;
in Section V we show how this implementation can be opti-
mised using gradient descent; and in Section VI we provide
numerical results for an example of this implementation. In
Section VII we state and discuss the computational complexity
of this implementation; and finally in Section VIII we draw
conclusions.

II. SYSTEM MODEL

We use the system model detailed in Huleihel et al [4]
as our basic starting point. Specifically, we consider the kth
pulse (opportunity to adaptively design the waveform), which
consists of L different waveforms (snapshots). The signal is
transmitted by NT elements and received by NR elements.
We transmit a waveform represented by the matrix, Sk, the
lth column of which is a column vector corresponding to
the lth snapshot, and whose rows correspond to the com-
plex signal transmitted at the given snapshot by each of the
NT transmitting elements, i.e., Sk ∈ CNT×L. The received
waveform is represented by the matrix, Xk ∈ CNR×L, and
again the columns correspond to the snapshots, with each row
corresponding to the complex signal received on the respective
receiving element. Thus we define the channel:

Xk = Hk(θk)Sk + Nk, (1)

where Hk(θk) ∈ CNR×NT represents the channel response
as a non-linear function (in general) of θk, a vector of the Q
parameters of the target, i.e., θk ∈ CQ×1, which do not vary
within any given step. Thus the received signal is a linear
function of the transmitted signal, but a non-linear function
of the model parameters. In (1), Nk ∈ CNR×L represents
additive white Gaussian noise (AWGN). The noise is circularly
symmetric complex, i.e., each element of Nk is a complex
number whose real part is an independent zero mean Gaussian
random variable with variance σ2

n and whose imaginary part
is also an independent zero mean Gaussian random variable
with variance σ2

n, and the various elements of Nk are mutually
independent.

It is worth noting that this model is somewhat simplified
compared to physical reality, with, for example, phenomena
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such as noise that is not uniformly spread with angle (including
deliberate interference sources at located at certain angles) and
indeed signal dependent interference not taken into account
(note that complementary existing literature does tackle the
physically interesting case of signal dependent interference
[20]–[23]). We have chosen to use this simplified model for
consistency with that in the literature, most importantly the
scenario considered by Huleihel et al [4] which explicitly
provides the motivation for this research. Our choice to use
this model is also motivated by a desire to demonstrate the
principle of our method in a simple and clear manner. For
completeness, it is worth noting that the Bayesian method
proposed herein theoretically extends to any scenario for which
p(Xk|θk,Sk) can be expressed.

We now extend the scenario considered by Huleihel et al
[4] slightly to include the situation in which the state can vary
from step to step:

θk = fk−1(θk−1,vk−1), (2)

where fk−1(.) is an arbitrary function and vk−1 is noise, which
is independent of Nk.

III. EXPRESSION OF THE COST FUNCTION

Given the transmitted waveform, the system estimates the
system state as θ̂k, the expectation of the posterior PDF:

p(θk|Xk,Sk)

= p(θk|Xk,X
k−1,Sk,S

k−1)

∝ p(Xk|θk,Xk−1,Sk,S
k−1)p(θk|Xk−1,Sk,S

k−1)

= p(Xk|θk,Sk)× p(θk|Xk−1,Sk−1), (3)

where the first PDF in the right-hand side (RHS) of (3)
has been simplified to its final form by observing that the
definition of the system model in (1) is such that Xk has no
dependence on Xk−1,Sk−1 given θk,Sk. For the second PDF
in the RHS of (3), this has been simplified to its final form
because the probability of the parameter θk does not depend
on the transmitted waveform Sk unless also conditioned on
the observation Xk.

Thus (3) is in the form of the probability given the current
measurement multiplied by the prediction from previous mea-
surements, which reduces to the Kalman filter for the linear
Gaussian case. From the filter, we can get an estimate of the
state, θ̂k which is the expectation of θk. This can be expressed
as a general function:

θ̂k =E(θk|Xk,X
k−1,Sk,S

k−1)

=gk(Xk,Sk, zk−1), (4)

where zk−1 are the parameters associated with the
PDF of the prediction of θk given (Xk−1,Sk−1), i.e.,
p(θk|Xk−1,Sk−1) = g′k(θk, zk−1). Having expressed the
parameter estimation in general terms, we progress to express
a general cost function to optimise for adaptive waveform
design. From Huleihel et al [4, equation (6)] we can write:

minimise: Σk = E[(θ̂k − θk)(θ̂k − θk)T |Xk−1] wrtSk,(5)

subj. to: tr

(
1

L
SkS

H
k

)
≤ P, (6)

where power is denoted P and tr(.) is the matrix trace
operation, i.e., the cost in (5) is optimised subject to the
maximum power constraint (6).

The minimisation term in (5) is a co-variance matrix, and
thus is not strictly a meaningful objective term to optimise.
Thus we choose to minimise the trace of the co-variance ma-
trix. Including the dependence on Sk and explicitly expressing
the dependence on Sk−1, we can write:

Σk =

∫∫
(θ̂k − θk)T (θ̂k − θk)

p(θ̂k,θk|Xk−1,Sk−1,Sk) dθ̂k dθk, (7)

we can express the probability term in the integrand of (7):

p(θ̂k,θk|Xk−1,Sk−1,Sk)

= p(θ̂k|θk,Xk−1,Sk−1,Sk)× p(θk|Xk−1,Sk−1,Sk)

= p(θ̂k|θk,Xk−1,Sk−1,Sk)× p(θk|Xk−1,Sk−1). (8)

Notice that the second PDF in the RHS of (8) is the predic-
tion for the parameter estimation (i.e., in (3)), and therefore
available. Also notice that, as in (3), we have made the
final simplification in the second PDF in the RHS of (8)
because the probability of the parameter θk does not depend
on the transmitted waveform Sk unless also conditioned on
the observation Xk. Focussing therefore on the first term in
the RHS of (8), the PDF of the next parameter estimation,
which we express by marginalising out Xk:

p(θ̂k|θk,Xk−1,Sk−1,Sk)=

∫
p(θ̂k|Xk,θk,X

k−1,Sk−1,Sk)

p(Xk|θk,Xk−1,Sk−1,Sk) dXk

=

∫
p(θ̂k|Xk,X

k−1,Sk−1,Sk)

p(Xk|θk,Xk−1,Sk−1,Sk) dXk

=

∫
δ(θ̂k − gk(Xk,Sk, zk−1))

p(Xk|θk,Xk−1,Sk−1,Sk) dXk,

(9)

where δ(.) is the Dirac delta function. Substituting (9) into
(8) and then into (7):

Σk =

∫∫
(θ̂k − θk)T (θ̂k − θk)p(θk|Xk−1,Sk−1)(∫
δ(θ̂k − gk(Xk,Sk, zk−1))

p(Xk|θk,Xk−1,Sk−1,Sk) dXk

)
dθ̂k dθk.

=

∫∫∫
(θ̂k − θk)T (θ̂k − θk)p(θk|Xk−1,Sk−1)

δ(θ̂k − gk(Xk,Sk, zk−1))

p(Xk|θk,Xk−1,Sk−1,Sk) dXk dθ̂k dθk

=

∫∫∫
(θ̂k − θk)T (θ̂k − θk)p(θk|Xk−1,Sk−1)

δ(θ̂k − gk(Xk,Sk, zk−1))

p(Xk|θk,Xk−1,Sk−1,Sk) dθ̂k dXk dθk, (10)
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note that, as specified in Section I-B, all the integrals are eval-
uated over the entire support of the corresponding variables,
thus the integrations over θ̂k and Xk are independent and so
it is permissible to switch the order of integration as in (10).
From (10), using the sifting property of the delta function, we
get:

Σk =

∫∫
(gk(Xk,Sk, zk−1)− θk)T (gk(Xk,Sk, zk−1)− θk)

p(θk|Xk−1,Sk−1)p(Xk|θk,Sk) dXk dθk, (11)

which has again been simplified by noticing that Xk has no
dependence on Xk−1,Sk−1 given θk,Sk (i.e., as in (3)).

Thus optimising (11) with respect to the next transmitted
waveform, Sk, minimises the expectation of the squared error
of the next estimate of the state. In practise, however, evalua-
tion of p(θk|Xk,Sk) may only be approximately possible, for
example by a discrete approximation, which has implications
for the nature of gk(Xk,Sk, zk−1).

Discussion of derivation of cost function

The derivation of (11), an analytical expression for (5), is
novel as previously only solutions based on lower bounding
exist for the general (i.e., non-linear) case. The crucial insight
that enabled us to express this exact form of the MMSE cost
function is that, prior to designing the kth waveform, both θk
and θ̂k in (5) are random variables, the latter of which depends
on the waveform to be designed, Sk. Thus it is possible to
rearrange (5) as a cost which is a function of Sk.

Ostensibly, it may appear that a simpler expression equiva-
lent to (11) exists, i.e., substituting (8) into (7) directly yields:

Σk =

∫∫
(θ̂k − θk)T (θ̂k − θk)× p(θ̂k|θk,Xk−1,Sk−1,Sk)

×p(θk|Xk−1,Sk−1) dθ̂k dθk, (12)

However, a little consideration suggests that
p(θ̂k|θk,Xk−1,Sk−1,Sk), as required in (12), may not
be easy to express, owing to the fact that, whilst each Xk

deterministically yields a single value of θ̂k given Xk−1,
Sk−1 and Sk (i.e., from (9)) the reverse is not true. That
is, there are potentially many unique Xk’s that yield the
same θ̂k. Thus some form of marginalisation over Xk would
still be required, in addition to integration over θ̂k and θk
as defined in (12), whereas in our preferred expression (11)
integration over θ̂k is performed using the sifting property
of the delta function. This is especially relevant when
considering the computational complexity of real problems,
in which integration is likely to be performed numerically,
and thus the analytic integration over one of the three terms,
θ̂k, i.e., using the sifting property is a significant advantage
of our preferred expression, (11).

IV. IMPLEMENTATION USING PARTICLE FILTERING AND
MONTE-CARLO INTEGRATION

As stated in Section III, calculation of the posterior PDF
p(θk|Xk,X

k−1,Sk,S
k−1) may not be possible in algebraic

form. Thus one may be forced to use an approximate filtering
method, for example an extended Kalman filter, Unscented

Kalman filter or PF. We focus solely on implementation using
a PF, as this yields an approximation of the posterior PDF,
which is later required in the waveform design, whereas the
others do not, which is a compelling reason to favour the PF.

A. Estimation of state using a particle filter

In the PF, the particles correspond to realisations of the
target parameter vector θk. Let NP be the number of particles,
the ith of which has a weight w(i)

k . The particle filter enables
the continuous PDF of θk to be discretely approximated:

p(θk|Xk−1,Sk−1) ≈
NP∑
i=1

w
(i)
k δ(θk − θ(i)k ). (13)

This approximation allows us to express θ̂k, from (4):

θ̂k = gk(Xk,Sk, zk−1) ≈
∑NP

i=1 w
(i)
k p(Xk|θ(i)k ,Sk)θ

(i)
k∑NP

i=1 w
(i)
k p(Xk|θ(i)k ,Sk)

.

(14)
Substituting (14) into (11), and converting the integral with
respect to θk into a summation accordingly yields:

Σk ≈ Σ′k =

∫ NP∑
j=1

(∑NP

i=1 w
(i)
k p(Xk|θ(i)k ,Sk)θ

(i)
k∑NP

i=1 w
(i)
k p(Xk|θ(i)k ,Sk)

− θ(j)k

)T

×

(∑NP

i=1 w
(i)
k p(Xk|θ(i)k ,Sk)θ

(i)
k∑NP

i=1 w
(i)
k p(Xk|θ(i)k ,Sk)

− θ(j)k

)
×w(j)

k p(Xk|θ(j)k ,Sk) dXk. (15)

For subsequent analysis, it is also necessary to explicitly
define a variable, θ′k, that has been drawn from the discrete
approximation of the PDF:

θ′k ∼
NP∑
i=1

w
(i)
k δ(θ′k − θ

(i)
k ) (16)

B. Approximate cost function evaluation using Monte-Carlo
integration

Observe that p(Xk|θ(j)k ,Sk), in (15), is Gaussian as defined
in (1), although it should be noted that the mean varies for each
term in the summation, owing to its reliance on H(θ

(j)
k ) (and

likewise for p(Xk|θ(i)k ,Sk)). In general, the integral over Xk

in (15) may not be algebraically solvable, and thus Monte-
Carlo (MC) integration can be used instead:

Σ′k ≈ Σ′′k =
NS∑
m=1

p(X
(m)
k |θ′(m)

k ,Sk)/p(X
(m)
k |θ′(m)

k ,Sk(0))∑NS

m′=1 p(X
(m′)
k |θ′(m

′)
k ,Sk)/p(X

(m′)
k |θ′(m

′)
k ,Sk(0))

×

(∑NP

i=1 w
(i)
k p(X

(m)
k |θ(i)k ,Sk)θ

(i)
k∑NP

i=1 w
(i)
k p(X

(m)
k |θ(i)k ,Sk)

− θ′(m)
k

)T

×

(∑NP

i=1 w
(i)
k p(X

(m)
k |θ(i)k ,Sk)θ

(i)
k∑NP

i=1 w
(i)
k p(X

(m)
k |θ(i)k ,Sk)

− θ′(m)
k

)
, (17)



5

∂(uT
mum)

∂s′k,n
= 2uT

m


∑NP

i=1 w
(i)
k

∂p(x
′(m)
k |θ(i)

k ,s′k)

∂s′k,n
θ
(i)
k∑NP

i=1 w
(i)
k p(x

′(m)
k |θ(i)k , s′k)

−

(∑NP

i=1 w
(i)
k p(x

′(m)
k |θ(i)k , s′k)θ

(i)
k

)(∑NP

i=1 w
(i)
k

∂p(x
′(m)
k |θ(i)

k ,s′k)

∂s′k,n

)
(∑NP

i=1 w
(i)
k p(x

′(m)
k |θ(i)k , s′k)

)2


(24)

where NS samples of of θ′k are drawn from (16), and for each
of which a corresponding sample of Xk is drawn, i.e., for the
mth sample:

θ
′(m)
k ∼

∑NP

i=1 w
(i)
k δ(θ

′(m)
k − θ(i)k )

X
(m)
k ∼ p(X

(m)
k |θ′(m)

k ,Sk(0))
, (18)

where Sk(0) is a fixed realisation of Sk, for example, it
could be the initial Sk prior to its variation through gradient
descent (hence the nomenclature ‘Sk(0)’). Accordingly, the
first term of the summation in (17) corresponds to importance
sampling, which is required to mitigate false convergence.
To see why this importance sampling is required consider
the converse, where a fresh sample of X

(m)
k is drawn from

p(X
(m)
k |θ′(m)

k ,Sk) at each new location on the cost function
surface in the optimisation process. In this case, it is possible
that (17) (dispensing with the first term in the summation,
as it would no longer be necessary) could return a very low
value of Σ′k owing to the random sample of X(m)

k , rather than
because Sk is locally optimal. This theoretical possibility of
false convergence was confirmed as relevant in practise by the
relatively poor performance of the waveform design method
in the numerical simulations when implemented without this
importance sampling.

Before progressing to demonstrate how gradient descent can
be used to optimise this cost function, it is worth addressing
the question of why the sampling defined in (18) is used for
MC integration. In particular, an alternative would be to use
the entirety of the set of samples of θ(j)k , in (15), and for each
of which to sample Xk a number, N ′S , of times, however this
would mean N ′S terms being summed for each θ(j)k , regard-
less of whether that sample represented a likely or unlikely
realisation of the target parameters. By contrast, the approach
expressed in (17) re-samples from the discrete approximation
of the target parameter PDF (constructed by the PF) and thus
heavily weighted (high probability) particles are likely to be
drawn multiple times (so long as a suitable value of NS is
chosen) achieving the required diversity of samples of Xk at
high probability values of θ(j)k , however low weight values
of θ(j)k are drawn less frequently, reducing the computational
load that would otherwise arise from calculations which have
little impact on the final result.

V. OPTIMISATION OF COST FUNCTION USING GRADIENT
DESCENT

In general the cost function is not convex, which we
were able to show through a counter-example (i.e., to the
proposition that the cost function is convex, as given in
Appendix A). Consequently efficient convex optimisation

algorithms cannot be used, however our cost function is
differentiable (as shown below) and thus we choose to use
gradient descent to optimise our cost function. We also
choose gradient descent as it is a generally accepted and well
understood optimisation method, and is therefore suitable
to prove the principle of the adaptive waveform design
method proposed herein. That is not to say, however, that the
cost function can be best optimised by gradient descent, as
discussed later.

To express the gradient of the cost function, it is
convenient to use vectorised forms of Sk and Xk split
into real and imaginary components. We define s′k ,
[<(sk,1);<(sk,2); . . . ;<(sk,L);=(sk,1);=(sk,2); . . . ;=(sk,L)]
and x′k , [<(xk,1);<(xk,2); . . . ;<(xk,L);=(xk,1);=(xk,2);
. . . ;=(xk,L)]. Furthermore, we define H′′k as L copies of
Hk positioned on the leading diagonal of a larger matrix,
whose other elements are all zero, and from which we define
H′k , [<(H′′k),−=(H′′k);=(H′′k),<(H′′k)]. Note that here and
below we drop the bracketed ‘(θk)’ and simply use ‘Hk’,
‘H′k’ and ‘H′′k’ for brevity.

Turning now to the optimisation of the cost function, we
re-write (17):

Σ′′k(s′k) =

NS∑
m=1

vm
ṽ

uT
mum, (19)

where:

vm =
p(x
′(m)
k |θ′(m)

k , s′k)

p(x
′(m)
k |θ′(m)

k , s′k(0))
, (20)

ṽ=

NS∑
m′=1

p(x
′(m′)
k |θ′(m

′)
k , s′k)

p(x
′(m′)
k |θ′(m

′)
k , s′k(0))

, (21)

um =

(∑NP

i=1 w
(i)
k p(x

′(m)
k |θ(i)k , s′k)θ

(i)
k∑NP

i=1 w
(i)
k p(x

′(m)
k |θ(i)k , s′k)

− θ′(m)
k

)
, (22)

which we use to express the gradient:

∇s′k
(Σ′′k) =

NS∑
m=1

vm
ṽ
∇s′k

(uT
mum)

+
ṽ∇s′k

(vm)− vm∇s′k
(ṽ)

ṽ2
uT
mum (23)

where a single element of ∇s′k
(uT

mum) is expressed in (24)
(we express a single element to avoid ambiguity as um is
already expressed in terms of the vector θ′(m)

k ), also:

∇s′k
(vm) =

∇s′k
(p(x

′(m)
k |θ′(m)

k , s′k))

p(x
′(m)
k |θ′(m)

k , s′k(0))
(25)
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Algorithm 1 MMSE waveform design algorithm (bracketed numbers indicate the equation of the corresponding function).

Initialise: k = 1, s′0,
{
θ
(1)
0 . . .θ

(NP )
0

}
,
{
w

(1)
0 . . . w

(NP )
0

}
while k < K:

transmit s′k−1

receive x′k−1[{
θ
(1)
k . . .θ

(NP )
k

}
,
{
w

(1)
k . . . w

(NP )
k

}]
= PF

(
x′k−1, s

′
k−1,

{
θ
(1)
k−1 . . .θ

(NP )
k−1

}
,
{
w

(1)
k−1 . . . w

(NP )
k−1

})
[s′k] = Sdesign

({
θ
(1)
k . . .θ

(NP )
k

}
,
{
w

(1)
k . . . w

(NP )
k

})
k = k + 1

function [s′k] = Sdesign
({

θ
(1)
k . . .θ

(NP )
k

}
,
{
w

(1)
k . . . w

(NP )
k

})
Initialise: γ, γmin, s

′
k(0), s′k = s′k(0), needdir = true[{

θ
′(1)
k . . .θ

′(NS)
k

}
,
{

x
′(1)
k . . .x

′(NS)
k

}]
= sample

({
θ
(1)
k . . .θ

(NP )
k

}
,
{
w

(1)
k . . . w

(NP )
k

}
, s′k

)
(18)

Obtain : px0 = {p(x′(1)k |θ
′(1)
k , s′(0)) . . . p(x

′(NS)
k |θ′(NS)

k , s′(0))}
[Σ′′k ] = cost

({
θ
′(1)
k . . .θ

′(NS)
k

}
,
{

x
′(1)
k . . .x

′(NS)
k

}
,
{
θ
(1)
k . . .θ

(NP )
k

}
,
{
w

(1)
k . . . w

(NP )
k

}
, s′k

)
(17)

while γ ≥ γmin :
if needdir:

[∇(Σ′′k)] = dcost
({

θ
′(1)
k . . .θ

′(NS)
k

}
,
{

x
′(1)
k . . .x

′(NS)
k

}
,
{
θ
(1)
k . . .θ

(NP )
k

}
,
{
w

(1)
k . . . w

(NP )
k

}
, s′k, px0

)
(23)

s̃′k = s′k − γ∇⊥s′
k
(Σ′′k)

s̃′k = s̃′k
√

PL/
√

s̃′Tk s̃′k[
Σ̃′′k

]
= cost

({
θ
′(1)
k . . .θ

′(NS)
k

}
,
{

x
′(1)
k . . .x

′(NS)
k

}
,
{
θ
(1)
k . . .θ

(NP )
k

}
,
{
w

(1)
k . . . w

(NP )
k

}
, s̃′k, px0

)
(17)

if Σ̃′′k < Σ′′k :
s′k = s̃′k
Σ′′k = Σ̃′′k
needdir = true

else:
γ = γ/2
needdir = false

and

∇s′k
(ṽ) =

NS∑
m′=1

∇s′k
(p(x

′(m′)
k |θ′(m

′)
k , s′k))

p(x
′(m′)
k |θ′(m

′)
k , s′k(0))

, (26)

Finally, we express p(x′k|θk, s′k), which is a circularly
symmetric complex Gaussian PDF:

p(x′k|θk, s′k) =
exp(−(x′k −H′ks

′
k)TR−1n (x′k −H′ks

′
k))√

(2π)2NR det(Rn)
,

(27)
where det(.) is the determinant and Rn is the covariance of
the noise, i.e.,

Rn = σ2
nI2NRL, (28)

where I2NRL is the identity matrix of size 2NRL. From (27)
we can express the gradient of p(x′k|θk, s′k) with respect to
s′k, as required in (25) and (26):

∇s′k
(p(x′k|θk, s′k))

= 2p(x′k|θk, s′k)
(
H′Tk R−1n x′k −H′Tk R−1n H′ks

′
k

)
.(29)

It is also necessary to take into account the maximum
power constraint, defined in (6). The simplest way to do this
is to assume that this maximum power constraint is always
satisfied with equality, and thus the valid region for s′k is a
hyper-sphere. Thus, as long as our starting point is on the
surface of this hyper-sphere, we can take the direction of
descent as the directional derivative tangential to the surface

of the hypersphere, and re-normalise after taking the step
accordingly. Thus we express the component of ∇s′k

(Σ′′k)
perpendicular to s′k:

∇⊥s′k(Σ′′k) = ∇s′k
(Σ′′k)− s′k

(∇s′k
(Σ′′k))T s′k
s′Tk s′k

, (30)

which is the direction of maximum gradient, given the power
constraint. A similar approach was taken by Ahmed et al
to solve a related problem, with more restrictive power con-
straints [24].

Algorithm 1 defines the gradient descent algorithm for
MMSE waveform design according to this analysis.

VI. NUMERICAL EXAMPLE

We consider a MIMO radar system for our numerical exam-
ple, a choice motivated not only by the fact that it provides a
simple, clear and readily understandable demonstration of the
principle of our method, but also because MIMO radar is one
of the principal applications for MMSE adaptive waveform
design. In particular, we consider a MIMO radar consisting of
co-located linear transmit and receive arrays, each with five
elements (i.e., NT = NR = 5) where the element spacing is
equal to half of the wavelength.

Accordingly, we express our MIMO radar in the standard
form [25]: the parameter space consists of the parameters asso-
ciated with a fixed and known number of targets, Q′, treated as
point scatterers, thus we define θk = [φ, |α|, arg (α)], where
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Fig. 1. RMSE for adaptive and orthogonal waveforms estimating the angle
of one target, averaged over 500 trials.
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Fig. 2. Ratio of orthogonal waveform RMSE to adaptive waveform RMSE
for one target.

φ is a row vector of size Q′ containing the angle of the targets,
and α is a row vector of size Q′ containing the complex
attenuation of the targets. Although our method applies to the
case where θk varies for each pulse, here we consider the
case where θk does not vary with k. This is because fixing
k makes it easier to visualise the operation of the adaptive
waveform design, i.e., as shown in the following results. To
reduce the computational load, we make the assumption that
α is known. Even though such an assumption is not consistent
with a real MIMO radar system, it does not negate the ability
of the numerical example to demonstrate the principle of the
proposed MMSE adaptive waveform design method.

These definitions enable us to express the MIMO radar in
the form of (1):

Xk =

Q′∑
q=1

αqaR(φq)aTT (φq)Sk + Nk, (31)

where Hk ,
∑Q′

q=1 αqaR(φq)aTT (φq), and aR ∈ CNR×1

and aT ∈ CNT×1 are the steering vectors associated with

the receive and transmit arrays respectively. Note that for
simplicity (without loss of generality) we’ve removed the
Doppler shift and time delay.

A. Angle estimation for one target

As our intention is to demonstrate adaptive waveform
design, rather than the operation of PFs in radar, we have
chosen a simple PF implementation. Specifically, we consider
the case where there is a single target, for which the radar must
estimate the angle, and we initialise NP = 180 equally spaced,
equally weighted particles corresponding to target location at
one degree intervals from −90o to 89o. As the target angle
is known to be un-varying, there is no PF particle location
updating and re-sampling, in the conventional sense, however
we delete particles whose weight falls below 1% of their
original value and re-normalise accordingly.

For our numerical example, we let L = 1, i.e., the case
where waveform re-design happens for each transmitted snap-
shot, we also consider array signal to noise ratio (ASNR) of
−3 dB, where ASNR , |α|2PNRL/(0.5σ

2
n) (where the factor

0.5 in the denominator is introduced owing to our definition
of σ2

n as the noise variance for each of the real and imaginary
components). Finally, we set NS = 250, and position the target
at −40o.

To obtain a numerical value for the root mean squared
error (RMSE) we average over 500 trials, as shown in Fig. 1.
For comparison we also show the same plot for a non-
adaptive orthogonal waveform (i.e., the transmitted waveform
has uniform anglular spread). The orthogonal waveform in
question consisted of simply transmitting all of the power from
the first transmit array element, however additional results not
included here showed that all orthogonal waveforms have the
same RMSE performance (including where L > 1). In Fig. 1
we also include the same plot for our implementation of the
Reuven-Messer bound (RMB) method proposed by Huleihel
et al [4], denoted ‘RMB’ (we consider the RMB method as
this is the better performing of the two methods proposed in
[4]). To implement the method of Huleihel et al in a manner
fit for fair comparison, we supplied the same resources as for
the method proposed herein (i.e., the same PF particles) and
chose the other parameters such that the simulation could be
performed within a reasonable time-scale. It was necessary to
set L = 5, owing to the workings of the RMB method in [4],
however the ASNR was not changed, and thus the comparison
presented is a valid one.

From Fig. 1, we can clearly see that our proposed adaptive
waveform method outperforms the non-adaptive case, and also
that it outperforms the RMB method. Nevertheless, we note
that this is our implementation of the RMB method for our
application, and thus in general the RMB method may remain
appropriate for some applications. For this reason we provide
the code for our method and our implementation of that of
Huleihel et al, to facilitate future comparison between the two
[26]. On a more general note, it is significant that both methods
require non-convex optimisation, however the cost function we
provide, (11), is the exact MMSE cost function whereas that
of Huleihel et al is only approximate, therefore with sufficient
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Fig. 3. Example of the first eight pulses of MMSE adaptive waveform design. Single target located at −40o as indicated by the vertical dotted line.

computational resources (and using a more sophisticated non-
convex optimisation technique) the method proposed herein
can theoretically be used to find the global MMSE waveform
design and thus will outperform any other including that of
Huleihel et al [4].

Returning to the specific numerical example considered
here, the aim of our adaptive waveform design is to locate
the target within a shorter time than that of a non-adaptive
waveform. To this end, we express the results of Fig. 1 as
the ratio of the orthogonal waveform RMSE to the adaptive
waveform RMSE in Fig. 2, which shows that at its peak the
orthogonal waveform has an RMSE (which can be interpreted
as a numerical approximation of the standard deviation) of ap-
proximately one tenth of that of the orthogonal, non-adaptive,
waveform. Thus conclusively demonstrating the success of our
MMSE adaptive waveform design method.

Turning our attention back to Fig. 1, we can see that
between pulse 5 and pulse 10 there is a relatively large
decrease in RMSE at each pulse for the adaptive waveform
compared to that of the orthogonal waveform. This suggests
that, on average, the adaptive method has located the target
and is now decreasing the estimate variance, whereas the
orthogonal method may still have a range of possible target
locations.

In addition to Fig. 1 and Fig. 2, we include Fig. 3 to show
how the waveform shape is adapted for the first eight pulses of

one trial. Note that in Fig. 3 the transmit power shown on the
y axis is defined as (1/L)aHT (φ)(S∗kS

T
k )aT (φ). This further

supports the above conclusion regarding the relatively large
decrease in RMSE between pulse 5 and 10, as it can be seen
that p(φ) is substantially uni-modal around −40o from pulse
5 onwards. For higher values of pulse index in Fig. 1 the
adaptive and orthogonal waveform RMSE plots come back
together, owing to the fundamental limitation placed on the
target location estimation by the finite number of particles in
the PF.

Regarding Fig. 3, there are a few interesting features in
additional to already identified the uni-modal nature of p(φ)
from pulse 5 onwards. For example, we can see that the
received measurement after pulse 3 leads to peaks of p(φ) at
around −40o, and 40o, which in turn leads to corresponding
peaks in the waveform design for pulse 4. However, the
measurement after pulse 4 leads to a much lower peak of
p(φ) at around 40o compared to that around −40o, and the
design of the waveform for pulse 5 is adapted accordingly.
We can see that this behaviour of adapting the waveform to
transmit the majority of the power in the direction(s) of high
probability of target location is typical of the behaviour of
the MMSE adaptive waveform design method, as would be
expected.

However, whilst it is reassuring that these features align
with our intuitive expectation for how the adaptive waveform
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Fig. 4. RMSE for adaptive and orthogonal waveforms estimating the angle
of two targets, averaged over 1000 trials.

design ought to behave, we acknowledge that this is not
exclusively the case. In particular, it is important to recognise
that each trial has independent simulated noise, and so will
have a different received signal Xk, and consequently the
designed waveform will differ from trial to trial. In particular,
we note that the local nature of the optimisation sometimes
leads to adaptive waveform designs that we do immediately
recognise as obviously good, for example pulse 6 in Fig. 3.
The specific waveform design presented in this paper (i.e., in
Fig. 3) has been chosen as a good illustration of the designed
waveform, and typical of those that we have seen throughout
our simulations. It is also worth highlighting that, although
we only present this up to the eighth pulse, we continued to
observe a similar waveform shaping for latter pulses. Finally,
this waveform shaping still occurs when the SNR is varied,
however at lower SNR it takes a larger number of pulses for
the target position PDF to become substantially non-uniform,
and therefore it takes a larger number of pulses for waveforms
with significantly non-uniform angular spread to be designed.

B. Angle estimation for two targets

In addition to the one target scenario, we also consider a
scenario where the MIMO radar must estimate the angle of
two targets. The ASNR was adjusted to be 0 dB, equally split
between the two targets, i.e., the attenuation of each target
is equal to that of the lone target in the first simulations.
Additionally, the number of particles in the PF was increased
to cover the joint distribution of the two target angles (i.e., the
parameter space), and again the particles were placed on a grid,
this time with spacing of 3o (the reduction in resolution from
1o to 3o the innevitable result of requiring many more particles
to jointly estimate the locations of two targets). Again, we used
NS = 250 and the targets were located at −40o and 20o.

The results of the two target simulation are shown in Figs. 4,
5 and 6 for the RMSE plot, RMSE ratio and single trial exam-
ple respectively (again chosen as it is a good illustration of the
waveform design, and representative of the general behaviour
we observed). To get reasonable results, it was necessary to
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Fig. 5. Ratio of orthogonal waveform RMSE to adaptive waveform RMSE,
for two targets.

increase the number of trials from the 500 used for the single
target case to 1000. As for the single target case, we can
see in Fig. 4 that the adaptive waveform outperforms the
non-adaptive orthogonal waveform. Even though the relative
improvement of the adaptive waveform design (in terms of
RMSE) is not as great as for the single target case, we can
see from Fig. 5 that at its peak, the RMSE is for the adaptive
waveform is less than a half that of the non-adaptive waveform,
which would represent a significant gain in performance if
applied in an actual MIMO radar system.

We also observe similar behaviour to the one target case for
the single trial of the two target simulation shown in Fig. 6,
where the black solid plot corresponds to the probability of
the target with lower value of φ, and the red dashed plot
corresponds to the probability of the target with the higher
value of φ. That is, from pulse 4 onwards, two peaks occur
near the actual target angles, and again the power is steered
predominantly towards the directions of high probability den-
sity.

VII. COMPUTATIONAL COMPLEXITY

TABLE I
COMPUTATIONAL COMPLEXITY

Equation Number of operations
(18) O(NS)
(17) O(NcNSNp(Q+ LNTNR))
(23) O(NdNSNp(LNTQ+ L2N2

TNR))

As well as demonstrating the principle of our MMSE adap-
tive waveform design method using a numerical example, it is
also of practical concern to establish the computational load of
the method. To this end, we express in Table I the contribution
of the evaluation of the various functions in Algorithm 1 to the
overall computational complexity. This is expressed in terms of
how the number of floating point operations grows with each
of the degrees of freedom. By definition, Nc is the number
of times the cost function is evaluated, and Nd is the number
of times the gradient of the cost function is evaluated. Note
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Fig. 6. Example of the first eight pulses of MMSE adaptive waveform design. Two targets located at −40o and 20o as indicated by the vertical dotted lines.

that for the simple implementation of gradient descent given
in Algorithm 1 it may be possible to combine these two as
they can differ only by a constant (i.e., the number of times
the step size can be decreased) however it is worth leaving
them as independent as this facilitates later discussion on the
complexity of more sophisticated implementations, and indeed
other forms of optimisation.

Examining the three functions in turn, (18) simply requires
O(NS) samples to be drawn, hence its complexity is O(NS).
Regarding (17), this consists of NS evaluations of a sum
which is dominated (in terms of computational complexity)
by the transpose of a Q element column vector multiplied by
itself, hence O(NSQ) operations. For each of the NS terms
of the sum, other sums are required, each with NP terms, and
each term of which requires the evaluation of a multivariate
Gaussian PDF with NR elements. As each element of this
multivariate Gaussian is independent, there is no need to
invert a covariance matrix, and instead it can be treated as
the product of NR univariate Gaussians. To do so, however,
still requires the evaluation of (x′k −H′ks

′
k) in the exponent

of the multivariate Gaussian, in order to separate it into its
elements. Construction of Hk requires NT ×NR multiplica-
tions (from which the artificial construct, H′k, used only to
simplify the expressions in the analysis derives). Calculation
of H′ks

′
k given Hk requires O(NTNR) multiplications plus

O(NTNR) additions, repeated L times. Hence the evaluation

of (x′k −H′ks
′
k) requires O(NTNRL) which is greater than

the O(NTNR) required to construct Hk, and the O(NR)
multiplications required to obtain the joint probability of the
independent components. Finally, for each term in the sum
over NP particles, a further Q multiplications are required
to scale the vector θ(j)k (i.e., in the sum in the numerator
only). This dominates the Q multiplications previously stated.
Including the Nc times that the cost function is evaluated, and
putting this together with the above yields overall complexity,
O(Nc(NSNPQ+NSNPNTNRL)), equivalent to that stated
in Table I.

Turning our attention now to ∇s′′k
(Σ′(s′′k)), as defined in

(23). Each of the 2NTL elements in the vector equation (23) is
a sum over NS terms. Using the same analysis as that above,
it can be shown that evaluation of each of the component
terms has the following complexity: vm requires O(LNTNR)
operations; ṽ requires O(NSLNTNR) operations (but only
requires evaluation once, rather than for each term in the
sum, and thus the extra NS is the complexity later cancels);
∇s′′k,n

(vm) requires O(LNTNR) operations for each of its
2NTL elements; ∇s′′k,n

(ṽ) requires O(NSLNTNR) opera-
tions for each of its 2NTL elements (but again only needs
evaluating once, and not for each of the NS terms in the
sum in (23)); uT

mum requires O(NP (Q + LNTNR)) opera-
tions; and ∂(uT

mum)/∂s′′k,n requires O(NP (Q + LNTNR))
operations. Putting these together, the number of floating
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point operations required for the numerical evaluation of (23)
is O(NdNSNP (LNTQ + L2N2

TNR)). Table I includes this
result, multiplied by the number of times that (23) is called,
defined as Nd.

The number of floating point operations required by
the algorithm is therefore O(NcNSNp(Q + LNTNR) +
NdNSNp(LNTQ + L2N2

TNR)). In most cases we expect
the complexity to be dominated by the evaluation of the
gradient, simplifying and rewriting the complexity accordingly
as O((Nd)(NSNP )(NTL)(Q + LNTNR)) reveals that the
algorithm is, in some sense, computationally efficient. Taking
the bracketed terms in turn, the first, Nd, corresponds to the
iterations of the gradient descent, and the second, NSNP ,
corresponds to the double integration, that we previously
argued to be irreducible, evaluated numerically as a double
sum. The third term, NTL, corresponds to the NTL elements
of Sk that must be optimised for, i.e., the number of elements
of the gradient that must be evaluated at each iteration, leaving
the fourth term, Q+LNTNR, corresponding to the evaluation
of the gradient itself. From this analysis, it can be seen that the
evaluation of the gradient grows only proportionally to each
of the degrees of freedom of the system, hence making it a
scalable algorithm.

We do, however, observe that the complexity associated with
evaluation of the gradient of the cost function is relatively large
compared to evaluation of the cost function itself, which raises
two further points. Firstly, it can be seen that a smarter adaptive
step-size technique may be beneficial rather than the simple
example given in Fig. 1. Secondly, along similar lines, it is
of interest to explore whether a meta-heuristic optimisation,
such as Particle Swarm Optimisation [27], which does not
require evaluation of the gradient of the cost function at all,
can optimise the cost function equally well or even better at
lower computational complexity.

Owing to the number of degrees of freedom, and in partic-
ular their lack of correspondence to those of other methods, it
is not possible to make general statements about the absolute
advantage of our algorithm in terms of computational com-
plexity. It is, however, possible to make a comparison between
our embodiment of the adaptive waveform method proposed
in this paper, and our embodiment of the method proposed by
Huleihel et al [4], in terms of computation time. For this we
performed a single run of each method using Matlab on an
Intel Core 1.9 GHz i3 4030U processor with memory of 4 GB
1600 MHz DDR3L SSDRAM (note that it is not possible to
provide an average computation time for the whole ensemble
of trials for each method, as this was computed on a distributed
system). For comparison we also show the computation time
for the non-adaptive case, where just the computation required
for updating the PF is required. Fig. 7 shows the computation
times for the three methods.

From Fig. 7, we can see that both the adaptive waveform
proposed in this paper, and the RMB waveform of Huleihel
et al [4] have significantly longer computational time than
the non-adaptive case, as would be expected. It should be
noted that the absolute magnitude of these computation times
is not relevant, as we do not specify a system upon which the
MIMO radar processing would run, instead it is the relative
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Fig. 7. Computational time for the three methods.

performance that is important. To this end, it is pertinent to
note that the code used for the two adaptive design methods
was not optimised at all, and a reduction in computation
time of at least an order of magnitude should be achievable.
Nevertheless, it is undeniably the case that implementing either
of these adaptive waveform design methods is computationally
expensive compared to simply estimating the target parame-
ters, and this provides motivation for a future investigation into
whether MMSE adaptive waveform design can be achieved,
or approximately achieved using a method that does not
recursively sum over a large number of particles, as do both
the method proposed herein and that of Huleihel et al.

Considering now a specific comparison between these two
adaptive waveform design methods, from Fig. 7 we can see
that the computation times for the two are broadly comparable,
which is to be expected given that it was our declared intention
to implement the method of Huleihel et al in a manner
which provides a fair comparison to our method. Indeed, we
chose the parameter value J = 10 (as defined in [4]) as
this appeared to require a similar computational time for cost
function evaluation as does the method we propose in this
paper, with the parameters as specified. Nevertheless, it is the
case that the mean computational time of the RMB method
is approximately 1/4 of that for the method we propose, and
this may mean that the RMB method is preferable in some
circumstances, even though it performs relatively poorly.

VIII. CONCLUSIONS

In this paper we have derived a general cost function for
MMSE adaptive waveform design. This has been expressed
as a double integral over the parameter space and the space
containing the forthcoming measurement. We argue that there
is an irreducible need for a double integral, and moreover
it is only because we can express an intermediate step in
the derivation as an integral over a sum of Dirac delta
functions and hence apply the sifting property that the need
for integration over three spaces is negated. Thus we conclude
that our cost function expression is in a suitably simple form.



12

Noting that the double integration cannot, in general, be
solved analytically, and that the underlying state is likely to
be estimated by a PF, we also provide analysis leading to a
method for applying the MMSE cost function using particle
filtering, MC integration and optimisation by gradient descent
(noting that, in general, the cost function is not convex).
We provide analysis for the computational complexity of
this method, in terms of how the number of floating point
operations grows with the value of the various operating
parameters.

In addition to these theoretical contributions, we also pro-
vide a numerical example, based on a simplified model for
MIMO radar. The numerical example shows that our MMSE
adaptive waveform method outperforms the non-adaptive case
where a waveform with uniform angular spread is transmitted,
thus demonstrating the principle of our analysis. Moreover,
MIMO radar is known to be one of the foremost applications
of adaptive waveform design, and the MIMO radar MMSE
waveform design method implementation described herein
may suffice for some applications. However, we do recognise
that gradient descent, as used in the implementation of our
method described herein may not be sufficient to perform
the required non-convex optimisation of the cost function in
all cases. Furthermore, our computational complexity analy-
sis demonstrates that the computational load associated with
calculation of the gradient is relatively heavy, compared to
that associated with evaluated of the cost function itself. Thus
it is of future interest to investigate whether the theoretical
cost function proposed in this paper can be better optimised
for various real world applications by alternative optimisation
methods.

APPENDIX A
A COUNTER EXAMPLE TO THE PROPOSITION THAT THE

COST FUNCTION IS CONVEX

To show that the optimisation function is not in general
convex, it suffices to find a single example of non-convexity.
Specifically, we will show a case where the cost function is
not convex along a specified (linear) direction as a counter-
example to the proposition that the cost function is convex in
general.

To do this we consider the one-target scenario and set
S0 = [0.3166, 0, 0, 0, 0]T , and randomly choose a direction to
step in: ∆S = [0.0273−0.1349i, 0.1673−0.2676i,−0.0721−
0.0815i, 0.3774 + 0.3043i,−0.0988 + 0.1351i]T , where
i =
√
−1. Thus, to demonstrate non-convexity, we show that

the cost function in the direction of −∆S is not convex. That
is, we evaluate Σ′′0(S0−a∆S0) according to (17) for a ∈ Z≥0.
This yields the result plotted in Fig. 8 which demonstrates
that the cost function surface is indeed not, in general, convex.
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