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Sensor scheduling with time, energy and
communication constraints

Cristian Rusu, John Thompson and Neil M. Robertson

Abstract—In this paper we present new algorithms and anal-
ysis for the linear inverse sensor placement and scheduling
problems over multiple time instances with power and communi-
cations constraints. The proposed algorithms, which deal directly
with minimizing the mean squared error (MSE), are based on the
convex relaxation approach to address the binary optimization
scheduling problems that are formulated in sensor network
scenarios. We propose to balance the energy and communications
demands of operating a network of sensors over time while
we still guarantee a minimum level of estimation accuracy. We
measure this accuracy by the MSE for which we provide average
case and lower bounds analyses that hold in general, irrespective
of the scheduling algorithm used. We show experimentally how
the proposed algorithms perform against state-of-the-art methods
previously described in the literature.

Index Terms—linear inverse problem, sensor placement, sen-
sor scheduling, binary optimization, convex relaxation, energy
constraints, communications constraints.

I. INTRODUCTION

Sensor networks are often used to measure and monitor
physical phenomena like temperature, humidity and concen-
tration of certain pollutants in an area of interest over time
[1]. Modern wireless sensor networks may be composed
of a large number of heterogeneous sensors each with its
own (possibly limited) power supply capable of performing
measurements, processing the result and communicating it to
other neighboring sensors in the network at regular times.
In this paper we consider the situation where, without any
particular assumptions on the parameters to be estimated, the
measurements taken by the sensor network are used to solve a
linear inverse problem. In this setting, the problem of selecting
only a subset of the available sensors while ensuring a certain
level of estimation accuracy has been extensively studied in
the literature.

Sensor selection (or sensor placement) [2], [3] is of cen-
tral importance when considering the classical problem of
parameter estimation from a given set of linear measurements
that describe an operational sensor network. Given a fixed
set of potential locations, the sensor placement problem asks
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where the sensors should be placed in order to maximize on
average the estimation accuracy of the network. Once the most
informative locations are identified the sensors are placed in
their locations for the whole lifetime of the network. If we now
consider a network where each sensor has a particular energy
and communication profile and is capable of performing a
measurement with a particular quality, an interesting problem
that arises is how to schedule each sensor over time such
that the estimation accuracy of the network is never worse
than a prescribed level while we also control the energy
consumption. This is done for example to make sure that no
sensor goes off-line due to overuse. We call this the sensor
scheduling problem. In this paper we tackle both problems
and propose new heuristics to address them and provide new
theoretical insights into their behavior. Because the problems
are combinatorial in nature (they amount to mixed-integer
optimization problems) they are NP-hard to solve exactly in
general. Therefore, following previous literature, we settle on
proposing sub-optimal but numerically efficient algorithms and
comparing them with previously proposed methods.

The sensor placement (and in general the sensor manage-
ment) problems have been extensively studied in the past.
A general approach is to use greedy methods based on a
minimum eigenspace approach [4] or with submodularity
based performance guarantees [5] that provide results within
(1 − e−1) of the optimal solution. Another popular greedy
sensor selection method, called FrameSense [6], initially acti-
vates all the sensors and then removes one at each step based
on a “worst-out” principle to optimize its submodular objec-
tive function. Convex optimization techniques have also been
proven useful for experimental design [7, Chapter 7.5] with `1
[8], [9] and reweighted `1 norm minimization [10] approaches
such as [11], [12], [13], [14]. Earlier work used information
theoretic approaches like mutual information maximization
[15], [16] and cross entropy optimization [17] or other search
heuristics like genetic algorithms [18], tabu search [19] and
branch-and-bound methods [20] to solve the sensor placement
problems. Several recent works have also considered non-
linear sensor networks [13], tracking applications [21], [22],
distributed sensing scenarios [23], [24], correlated noise mod-
els [25], estimation of continuous variables [26]. Additional
scenarios where further limitations are added to the network
sensing problem include: energy budget constraints [27] and
ways to maximize the lifetime per unit cost in wireless sensor
networks [28], `2 regularization terms that discourage the
selection of the same sensors over a period of time [12],
[29] and scheduling [30], [31] over the network. In the same
spirit, recent work introduces a greedy sampling set selection
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algorithm for graph signal processing applications [32].
The contribution of this paper is two-fold.
The first contribution is to propose an `∞ regularized

iteratively reweighted `1 sensor scheduling algorithm [33].
The approach is based on the previously introduced `1 convex
norm optimization approach. We are able to accommodate
energy and communications constraints in order to balance the
estimation accuracy of the sensor network over multiple time
instances with its energy consumption. Solving the proposed
convex optimization process is numerically efficient since it
can be done in polynomial time by off-the-shelf solvers [34].
This approach is slower than some previously proposed greedy
methods but it has the advantage of easily accommodating
real-world constraints of the sensor networks.

The second contribution is to provide a framework where
an average analysis of the placement problem and a worst
case analysis for the scheduling problem are performed, both
in the case where the overall sensor network is described by
a tight frame or measurement matrix. This general analysis
provides insights into the empirical possible performance of
sensor scheduling independent of the algorithms used. We
also provide connections to other related research areas where
bounds on the eigenvalues of sub-matrices of a matrix have
been developed. The case of a tight measurement matrix,
although not often seen in practical sensor networks problems,
is of interest since it is the optimal choice in linear inverse
problems and also appears in sampling set selection for
bandlimited graph signals [35], both under noise.

Section II describes the measurement setup we consider;
Section III presents the previously proposed methods in the lit-
erature for the sensor placement problem; Section IV proposes
a new algorithms for the sensor placement and scheduling
problems; Section V provides a theoretical analysis of the
average estimation accuracy for the sensor placement problem
and Section VI shows the numerical results where we compare
the proposed method with the state-of-the-art methods from
the literature.

II. THE PROBLEM SETUP

Let us assume that we want to estimate a parameter vector
xt of size n that changes over t = 1, . . . , T, time instances
from n ≤ kt ≤ m linear measurements that are given by

yt = Atxt + nt, (1)

where the noise vector nt of size kt is a zero-mean i.i.d. Gaus-
sian vector with variance σ2I. The rows of the measurement
matrix At at time t are chosen from the rows of an overall
full rank measurement matrix A of size m×n. The ith row of
A corresponds to the linear measurement performed by the ith

sensor of the network. Therefore, the matrix A characterizes
the full sensor network which is made up of m elements and
the measurement matrices At are subsets of the rows from A.
Assuming kt ≥ n sensors are used at time t, the least squares
estimate are given by

x̂t = A†tyt = (AT
t At)

−1AT
t yt. (2)

With the understanding that with increased noise levels the
estimation accuracy decreases on average, in order to simplify

the exposition of the results herein we only consider the fixed
noise level σ2 = 1. We focus on a full rank measurement
matrix At ∈ Rkt×n, that represents the kt sensors that perform
linear measurements at time t, for which there are several ways
to quantify its recovery performance in (2):

1) A-optimality: mean squared error (MSE)

MSE(At) = tr((AT
t At)

−1) =

n∑
i=1

1

λi(AT
t At)

. (3)

2) E-optimality: worst case error variance (WCE)

WCE(At) = λ1((A
T
t At)

−1) =
1

λn(AT
t At)

. (4)

3) D-optimality: volume of the confidence ellipsoid (VCE)

VCE(At)=logdet(AT
t At)=log

(
n∏

i=1

λi(A
T
t At)

)
. (5)

We have denoted here λi(AT
t At) as the ith eigenvalue of the

symmetric positive-semidefinite matrix AT
t At and we assume

without loss of generality the ordering λ1(A
T
t At) ≥ · · · ≥

λn(A
T
t At) ≥ 0.

Notice that these performance indicators are related as
we have MSE(At) ≤ nWCE(At), while maximizing the
VCE(At) we also maximize the denominator of the MSE(At)
in (3) – but we do not also control the numerator term in (3).
Among all the measurement matrices of the same size kt×n,
and for the same Frobenius norm, these performance measures
are optimized for α−tight frames. A finite frame At ∈ Rkt×n

is a countable collection of kt vectors of size n such that

α‖x‖22 ≤
kt∑
i=1

|aT
i x|2 ≤ β‖x‖22, ∀ x ∈ Rn, (6)

where 0 < α ≤ β <∞ are the frame bounds. When α = β the
frame At is called α−tight, or just tight. Tight measurement
matrices At obey AT

t At = αI and therefore we have that

MSE(At) =
n

α
=

n2

‖At‖2F
, WCE(At) =

1

α
=

n

‖At‖2F
,

VCE(At) = log (αn) = n log

(
‖At‖2F
n

)
,

(7)

since ‖At‖2F = tr(AT
t At) = nα. Higher Frobenius norm (and

therefore also higher α) of the measurement matrix is equiv-
alent to increasing on average the SNR of the measurements
and therefore should lead to better recovery performance in
general – for example MSE(δAt) = δ−2MSE(At), δ ∈ R.
Since tight frames are optimum for these criteria then for all
non-tight frames these values are lower bounds.

To achieve low error indicators, in terms of the eigenvalues
of AT

t At our goal is twofold:
• first, increase the smallest eigenvalue

λn(A
T
t At)� 0, (8)

• second, group all eigenvalues such that

λi(A
T
t At) ≈ λj(AT

t At), ∀i 6= j, (9)

i.e., the measurement matrix At behaves approximately as a
tight frame with high Frobenius norm.
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Given a measurement matrix A ∈ Rm×n that represents
a sensor network of m elements, our goal is to choose a
subset of measurements At ∈ Rkt×n from A such that we
optimize the MSE(At), WCE(At) or the VCE(At) over all
the time instances t = 1, . . . , T, while we also balance the
energy consumption of the network.

III. THE SENSOR MANAGEMENT PROBLEM

We defined now the sensor management problem for a
single time instance, i.e., T = 1. Given a network of m sensors
where each is capable of a linear measurement the sensor
management problems asks which (and how many) sensors
need to be activated in order to guarantee a fixed, given,
performance measure (for example, the estimation accuracy
in terms of MSE). An equivalent formulation can be made for
example by fixing the number of sensors k to activate while
we minimize any of the performance measures (3), (4) or (5).

We consider that the full network of m sensors is rep-
resented by A ∈ Rm×n, i.e., each linear measurement is
represented by a row aT

i , i = 1, . . . ,m. The selected sensors
are denoted in the measurement matrix

A1 =
[
ai1 ai2 . . . aik

]T ∈ Rk×n, (10)

a subset of rows of A indexed in the set I = {i1, . . . , ik}
of size k ≥ n, such its performance in terms of MSE(A1)
or WCE(A1) is below a given threshold γ or, alternatively, a
maximum given number of sensors k is activated. Notice that
in order to optimize MSE(A1), WCE(A1) or VCE(A1) we
need to verify spectral properties of

AT
1 A1 =

∑
i∈I

aia
T
i = AT diag(z)A ∈ Rn×n, (11)

where z ∈ {0, 1}n with zi = 1 if i ∈ I and zero otherwise.
There are several approaches in the literature to deal

with the sensor management problem. Although there are
algorithms for to the sensor management problem that use
search techniques [18], [19] or cross-entropy optimization
[17], we mainly distinguish two major approaches based on
convex optimization and greedy methods and we discuss them
separately in the next two subsections.

A. Convex relaxation approach

In this formulation, the sensor selection problem is relaxed
to a convex optimization [7, Chapter 7.5][8] program as

maximize/minimize
z∈[0,1]m

f(A, z)

subject to 1T z = k.
(12)

The goal is to construct a binary solution z that selects k sen-
sors such that zi indicates whether the ith sensor is selected or
not. The objective function can be adapted to any of the perfor-
mance measures in (3) (4) (5). For example, when considering
the VCE(A1) we maximize f(A, z) = logdet(AT diag(z)A)
since the logarithm of the determinant is concave while for
the MSE(A1) we minimize f(A, z) = tr((AT diag(z)A)−1)
since the trace of the inverse is convex. In order to reach
a convex optimization problem the hard binary constraint

z ∈ {0, 1}m is relaxed to z ∈ [0, 1]m. Unfortunately, the
problem in (12) does not produce binary solutions z in general,
just sub-unitary entries as the relaxation dictates. A rounding
procedure, and usually also a local search, follow.

A similar approach called SparSenSe is proposed in [13]
where the same core optimization problem minimizes the MSE
by selecting a few sensors given a maximum accepted level
of MSE (not a fixed number of activated sensors). Again, a
rounding procedure and potentially a local search can follow.

B. Greedy methods approach

The work of [5] proposes to activate the sensors in the
network according to a greedy procedure. For example, to
minimize MSE in this fashion, given a measurement matrix
A1 as in (10) a greedy scheme asks how to choose a new
measurement aT

j from the given full set A ∈ Rm×n such that

j = argmin
j∈{1,...,m}\I

MSE(Ã1), with ÃT
1 =

[
AT

1 aj

]
, (13)

and then adds the measurement to the active set

I ← I ∪ {j}. (14)

Alternatively, FrameSense [6] uses a greedy procedure
to remove sensors from the network one-by-one such that
the resulting remaining sensors have their frame potential
maximized. We define the frame potential as FP(A) =∑m

i=1

∑m
j=1(a

T
i aj)

2 = ‖ATA‖2F (which has been shown to
achieve its minimum value exactly for α−tight frames [36], in
this case its minimum value is nα2). Using the FP, the authors
of [6] are able to define a submodular objective function and
therefore the greedy approach they deploy is well suited [37]
for the optimization problem they propose. This approach is
interesting because in general the performance indicators (3)
and (4) are not submodular functions under the activation
of new sensors and therefore greedy methods do not seem
particularly well suited for the sensor management problem.
The submodularity of (5) is exploited in [5] where the set
of active sensors is built up at each step. Building up the
set of active sensors is also attractive from a computational
perspective since in general we choose k � m and therefore
[5] will perform less iterations than FrameSense [6].

Since monitoring spatial phenomena can be modeled in
the context of Gaussian processes, a greedy method with
submodularity properties was proposed in [38] to solve the
sensor placement problem with near-optimal results. Using
the same information theoretic approach the authors propose
a branch-and-bound method that guarantees the construction
of the optimal solution.

Another proposed greedy strategy is to add each sensor
one by one according to the maximal projection onto the
minimum eigenspace of a defined dual observation matrix [4].
The method is computationally efficient and very successful
in selecting the most informative sensors because it takes into
account all eigenvalues of the observation matrix to encourage
the two desirable properties (8) and (9). Greedy approaches
to the sensor selection problem face some difficulties. For
example, as pointed in [4], we have hard limitations for the
eigenvalues of ATA when adding measurements one at a time.
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Result 1. Given a positive semidefinite matrix ATA with
eigenvalues λ1 ≥ · · · ≥ λn then ATA+ aaT has eigenvalues
µ1 ≥ · · · ≥ µn that have the interlacing property

µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ · · · ≥ µn ≥ λn. (15)

Proof. A proof is given in [39, Chapter 4]. �
This is one of the reasons given in [4] that the goal to

increase all the eigenvalues λi with each new measurement.
Consider also the following two results.
Result 2. Assume ATA has n eigenvalues λ1 ≥ · · · ≥ λn ≥ 0
in arithmetic progression, i.e, λi = λ1+(i−1)r, i = 2, . . . , n
with r < 0, then the largest eigenvalue µ1 of ATA + aaT ,
where a ∈ Rn is a new measurement, obeys

µ1 ≥ (λ1 + (n− 1)r)(1 + aT (ATA)−1a). (16)

Proof. See Appendix A. �
Result 3. Given the measurements A ∈ Rm×n and any
new measurement a ∈ Rn then the new measurement matrix
ÃT

1 =
[
AT

1 a
]
∈ Rn×(m+1), improves all performance mea-

sures, i.e., MSE(Ã1) ≤ MSE(A1), WCE(Ã1) ≤ WCE(A1),
VCE(Ã1) ≥ VCE(A1) and equality holds only when a =
0n×1. Equivalently, the performance measures are monotoni-
cally decreasing functions with the number of measurements.
Proof. This is an immediate consequence of Result 1. See
Appendix B for a quantitative analysis of the result. �

Result 2 shows that as the eigenvalues become more con-
centrated (a highly desired property by (9)) they might exhibit
a repelling property with regard to the largest eigenvalue when
a new measurement is added. This is turn means that though
ATA behaves as a tight frame we have that ATA+aaT may
no longer behave as such.

Consider the following example. After selecting k sensors
assume that we have reached a best case scenario where all
the eigenvalues of ATA are the same, i.e., λi(ATA) =
α,∀i = 1, . . . , n, but by (7) the resulting mean squared error
MSE(A) = nα−1 is still above a threshold we, the user,
prefer. This means that extra sensors need to be selected to
further reduce the MSE (by Result 3). When the first extra
sensor is activated, by Result 2, we have that λi(ATA) =
λi(A

TA + aaT ) for i = 2, . . . , n − 1, i.e., only the largest
eigenvalue has increased. For the same reason, Result 2, this
behavior generalizes to the case when more extra sensors are
added: from the group of eigenvalues that are equal, only
the largest one increases its value. This means that starting
from the measurements A such that ATA is a tight frame,
we would need to activate in the best case scenario at least
n − 1 extra sensors in order to guarantee that we construct
new measurements Ã such that ÃT Ã is again a tight frame,
with better MSE.

IV. THE PROPOSED OPTIMIZATION TECHNIQUES FOR
SENSOR SELECTION

Given a sensor network, we expect the best accuracy to be
achieved if all its sensors are activated. Therefore, we will
express the MSE performance of A1 relative to the overall
performance of the full network A.

Algorithm 1 – Sensor scheduling by `1 minimization.
Input: The sensing matrix of the network with m sensors
A ∈ Rm×n, the total number of time instances T , the
maximum allowed error ρ > 1, the regularization parameter
λ > 0, the vector of sensing costs s ∈ Rm

+ and the matrix of
communication costs C ∈ Rm×m

+ .
Output: The scheduling table Z ∈ {0, 1}m×T for the sensor
activations at each time step.

Initialization:
1. Set initial weights wt = 1m×1 and initial all-zero

solution zt = 0m×1 for t = 1, . . . , T , i.e., Z = 0m×T .
2. Initialize sets N = ∅ indexing sensors that are not

selected and K = ∅ indexing sensors that are selected.
3. Establish the best MSE performance γ0 by (17).

Iterations:
1. Set Z(prev) ← Z.
2. Update weights according to wij = (z(prev)

ij + ε)−1.
3. Solve (19) or (20) with the ρ provided and the

additional linear equality constraints zij = 1, ∀ (i, j) ∈ K,
and zij = 0, ∀ (i, j) ∈ N , to obtain the current estimate Z
via a standard convex optimization solver [34].

4. Update the sets N = {(i, j) | zij ≤ ε} and K =
{(i, j) | zij ≥ 1− ε}.

5. If the IRL1 iterative process of (19) or (20) has
converged (or 20 iterations have been completed since
the last convergence) and the solution is not binary, i.e.,
‖Z − Z(prev)‖2F ≤ ε and |N | + |K| 6= mT , then set
K ← K ∪ {argmax

(i,j)

zij , (i, j) /∈ K} and update Z such

that zij = 1, ∀ (i, j) ∈ K.
6. If solution is binary, i.e., |N |+ |K| = mT , then stop

otherwise go to step 1 of the iterative process.

Therefore, we introduce the reference (lowest MSE) perfor-
mance of the full network as

γ0 = tr((ATA)−1). (17)

We will impose estimation accuracy levels γ = ργ0 where
ρ ≥ 1, ensuring that we are solving optimization problem
which are feasible. Naturally, with larger ρ we will select fewer
sensors from the network (allowing larger mean squared error)
and vice-versa. When ρ = 1 the only feasible solution is to
select the full sensor network.

A. Energy constraints over multiple time instances

We assume we are given a network of sensors and the
goal is to select the most informative subset of sensors from
the network (i.e., the subset of sensors that achieves some
level of accuracy or mean squared error). This formulation is
equivalent to asking where sensors need to be placed (from a
fixed set of possible locations) such that the resulting network
achieves a minimum level of prescribed accuracy.

In the previous formulation, a particular sensor in the
network is either selected or not (or equivalently, we place
a sensor in a particular place or not) for the whole lifetime
of the network. In some situations this scenario is realistic
while in others it may not be a proper approach. Consider for
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example a scenario where sensors are placed in an observation
field where each sensor has its own energy supply and com-
munications capabilities. If we choose the most informative
sensors and disregard their other constraints we end up with
a solution that will never activate certain sensors, which are
wasted in the network.

In this section we also deal with a scenario where our
goal is to schedule how sensor from a network are selected
over multiple time instances such that at each time instant
we guarantee a certain level of accuracy (e.g., the MSE is
below a threshold) while we also balance the energy and
communications constraints of the sensors.

We deal with m sensors to be scheduled over T time
instances and therefore we define the binary scheduling table

Z =
[
z1 z2 . . . zT

]
∈ {0, 1}m×T , (18)

and we denote the scheduler at time t by zt ∈ {0, 1}m, i.e.,
the columns of Z, we denote zij the (i, j)th entry of Z and
we denote zi the entries of zt. We next propose two ways to
construct this scheduling table.

Implicit energy constraints can be used to ensure that over
the T time instances we do not selected the same sensors each
time. Therefore, we propose the following regularized iterative
reweighted `1 (IRL1) [10] convex optimization problem

minimize
Z∈[0,1]m×T

T∑
t=1

wT
t zt + λmax

(
W

T∑
t=1

zt

)
subject to tr((AT diag(zt)A)−1) ≤ ργ0

T∑
t=1

zt ≥ 1m×1,

(19)

where the weight vectors {wt}Tt=1 ∈ Rm are given as
wij = (zij + ε)−1, i = 1, . . . ,m, j = 1, . . . , T , the
performance level ρ > 1 is given and fixed, W ∈ Rm×m

is a diagonal matrix whose entries are positive and describe
the cost of using any one sensor relative to the others. We
also add an explicit constraint to ensure that each sensor is
selected at least once over all T time instances (if the power
capacity of some sensors is low then they are not added to the
optimization problem). The inequality in the second constraint
applies elementwise. The regularization then penalizes the
repeated use of the same sensor. For example, if sensor i has
no energy constraints then we set Wii = 0 while if Wii = 1
and Wjj = 2 is interpreted as the fact that the jth sensor has
half of the energy supply of the ith sensor.

An explicit energy constraint can be used to formulate
the same problem when energy profiles of the sensors are
available. Consider for example the following regularized
IRL1 convex optimization problem

minimize
e≥0, Z∈[0,1]m×T

T∑
t=1

wT
t zt + λg(e)

subject to tr((AT diag(zt)A)−1) ≤ ργ0
diag(s)Z1T×1 ≤ e0 + e
T∑

t=1

zt ≥ 1m×1,

(20)

where e0 ∈ Rm with (e0)i denoting the reference amount
of energy available to the ith sensor and s ∈ Rm

+ denoting
the cost of using the ith sensor once (the cost of sensing
and processing). The idea of introducing e0 is to establish a
threshold for the energy consumption of each sensor. Ideally,
the goal is to construct Z such that e = 0m×1, i.e., the
sensor network can operate with the prescribed accuracy
and energy consumption constraints, but we do not know a
priori if this is possible (meaning that the problem could be
unfeasible). Therefore, by regularizing with g(e) the objective
function penalizes any excess of energy consumption above
the threshold e0.

The sensing cost vector s and the power upper reference
values e0 are supplied by the user. Deviations from e0 are
penalized in the proposed optimization problem. The regular-
ization function g(e) can be chosen to be either an `2 penalty
g(e) = ‖e‖2 or an `∞ penalty g(e) = ‖e‖∞.

Finally, another energy constraint may deal with the cost of
each sensor to transmit its measurement to a centralized node
where the data from the full network is processed. Throughout
this paper we have assumed this centralized model. In a
simple scenario, each sensor is able to communicate directly
to the central processing node. In this case, the cost of
communication can be integrated into the cost of sensing
denoted by s in (20). Otherwise, depending on the network
topology, the energy constraint in (20) can be modified to

(diag(s) + C)Z1T×1 ≤ e0 + e. (21)

This inequality applies elementwise. We have denoted by C ∈
Rm×m

+ the communication cost of all the sensors. The entry
Cij ≥ 0 expresses the cost incurred by the ith sensor in order
to convey data from the jth sensor to the central node. When
the ith sensor has a direct link to the central processing node
then on the ith row of C has only one non-zero entry, namely
Cii. To clearly illustrate this constraint, an example network
with nine sensors is given in Fig. 1 and its cost matrix is:

C =



∗ 0 0 0 0 0 0 0 0 0
0 ∗ 0 0 0 0 0 0 0 0
0 0 ∗ 0 0 0 0 0 0 0
∗ 0 0 ∗ 0 0 0 0 0 0
∗ 0 0 0 ∗ 0 0 0 0 0
∗ 0 0 0 0 ∗ 0 0 0 0
∗ 0 0 0 0 ∗ ∗ 0 0 0
0 ∗ 0 0 0 0 0 ∗ 0 0
0 ∗ 0 0 0 0 0 0 ∗ 0
0 0 ∗ 0 0 0 0 0 0 ∗


∈ R10×10. (22)

The non-zero values Cij , shown here as “*”, are interpreted as
the cost of transmitting data from the ith to the jth sensor. The
ith line of C denotes the total cost of the sensor network to
transmit data from the ith sensor to the master node. Most of
the previous work (including the papers discussed in Section
III) deals with a single time instance, i.e., T = 1, in which
case the proposed problem is equivalent to the reweighted `1
approach used in [14] for non-linear measurement models.

Algorithm 1 can be directly extended to cover the WCE
and VCE criteria. If we consider the WCE then the con-
straint becomes λmin((A

T diag(zt)A)−1) ≤ ργ0, ρ ≥ 1
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Fig. 1. An example of network topology consisting of m = 100 sensors and
a master node M. In the scenarios we consider each sensor has a dual role:
it can perform a linear measurement and/or forward data from other sensors.
To avoid routing issues, we consider a single (possible multi-hop) predefined
path from each sensor to the master.

where γ0 = λmin(A
TA) and if we consider the VCE we

have log det(AT diag(zt)A) ≥ ργ0, 0 < ρ ≤ 1 where
γ0 = log det(ATA).

B. The proposed optimization procedure

Based on the convex optimization problems described we
now propose a method for the sensor selection problem. The
full procedure is depicted in Algorithm 1.

The method keeps track of two sets N and K that contain
indices of the solution Z that are set to zero and one,
respectively. The procedure terminates only when each entry
of Z has been allocated to either N or K. Usually, convex
optimization approaches to the sensor management problem
relax the hard binary constraint and therefore the solutions
are not binary in general. As such, a rounding procedure
usually follows. In our case, the proposed method deals with
the rounding problem internally in step 5 of Algorithm 1:
if the algorithm has converged and the solution Z is not
binary then take the largest entry from Z that is not in K
and round it to one (and add it to K). Because the IRL1 steps
are not guaranteed to converge in general, we check if 20
iterations have passed since the last time the IRL1 optimization
procedure converged to a non binary solution – if this has
happened then the rounding procedure of step 5 is applied (a
new element is added to K and Z is updated) and the algorithm
continues to step 6. The procedure then continues until the
solution Z is binary. The strength of the method lies in the
fact that the rounding procedure (allocating entries of Z to zero
or one) is used only in two particular situations: the entries are
very close to the extreme values or the optimization procedure
converges before obtaining a binary solution, in which case we
apply the rounding procedure to only one entry (the largest
that is not already in K). This means that almost all entries of
Z are decided by the optimization procedure and not by the
rounding (in stark contrast with the direct `1 approach [8] for
example that performs a single rounding step).

From a computational perspective, the proposed algorithm
is numerically efficient, i.e., it is solved in polynomial time
by off the shelf solvers [34]. Moreover, as the sets N and K
grow in size the optimization problems solved in step 3 of
Algorithm 1 have fewer and fewer variables (from the initial
mT ) – once an entry (i, j) has been allocated to K or N it

will remain there for the remainder of the iterative steps. The
only parameter of Algorithm 1 is set to ε = 10−3.

V. ANALYSIS OF SENSOR SELECTION

The proposed optimization problems are semidefinite pro-
grams (SDPs) with binary constraints used in an iterative
fashion and therefore their analysis in terms of the optimality
of the solution is difficult. In this section we explore several
alternative ways to analyze (on average and worst case) the
performance of sensor management solutions.

A. Results for a tight sensor network

For the purpose of understanding the behavior of the sensor
selection problem, in this section we focus only on sensor net-
works that are characterized by tight measurement matrices A.
While it is true that in practice we do not generally deal with
such frames, this choice is in fact the optimal, as discussed in
Section II, and it appears naturally when considering sampling
strategies of bandlimited graph signals [35, Section III B]
when their defined shift operator is symmetric (for example,
when we use the Laplacian).
Result 4. Assume we are given a sensor network represented
by measurements in the α−tight frame A ∈ Rm×n. Selecting
a subset of n ≤ k ≤ m sensor measurements from A
which we denote A1 = {aT

i }i∈K ∈ Rk×n with AT
1 A1 =∑

i∈K aia
T
i where K = {i1, . . . , ik}, |K| = k then we have

E[MSE(A1)]=
mn

(k − n+ 1)α
,E[WCE(A1)]≥

m

(k − n+ 1)α
,

E[VCE(A1)] = log

(
n!
( α
m

)n( k

k − n

))
.

(23)
Proof. See Appendix C. �

This estimate is slightly biased. For example, when k = m
and α = m we know by (7) that MSE(A1) = MSE(A) =
nm−1 but we have the different estimate E[MSE(A1)] =
n(m − n + 1)−1 > MSE(A). Still, the gap between the two
decreases as m increases in a regime where m� n – in fact,
the gap is approximately (n/m)2. For some choice of n,m
and α, this effect can be seen in Fig. 2: the estimated curve is
above the one empirically observed. It is clear from the figure
that the largest differences are for low k (on the same order
with n) while the gap closes for k approaching m. As we
will also see from the results section, the largest differences
between the performance of the methods we analyze are for
low values of k. Indeed, past research [4] has shown by
numerical experimentation that most of the sensor selection
methods proposed in the literature perform similarly in the
regime k � n.

Also, Result 4 shows that the MSE(A1) and WCE(A1)
decrease on average linearly with the number of selected
sensors. Dependencies with the other dimensions are also
linear and intuitive: increasing the number of parameters to
estimate (n) and the total number of available sensors (m)
leads to worse performance; increasing the energy, essentially
the signal to noise ratio, of the measurement matrix (α)
improves performance. Furthermore, the empirical standard
deviation around the mean MSE decreases with k showing
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Fig. 2. Expected versus empirical values of MSE(A1) constructed by
selecting k sensors from a total of m belonging to random tight frame
A ∈ Rm×n with α = m = 300 and n = 40. Empirical results are
averaged over 105 random sensor selections from A. We show the lower
limit of MSE(A1) which is MSE(A) = nm−1 by (7) and is achieved by
A1 when k = m.

that the largest potential gains in MSE can be achieved only
in the regime where k ≈ n.

B. Relating sensor management to other problems

In this subsection we connect the sensor selection problem
to other fields of research. Subset selection problems have been
seen in many areas of research. For example, the problem of
selecting a subset of column from a matrix such that some
spectral guarantees are obeyed is well studied. Topics such
as column subset selection [40] and the restricted invertibility
problem [41] deal with constructing a matrix by selecting a
subset of columns from a given matrix such that the new
construction has the lowest singular value well above zero
(i.e., the new matrix is well conditioned).

We next detail some research topics closely related to the
sensor selection problem and discuss how these results apply
here and to previous empirical observations from the literature.
Techniques that minimize the condition number of a ma-
trix [42] [43] can also be deployed for the sensor management
problem. Given constants s0, t0 ∈ R+, consider the following
semidefinite program:

minimize
t,s, z∈[0,1]m

t− s+ λwT z

subject to sI � AT diag(z)A � tI
s0 ≤ s ≤ t ≤ t0.

(24)

The inequality sI � AT diag(z)A reads as AT diag(z)A− sI
is positive semidefinite [7, Chapter 2.2.5]. Sensor selection
solutions provided by this optimization problem are well suited
for our purposes since the constraints lead to the design of well
invertible A1 = AT diag(z)A due to the threshold provided
by the s0 � 0 and a tight structure by the variables s and
t. Therefore, the two desired properties are enforced (8) (9).
Solving the problem in (24) (assuming also some rounding
procedure to construct a binary solution z) gives explicit
bounds on the eigenvalues of A1 and therefore by (3) and
(4) we have the following error bounds

n

t0
≤ MSE(A1) ≤

n

s0
,

1

t0
≤WCE(A1) ≤

1

s0
. (25)

The upper bounds hold even after a rounding procedure is
applied on the solution z of (24).
Compressed sensing [44] makes use of measurement matrices
A ∈ Rm×n,m > n, that obey the restricted isometry property

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22, (26)

for a constant δk and any k−sparse vector x ∈ Rn. Let us
denote by A1 ∈ Rk×n any subset of k ≥ n rows from A.
In the case of random matrices obtained from the standard
Gaussian distribution N (0, 1) we have by Gordon’s theorem
for Gaussian matrices [45, Chapter 5] that

(
√
k−
√
n)2≤λn(AT

1 A1)≤λ1(AT
1 A1)≤(

√
k+
√
n)2. (27)

Having these bounds on the extreme eigenvalues of AT
1 A1, it

follows directly that

n

(
√
k +
√
n)2
≤ MSE(A1) ≤

n

(
√
k −
√
n)2

. (28)

This is similar to the simple bound in (7) since E[‖A1‖2F ] =
kn and therefore E[MSE(A1)] ≥ n/k. Notice that in (28)
when k � n we have that MSE(A1) ≈ n/k and therefore,
asymptotically as k → m, A1 behaves as an α−tight frame
with α = 1 (the tightness of random frames was established by
[46, Theorem 1]). Other results from non-asymptotic random
matrix theory [45, Chapter 5] can also be used here to
understand behavior of the extremal eigenvalues and bound
the MSE with high probability.
The solution to the Kadison-Singer problem [47] shows
that given a tight A ∈ Rm×n, i.e., α = 1, where δ =
max

i=1,...,m
‖aT

i ‖22 is the maximum squared `2 norm of the rows of

A there exists a partition of the rows into T sets {S1, . . . , ST }
such that

σ1(ASt
)=
√
λ1(AT

St
ASt

)≤
(

1√
T

+
√
δ

)2

, t = 1, . . . , T. (29)

Therefore with T = m/k for a tight A and denoting At =
ASt

∈ R|St|×n the matrix composed of the rows from A
indexed in the set St, with |St| = k, we have

λ1(A
T
t At) ≤

(√
k

m
+
√
δ

)4

, t = 1, . . . , T. (30)

The value δ for any measurement matrix At ∈ Rk×n can be
estimated by using the Markov inequality and a union bound
to show that

P
(

max
i=1,...,k

‖aT
i ‖22 ≥ cE[‖aT

i ‖22]
)
≤

k∑
i=1

P(‖aT
i ‖22 ≥ cE[‖aT

i ‖22]) ≤
k

c
,

(31)

where E[‖aT
i ‖22] = nm−1 and c = c1k, c1 ≥ 1. Therefore,

with high probability 1 − c−11 we have that δ < c1knm
−1.

Still, empirically we observe that δ is within a constant factor
of the expected value nm−1, i.e., that c = O(1), not c = O(k).
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Fig. 3. Average mean squared error reached by MPME [4] and the proposed
method for the estimation of a variable of size n = 40 with a sensor
network of maximum m = 100 elements. The measurement matrix is random
Gaussian and the results shown are averaged over 100 realizations.

Therefore, all measurement matrices At at each time in-
stance t = 1, . . . , T, obey

MSE(At) =

n∑
i=1

1

λi(AT
t At)

≥ n

λ1(AT
t At)

≥nm
2

k2

(
1 +

√
δm

k

)−4

=
nm2

(
√
k +
√
c1n)4

≈

{
n
(
m
k

)2
, if k � n

m
(1+
√
c1)4

m
k , if k ≈ n.

(32)

This result shows that potentially the MSE can exhibit a
quadratic decrease with the number of selected sensors k. This
is to be compared with (23) that shows a linear decrease of the
expected MSE with k. When k = m the bound in (32) matches
the optimal value of MSE in (7) for α = 1. These bounds are
also reflected in the results from Fig. 2 where we can observe
that for k ≈ n the decrease in MSE achieved by the proposed
method, with the increased number of selected sensors k,
is larger that of a random sensor selection algorithm when
k � n. These insights confirm previous experimental results
from the literature, like [4], where the methods proposed for
sensors selection differ mostly when k ≈ n and are similar
when k � n (or k ≈ m) where even random selections
provide good estimation accuracy (low MSE and WCE).

It is important to mention that constructing a set St such
that (29) is always obeyed is still an open problem. Heuristics
can be proposed similar to the approach presented in this paper
for binary optimization (especially because the bound in (30)
is a convex constraint).

Result (29) essentially states that a tight measurement
matrix A can be partitioned such that the T partitions At

themselves are also approximately tight, i.e., all the At, t =
1, . . . , T, obey (32). For example, this links with our objective
in (19) of avoiding selecting the same sensors by partitioning
the sensor set into disjoint subsets (a severe constraint) while
ensuring that each subset still behaves well, i.e., similar
estimation accuracy of the subsets according to MSE.
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Fig. 4. Comparison of average mean squared error for the estimation of a
variable of size n = 20 with a sensor network of m = 100 sensors. The
measurement matrix is a random α−tight with α = 100 and the results are
averaged over 100 realizations. We explicitly show the MSE lower bound
value nα−1 = 0.2.

VI. RESULTS

In this section we provide experimental numerical simula-
tions to show the performance of the proposed methods and
how they compare with state of the art approaches from the
literature. We also present extensive numerical simulations to
describe the performance of the proposed method to sched-
ule a sensor network over time while also balancing power
consumption.

A. Choosing how many sensors to activate

In the first experimental setting we provide numerical
evidence on how the MSE evolves with the number of se-
lected sensors given a fixed network. In this subsection we
consider a sensor network whose measurements A ∈ Rm×n

are described by a matrix with entries scaled i.i.d. random
Gaussian from a zero mean distribution with variance one, i.e,
Aij ∼

√
mN (0, 1), i = 1, . . . ,m, j = 1, . . . , n.

Results for a network of m = 100 sensors tasked to estimate
an unknown of size n = 40 are shown in Fig. 3. We compare
our proposed method with the state of the art approach MPME
[4]. As previously noted by empirical simulations [4] the
performance of the two methods in terms of MSE is similar
when k � n while there is a small gap in performance
favoring the proposed method when k ≈ n. These results are
expected in light of the discussion in Section V, around Fig.
2, where we give theoretical arguments as to the difference
between the k � n and k ≈ n sensor selection regimes. To
show the performance of the proposed method we evaluate it
for ρ ∈ (1, 10] on a fine grid. Fig. 3 provides an empirical
practical way of choosing the number of sensor to activate
while also balancing the MSE level. Up to k ≈ 60 sensors, the
MSE shows significant decrease while after this level each new
sensor activation has important diminishing returns. Also, to
approach the performance of the full network a large number
(close to m) of sensors need to be activated.

B. Comparisons with previous sensor selection algorithms

Following the experimental setup from [4], in this section
we compare the proposed method with previously proposed
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Fig. 5. Total number of activation of each sensor from the m = 100 elements
of a sensing network described by a α−tight measurement matrix of size
100 × 20 with α = 100. The implicit energy constraint (19) runs with the
regularization parameter λ = 1 and the optimization takes place of T = 10
time instances and the estimation accuracy is fixed to ρ = 3. Overall there
and 342 sensors activations in the network.
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Fig. 6. Total number of activation of each sensor for the same experimental
setup as in Fig. 5 with the regularization parameter λ = 100. Overall there
and 389 sensors activations in the network.

methods from the literature. We choose to simulate a sensor
network with m = 100 elements tasked to recover an unknown
of size n = 20. Fig. 4 shows the simulation results where we
compare with FrameSense [6], convex relaxation (`1 followed
by rounding, using the log determinant approach to minimize
VCE) [8], SparSenSe [13] and MPME [4]. All measurement
matrices used here are α−tight with α = 100. They were con-
structed after projecting random Gaussian matrices on the set
of tight matrices (numerically this is done by taking the polar
factor via a singular value decomposition: A ←

√
αUVT

from the random matrix A = UΣVT ).
MPME [4] and the proposed method perform best, with

similar results. Since MPME [4] is reported to outperform
a direct, one shot, `1 approach followed by rounding, these
results show the benefit of using the iterative reweighted
approach in Algorithm 1. Just as in the previous section, the
proposed method seems to outperform MPME slightly when
the number of selected sensors k is close to n. The other
methods perform significantly worse in this regime while the
performance gaps mostly vanish when k � n. An exception
to this observation is FrameSense [6], which exhibits higher
MSE even when increasing k.

For similar MSE the computational complexities of the
methods play an important role. Although the propose method
runs in polynomial time (due to interior point solver like
[34]) greedy methods are in general preferable in terms of
computational complexity. For the simulations we consider in
this section, Algorithm 1 ran on average for 25 iterations. As
shown in [4], the MPME method is best in terms of computa-
tional complexity. Still, convex optimization approaches have
an edge when some extra constraints are added to the sensor
selection problem (like, as we will see in the following section,
energy and communications constraints). Also, all methods
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Fig. 7. Maximum sensor utilization max
(∑T

t=1 zt
)

versus total sensor

utilization
∑m

i=1

∑T
j=1 zij for a sensor network of m = 100 elements over

T = 10 time instances. The experimental setup is such that in all six points
of the plot we have the same minimum accuracy (MSE) in an estimation task
performed by the network. The point (10, 342) corresponds to Fig. 5 and the
point (6, 389) to Fig. 6. The experimental setup is the same as in 5 but with
various values for the regularization parameter λ.

in this paper run without the local search mechanisms often
deployed, like in [4] or [8], since these do not supply in general
any great improvement.

C. Sensor selection with energy and communication con-
straints

To show the versatility of the convex optimization approach
to the sensor selection problem we show how to deal with
energy and communication constraints when scheduling the
usage of a sensor network over multiple time instances.

First, we show the implicit energy constraint approach, i.e.,
without any explicit information about the energy profiles
of the sensors our goal is to operate the sensor network
over T time instances such that we do not activate the same
sensors at each time. The `1/`∞ style optimization problem
(19) balances between the estimation accuracy of the sensor
network and making sure that the sensing is distributed more
evenly between the network’s sensors. Results are shown in
Fig. 5 and 6. With the larger regularization parameter λ = 100
the results in Fig. 6 show a more balanced activation of the
sensors, as opposed to the results in Fig. 5 that are obtained
for a smaller λ = 1. With higher parameters λ the sensor
scheduling problem is regularized to select less often the same
sensors (for example in Fig. 6 most sensors are selected four,
five or maximum six times as compared to Fig. 5 where several
sensors are selected in all ten time instances), but at the cost
of activating, overall, a larger number of sensors over the ten
time instances.

The almost flat envelope of Fig. 6 is typical of solutions
to convex optimization problems that involve `∞ regularized
objective functions (for details see [7, Chapter 6]). The almost
uniform activation of the sensors over time distributes the
sensing workload of the network ensuring balanced power
consumption together with increased robustness and fault
tolerance in case of any particular sensor failure. Fig. 7 shows
one of the side effects of the proposed optimization procedure:
we can reduce the frequency with which one particular sensor
is activated but at the cost of activating other (possibly many
more) sensors from the network such that it operates with
the same estimation accuracy. Fig. 8 compares the proposed
algorithm with a previously introduced method that uses a `2
regularized penalty [29], instead of the `∞ used in this paper,
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Fig. 8. Comparison of the total number of activation of each sensor between
the proposed approach and a previously introduced `2 regularization approach
[29] for selection balancing. The effect of the proposed `∞ regularization can
be seen as most sensors are selected four times and the most used sensors
peak at six. We have the same experimental setup as in Fig. 5.
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Fig. 9. Pareto curve of energy consumption versus MSE levels obtained by
(20) with λ = 103 over T = 10 time instances for a fixed sensor network of
m = 100 elements that estimate an unknown of size n = 20. The network
topology we consider is shown in Fig. 1.

to discourage the selection of the same sensors over time. Our
method shows a lower variance and a lower maximum for the
total number of activations of each separate sensor.

Finally, we also show how the proposed algorithm can be
applied to schedule a sensor network when absolute energy
and communications costs are available. In terms of the
sensing cost, we take it as

si = O(‖aT
i ‖22), i = 1, . . . ,m, (33)

meaning that the sensing cost is proportional to the quality of
the measurement, its `2 energy. The cost of the communica-
tions for the ith sensor is a fraction of the sensing cost

cii = O(si), i = 1, . . . ,m. (34)

We take the sensor network topology in Fig. 1 to which
we attach a Gaussian random measurement matrix. We will
consider that no reference energy levels are available, i.e.,
e0 = 0m×1, and that the energy penalty is reflected by
the cost function g(e) = ‖e‖22 in (20). In Fig. 9 we show
the trade-off between the achievable MSE levels versus the
energy consumption of the sensor network. To achieve the
lowest levels of MSE we of course need (almost) all the
sensors to be active (almost) all the time and therefore the

energy consumption of the network is highest. Giving up some
accuracy in the MSE has a positive impact on the energy
consumption, especially at the limit of the best accuracy.
Depending on the available energy supplies, Fig. 9 shows what
levels estimation accuracy in terms of MSE are possible with
the sensor network.

Regarding the running time, although it exhibits polynomial
complexity, the proposed method is slower than some of the
state-of-the-art methods from the literature, especially the ones
based on greedy iterations. For example, for m = 100 and
n = 20, averaged over 100 realizations the MPME [4] is
computationally efficient with running times well below one
second while the proposed method take about one minute to
complete on a modern computing Intel i7 R© system. Therefore,
the proposed method is now well suited for highly dynamical
sensor network scheduling. As previously mentioned, the
advantage of convex optimization based solutions is that they
allow easy generalizations (like operating the sensor network
over multiple time instances, without repetition of sensor
selection) and allow the addition of extra constraints (like
energy and communications).

VII. CONCLUSIONS

In this paper we describe a new algorithm based on a convex
optimization approach to deal with the sensor placement and
scheduling problems. Our method is competitive against state-
of-the-art sensor management methods while it also allows
scheduling the network operations over time and with energy
and communication costs and constraints. We are also able to
show that when the sensor network measurements are given
by a tight measurement matrix then we can expect the mean
squared error of the estimation to decrease on average linearly
with the number of active sensors. We also give a lower bound
showing a potential quadratic decrease in the mean square
error (in the best case scenario) with the number of active
sensors. These theoretical insights into the sensor selection
problem hold generally and are independent of the algorithmic
approaches used. Furthermore, we show that sensor activation
or scheduling with a tight measurement system is equivalent
to sampling set selection for bandlimited graph signals and
therefore the results presented in this paper are also relevant
to the field of graph signal processing.

APPENDIX A
PROOF OF RESULT 2

We use the determinant lemma det(ATA + aaT ) =
det(ATA)(1 + aT (ATA)−1a) to reach

µ1 =
λ1(λ1 + r) . . . (λ1 + (n− 1)r)

µ2 . . . µn
(1 + aT (ATA)−1a)

≥λ1(λ1 + r) . . . (λ1 + (n− 1)r)

λ1 . . . (λ1 + (n− 2)r)
(1 + aT (ATA)−1a)

=(λ1 + (n− 1)r)(1 + aT (ATA)−1a).

The inequality holds when µi = λi−1, i = 2, . . . , n – the
maximum values for µi according to (15). For example, when
r = 0 all the eigenvalues of ATA are the same λ1 and we
have that µi = λ1, i = 2, . . . , n while µ1 = (1+aTA−1a)λ1.
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APPENDIX B
PROOF OF RESULT 3

This qualitative result follows straight forward from the fact
that the eigenvalues of ATA are all smaller or equal than the
eigenvalues of ÃT Ã = ATA + aaT , by Result 1.

A quantitative analysis can also be made for the perfor-
mance indicators. For the VCE we can use the determinant
inversion lemma

det(ATA + aaT ) =det(ATA)(1 + aT (ATA)−1a)

≥ det(ATA),∀ a ∈ Rn.

For the MSE we can use the matrix inversion lemma

tr((ATA + aaT )−1) =tr((ATA)−1)− ‖(ATA)−1a‖22
1 + aT (ATA)−1a

≤tr((ATA)−1),∀ a ∈ Rn.

In the case of the WCE we can bound the least singular value.
Given a matrix A ∈ Rm×n and a row a ∈ Rn then for
extended matrix ÃT =

[
AT a

]
∈ Rn×(m+1) we have(

λ−1/2n (ATA)− ‖(ÃT Ã)−1a‖22
1− aT (ÃT Ã)−1a

)−2
≥λn(ÃT Ã). (35)

To show this we start by defining the smallest singular value

σ−1min(A)=

√
λ−1n (ATA)=‖A−1‖2=

√
λ1((ATA)−1).

We use the fact that ATA = ÃT Ã − aaT and use the
Sherman-Morrison-Woodbury formula (ATA)−1 = (ÃT Ã−
aaT )−1 = (ÃT Ã)−1 + (ÃT Ã)−1aaT (ÃT Ã)−1

1−aT (ÃT Ã)−1a
to reach

σ−1min(Ã) ≥ σ−1min(A) − ‖(ÃT Ã)−1a‖22
1−aT (ÃT Ã)−1a

. Result (35) follows
directly from this last inequality.

In the special case of an invertible matrix A ∈ Rn×n and
a row a ∈ Rn then for extended matrix ÃT =

[
AT a

]
∈

Rn×(n+1) we have

λn(A
TA)≤λn(ÃT Ã)≤

(
1 + ‖aTA−1‖22

)
λn(A

TA).

To show this we start by developing

Ã =

[
A
aT

]
=

[
A

aTA−1A

]
=

[
I

aTA−1

]
A.

We know that σmin(XY) ≤ ‖X‖2σmin(Y) by the Courant-
Fischer-Weyl min-max principle. Coupled with the fact that
the matrix

[
I (aTA−1)T

]T
has all singular values 1 expect

for the largest which is
√

1 + ‖aTA−1‖22 we reach the result.
The final inequality follows from

1 + ‖aTA−1‖22 ≤ 1 + σ−2min(A)‖a‖22.

The equality holds when we choose a to be any multi-
ple of the right singular vector associated with σmin(A).
Overall the inequalities become σmin(A) ≤ σmin(Ã) ≤(√

1 + ‖aTA−1‖22
)
σmin(A) ≤

√
σ2
min(A) + ‖a‖22. To-

gether with Result 1 we ultimately have that

σmin(Ã) ≤ min

{√
σ2
min(A) + ‖a‖22, σn−1

}
.

APPENDIX C
PROOF OF RESULT 4

We will use results presented in [48] to prove theorems
about the expected characteristic polynomials of matrices that
are changed by rank 1 updates. Consider first that for the
α−tight frame AT =

[
a1 a2 . . . am

]
∈ Rn×m and given

any vector u such that ‖u‖2 = 1 we have that

E[(uTaavg)
2] =

1

m

m∑
i=1

(uTai)
2 =

α‖u‖22
m

=
α

m
, (36)

where we have defined the average frame vector aavg =
1√
m

∑m
i=1 ai.

If we denote by pAT
1 A1

(x) the characteristic polynomial of
AT

1 A1 then the characteristic polynomial of AT
1 A1 + aaT is

pAT
1 A1+aaT (x) = det(xI− (AT

1 A1 + aaT ))

=det((xI−AT
1 A1)− aaT )

=det(xI−AT
1 A1)(1− aT (xI−AT

1 A1)
−1a)

=pAT
1 A1

(x)

(
1−

n∑
i=1

(uT
i a)2

x− λi(AT
1 A1)

)
,

where λi(AT
1 A1) are the eigenvalues of AT

1 A1 corresponding
to eigenvectors uj . Denoting by K the set of indices already
selected, if we choose any a ∈ {ai}mi=1,i/∈K and use (36) we
can show that

E[pAT
1 A1+aaT (x)] =E[pAT

1 A1
(x)]

(
1−

n∑
i=1

αm−1

x− λi(AT
1 A1)

)
=E[pAT

1 A1
(x)]− α

m
E[pAT

1 A1
(x)]′.

Starting from an empty (all zeros) matrix AT
1 A1, i.e.,

K = ∅, that has the characteristic polynomial p(0)
AT

1 A1
(x) =

p0n×n
(x) = xn after adding k rank 1 updates of the type aaT

leads to the matrix AT
1 A1 with the expected characteristic

polynomial is

E[p(k)
AT

1 A1
(x)] =E[p(k−1)

AT
1 A1

(x)]− α

m
E[p(k−1)

AT
1 A1

(x)]′

=a(k)n xn + · · ·+ a
(k)
1 x+ a

(k)
0 .

The results in (23) follow from Vieta’s formulas that relate
roots of polynomials to their coefficients. The expected value
of the VCE(A1) follows directly as the constant coefficient of
the expected characteristic polynomial since it is the product
of the roots while for the MSE(A1) we have
n∑

i=1

1

λi(AT
1 A1)

=

∏
i6=1 λi(A

T
1 A1) + · · ·+

∏
i 6=n λi(A

T
1 A1)∏n

i=1 λi(A
T
1 A1)

.

From this it follows that

E[MSE(A1)] = −
a
(k)
1

a
(k)
0

, E[WCE(A1)] ≥ −
a
(k)
1

a
(k)
0 n

,

E[VCE(A1)] = log(a
(k)
0 ).

Notice that for k = n the expected characteristic polynomial
is an associated Laguerre polynomial n!Ln(x) [49] with
coefficients

a
(n)
i =

(−1)in!
i!

( α
m

)n−i(n
i

)
, i = 0, . . . , n.
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Then for k ≥ n we have the coefficients of interest

a
(k)
0 =n!

( α
m

)n( k

k − n

)
, a

(k)
1 =−n!

( α
m

)n−1( k

k − n+ 1

)
.

(37)
Since we are dealing with positive semidefinite matrices the
expected values have to be positive and therefore once we
have written the values for a(k)0 and a(k)1 results in (23) follow
immediately from (37).
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