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Abstract 29 

Extreme temperatures affected the populous regions, like eastern China, causing substantial 30 

socio-economic losses. It is beneficial to explore whether the frequencies of absolute or 31 

threshold-based extreme temperatures have been changed by human activities, such as 32 

anthropogenic emissions of greenhouse gases (GHGs). In this study, we compared observed and 33 

multi-model-simulated changes in the frequencies of summer days, tropical nights, icing days, and 34 

frost nights in eastern China for the years 1960-2012, using an optimal fingerprinting method. 35 

Observed long-term trends in the regional mean frequencies of these four indices are +2.36, +1.62, 36 

-0.94, -3.02 days decade
-1

. Models perform better in simulating the observed frequency change in 37 

daytime extreme temperatures than nighttime ones. Anthropogenic influences are detectable in the 38 

observed frequency changes of these four temperature extreme indices. The influence of natural 39 

forcings cannot be robustly detected in any indices. Further analysis found that the effects of GHGs 40 

changed the frequencies of summer days (tropical nights, icing days, frost nights) by +3.48±1.45 41 

(+2.99±1.35, -2.52±1.28, -4.11±1.48) days decade
-1

. Other anthropogenic forcing agents 42 

(dominated by anthropogenic aerosols) offset the GHGs effect and changed the frequencies of these 43 

four indices by -1.53±0.78, -1.49±0.94, +1.84±1.07, +1.45±1.26 days decade
-1

, respectively. Little 44 

influence of natural forcings was found in the observed frequency changes of these four 45 

temperature extreme indices. 46 

 47 

 48 

1. Introduction 49 

Extreme temperatures bring a substantial risk to human health, agriculture, and ecosystem services 50 

(Field et al 2012). Association between human activities and extreme temperatures are often studied, 51 

especially after many places on the globe have encountered unprecedented extreme weather, such as 52 

Europe in the summer of 2003
 
(Stott et al 2004), and eastern United States in the winter of 2014 53 

(Trenary et al 2015). Extreme temperatures spread over central-eastern China in the summer of 54 

2013 and eastern China in the winter of 2016, causing unprecedented death rolls and 55 

socio-economical losses
 
(Sun et al 2014; Wang et al 2017; Qian et al 2017). Exploring the roles of 56 

external drivers in the frequency changes of extreme temperatures is urgent, in order to provide 57 
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reliable projections of extreme temperatures and indicative references for the adaptation and 58 

mitigation of regional climate change. 59 

Previous detection and attribution studies focused on the changes in annual maxima/minima of 60 

daily temperatures
 
(Christidis et al 2011; 2015; Wen et al 2013; Kim et al 2016; Yin et al 2017) and 61 

percentile-based extreme temperatures
 
(Christidis et al 2005; Morak et al 2011; 2013; Lu et al 62 

2016), and indicated that human influence has contributed to these changes at global and regional 63 

scales (Stott et al 2016). A pioneer study conducted by Hegerl et al (2004) examined whether the 64 

changes in extreme temperatures are detectable in a perfect model configuration. They found that 65 

the difficulty in detection of changes in extreme temperatures is no more than the detection of 66 

changes in its mean state. Christidis et al (2005) first used the optimal fingerprinting method to 67 

detect the anthropogenic influences on the changes in extreme temperatures during the second half 68 

of the last century. As for China, Wen et al (2013) and Yin et al (2017) used an optimal detection 69 

method to detect human influence on the changes in annual maxima and minima of daily 70 

temperatures in China. They found that anthropogenic influences are detectable in the changes of 71 

extreme temperatures in China. Lu et al (2016) conducted detection analysis on the frequencies of 72 

percentile-based extreme temperatures in China during the period 1958-2002, and also found the 73 

clear anthropogenic signals in the observed frequency changes in relatively warmer and colder days 74 

and nights. 75 

However, socio-economic stress from extreme temperatures is mostly felt through the changes in 76 

absolute or threshold-based extreme high or low temperatures. We focus especially on absolute 77 

extreme temperatures precisely because of their practical significance. Threshold-based extreme 78 

temperatures directly contribute to increased discomfort and mortality rates, and agricultural and 79 

hydrological disaster losses (Basu and Samet 2002; Bai et al 2014; Lesk et al 2016). Current 80 

detection and attribution studies require signals from climate model simulations. One of the major 81 

challenges faced by the attribution studies of changes in threshold-based extreme temperatures is 82 

that current climate models cannot well represent the mean state of surface air temperature at 83 

regional scales
 
(Sun et al 2015). Simulated frequency changes in the threshold-based extreme 84 

temperatures tend to be sensitive to this model potential bias. Therefore, before calculating the 85 
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frequency of these extreme temperatures, we need to evaluate the model performance. In addition, 86 

changes in daily maximum (Tmax) and minimum (Tmin) temperatures are dominated by the 87 

variations of surface solar radiation and net longwave radiation, respectively (Zhou and Wang 2016). 88 

Human influence on the changes in the daytime and nighttime temperatures is unlikely to be 89 

identical, as is the case for extreme temperatures. 90 

In this study, we choose four indices of absolute extreme temperatures as defined by the Expert 91 

Team on Climate Change Detection and Indices (ETCCDI; www.climdex.org/indices.html) and 92 

previous studies (Alexander et al 2006; Zhang et al 2011) and study the frequency changes in 93 

daytime and nighttime extreme temperatures separately. We measure the days with Tmax higher 94 

than 25°C as summer days and the night with Tmin higher than 20°C as tropical nights. We also 95 

count the days with Tmax and Tmin lower than 0°C as icing days and frost nights, respectively. We 96 

employ an optimal fingerprinting technique to detect and attribute the influences of human 97 

activities-including greenhouse gases and other anthropogenic forcings (dominated by 98 

anthropogenic aerosols), and natural external forcings (combined effect of solar radiation and 99 

aerosols from volcanic eruptions) in these long-term changes. 100 

 101 

2. Data and Methods 102 

2.1. Observations 103 

We use a newly homogenized daily Tmax and Tmin dataset observed at 753 Chinese 104 

meteorological stations for 1960-2012 (figure S1). The temperature observations we use have been 105 

quality-controlled and adjusted for most non-climatic biases due to the changes in the local 106 

observing system, such as station relocation (Li and Yan 2009; Li et al 2016). 107 

Since the horizontal resolutions of climate models are in the range of 1-3°, we divide the mainland 108 

of eastern China into 2°×2° resolution grid boxes and construct a regional gridded temperature 109 

dataset using available observations within each grid box. Specifically, we first calculate the 110 

climatological mean annual cycle (base period: 1960-2012) and daily temperature anomalies at each 111 

station. Given that temperature is dependent of elevation, for the boxes where topography has a 112 

wide range and stations are unevenly distributed, there might be certain derivation in the extreme 113 

http://www.climdex.org/indices.html


5 
 

temperatures if the gridded temperature is developed by simple averaging of the individual station 114 

within each grid box. Hence, we need to correct the elevation-related bias in the temperature mean 115 

state within each grid box. Considering the lapse rate of near-surface air temperature is 116 

time-varying and region-dependent, use of a fixed temperature lapse rate could be problematic on 117 

the complex terrains in China. Following Li et al (2013), we divide the whole mainland China into 118 

24 sub-regions (figure S1). We use the multiple linear regression method including the effects of 119 

latitude, longitude, and elevation to estimate the lapse rates of Tmax and Tmin for each sub-region 120 

and each month (figure S2). Terrain-based global 0.25°×0.25° land elevation and ocean depth 121 

dataset (TBASE) (http://research.jisao.washington.edu/data_sets/elevation/) is applied to estimate 122 

the averaged elevation within each grid box (figure S3). The local elevation bias in climatological 123 

mean annual cycle of the individual station is adjusted based on the spatiotemporal-varying 124 

temperature lapse rates. The final gridded dataset is obtained by adding the station average 125 

temperature anomalies to the station average elevation-bias-corrected climatological mean annual 126 

cycle for each grid box. Furthermore, to estimate the regional averages precisely, we establish a set 127 

of areal weights of land fraction by considering their latitude-dependent feature and the influence of 128 

coast and island (figure S4). 129 

 130 

2.2. Model Simulations 131 

We use the CMIP5 simulations to estimate the responses of extreme temperatures to external 132 

forcings and the internal climate variability. Table 1 lists all the available CMIP5 models used in 133 

this study. All the experiments with specific forcings have three or more members and produce 134 

daily outputs. We first evaluate the skill of climate models with ALL forcing in simulating the 135 

climatological mean of Tmax and Tmin. As shown in figures S5 and S6, climate models tend to 136 

perform better over eastern China than western China. There are two explanations for this 137 

discrepancy: (1) the station density in western China is much lower than eastern China (figure S1); 138 

(2) the topography in western China is much more complex than eastern China, which is poorly 139 

captured in models with resolutions of around 1-3 degrees (figure S3). The gridded temperature 140 

values can be affected seriously by individual station with local effects. We focus our analysis on 141 

eastern China (east of 105 ºE) also because the majority of China’s people live in the eastern 142 
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segment of the country. 143 

We calculate the time series of simulated regional mean frequency of extreme temperatures in 144 

eastern China, and compared them with the observed ones (figure S7). Results illustrate a good 145 

consistency between the observed and simulated frequency of summer days and tropical nights in 146 

eastern China, thought models tend to overestimate the frequencies of icing days and frost nights in 147 

eastern China by on average 33.6% (14.1 days) and 13.8% (14.4 days), respectively. However, in 148 

western China, the spread of simulated frequencies of extreme temperatures is very large (figure 149 

S8). It implies that CMIP5 models can hardly capture the mean state and variability of surface air 150 

temperature in western China. Based on these evaluations, we focus on eastern China in this study. 151 

We use 32 simulations from 5 models driven by combined anthropogenic and natural forcing (ALL); 152 

23 simulations from 5 models driven by natural forcing only (NAT) and greenhouse gas forcing 153 

only (GHG) (Table 1). All simulations end in 2012. The more recent years are not included in this 154 

study, as most of the model simulations required for the detection analyses are ended in 2012. It is 155 

assumed that the temperature extreme responses to historical anthropogenic (ANT) and NAT 156 

forcings are linearly additive and the difference between the ALL and NAT responses can be 157 

estimated as ANT response. Annual anomalies, with respect to 1960-2012, are computed from the 158 

resulting regional average frequency of extreme temperatures from observations and individual 159 

model runs, using the same sets of space data masks and areal weights. We compute the ensemble 160 

means for individual models and then average the ensemble means to give the expected 161 

multi-model response to large-scale external forcings. Thus, the patterns we consider are the annual 162 

anomalies of the frequency of extreme temperatures. 163 

 164 

2.3. Optimal Fingerprinting Method 165 

We use an optimal fingerprinting method in which observations (y) are expressed as a sum of scaled 166 

model-simulated fingerprint patterns (X) plus internal climate variability (ε) as y = Xβ + ε. The 167 

scaling factors β adjust the magnitude of the fingerprints to best match the observations. The 168 

multi-model ensemble averages of forced (ALL, GHG and NAT) simulations are used to estimate 169 

the fingerprints, and the pre-industrial control (CTL) simulations are used to estimate internal 170 

climate variability. The regression is fitted based on the Eq. (4) in Allen and Tett (1999): �̃�= 171 
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( 𝐗𝑻𝑪𝑵
−𝟏 X)

-1 𝐗𝑻𝑪𝑵
−𝟏 y. We compute non-overlapping three-year-mean time series of the 172 

multi-model-simulated regional mean frequency of extreme temperatures as the forced response or 173 

signal for the specific forcing (X), which includes 18 data values for the period 1960-2012. 174 

Observations are processed in the same way as the simulations. Fitting and testing the regression 175 

models need two independent estimates of the inversed covariance structure of internal climate 176 

variability (𝑪𝑵
−𝟏). We use the CTL simulations and the inter-ensemble difference from forced 177 

simulations to estimate them. Time series from CTL simulations are divided into 60 178 

non-overlapping 53-year chunks and similarly masked to be in accord with observations in space. 179 

Additional 79 non-overlapping 53-year chunks are constructed using inter-ensemble differences 180 

from forced simulations (ALL: 33; GHG: 23; NAT: 23). We separate each set of chunks from CTL 181 

simulations or forced simulations into two groups sequentially. The first group of chunks is used to 182 

pre-whitening the data and the second group is used for the uncertainty analysis on the estimation of 183 

scaling factors (�̃�). Instead of decreasing the dimension via a projection on the first k leading 184 

empirical orthogonal functions, we use a regularized estimate of the covariance matrix of the 185 

internal climate variability (Ribes et al 2009). Regularized estimate of the covariance matrix can 186 

avoid the underestimation of the lowest eigenvalues that occurs in original covariance matrix and 187 

ensure the covariance matrix is full rank (Ribes et al 2013). We apply Eq. (19) provided by Allen 188 

and Tett (1999) to conduct residual consistency checks to detect model inadequacy. Result show 189 

that all the regression models can pass this test, which means that climate models are able to 190 

simulate the internal variability of the frequency of extreme temperatures in eastern China 191 

reasonably well. 192 

Based on the Eq. (6) and Eq. (7) in Allen and Tett (1999), we estimate the variance-covariance 193 

matrices of the internal variability noise by using the first set of non-overlapping 53-year chucks. 194 

We obtain the 5-95% uncertainty range of scaling factors by assuming that the internal variability 195 

noise is normally-distributed. To estimate the probability distribution functions of the contributions 196 

from different forcing agents, we generate random samples of 10000,000 values from the normal 197 

distribution of estimated scaling factors and multiply the forced trends in different signals by these 198 

random numbers. 199 

 200 
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3. Results 201 

3.1. Patterns and one-signal detection analysis 202 

Figure 1 shows the spatial distributions of observed trends in the frequencies of the four extreme 203 

temperature indices. Summer days have increased significantly over the northeastern China 204 

(120-135°E, 40-55°N; +2.67 days decade
-1

) and the middle and lower reaches of Yangtze River 205 

(110-125°E, 28-32°N; +2.99 days decade
-1

). The occurrences of tropical nights increased mainly 206 

over the Yangtze-Huaihe River basin (115-125°E, 28-34°N; +2.62 days decade
-1

) and part of 207 

southern China (105-115°E, 18-24°N; +3.91 days decade
-1

). Significant declining trends in icing 208 

days (-2.24 days decade
-1

) and frost nights (-3.35 days decade
-1

) are found in the northwest of North 209 

China (105-115°E, 35-42°N). Frost nights also have decreased significantly over the northeastern 210 

China (-3.52 days decade
-1

) and the Yangtze-Huaihe River basin (-4.22 days decade
-1

). Figure 2 211 

displays the time evolution of the observed and simulated frequency anomalies of the four indices 212 

in eastern China. The observed changes in extreme temperatures keep pace with the 213 

multi-model-simulated responses to ALL forcing, but not with the simulated responses to NAT 214 

forcing. We first apply the optimal fingerprinting method (Allen and Tett 1999) to scale the 215 

modeled time series of extreme temperatures in eastern China with ALL forcing to best fit the 216 

observations. As shown in figure 3, one-signal analysis suggests that climate models with ALL 217 

forcing can well reproduce the observed frequency change in summer days and icing days, and has 218 

scaling factor estimates consistent with the value one though bear certain internal variability. 219 

However, climate models tend to overestimate (underestimate) the frequency change in tropical 220 

nights (frost nights). This implies that model perform better in simulating the observed frequency 221 

change in daytime extreme temperatures than nighttime extremes. Though focusing on 222 

percentile-based extreme temperatures, Lu et al (2016) also found that climate models with ALL 223 

forcing do a better job in reproducing the frequency changes in daytime extreme indices than 224 

nighttime indices. It may be associated with the model’s deficiency in reproducing the seasonality 225 

of warming trends in Tmin in eastern China. Lewis and Karoly (2013) found that the Tmin trends 226 

are noticeably subdued by the CMIP5 models, particularly in the boreal winter, when shallow 227 

boundary layer and soil freezing and thawing cycles are likely difficult to be simulated realistically. 228 

On the other hand, direct visual inspection of figure 2 illustrates that the uncertainty ranges in the 229 
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scaling factors for cold extremes are larger than warm extremes, which implies smaller variability 230 

in the frequency of simulated cold extremes than that of observed ones. Other studies also found 231 

similar result existing in the changes in the maxima and minimum of daily temperatures (Morak et 232 

al 2013; Wen et al 2013; Yin et al 2017). A possible cause for this is that the strong internal 233 

variability of winter extreme temperatures in eastern China was underestimated by the CMIP5 234 

climate models (figure 2 and figure S7). Increased GHG enhances downward longwave radiation 235 

and hence increases the surface air temperature and change the frequency of temperature extremes. 236 

Meanwhile, the increased water vapor in warmer atmosphere can further increase downward 237 

longwave radiation. However, other anthropogenic forcing agents (e.g., aerosols) can decrease 238 

daytime temperature and change the frequency of daytime extremes directly by obstacling 239 

downward solar radiation and indirectly by changing the properties of clouds. Natural forcing 240 

agents, such as solar variability and volcanic eruptions, may also lead to the variations of surface air 241 

temperature and change the frequency of extreme temperatures by modulating solar radiation at the 242 

surface and the interaction between aerosols and clouds. The respective roles of anthropogenic and 243 

natural forcings in the change of extreme temperatures remain to be elucidated. 244 

 245 

3.2. Two-signal detection analysis 246 

To detect the effects of ANT and NAT forcings in the same framework, we conduct two-signal 247 

detection analysis. As shown in figure 4, the 5-95% uncertainty ranges of ANT scaling factors for 248 

the four indices do not include zero and the 90% confidence ellipse regions do not covers the origin 249 

of x-y coordinates. This indicates that the effect of ANT forcings can be clearly detected, and the 250 

climate responses of ANT and NAT forcings can be well separated from each other. In other words, 251 

the influence of human activities is detectable in the frequency change of these four temperature 252 

extreme indices. Except summer days, the 5-95% uncertainty ranges of NAT scaling factors for 253 

other indices all include zero, suggesting that the effects of NAT forcings on their frequency 254 

changes are undetectable. 255 

 256 

3.3. Three-signal detection analysis 257 

To examine the influences of individual groups of anthropogenic forcing agents, we conduct 258 
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three-signal analysis to scale the model responses of GHG, OANT (ALL minus the sum of GHG 259 

and NAT) and NAT for the optimal agreement with observed frequency changes in extreme 260 

temperatures. As shown in figure 5, results reveal that the effects of anthropogenic increase in 261 

GHGs can be clearly detected in the frequency changes of these four indices. Models appear to 262 

underestimate the effects of GHG on the changes in icing days and frost nights by a factor close 263 

to two. It is inferred that the model’s deficiency in the effects of GHG on the changes in cold-season 264 

extreme temperatures is associated with an underestimation of GHG-forced temperature changes in 265 

cold season in eastern China. Morak et al (2013) found that the HadGEM1 model significantly 266 

underestimate the changes in extreme temperatures in winter across large parts of Asia. Chen and 267 

Frauenfeld (2014) found that the winter warming in the CMIP5 models is only about half (one 268 

fourth) of the observed warming in China for the period of 1901-1999 (1950-1999). The effects of 269 

OANT are also detectable, but with larger uncertainty. For all extremes indices, OANT effects are 270 

underestimated by the models. This may be due to the omission or simplification of the indirect 271 

effects of anthropogenic aerosols in some climate models, such as CanESM2 and IPSL-CM5A-LR 272 

(Hu et al 2014). Except summer days, the influence of NAT forcings on other indices cannot be 273 

detected. These analyses demonstrate that human-induced rise in greenhouse gas has imposed 274 

detectable impact on the frequency change in extreme temperatures over eastern China. 275 

 276 

3.4. Attribution 277 

Based on the estimate results of three-signal analyses, we quantify contributions to the frequency 278 

changes of extreme temperatures to individual factors through multiplying the simulated trends in 279 

GHG, OANT and NAT signals by the respective scaling factors. As shown in figure 6, we find that 280 

the observed frequency changes in extreme temperatures are the net result of the counter-acting 281 

effects from GHG and OANT forcing agents, since NAT forcing imposes little influence on these 282 

changes. Among three individual components of ALL forcings, the effects of anthropogenic 283 

emission of GHG is dominant and has changed the frequencies of summer days (tropical nights, 284 

icing days, frost nights) by the rates of +3.48±1.45 (+2.99±1.35, -2.52±1.28, -4.11±1.48) days 285 

decade
-1

. Other anthropogenic forcing agents (dominated by anthropogenic aerosols) offset the 286 

GHGs effect and changed the frequencies of these four indices by -1.53±0.78, -1.49±0.94, 287 
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+1.84±1.07, +1.45±1.26 days decade
-1

, respectively. 288 

 289 

3.5. Robustness test 290 

To further evaluate the robustness of above results, we repeat these analyses based on the 291 

five-year-mean series. As shown in figure S9, results from two-signal detection analyses are 292 

generally in line with those with three-year-mean series. The influence of human activities (ANT) 293 

can be clearly detected in the observed frequency change of the four extreme indices. However, the 294 

effects of NAT forcing can no longer be detected in the change in summer days. Three-signal 295 

detection analyses based on five-year-mean series also indicate that ANT influences (GHG and 296 

OANT) are detectable in the frequency changes of extreme temperatures (figure S10). And the 297 

influence of natural forcings cannot be robustly detected in any indices. All the detection analyses 298 

suggest that anthropogenic influences are responsible for the observed frequency changes of these 299 

four temperature extreme indices. 300 

 301 

4. Summary 302 

In this study, we used optimal fingerprinting method to compare the observed and 303 

multi-model-simulated frequency changes in four absolute extreme temperatures indices in eastern 304 

China for the period 1960-2012. Our detection analyses include two-signal analysis using climate 305 

responses to ANT and NAT forcings, and three-signal analysis using the signals of GHG, OANT, 306 

and NAT forcings. We found that the influences of human activities and natural external forcing can 307 

be clearly separated from each other. The anthropogenic influences on the frequency changes of 308 

extreme temperatures can be detected both in two-signal and three-signal detection analyses. The 309 

influence of natural forcings cannot be robustly detected in any indices. This indicates that only the 310 

effects of human activities can explain observed frequency changes in extreme temperatures in 311 

eastern China. 312 

We further quantify the contributions of GHG, OANT and NAT forcings to the observed frequency 313 

trends of absolute extreme temperatures in eastern China during 1960-2012. Results show that the 314 

influences of GHG are dominant in the observed changes in extreme temperatures, and part of 315 
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which are offset by the effects of other anthropogenic forcing agents. The combined effects of GHG 316 

and OANT forcings explain most of observed changes in the frequencies of extreme temperatures, 317 

since the contributions of NAT forcing are quite small in the long-term changes of extreme 318 

temperatures in eastern China. 319 

It is worth pointing out some caveats of uncertainty existing in this study, which deserve future 320 

consideration. One source of uncertainty is the systematic bias in the mean state of surface air 321 

temperature between observations and simulations. We use elevation data and 322 

spatiotemporal-varying temperature lapse rates to correct the topography-related bias in the 323 

climatological mean annual cycle of each grid box. However, model simulations still have a small 324 

systematic bias in the climatological annual mean temperature in eastern China (figure S5 and S6). 325 

This discrepancy may partly be attributed to regional land use change, which may have substantial 326 

effect on the observed change in extreme temperatures. The previous study suggested that the 327 

effects of land use change were detectable from other anthropogenic forcings on a quasi-global 328 

scale (Christidis et al 2013). For eastern China, the most typical land use change is urbanization, 329 

which could change the climatology and long-term trend of near-surface air temperature. However, 330 

it remains controversies about the extent to which urbanization has contributed to the observed 331 

warming trends in Chinese urban stations (Wang and Yan 2016; Sun et al 2016; Ren et al 2017). A 332 

recent study quantified the relationship between trends in urban fraction and local urban warming 333 

rate in temperature records in China (Wang et al 2017). They found that regional average trend of 334 

urban-related warming in eastern China is less than 10% of overall warming trend. Nevertheless, a 335 

robust technique used for correcting local urban warming bias in temperature records is urgently 336 

required for the detection and attribution of climate change in rapidly urbanizing regions. 337 

Our conclusions based on trend attribution analyses are consistent with the case studies of event 338 

attribution of recent extreme hot and cold temperatures in eastern China: anthropogenic influence 339 

has caused a substantial increase (decrease) in the likelihood of extreme hot (cold) temperatures 340 

(Sun et al 2014; Qian et al 2017). In this summer, many densely populated and economically 341 

developed cities in eastern China were attacked by extreme hot temperatures for more than two 342 

weeks. The city of Shanghai even experienced record-breaking high temperature on 21 July 2017 343 



13 
 

since the establishment of the benchmark meteorological station (Xujiahui) in 1872. The rapid 344 

development of urbanization in the region might further enhance the heatwave events in the urban 345 

areas (Wang et al 2017). Undoubtedly, human-induced increase in extreme hot temperatures, 346 

combined with the explosive growth in population and wealth, will cause enhanced risks for 347 

ecosystems, agriculture, energy production, and human health if timely and sufficient adaptation 348 

measures are not taken. 349 

 350 

 351 
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 455 

Figure 1. Observed trends (days decade
-1

) in the frequencies of (a) summer days, (b) tropical nights, 456 

(c) icing days, and (d) frost nights in eastern China during the years of 1960-2012. Green dots 457 

represent the grid boxes where the trend is significant at the 95% confidence level. Linear trends in 458 

the frequencies of extreme temperatures were estimated by using the ordinary least squares method, 459 

with Student’s t test for testing statistical significance. 460 
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 466 

Figure 2. Observed and simulated regional averaged frequency of the four extreme temperature 467 

indices (a: summer days; b: tropic nights; c: icing days; d: frost nights) in eastern China. Annual 468 

mean anomalies in terms of the frequency of extreme temperatures are calculated with respect to its 469 

1960-2012 mean. Solid black, red, green and blue lines represent the observations and multi-model 470 

responses to ALL, GHG and NAT forcings, respectively. Thin gray lines show the results from 471 

individual simulations of five different CMIP5 climate models. 472 
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 479 

Figure 3. Scaling factors for changes in the annual frequencies of the four extreme temperature 480 

indices. Best estimates of the scaling factors that scale ALL signal patterns in one-signal detection 481 

analysis to best reproduce the observed annual anomalies of the frequency of extreme temperatures. 482 

The vertical bar marks the 5-95% uncertainty range for each signal. 483 
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 494 

Figure 4. Scaling factors for changes in the annual frequencies of the four extreme temperature 495 

indices. Best estimates of the scaling factors that scale ANT and NAT signal patterns in two-signal 496 

detection analysis to best reproduce the observed annual anomalies of the frequency of extreme 497 

temperatures. The vertical bars mark the 5-95% uncertainty range for each signal, and the ellipses 498 

mark the two-dimensional 90% confidence region. 499 
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 508 

Figure 5. Scaling factors for changes in the annual frequencies of the four extreme temperature 509 

indices. Best estimates of the scaling factors that scale GHG, OANT, and NAT signal patterns in the 510 

three-signal detection analysis to best reproduce the observed annual mean anomalies of the 511 

frequency of extreme temperatures, and their 5-95% confidence intervals. 512 
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 522 

Figure 6. The attributable trends (days decade
-1

) in the annual frequencies of the four extreme 523 

temperature indices. Best estimate of the observed trends in the frequency of extreme temperatures 524 

(bold black lines) and attributable trends due to GHG (red lines), OANT (green lines) and NAT 525 

(blue lines) from three-signal analysis. The solid (dashed) colored line indicates that the attributed 526 

frequency change is statistically significant (insignificant from zero) at a confidence level of 95%. 527 

The colored dots represent the mean attributed frequency change due to different external forcings. 528 
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Table 1. The CMIP5 models used in the optimal fingerprinting analyses. Numbers represent the 541 

ensemble sizes of the ALL, NAT, GHG simulations, the years of CTL simulations, and the spatial 542 

resolutions of atmospheric component of climate models. Aerosol species considered in each model 543 

are also shown. 544 

Model ALL NAT GHG CTL Spatial resolution 

(lat & lon) 

Aerosol species 

CanESM2 5 5 5 636 2.7906
o
 2.8125

o
 SO4, BC, OA, DS, SS 

CNRM-CM5 10 6 6 636 1.4008
o
 1.4063

o
 SO4, BC, OA, DS, SS 

CSIRO-Mk3-6-0 10 5 5 424 1.8653
o
 1.875

o
 SO4, BC, OA, DS, SS 

HadGEM2-ES 4 4 4 530 1.25
o
 1.875

o
 SO4, AN, BC, OA, DS, SS 

IPSL-CM5A-LR 4 3 3 954 1.8947
o
 3.75

o
 SO4, BC, OA, DS, SS 

total 33 23 23 3180  

Notes: SO4, sulfate; AN, ammonium nitrate; BC, black carbon; OA, organic carbon (including primary and 545 

secondary organic carbon); DS, dust; SS, sea salt. 546 


