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ABSTRACT

Degree-days are a temperature index used for understanding the impact of climate change. Different methods

to deal with climatemodel biases, termed bias correction ormore generally calibration, yield different projections

of such indices, something not widely understood for temperature indices in many impact sectors. An analytical

expression is derived for the expected value of degree-days given parameters of the underlying statistical distri-

bution (assumed to beGaussian). It is demonstrated that the uncertainty introducedby calibrationmethodology is

driven by the magnitude of the nonlinearity in this expression. In a climate where mean temperature is, and

remains, far from (approximately three standard deviations) the threshold used in defining the index, the equation

is approximately linear, and methodological choice makes little difference relative to the absolute number of

degree-days. However, case studies for U.K. cities London and Glasgow for heating and cooling degree-days

(HDD and CDD; these are degree-day indices used in the estimation of energy use for heating and cooling

buildings) demonstrate that, when temperatures are close to the threshold, unrealistic results may arise if ap-

propriate calibration is not performed. Seasonally varying temperature biases in the 11-member perturbed pa-

rameter ensemble HadRM3 are discussed, and different calibration strategies are applied to this ensemble. For

projections of U.K. HDD, the difference between results from simple and advanced methodologies is relatively

small, as the expression for HDD is approximately linear in many months and locations. For U.K. CDD, an

inappropriatemethod has a large relative impact on projections because of the proximity to the threshold. In both

cases, the uncertainty caused by methodology is comparable to that caused by ensemble spread.

1. Introduction

It is well known that the demand for energy is related

to temperature because of the use of energy for heating

and cooling buildings (Taylor and Buizza 2003; Isaac

and Van Vuuren 2009). Therefore, changes in future

energy demand will be affected not only by socioeco-

nomic factors such as economic and population growth

but also by changes in climate. This has important im-

plications for building design and planning. Moreover,

this is an important example of a situation in which

mitigation of and adaptation to climate change interact;

in a warming climate, society would need to adapt its

energy use to cope with changed temperature. All other

things being equal, reductions in energy use because of

reduced need for heating would reduce emissions, thus

contributing to mitigation. On the other hand, increases

in energy use because of the need for cooling would

increase emissions, makingmitigation harder to achieve.

Indices based onmeteorological variables are important

tools for understanding societal impacts of climate change

(e.g., Zubler et al. 2014; Harding et al. 2015), providing

simple impact-relevant summaries of meteorological in-

formation. In general, degree-days are a measure of the

sum of temperature deviations above or below a threshold

(a more precise definition is given in section 2a). Heating
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degree-days (HDD) and cooling degree-days (CDD) are

common temperature indices used to estimate the re-

quirement of energy for space heating and cooling in

order to maintain comfortable indoor temperatures (e.g.,

Li et al. 2012). Energy use for heating and cooling is cal-

culated as a product of the degree-day (DD) index and

factors describing energy efficiency, area to be heated per

population member, and population size (Isaac and Van

Vuuren 2009).

Climatologies and observed trends in HDD and CDD

have been published for Scotland (Sniffer 2014) and the

whole United Kingdom (Jenkins et al. 2008). Both HDD

and CDD vary across the United Kingdom in a way that is

consistent with geographical and altitudinal temperature

variations. In the period 1961–90,mean annualHDDvaried

frombelow 2000 inLondon and theChannel Islands to over

4200 in high-altitude areas of Scotland.CDDare historically

low, with climatological values for the same period of below

40DDacross theUnitedKingdom and less than 5DDover

much of Scotland, Northern Ireland, and north England

(Jenkins et al. 2008). A more recent report (Kendon et al.

2016) demonstrates that, consistent with temperature in-

creases, the later period 1981–2010 had lessHDDacross the

region,with aU.K.-average reduction of 165HDDbetween

the periods. CDD increased in the same period in England

and Wales, but in Scotland, where CDD remain rare, in-

creases were not apparent. Both CDD and HDD display

sizeable interannual variability (Kendon et al. 2016).

Projected future changes inHDD and CDD have been

evaluated globally (Isaac and Van Vuuren 2009; Li et al.

2012) and for specific locations in Europe (Christenson

et al. 2006; Zubler et al. 2014; Lemonsu et al. 2013). Day

et al. (2009) projected near-term changes in CDD in

London, whileChowandLevermore (2010) incorporated

DD-type indices into evaluation of near-term changes in

heating and cooling demand for London (southeast En-

gland), Manchester (northwest England), and Edinburgh

(southeast Scotland). However, there are no recent

published studies giving projections of HDD and CDD

for the United Kingdom as a whole. Heating demand is

projected to decrease, with reductions of approximately

30% for both Paris (Lemonsu et al. 2013) and lowland

Switzerland (Zubler et al. 2014) by the end of the twenty-

first century, but cooling demand is projected to increase.

In temperate regions such as the United Kingdom, the

decrease in HDD dominates so net DD decrease

(Lemonsu et al. 2013; Zubler et al. 2014; Isaac and Van

Vuuren 2009; Li et al. 2012). However, this may not be a

relevantmetric for understanding impacts on total energy

demand because cooling demand is primarily met by

electricity, but this is not the case for heating demand.

Climate model projections used to investigate future cli-

mate must be adjusted to allow for known deficiencies

(biases) of that model, a process referred to as calibration.

Different calibration strategies arise from different as-

sumptions about the future behavior of the real world rel-

ative to that of a climatemodel. These can produce different

results (Ho et al. 2012). While there are considerable chal-

lenges inherent in producing bias-corrected projections of

future climate, it is important to understand the possible

consequences of different calibration methodologies.

For projections of DD specifically, various studies

have noted that the standard method of calculating

projected changes using climate models does not take

account of climate model biases (e.g., Zubler et al. 2014;

Erhardt 2015) but without attempting to address this.

While calculating the change in an index such as DD

may be the most appropriate approach in some cases

(Hanlon et al. 2014), for certain indices such approaches

may produce very unrealistic results (Hawkins et al.

2013). For example, for the simple index ‘‘days above a

temperature threshold,’’ consider a climate model that

has a small cold bias relative to observations but assume

that present climate never exceeds the threshold in the

model or observations. [This example follows the dis-

cussion by Hawkins (2015).] The index is therefore zero

in both model and observations; the bias in the index is

zero. Let us assume that the temperature change pro-

jected by the model is the same as the (unknown)

change in the real world. Consider then a case in which

the model projects a small warming in the future,

which is insufficient to give any days over the threshold

in the model but would do so in the real world. The

change in index calculated in the model is there-

fore demonstrably inaccurate given the underlying

assumptions. It is furthermore reasonable to argue that

the model is more likely to correctly represent change

in an underlying temperature distribution (since it is a

physically formulated model) than in an abstract index

of that temperature distribution. This issue has been

raised for threshold exceedances in the context of ag-

riculture (Hawkins et al. 2013), but the importance of

such a distinction for HDD and CDD has not been

addressed previously in the literature.

The primary goal of this paper is to assess the effect of

climate model temperature bias on HDD and CDD and

on calibration methods. This is then used to gain un-

derstanding of this source of uncertainty in projections

of future HDD and CDD in the United Kingdom. The

paper is structured as follows: Section 2 discusses dif-

ferent calibration methods, derives the analytical model

for expected HDD and CDD and explores its properties,

and describes the observational and climate model data

used. Section 3a demonstrates the biases in mean temper-

ature and subseasonal variance in the climate model. Sec-

tion 3b explores the implications for future projections by
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applying the analytical model, given sample biases in mean

and standard deviation. Finally, projections of future U.K.

HDD and CDD are presented using different calibration

strategies applied to model data in section 3c. Given the

simplicity of the analytical model, implications of this work

for other indices and regions are easy to deduce and are

discussed in the discussion section.

2. Data and methods

This section begins by defining the indices of particular

relevance to this paper, HDD and CDD. It then discusses

four different calibration strategies that may be used to

estimate the values of temperature indices in a future

climate and their underlying assumptions. An analytical

model for the expected value of HDD and CDD, given

properties of the underlying temperature distribution, is

derived; its properties, and how they may inform us as to

the suitability of the simplest calibration strategies, are

discussed. Finally, details of the observational and model

data and regions of interest that will be used to apply the

analytical model and calibration strategies are given.

a. Indices: HDD and CDD

There are a variety of definitions of HDD and CDD,

although all are measures of the sum of temperature

deviations above (for CDD) or below (HDD) a

threshold. Consistent with the Sniffer (2014) analysis of

historical Scottish degree-days, this study uses daily

mean temperatures and thresholds TH 5 15.58C for

HDDandTC 5 22.08C for CDD. For daily temperatures

xi, for days i 5 1, 2, . . . , N,

HDD5 �
N

i51

(T
H
2x

i
)H(T

H
2x

i
) , (1)

CDD5 �
N

i51

(x
i
2T

C
)H(x

i
2T

C
) , (2)

where H(x) is the Heaviside step function such that

H(x) 5 0 if x , 0 and H(x) 5 1 otherwise. Therefore,

CDD only occur on days above the threshold, and HDD

only occur on days below the threshold. Many previous

studies in Europe and the United States use different

thresholds, often TC 5 TH 5 18.38C (658F; Christenson
et al. 2006; Isaac andVanVuuren 2009; Zubler et al. 2014).

b. Calibration strategies

In this context, a calibration strategy is a method that

takes the future climate of a climate model, which is

known to be biased in the historical period, and attempts

to derive information about the true, unknown, future

climate state. We consider the case in which the quan-

tity for which projections are required is a general

temperature index that can be described as some func-

tion g(x), where x is a time series of observations.

Using standard statistical notation such that X

denotes a random variable and x denotes a sample from

the distribution of X, we define

xoh observed (‘‘o’’) temperatures for the historical

(‘‘h’’) period;

xmh modeled (‘‘m’’) temperatures for the historical

period;

xmf modeled temperatures for the future (‘‘f’’) period;

and

Xof unknown future observed temperature distribu-

tion, which we wish to estimate.

In this study, four calibration strategies are considered.

Two are applied to the index only; the other two are

applied to the underlying temperatures following the

methods discussed inHo et al. (2012). They are as follows:

1) Additive index correction: The historical bias in the

index is removed from themodeled future value. The

projected value of the index I is denoted IDI , where

IDI 5 g(xoh)1 g(xmf)2 g(xmh).

2) Proportional index correction: The modeled future

value is corrected by the historical proportional bias.

The projected value of the index is denoted I3I ,

where I3I 5 g(xoh)g(xmf)/g(xmh).

3) Underlying change: The underlying temperatures are

calibrated, assuming that the change from historical to

future climate is not dependent on that historical climate

(change independent of bias). Therefore, a mapping

from historical to future climate, obtained from the

model, can be applied to observed historical values.

We assume that the change in mean and variance

summarizes the change in the full distribution. For-

mally, using the subscripts defined above, a time series

of future temperatures xof is obtained by the mapping

xof 5mmf 1 (smf/smh)(xoh 2mmh) (Ho et al. 2012).

The index is then calculated as g(xof) and denoted IDT.

4) Underlying bias correction: The underlying temper-

atures are again calibrated. This time a subtly

different assumption is made that the bias between

observations and models is constant, that is, indepen-

dent of time. In this case, a mapping frommodeled to

observed climate can be derived from the historical

period and applied to future modeled climate. The

mapping is xof 5moh 1 (soh/smh)(xmf 2mmh), and the

index g(xof) is denoted I«T.

Figure 1 of Ho et al. (2012) gives an illustration of the

third and fourth methods. These two final methods differ

because including the variance as well as mean makes the

problem a nonlinear one; in the linear case (distributions

differing in themean only), these twowould be equivalent.
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The transformations described in the last twomethods

result in mappings of the mean (Ho et al. 2012):

bias correction, m
of
5m

oh
1

s
oh

s
mh

(m
mf
2m

mh
);

change, m
of
5m

mf
1

s
mf

s
mh

(m
oh
2m

mh
).

In both cases, the standard deviation maps as sof 5
(sohsmf)/smh. For constant and unbiased variance

(smf 5smh 5soh) the two cases are the same, consistent

with the linearity argument just made. While these re-

sults are general, the mean and variance only fully de-

scribe the distribution and thus any changes in it for

Gaussian distributions.

We note at this point that calibration implies an as-

sumption that the model–observation discrepancy is due

to model error rather than observational error. This may

be a poor assumption in regions of high observational

uncertainty. Furthermore, bias correction can only lead to

useful projections if themodel is able to plausibly simulate

climate change (Maraun 2016) and therefore the pro-

cesses that govern that change. Very large biases may be

an indication of fundamental shortcomings in physical

processes in themodel, indicating that it does not produce

these required plausible projections of change.

c. Analytical model

If temperatures are assumed to be a sample from a

known statistical distribution, it may be possible to de-

rive an analytical distribution for the expected sum of

HDD or CDD over a defined period. Let daily tem-

perature X have probability distribution function fX(x).

Denoting the daily value of HDD by the random vari-

able Y, Y5 g(X)5 (TH 2X)H(TH 2X), the expected

value of HDD is given by

E(Y)5E[g(X)]5

ð‘
2‘

g(x)f
X
(x)dx

5

ð‘
2‘

(T
H
2x)H(T

H
2x)f

X
(x)dx . (3)

Further assuming that X is normally distributed

X;N(m, s2) (the validity of this assumption will be

discussed later), it is possible to evaluate this integral

(derivation in the appendix) arriving at the result:

E(Y)5
(T

H
2m)

2

�
11erf

�
T
H
2m

s
ffiffiffi
2

p
��

1
sffiffiffiffiffiffi
2p

p e2[(TH2m)2/2s2]

(4)

for HDD and

E(Y)5
(m2T

C
)

2

�
11erf

�
m2T

C

s
ffiffiffi
2

p
��

1
sffiffiffiffiffiffi
2p

p e2[(m2TC)
2/2s2]

(5)

for CDD, where erf is the error function

erf(x)5
2ffiffiffiffi
p

p
ðx
0

e2y2 dy . (6)

To obtain the expected sum of HDD or CDD in a

period of length n (e.g., the expected value of total HDD

in a season), these expected values are multiplied by n.

This derivation assumes X to be stationary but does not

assume independence.

It would also be possible to derive an expression for

the variance of daily degree-days. However, for useful

applications, the variable of interest would be the in-

terannual variance of the seasonal sum of degree-days.

For example, a cool climate with negligible average

CDDmight have individual hot years with nonnegligible

CDD, resulting in a large, interannual variance that

would be important to be aware of. In contrast to the

expression for the expectation (mean), where one can

simply scale by n, an expression for this interannual

variance would have to allow for the nonindependence

ofX; it would only be valid if it appropriately accounted

for the dependence structure of daily temperatures. In

the current study, we are interested in climatological

degree-days rather than interannual variability and

therefore do not pursue this further.

PROPERTIES AND IMPLICATIONS OF ANALYTICAL

EXPRESSION

Equations (4) and (5) are nonlinear in m and are not a

function of m alone. This is as expected because the index

g(X) is nonlinear (Weisheimer and Palmer 2014). This

nonlinearity will have implications for treatment of bia-

ses.We therefore explore the behavior of Eqs. (4) and (5)

by looking at their derivatives. The first derivative is

›

›m
[E(Y)]52

1

2

�
11 erf

�
T
H
2m

s
ffiffiffi
2

p
��

for HDD or any below-threshold DD;

›

›m
[E(Y)]51

1

2

�
11 erf

�
m2T

C

s
ffiffiffi
2

p
��

for CDD or any above-threshold DD. (7)
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By definition of the error function, the second derivative

is (for a general threshold TA)

›2

›m2
[E(Y)]5

1

s
ffiffiffiffiffiffi
2p

p e2
(T

A
2m)2

2s2
[

1

s
ffiffiffiffiffiffi
2p

p e2
(m2T

A
)2

2s2
.

(8)

These functions are shown in Fig. 1. We will focus

initially on the ‘‘below threshold’’ case HDD. For cold

climates, a long way below the threshold, expected

HDD are approximately a linear function of m. This is

evident from the graph of the function itself (Fig. 1a,

top) and the fact that the second derivative is approxi-

mately equal to 0 (Fig. 1a, bottom). The function is ap-

proximately independent of s far from the threshold,

where the functions for different values of sigma con-

verge (Fig. 1). However, although linear, the sensitivity

of expected HDD to m and so to any mean bias is

greatest far below the threshold, where the absolute

value of the first derivative is maximum. In contrast, for

warm climates (m far above the threshold), expected

HDD tend to zero. Equivalent behavior occurs for CDD

or any degree-day above a threshold (Fig. 1b).

When the mean is near to the threshold temperature,

the function is nonlinear (Fig. 1). The nonlinearity is

greatest when the second derivative is largest; this

occurs when the mean is equal to the threshold tem-

perature (bottom panel).

In Fig. 1a (top), we illustrate the implications in the

case when only m is biased and only m changes (i.e., s is

unbiased and does not change). The left-hand ‘‘step’’

represents observations, in which a change in the mean

of 18C results in a change of20.69 HDD. (This is a daily

value, equivalent to approximately 220 HDD per

month or 2250 HDD per year.) The central step

represents a model, in which the same change in the

mean temperature results in a change of only 20.5

HDD. Therefore, assuming that it is valid to assume that

the underlying change in the mean temperature is rep-

resented correctly in the model, applying the change in

HDD from the model to the observations is not appro-

priate. This arises because nonlinearity means that

E[g(Xof)] 6¼ fE[g(Xoh)]1E[g(Xmf)]2E[g(Xmh)]g, but

the additive index correction method assumes that the

two sides of this expression are in fact equal.

d. Gridded data

1) REGIONAL CLIMATE MODEL DATA

To evaluate future change in degree-days, we use

daily data at high spatial resolution (25-km grid) over

the United Kingdom from the Hadley Centre regional

FIG. 1. The behavior of the expected value of daily (a) HDD and (b) CDD, following Eqs. (4) and (5). The panels show (top) expected

value, (middle) its first derivative, and (bottom) its second derivative, with respect to themean of the underlying temperature distribution.

The vertical gray line shows the threshold. Different line types show the effect of changes in the standard deviation, as shown in the legend.

The step changes in (a) demonstrate the implications of the function nonlinearity (see text).
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model 11-member perturbed physics ensemble (PPE),

HadRM3-PPE (Hadley Centre for Climate Prediction

and Research 2008; Murphy et al. 2010). A PPE is pro-

duced by adjusting certain parameters within the model

that control physical processes smaller than the grid

scale and that are not precisely known. This differs from

an initial condition ensemble, in which the only differ-

ence between runs is a small perturbation to initial

conditions. HadRM3-PPE was produced as part of the

U.K. Climate Projections 2009 (UKCP09) to explore the

uncertainty in climate projections because of un-

certainty in physical processes (sections 3.1, 3.2, and 5 of

Murphy et al. 2010). Many parameters are perturbed

together such that it is not possible to attribute differ-

ences to specific parameters. The members have labels

afgcx (the unperturbed member) and afix_ for the 10

perturbed members, with varying final character.

HadRM3-PPE was produced by dynamically down-

scaling HadCM3-PPE (Murphy et al. 2010), an ensem-

ble simulation using the HadCM3 coupled model.

HadCM3-PPE was run from 1860 to 2100, forced with

historical emissions for 1860–2000 and with emissions

scenario A1B (Nakicenovic and Swart 2000) from 2000

onward (Murphy et al. 2010). The downscaling was

performed for the period 1950–2099. Collins et al. (2011)

and Lambert et al. (2013) contain further discussion of

the parameter perturbations.1 The configuration and

performance of HadCM3 was discussed in Gordon

et al. (2000).

In contrast to UKCP09 standard output, we use the

more recent 1981–2010 as the climate baseline period.2

Positive trends in average temperature have been ob-

served since 1960 in all seasons and are statistically sig-

nificant at the 95% level in all seasons except winter

(e.g., Sniffer 2014). Therefore, the 1981–2010 climatol-

ogy is generally warmer than that of 1961–90. For future

change, changes are evaluated for the period 2040–69

relative to the baseline.

We are not aware of existing evaluation of tempera-

ture biases in HadRM3-PPE in the literature. Brown

et al. (2010) mention that snow biases in western Scot-

land in the ensemble are likely to be related to known

cold biases here. Other evaluation of HadRM3-PPE

biases focuses on precipitation (e.g., Sanderson et al.

2012).

2) OBSERVATIONAL DATA

We evaluate biases in the climate model against the

European gridded observational dataset E-OBS, which

was generated as part of the ENSEMBLES project

(Haylock et al. 2008). The data are available at daily

resolution on the same 25-km rotated grid as HadRM3-

PPE. E-OBS is updated approximately every 6 months

with updated station series and, where available, up-

dates to the station network. This project uses version

12.0, which was released in October 2015.

Over the United Kingdom, there are known biases in

E-OBS relative to a 5-km daily dataset produced by the

Met Office (Hofstra et al. 2009; Perry and Hollis 2005),

hereafter referred to as UKMO. The evaluation in

Hofstra et al. (2009) was performed for an earlier ver-

sion of E-OBS, but updates to the station network used

over the United Kingdom have been limited, and so it is

assumed that their conclusions are largely unchanged.

Hofstra et al. (2009) reported root-mean-square errors

in daily temperatures of up to 1.48C in northwest Scot-

land (their Fig. 4), the region of most disagreement be-

tween datasets, and 0.78C when averaged over the

United Kingdom.

The UKMO climatology is available for 1961–90 on a

25-km grid. Over this period, for a U.K. average, we find

that E-OBS is warmer than UKMO (not shown); in the

annual mean, MAM, SON, and DJF, the difference is

approximately 0.18C, while in JJA it is approximately

0.28C. It will be shown later that HadRM3-PPE biases

relative to E-OBS are larger than this in general. We

therefore use E-OBS as UKMO is not available at daily

resolution on the 25-km grid. The discrepancies should

be born in mind. In particular, E-OBS is over 18C
warmer than UKMO in northern Scotland in DJF and

warmer in general over Scotland.

3) SPATIAL AVERAGING

We present results for two U.K. cities, London and

Glasgow. Temperature in each city is calculated as the

mean over every grid point within a circle of radius 0.448,
equivalent to two grid points, about its central co-

ordinates. Too broad an averaging region could smooth

out the extremes of temperature that might lead to

HDD or CDD, but it is not advisable to use single-

gridpoint information from climate models because of

the noise. The urban heat island effect—whereby an

urban area is hotter than its rural surrounds—is not

represented in the regional model and only to a limited

extent in E-OBS. Projections of future absolute values

should therefore be interpreted with care because the

1 Further information on the ensemble, including the climate

sensitivities of the corresponding global slab ocean models, can be

found online (at https://badc.nerc.ac.uk/artefacts/badc_datadocs/

hadrm3-ppe-uk/index_140211.html).
2 The period 1981–2010 is used for calculation of anomalies in the

annual U.K. Met Office ‘‘State of the Climate’’ report (Kendon

et al. 2016). However, the official World Meteorological Organi-

zation climatological normal reference period will remain as 1961–

90 until data for the period 1991–2020 are available (Trewin 2007).

9064 JOURNAL OF CL IMATE VOLUME 30

https://badc.nerc.ac.uk/artefacts/badc_datadocs/hadrm3-ppe-uk/index_140211.html
https://badc.nerc.ac.uk/artefacts/badc_datadocs/hadrm3-ppe-uk/index_140211.html


bias correction will not fully account for it (since it is not

fully represented in the observations). Moreover, any

uncertainty over change in the strength of the urban heat

island would add to the uncertainty in projections of

degree-day indices.

3. Results

a. Biases in the daily temperature distribution

So that we can apply the above analytical result to a

realistic case, we quantify the biases in the HadRM3-

PPE ensemble members relative to E-OBS for the

United Kingdom. As discussed previously, the different

members in a PPE are different model configurations

and so differences between them represent true differ-

ences in the simulated climate as well as differences in

sampling. In contrast, in an initial condition ensemble

the differences are only of sampling.

Accurate representation of temperature indices de-

pends on simulation of the mean temperature and its

seasonal cycle as well as subseasonal variance (weather

noise). Therefore, we present an analysis of mean tem-

perature in standard meteorological seasons winter

(DJF) and summer (JJA), the seasonal cycle at indi-

vidual locations, and subseasonal variance.

To compare data from the normal calendar in E-OBS

with the 360-day calendar in HadRM3-PPE, leap days

are discarded from theE-OBS dataset. Calendarmonths

in E-OBS are then compared with 30-day months in

HadRM3-PPE. To compare seasonal cycles, the cycle is

calculated on its native calendar, and then the E-OBS

cycle is scaled for plotting.

The annual-mean, regional-mean bias in each en-

semble member for the period 1981–2010 (Table 1)

ranges from 21.348C (member afixc) to 10.078C
(member afixq); 9 of 11 members have a cold bias. As a

simple measure of the robustness of these biases, the

biases calculated in the period 1961–90 are also shown;

biases in this earlier period are similar but with a ten-

dency to be slightly warmer (equivalently weaker cold

bias) than in the later period. In this earlier period,

performing the same comparison against UKMO (Table

1) reveals biases that are weaker by approximately

0.18C. In conclusion then, the ensemble simulations are

biased cold in general, but the cold bias against ‘‘truth’’

could be slightly exaggerated when evaluated against E-

OBS.

The annual-mean, regional-mean bias in mean tem-

perature masks regional and seasonal behavior, which

varies between ensemble members. There are shared

characteristics; cold biases tend to be strongest in west-

ern Scotland, where cold biases are found in all members

and all seasons. Figure 2 shows three representative

members as an example; the unperturbed member afgcx

as well as afixc and afixj. Member afixc has the strongest

cold bias of all members and is biased cold everywhere

and in both seasons. Member afixj has the strongest

warm biases in the south in summer but has cold biases

in winter.

To examine the seasonal cycle, we calculate the leading

Fourier components (capturing the mean and the annual

and half-annual frequencies) in each dataset. Figure 3

shows the seasonally varying observed and simulated

temperature for London. London is discussed because,

first, it demonstrates a variety of behaviors between the

different members, and, second, as a large population

center, it is important for total energy demand. In sum-

mer, members afixi, afixj, afixk, and afixq and to a lesser

extent afixl and afixm have a warm bias (Fig. 3; July av-

erage warm bias in these members ranges from 0.458 to
1.448C). In winter, members afixi, afixj, afixk, and afixq

have a small (less than 18) warm bias, but these members

have no or cold bias in spring and autumn.Members afixc,

afixj, afixk, and afixq have previously been shown

(Sanderson et al. 2012, their supplementary information)

TABLE 1. U.K.-mean annual biases in individual model members. Biases are calculated at each grid point and then spatially averaged.

Shown for period 1981–2010, the focus of the study, and for 1961–90 against two observational datasets as a measure of robustness.

Headers -c, -h, etc., refer to member afixc, afixh, and so on. Subseasonal variance is the variance of anomalies from the seasonal cycle (see

text, section 3a).

1 (afgcx) 2 (afixa) 3 (-c) 4 (-h) 5 (-i) 6 (-j) 7 (-k) 8 (-l) 9 (-m) 10 (-o) 11 (-q)

1981–2010

Mean bias (member-E-OBS) 20.76 20.89 21.34 20.90 20.33 20.32 20.33 20.56 0.02 20.41 0.07

Subseasonal variance ratio
member

E2OBS
1.09 1.46 1.47 1.01 1.14 1.30 0.88 1.24 1.07 0.90 1.28

1961–90

Mean bias (member-UKMO) 20.61 20.81 21.14 20.77 20.02 20.15 20.02 20.48 0.06 20.35 0.23

Mean bias (member-E-OBS) 20.72 20.91 21.26 20.89 20.14 20.26 20.14 20.59 20.07 20.47 0.10

Subseasonal variance ratio
member

E2OBS
1.53 2.04 1.33 1.27 1.08 1.43 0.91 1.13 1.60 1.01 1.35
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to be too dry in summer. Three of these fourmembers are

those just discussed as having a warm bias. This suggests

that feedbacks caused by drying and lack of soil moisture

may help explain the too-hot summer bias. The remaining

member, afixc, is biased cold in all months. Therefore,

these feedback processes may be insufficient to produce

enough warming to overcome the general cold bias.

To quantify subseasonal variance (see start of this

section), we calculate the variance of anomalies from the

calculated seasonal cycle. The regional-mean pro-

portional bias (model/observed) of this quantity is

shown in the second row of Table 1. The spatial structure

varies (not shown); however, there is a general tendency

for themodels to have greater subseasonal variance than

the observations.

Temperature distributions for individual months, eval-

uated in London (Fig. 4), suggest that the Gaussian

distribution is a good assumption for within-month

FIG. 2. E-OBS12 temperature climatology for the period 1981–2010, and biases in three selected members of the

ensemble HadRM3-PPE. As labeled, results are for (a) annual (ANN), (b) summer (JJA), and (c) winter (DJF);

DJF climatology is for December 1980–February 2010.
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temperatures in the observations and in the spring and

autumn in the model. There is evidence of positive skew

in simulated data in July (found in most ensemble

members; not shown) and of deviations from the

Gaussian in January (found in about half the ensemble

members; not shown).

Since biases are seasonally varying, analysis in the rest of

the study is performed on a month-by-month case.

Therefore, we do not make further use of the Fourier

component–based seasonal cycles; instead, we use monthly

means and the variance of anomalies from those monthly

means.

b. Test cases

We now explore the implications of the different

calibration strategies (section 2b) for DD projections

FIG. 3. Seasonal cycle (leading Fourier components; see text) of temperatures in London. E-OBS (1981–2010, black solid lines),

modeled past (1981–2010, gray dashed lines), modeled future (2040–69, gray dashed lines), and difference between modeled past and

modeled future (gray dotted lines). Each panel shows a different ensemble member.

FIG. 4. The sampled distribution of temperatures in London, and a Gaussian approximation to the distribution, in E-OBS (black) and

the unperturbed member afgcx (gray). This is shown for four individual months (January, April, July, and October) to sample the four

seasons.
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in three cases chosen to represent different climates:

Glasgow in January, Glasgow in July, and London in

July. Within-month daily temperatures are assumed to

follow a Gaussian distribution, the validity of which is dis-

cussed above. Equations (4) and (5) with n5 30 days 51

month [n is a scaling factor for monthly or seasonal to-

tals; see text after Eq. (5)] are used to calculate the ex-

pected monthly value of DD. The parameter inputs to

these equations are the estimated statistical properties

of the different temperature distributions; for index

correction methods, this is the sample mean m and

variance s2 from observations and from historical and

future simulations, while for the underlying calibration

methods these are calculated according to the trans-

formations in section 2b. The following discussion is

centered on the results in Table 2. The general index I

is replaced by H (heating degree-days) and C (cooling

degree-days). Therefore, the results from different

methods for heating degree-days are denotedHDI ,H3I ,

and so on. (For subscript definitions and descriptions,

see section 2b.)

1) CASE 1: HDD WHEN m � TH

As shown in section 2c, HDD is approximately linear

in m and independent of s for sufficiently small m. This

follows intuitively; when the mean temperature is

sufficiently cold, every day is colder than the threshold

temperature. Therefore, the indicator function that

introduces nonlinearity is irrelevant and the problem

reduces to a linear one. Case 1 of Table 2 (Glasgow in

January) was chosen as a ‘‘cold climate’’ case to il-

lustrate this point. However, although the historical

mean temperature is far below the threshold, the large

projected change brings temperature into the regime

where nonlinearity starts to be important, so the dif-

ferent strategies produce slightly different pro-

jections. Even so, these differences are small relative

to the total number of HDD. For slightly colder cli-

mates, or smaller projected changes, the projections

from different methods are indistinguishable (not

shown).

2) CASE 2: HDD WHEN m’TH

In a second case, m lies just below the 15.58C thresh-

old. This applies for much of the United Kingdom

in the summer months. Here, we consider Glasgow in

July (case 2; Table 2). The projected value of HDD in

this case differs more according tomethod, as expected

from the nonlinearity of the function in this domain.

The index correction method yields a projection of

11.6 HDD, the change method yields a value of 14.7

HDD, and the bias correction method yields a value of

TABLE 2. Test case HDD and CDDprojections using the analytical method of sections 2c [Eqs. (4) and (5)] and calibration strategies of

section 2b for three representative cases. Index I from themain text is replaced byH andC. Time periods are 1981–2010 baseline, 2040–69

future. Biases and change based on unperturbedmember afgcx, other than in London July case wheremember afixj is used to demonstrate

impact of large bias. For subscript notation (oh, etc.) and details of method, see sections 2b and 3b.

Parameter Description 1) Glasgow, January 2) Glasgow, July 3) London, July

moh Observed mean T 3.2 14.6 17.6

soh Observed standard deviation T 3.0 2.1 2.4

«m Model bias, mean T 22.2 20.3 1.4

«s Proportional model bias, standard deviation T 1.2 1.1 1.8

Dm Model change, mean T 2.7 1.6 3.3

Ds Proportional model change, standard deviation T 0.9 0.9 1.0

Hoh HDD calculated from moh, soh 368 41.1 7.5

Hmh HDD calculated from mmh, smh 435 50.6 15.4

HDD projections:

Hmf Calculated from mmf, smf 354 21.1 3.8

HDI Additive index correction (5Hoh 1Hmf 2Hmh) 288 11.6 24.2

H3I Proportional index correction (5HohHmf/Hm) 300 17.1 1.8

HDT Underlying change method 291 14.7 0.4

H«T Underlying bias correction method 299 16.3 1.8

Coh CDD calculated from moh, soh 1.0

Cmh CDD calculated from mmh, smh 19.4

CDD projections:

Cmf Calculated from mmf, smf 60.1

CDI Additive index correction — — 41.7

C3I Proportional index correction — — 3.2

CDT Underlying change method — — 16.7

C«T Underlying bias correction method — — 6.3
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16.3 HDD. This represents a large proportional dif-

ference between methods, even though, in this climate,

differences in July HDD represent a small difference

relative to the annual total that is dominated by winter

HDD. The effect of these methods on annual total

HDD (and CDD) projections will be investigated in

section 3c.

3) CASE 3: HDD WHEN m.TH

Finally, we consider London in July in member afixj.

Here, there is a positive bias in both m and s (case 3;

Table 2). Despite the warm bias, the positive variance

bias means there are too many HDD. Large future

warming results in a large reduction in HDD. Applying

the additive change in the index [7.5 1 (3.8–15.4)]

gives a projected value of 24.2 HDD. This negative

value violates the definition of HDD and so must be

incorrect, thereby demonstrating that the additive index

correction cannot give a valid answer. The proportional

change method gives a result of 1.8 HDD, while the

underlying correction methods give values of 1.8 HDD

(bias correction) or 0.4 HDD (change method).

4) CASE 4: CDD

We now consider CDD. Given the threshold

TC 5 22.08C, all months in all U.K. grid boxes have

m, TC in current climate and often m � TC. Therefore,

days above the threshold are very rare, or equivalently

CDD only arise from anomalously warm days. In this

case, Eq. (5) is very nonlinear in m (Fig. 1). The bottom

section of Table 2 explores projected CDD for London

in July, again for member afixj (see case 3). Because the

model is biased hot, the modeled values of m and s give

too many CDD, that is, Cmh .Coh. Future warming

means that CDD will increase. The additive index cor-

rection method gives a projection of 41.7 CDD. Other

methodologies give much smaller, although differing,

projected values: 3.2, 16.7, and 6.3 CDD. This large

difference in results is due to the nonlinearity of the

index and the large bias in both mean and variance.

From our earlier discussion, we may conclude that the

additive index method is inappropriate in this nonlinear

case, but it is unclear which of the other three methods is

most appropriate.

Different ensemble members also give different an-

swers after calibration; this behavior is discussed further

in section 3c.

As mentioned in section 2c, our model accounts only

for the climatological mean and not for interannual

variability. In a climate such as that of the present-day

United Kingdom, CDD are largely driven by extreme

events in individual years, such that the climatological

mean is not necessarily the most useful metric.

5) IMPLICATIONS

Case 1 (HDD in a cold climate) demonstrates that in

some cases, relative differences between a simple index

method and a more complex methodology are small.

Therefore, a user interested in projecting such an index

could expect calculating the change in the index from

model output and adding it to the observed index to

provide a reasonable estimate of future HDD, saving

time and cost. (This assumes of course that the user

trusted the climate model’s projected changes in the

underlying temperatures.) Furthermore, returning to

the equation for the index demonstrates that the addi-

tive index correction and not the proportional index

correction is correct in the linear case.

In other cases, the examples above demonstrate that

calculating changes in the index alone will not provide a

reliable projection. It is not obvious which of the two

underlying methods is appropriate. Users should ex-

plore the choice of methodology as a source of un-

certainty, as previously proposed in agricultural studies

(Ruiz-Ramos et al. 2016) and in Ho et al. (2012). The

next section explores these uncertainties, and their

magnitude, for U.K. degree-day projections.

In the above we have discussed the difference be-

tween methods as a difference relative to the absolute

number of DD. Our motivation for doing so is that DD

enter energymodels as a multiplicative factor (Isaac and

Van Vuuren 2009) so that it is relative differences that

are important. The absolute differences between

methods are largest in case 1 (although as commented,

they do reduce to zero for slightly colder climates). This

is discussed further in the conclusions.

One might ask at what point nonlinearity becomes

important. The second derivative of the expectation

function is a Gaussian [Eq. (8)], its scale determined by

s. Therefore, one can determine how many standard

deviations from the mean bring the nonlinearity func-

tion below any predefined threshold. The challenge,

then, is to define such a threshold. This may well be user

specific, but, in general, Fig. 1 suggests that nonlinearity

is certainly unimportant when the mean temperature is

(and remains under climate change) more than 3-sigma

away from the threshold.

Finally, the conclusions above rely on DD values de-

rived assuming that the distributions are Gaussian.

Given that there is some evidence that the Gaussian

assumption breaks down in summer and winter for some

ensemble members (section 3a), the expected DD de-

rived using these expressions will be a biased estimate,

particularly in the CDD case. Therefore, the values are

illustrative only, but the chain of reasoning that seeks to

establish the state of climate for which results are
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particularly sensitive to the bias correction method re-

mains valid and could be extended with care to distri-

butions with, for example, pronounced skew.

c. Projections of HDD and CDD

We now apply the four calibration methods discussed

earlier to climate model output to calculate projections

of future annual HDD and CDD. In the case of cali-

bration strategies for the underlying data, trans-

formations are now applied to the full distribution, but

correcting for mean and variance only. A data file con-

taining spatial projections on a month-by-month basis is

available (Holmes 2017).

It is generally accepted that some calibration or bias

correction is necessary. Therefore, for each method

we present the projected value and the percentage

difference between this value and the simple ‘‘addi-

tive index bias correction’’ projection. Proportional

change and difference is used for the reason discussed

above: that DD are generally used as multiplicative

factors in energy models (Isaac and Van Vuuren

2009).

Figures 5 and 6 show maps of projections using dif-

ferent methods for a single ensemble member. For

HDD, the methodologies that treat the underlying dis-

tribution tend to project higher future values than the

index correction methods, with differences of over 5%

at many grid points in the unperturbed member

(Figs. 5h,i,j). This is representative of most model

members. Consistent with the case studies above, then,

the relatively cold U.K. climate (and therefore approx-

imate linearity of HDD in mean temperature) means

that the effect of calibration choice is relatively small.

However, users sensitive to small margins (such as 5%)

or changes in particular seasons may still need to be

concerned about these differences.

On the other hand, for the CDD method choice has a

large relative impact on the magnitude of projections.

This is evident in Fig. 6. While the absolute values of

CDD involved are small, such large differences in pro-

jections could be crucial to stakeholders deciding

whether to invest in cooling technology.

Figure 7 shows the projections averaged over the

United Kingdom, Glasgow, and London for each en-

semble member. As well as the calibrated projections

(colored), raw model output is also shown (dashed

black: historical; solid black: future). The ensemble

members are sorted by their historical bias in each

metric. For all members except 9:afixm and 11:afixq, all

calibration methods produce a large reduction in pro-

jected HDD relative to the raw model output. This is

particularly true for members 1 to 4 (right of plot,

Fig. 7a). This is consistent with their large historical cold

biases (Table 1). In general, the methods applied to

underlying data project higher future HDD than the

simple additive index correction method (blue) does

(Fig. 7a). Similar results are found for Glasgow

(Fig. 7b), although the effect, and therefore importance,

FIG. 5. The effect of different bias correction strategies in the unperturbed member afgcx for the period 2040–69. Historical HDD in

(a) observations and (b) model. (c)–(g) Projected future HDD according to different methodologies. (h)–(j) The percentage difference

between projected values of HDD for different strategies, relative to the additive index method.

9070 JOURNAL OF CL IMATE VOLUME 30



of calibration is even larger. This is consistent with larger

biases relative to the national case.

It has been suggested that bias correction/calibration

reduces uncertainty in impacts’ projections (e.g., Ruiz-

Ramos et al. 2016). Figure 7a shows that forHDD, this is

indeed the case; the spread across all methods across all

members (colored lines) is less than the spread in the

raw output (black line). However, the calibration

methods introduce a new source of uncertainty, espe-

cially for members with large historical bias (right of

Fig. 7a). For this ensemble, the introduced ‘‘calibration

uncertainty’’ is approximately equivalent to the un-

certainty from the ensemble spread; the range in values

in any one method (colored line) is approximately equal

to the spread between colored lines for any onemember.

This is quantified in Table 3.

For all members, additive index correction reduces

the projected value of CDD relative to the raw model

output (Figs. 7c,d, blue vs black line). Projections from

both the underlying change method and the underlying

bias correction method (red and yellow) are lower than

that from the simple additive index correction method

(blue) in most members. The differences in the pro-

jections from underlying methodologies, which are large

in some members (e.g., afixc, London; Fig. 7d), must be

attributable to changes or biases in the variance (Ho

et al. 2012).

Again, the uncertainty in CDD associated with the

choice of calibration methods is equivalent in magnitude

to that associatedwith the ensemble spread (Table 3). This

is true even if the additive index correction is, consistent

with our earlier discussion, discounted and only the two

methods applied to underlying data are considered.

The uncertainty in the HadRM3-PPE ensemble used

here is not a full measure of the uncertainty in cli-

mate change projections because of the model physics

or initial condition uncertainty. The calibration uncer-

tainty from these methods (which is not the full cali-

bration uncertainty, as these are only a selection of

relatively simple methods) would therefore reduce in

relative importance when compared to a broader as-

sessment of uncertainty in climate change, such as that

used in UKCP09.

4. Conclusions

In this paper, we have analyzed degree-day (DD) in-

dices using an analytical tool and climate model output.

We have developed an analytical tool that can be used to

explore the effect of different calibration strategies

without detailed analysis of daily climate model output.

This work has extended concepts previously largely

applied in agricultural studies regarding the unreliable

results that can arise from applying certain bias correc-

tion strategies. While some previous studies have fo-

cused on the importance of bias correcting variance as

well as mean, we demonstrate that problems with simple

bias correction methods may arise even for mean biases

only. Our main conclusion is that sufficiently far from

the threshold used to define DD, the DD index is

FIG. 6. As in Fig. 5, but for CDD. Proportional index correction method not appropriate because of the historical value of 0 in

some months.
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approximately linear in the mean temperature, and

simple index correction may be appropriate. Close to

the threshold, large uncertainty is introduced by differ-

ent calibration methodologies. As a rough approxima-

tion, for Gaussian distributions, the linear regime

applies when the mean temperature is more than three

standard deviations away from the threshold. Alterna-

tively, more simply, the linear regime can be assumed to

apply forHDD if almost all observed daily temperatures

are below the threshold—equivalently, when the maxi-

mum observed daily mean temperature is below or only

just above the threshold.

Consistent with the above, projections for the

United Kingdom suggest rather different conclusions

for HDD and CDD. For HDD, even a simple index

bias correction method largely removes the spread in

member projections introduced by model bias. How-

ever, for members with nonnegligible bias, the choice

of method introduces new uncertainty. For CDD on

the other hand, the same simple index correction

method is certainly inadequate, giving much larger

projected values than more advanced methods ap-

plied to the underlying temperature distribution. This

suggests that studies such as Zubler et al. (2014) and

Erhardt (2015) should indeed be extended to take

account of the effects of nonlinearity. The maximum

plausible CDD projection (discounting the simple

index correction method) we have found for the U.K.

average in 2040–69 is under 20 CDD, and the mini-

mum plausible (any correction method) HDD pro-

jection is 1710 HDD (Figs. 7a,c). This implies that in

the United Kingdom, cooling is likely to remain a far

TABLE 3. The spread in values of projections from the four

calibration methods, as presented in Fig. 7. Column 1 is the maxi-

mum spread in a single ensemble member across calibration

methods (calibration uncertainty). Column 2 is the maximum

spread in a single method across all models (model uncertainty).

Case

Maximum

single-member

spread

Maximum

single-method

spread

HDD, national 484 519

HDD, Glasgow 626 595

CDD, national 57 59

CDD, London 137 131

FIG. 7. Projected DD (solid lines) for 2040–69 from the 11 ensemble members: (a) HDD, U.K. national av-

erage; (b) HDD, Glasgow; (c) CDD, U.K. national average; and (d) CDD, London. The top of the gray back-

ground indicates the observational historic (1981–2010) value, and the black dashed line shows the modeled

historic value. Models are sorted by their historical bias. Black solid lines show the uncalibrated model pro-

jection, while each colored solid line shows the result from a calibrated projection. The terms H_mh and H_mf

are rawmodel historical and future output, and in other cases subscripts as in section 2b are typeset, for example,

H_DI 5 HDI .
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smaller concern than heating. However, the analysis in

this paper does not account for trends or interannual

variability. Since it is likely that individual hot years may

result in high values of CDD even in a relatively cool

climate, consideration of CDD in individual years is an

important matter for future work. Moreover, tempera-

ture distributions in summer (and in some models, in

winter) deviate from Gaussian, such that mapping the

mean and variance alone as done in this paper will not

fully capture changes in the tails and therefore in degree-

days, so focusing on higher-order statistics or quantile

mappings would be important for future work.

Note that the above discussion focuses on relative dif-

ferences betweenmethods and relative change in degree-

days. In absolute terms, the uncertainties in HDD are

much larger than those in CDD (Table 3), but these un-

certainties are small relative to the total number ofHDD.

For some users, absolute values may be more relevant.

Outside the United Kingdom, in hot climates

(m. 22:08), the findings in this paper regarding linearity

may become critical for CDD projections. For example,

simple index correction could result in unrealistic pro-

jections of future increases in degree-days (by analogy with

case 2; section 3b). The specific analytical model derived

herewouldonly apply if theGaussian assumptionwas valid.

A possible limitation of this analysis is the relevance of

the thresholds used and their interaction with other so-

cioeconomic factors (Isaac and Van Vuuren 2009). For

example, cooling equipment is not currently widespread in

the United Kingdom, so even hot days would not see en-

ergy use for cooling. If it were available, buildingsmight be

cooled at less than 228C;Brown et al. (2016) recently found
that in the United States, lower thresholds are appropriate

for cooler regions and vice versa. Such findings also imply

that the appropriate thresholds to use in degree-day

analysis are likely to change over time, as people and so-

cieties adapt to the increasing temperatures resulting from

climate change. Our analysis could easily be applied to

different thresholds. The analytical expressions of Eqs. (4)

and (5) would also enable simple allowance to bemade for

processes not captured in the model. For example, if the

local temperature effect of an urban heat island was ob-

served in reality but not simulated in a climate model, the

effect on CDD could be easily explored by adjusting the

mean in the expression.

This framework can be extended to other indices.

Growing degree-days are an above-threshold degree-

day with threshold 5.58C (e.g., Harding et al. 2015).

Given the 3-sigma rule of thumb for linearity dis-

cussed in this paper, and taking an approximate

within-month standard deviation of 38C, growing

degree-days would be expected to be nonlinear in the

mean m and dependent upon standard deviation for

m , (5.5 1 3 3 3)8C 5 14.58C. Therefore, the non-

linearity of growing degree-days is broadly relevant in the

United Kingdom, particularly in the north. This is an

important caveat to studies such as Harding et al. (2015),

which calculate changes in the index alone. For a

threshold exceedance index with threshold TA, the ex-

pected value of the index from an equivalent analytical

derivation is (1/2) f11 erf[(TA 2m)/s
ffiffiffi
2

p
]g. Analysis of

the limits of this function can reveal the cases in which

threshold exceedance are nonlinear in m and s. We

conclude then that this study provides valuable insight

into the types of indices, across a range of impact

sectors, that are particularly vulnerable to uncertainty

arising from bias correction methodology.
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APPENDIX

Derivation of Analytical Expression

The derivation is given for the HDD case. Starting

with Eq. (3),

E(Y)5E[g(X)]5

ð‘
2‘

g(x)f
X
(x)dx

5

ð‘
2‘

(T
H
2x)H(T

H
2x)f

X
(x)dx, (A1)

and substituting the Gaussian distribution function

f
X
(x)5

1

s
ffiffiffiffiffiffi
2p

p e2[(x2m)2/2s2] (A2)

gives
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E(Y)5

ð‘
2‘

(T
H
2 x)H(T

H
2 x)

1

s
ffiffiffiffiffiffi
2p

p e2[(x2m)2/2s2] dx

5

ðTH

2‘

(T
H
2 x)

1

s
ffiffiffiffiffiffi
2p

p e2[(x2m)2/2s2] dx

5T
H

ðTH

2‘

1

s
ffiffiffiffiffiffi
2p

p e2[(x2m)2/2s2] dx2

ðTH

2‘

x
1

s
ffiffiffiffiffiffi
2p

p e2[(x2m)2/2s2] dx

5 (T
H
2m)

ðTH

2‘

1

s
ffiffiffiffiffiffi
2p

p e2[(x2m)2/2s2] dx2

ðTH

2‘

(x2m)
1

s
ffiffiffiffiffiffi
2p

p e2[(x2m)2/2s2] dx , (A3)

where the final expansion is made for convenience in

what follows.

Using the substitution

t5
(x2m)

s
ffiffiffi
2

p (A4)

this becomes

E(Y)5(T
H
2m)

ð TH2m

s
ffiffi
2

p

2‘

1ffiffiffiffi
p

p e2t2dt2

ð TH2m

s
ffiffi
2

p

2‘

s
ffiffiffi
2

p
ffiffiffiffi
p

p te2t2 dt

5
(T

H
2m)

2

�
11erf

�
T
H
2m

s
ffiffiffi
2

p
��

1
sffiffiffiffiffiffi
2p

p e2[(TH2m)2/2s2],

(A5)

using the results

11erf(x)5

ðx
2‘

2ffiffiffiffi
p

p e2y2 dy (A6)

ðx
2‘

ye2y2 dy52
e2y2

2
. (A7)

For CDD, the integral to be evaluated becomes

E(Y)5

ð‘
TC

(x2T
C
)

1

s
ffiffiffiffiffiffi
2p

p e2[(x2m)2/2s2] dx , (A8)

which through the same arguments gives the expression

E(Y)5
(m2T

C
)

2

�
11erf

�
m2T

C

s
ffiffiffi
2

p
��

1
sffiffiffiffiffiffi
2p

p e2[(m2TC)
2/2s2] . (A9)
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