

Edinburgh Research Explorer

Improving Plan Execution Robustness through Capability Aware
Maintenance of Plans by BDI Agents

Citation for published version:
White, A, Tate, A & Rovatsos, M 2017, 'Improving Plan Execution Robustness through Capability Aware
Maintenance of Plans by BDI Agents' International Journal of Agent-Oriented Software Engineering, vol 5,
no. 4, pp. 306-335. DOI: 10.1504/IJAOSE.2017.10008539

Digital Object Identifier (DOI):
10.1504/IJAOSE.2017.10008539

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
 International Journal of Agent-Oriented Software Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 09. May. 2018

http://dx.doi.org/10.1504/IJAOSE.2017.10008539
https://www.research.ed.ac.uk/portal/en/publications/improving-plan-execution-robustness-through-capability-aware-maintenance-of-plans-by-bdi-agents(aeea9c76-8224-4d4c-96d7-581fbcde5fcb).html

Improving Plan Execution Robustness through
Capability Aware Maintenance of Plans by BDI Agents

Alan White1, Austin Tate2, Michael Rovatsos3

Artificial Intelligence Applications Institute
Centre for Intelligent Systems and their Applications
School of Informatics, University of Edinburgh, UK

1a.g.white@sms.ed.ac.uk, 2a.tate@ed.ac.uk, 3mrovatso@inf.ed.ac.uk

Keywords: Multiagent Teamwork, Belief-Desire-Intention, Planning, Capability, Robustness

Abstract. In a realistic environment, intentions of Belief-Desire-Intention (BDI)
agents may be threatened by exogenous change. Subsequent activity failure may
incur debilitative consequences that hinder both recovery and subsequent goal
achievement. CAMP-BDI (Capability Aware, Maintaining Plans) embodies BDI
agents with capability knowledge, allowing anticipation of threats to activity suc-
cess and stimulating the proactive, preventative modification of intended plans.
We describe resultant agent-level algorithms and supporting architecture, includ-
ing extension to provide decentralized, distributed maintenance through struc-
tured messaging. Our results show superior goal achievement to a reactive equiv-
alent in a stochastic environment, increasing with the likelihood of debilitative
failure effects. We suggest CAMP-BDI offers a valuable approach towards ro-
bustness, particularly in tandem with reactive recovery methods.

1 Introduction
The Belief-Desire-Intention (BDI) approach defines intelligent agent behaviour through ra-

tional goal and plan selection. BDI has been widely employed by intelligent agents, including
within realistic, stochastic and dynamic domains such as emergency response. In these environ-
ments, exogenous change during execution may contradict the assumptions made when forming
intentions, risking activity failure and potential debilitative consequences. Current BDI architec-
tures typically employ reactive approaches, such as replanning or plan repair, to handle activ-
ity failure; Jason agents (Bordini and Hübner [2006]), for example, enact predefined recovery
plans upon goal failure. However, failure associated debilitation may increase the cost of, or even
stymie, recovery from post-failure states. Continuous planning mitigates uncertainty by postpon-
ing planning decisions, but this shorter-term viewpoint risks inadvertent long term failure – such
as where necessary resources are not reserved to protect against contention.

This paper describes the CAMP-BDI (Capability Aware, Maintaining Plans) approach, which
embodies BDI agents with the ability to introspectively reason over their intended plans. This rea-
soning enables proactive plan repair to be performed where divergences between actual and an-
ticipated world state threaten failure – allowing response to exogenous change whilst supporting
long term plan formation and resource reservation. We present the following contributions:

– An algorithm for anticipatory plan repair behaviour, referred to as performance of maintenance
– Extension of local behaviour to encompass decentralized maintenance of distributed intentions

2

– A supporting architecture providing the capability, dependency, and obligation knowledge used
to perform introspective reasoning and guide maintenance changes

– A policy mechanism allowing runtime tailoring of maintenance behaviour

An experimental implementation of CAMP-BDI was evaluated against a reactive replanning
system, within a logistics environment subject to unpredictable exogenous changes. We gathered
results over multiple experimental runs, for varying probabilities of failure-associated debilita-
tions. CAMP-BDI was observed to offer superior goal achievement over reactive replanning,
with superior efficiency (in planning calls per goal achieved) at higher likelihoods of post-failure
debilitation – reflecting an increased difficulty of recovery and activity in post-failure world states.

2 Motivating Example

Our motivating example is a logistics domain, where the goals of the Multiagent System
(MAS) are to deliver cargo to requesting locations in a stochastic, dynamic, continuous and
non-deterministic environment. Uncertainty arises from agent health state, weather conditions
(rainstorms may flood roads or cause landslips), or emergence of ‘danger zones’ rendering given
locations unsafe. This extends from a single-agent approach, where a Truck agent transports an
item of cargo, to employ multiple supporting agents – e.g. Bulldozers to clear blocked roads,
APCs (military Armoured Personnel Carriers) to secure dangerous locations, and with logical
agents acting as organizational controllers or brokers, within a distributed agent team.

Activity failure risks negative consequences that can hinder both recovery and future goal
achievement. For example, Figure 1 depicts a Truck agent travelling a planned route from loca-
tion A to M, when road F → M is rendered unusable by flooding – threatening Truck’s intended
activity, move(F,M). This risks both failure of that activity and debilitation; i.e. Truck may be
rendered unusable by both recovery plans and future intentions if stuck on F → M or damaged
as a result. Even if found, recovery plans may be costly due to necessary backtracking or remedial
actions – it may be cheaper to identify an alternate route immediately upon F → M becoming
known as flooded, rather than pursuing the plan until failure at M . Finally, failure may not be
solely deterministic – some states (such as partial flooding on F → M) may not be significant
enough in effect to ensure failure, yet still impact whether execution succeeds.

Our system aims to improve robustness – measured as goal achievement by the overall multi-
agent system – in environments subject to exogenous change, where failure risks lasting de-
bilitation, resource contention prohibits reliance on short term continual planning, and domain
complexity renders probabilistic planning methods (such as MDP policy formation) intractable.
We argue this requires proactive behaviour – to anticipate threats to activities and pre-emptively
modify plans to avoid failure. It also requires extension to cover the distributed context of Multi-
agent teams – i.e. when Truck is at risk of failing to meet an obligation, dependent agents should
anticipate and compensate accordingly. Finally, we recognize deterministic state models only ap-
proximate realistic environments and account for where states can increase the risk of failure, but
not significantly enough to be represented in deterministic operator preconditions.

3 Architecture Components

CAMP-BDI agents employ the following meta-knowledge components for introspective rea-
soning. These represent a subset of agent Beliefs, although semantics will be implementation-
specific; we simply state that our CAMP-BDI algorithms require this information. To distinguish
between a selected desire and the approach to achieve it, we define an intention i as combining a
goal and associated plan: i = {igoal , iplan} (as expressed in Simari and Parsons [2006]).

3

3.1 Capabilities
Capabilities define meta-knowledge regarding the activities performable and goals achiev-

able by agents, including those delegated through formation of dependency contracts. This model
is used to represent meta-knowledge information for both those activities directly performed by
an agent and – as a necessary field provided within dependency contracts – those delegated to
others; this allows the same reasoning algorithms to be applied for both of these types of activity.

An activity a is defined as equivalent to a task in a Hierarchical Task Network (HTN), in that
it can be viewed as composite (i.e. decomposable) or atomic. An a is modelled as a deterministic
state transition F (a, S) = S′; successful execution of a in state S achieves a successor state
S′. We assume S maps to equivalent agent beliefs B; i.e. successful execution of a in S sees B
updated to reflect S′. A given activity may correspond to an atomic action (primitive activity), or
subgoal (composite activity) – the latter requires decomposition into, and execution of, a subplan.
A plan p is an ordered sequence of activities p{a1, . . . , an}, scheduled and executed to achieve
some goal; a plan is primitive if every a ∈ p is primitive. If continual planning is employed, p
may contain composite activities, whose refinement into subplans is deferred until execution.

A capability c(a), denoting the holding agents ability to perform a, has the following fields;

c(a) = 〈s, g(a), pre(a), eff (a), conf (a,Ba)〉

– s: signature s with name n and x parameters: s = n(t1, ..., tx). A specific capability instance
c in a MAS can be uniquely identified by combining s and the (identifier of the) agent holding
c(a). The parameters t are used to ground the abstract terms in g(a), pre(a) and eff (a).

– g(a): defines the goal state (SG) – the set of atoms achieved through successful execution of a;
i.e. the state transition of a in S is given by F (a, S) = S′, where FG ⊆ S′. SG will initially
be an abstract specification, to be ground using parameters of s.

– pre(a): preconditions (belief atoms) defining where a can be achieved - specifically, use of
c(a) is not guaranteed to fail if pre(a) ⊆ Ba, again ground through the parameters for s.

– eff (a): the complete set of post-effects of using c(a) – i.e. eff (a) = g(a)∪sideeffects(c(a)),
effectively defining S′ for the activity transition function F (a, S) = S′. This can be used to
distinguish between the (goal achievement) purpose of a and side-effects; i.e. fly and drive
achieve the same g(a) (to arrive at some location), with different total effects eff (a).

– conf : a × Ba → [0 : 1]; a confidence function which (quantitatively) estimates the quality
(in this context, indicating likelihood of success) of performing a through use of c(a) in the
execution context indicated by beliefs Ba, as a scalar value.

3.1.1 Capability typology
We define the type of a capability using two overlapping categories – granularity and locality

– denoting whether c(a) corresponds to the ability to achieve g(a) through performing a primitive
or composite a, and whether actual performance of a entails delegation (i.e. is external).

3.1.1.1 Primitive capabilities
Primitive capabilities state the holding agent can achieve g(a) (with the given preconditions,

effects and confidence) through an atomic a; equivalent to Singh et al. [2010]’s concept of know-
how regarding basic activities. This type represents the effectors an agent can use to directly
change the world’s state. Primitive capabilities require explicit specification at implementation
time, similar to operators within a classical planning domains. In order to be executed, plans –
whether single agent or distributed – must eventually resolve to performance of activities which
correspond to primitive capabilities. In the distributed case, this may potentially be over multiple
decomposing delegation relationships. As a consequence, all composite and external capability
knowledge ultimately resolves to, and derives from, some subset of primitive capabilities.

4

3.1.1.2 Composite capabilities
Composite capabilities represent knowledge of some plan(s) for achieving g(a), where a

is a composite (non-atomic, divisible) activity – either an igoal (i.e. the root activity in a task
decomposition hierarchy) or a subgoal within a plan. BDI agents are typically implemented as
employing a library of plan recipes. Composite capabilities hold a 1 : n relationship with the
plans known to an agent for achieving that g(a). Each plan in the plan library will map to exactly
one representative composite capability, with each composite capability mapping to n ≥ 1 plans
for achieving g(a). This supports reasoning about abstract activities within a plan – including if
continual planning is used, where the actual refinement decomposition of a will be delayed until
closer to a’s execution (where greater certainty is expected regarding a’s execution context).

Composite capabilities can be formed automatically using the contents of an agent plan li-
brary; with g(a) corresponding to some goal, and pre(a) being the disjunction of selection con-
ditions for all plans to meet that goal – i.e. defining states where the agent knows a selectable plan
(we assume that if a plan p’s selection conditions hold, so will preconditions for every a ∈ p).
As the precise semantics of how g(a) is to be performed – i.e. which exact plan would be se-
lected, with what specific activities and effects – can vary with the specific execution context, we
define eff (a) as the state corresponding to g(a). Where a is ground and the execution context
Ba known, eff (a) can be calculated by identifying which plan would be selected; for multiple
options, it is assumed the plan with greatest estimated (as in 3.1.2.3) confidence would be used.

3.1.1.3 External capabilities
CAMP-BDI agents are expected to advertise capabilities where they can accept obligations

from others (with any authority constraints reflected by selective advertisement, and updated to
reflect changes in circumstance such as confidence loss); recipients use the received informa-
tion to form a corresponding external capability set, representing where an a can be performed
through delegation. Both primitive and composite capabilities can be advertised, although knowl-
edge of the plans represented by the latter will be restricted to the advertiser. As obligants identify
and perform any plan selection within their internal reasoning, external capabilities are always
modelled as being primitive – i.e. indivisible from the (potential) dependant’s perspective.

3.1.2 The Confidence function
The qualification problem (McCarthy [1958]) recognises that, when specifying deterministic

preconditions, it is impossible to represent every state which can potentially threaten successful
execution as this would over-constrain operators to unusability. As a result, certain risk-increasing
states will likely be deemed not significant enough to represent outright within preconditions –
operator preconditions can be considered as defining the conditions under which failure is not
guaranteed, rather than those where success is. The confidence function (confa(a,Ba)) allows
identification of whether exogenous change impactingBa has increased the risk of failure, even if
preconditions still hold for a – i.e. conf (driveAlong(F ,M),B) is lower if slippery(F ,M) ∈ B
than if dry(F ,M) ∈ B. A numerical value allows semantic-independent comparison between
different internal and/or external capabilities sharing the same s, whilst allowing flexible granu-
larity during implementation (e.g. to use enumerated values yes = 1 , maybe = 0 .5 , not = 0
rather than requiring precise, continuous, estimation for the probability of success).

Estimation depends on both the capability type and a itself. If a is unground, confidence
indicates the general ability of that agent to achieve g(a) in Ba – an abstract estimation. If
a is ground, additional semantic information can be used for specific estimation. Primitive ca-
pabilities will use a predefined calculation for both abstract and specific estimation – such as
considering past execution results (Singh et al. [2010] use such an approach for learning plan
selection conditions, in order to support their reuse) as well as Ba. Implementation of the confi-

5

dence function for a primitive capability requires domain and specific analysis, and relies upon
the domain knowledge and the analytical or modelling abilities of a human designer.

3.1.2.1 Primitive Capability Confidence Estimation
It is difficult to generalize the difficulty of primitive confidence estimation, as calculation

will depend upon the specifics of the capability holding agent (i.e. that performs the activity) and
the properties of the environment. We suggest implementation use information gathered during
analysis of which states impact success and to what significance – as this will likely be gathered
regardless, to specify operator preconditions for planning domains or define plans and selection
conditions for the agent’s plan library. We also do not require exact probabilistic estimation, but
instead an indicative value; allowing flexibility over the level of granularity where more precise
estimation is infeasible or impractical. Maintenance policies (in 3.3) can also modified in order
to help compensate for consistent over or under-estimation.

3.1.2.2 External Capability Confidence Estimation
External capabilities use a fixed, abstract confidence value, as received in the relevant capa-

bility advertisement. Agents are unlikely to share the semantic knowledge for specific confidence
estimation within capability advertisements, as the recipients may lack the modelling or sensory
ability required to interpret – particularly as MAS approaches are often motivated by distribu-
tion of knowledge and sensory capacity within an environment. However, specific estimates are
provided for delegated activities in the external capability field of contracts (in 3.2).

3.1.2.3 Composite Capability Confidence Estimation
Composite capabilities represent (knowledge of) a set of plans for a given goal (Pcapability).

Estimation of composite capability confidence utilizes the estimated confidence of the individual
plans in Pcapability – i.e. assessing the quality of plans the agent can employ for that a. Estima-
tion of plan confidence is also employed when performing maintenance, to determine whether to
accept generated plans (described in 4.3). This makes plan confidence estimation relevant both
in anticipating threats (i.e. to estimate confidence for subgoals/composite activities through their
potential refinement subplans), and also generally to support our process of addressing identified
threats through forming and inserting maintenance plans (described in the following section). We
first discuss the methods for plan confidence estimation, before discussing how confidence for
each p ∈ Pcapability is used to form an overall confidence estimate for the capability.

Plan confidence may be calculated in various ways. One method, similar to TÆMs’ q min
metric (Lesser et al. [2004a]), is to use the minimum confidence of a constituent activity – given
below, with conf expanded to consider a plan p as the first argument, where Bp is the execu-
tion context of the first activity in p. Ba will be updated with an’s (capability-defined) effects
following confidence estimation of an, to estimate an execution context for the following an+1:

confmin(p,Bp) = mina∈pconf (a,Ba)

This form of estimation can be used if every a ∈ p must have ‘acceptable’ confidence for
p to be considered acceptable. Such a constraint can guard against future maintenance, as the
resultant value indicates if any activity in the plan is below the relevant confidence threshold (see
3.3) – although this does not prevent subsequent exogenous change from requiring maintenance
regardless. However, this may over-constrain plan acceptance during maintenance by defining
plan confidence by the worst constituent activity – i.e. a plan containing many low-confidence
activities would be given the same confidence as one with a single low confidence activity.

An alternative is to average the confidence of all plan activities. A weighting function (given
as wi → Z≥0) can scale the significance of an ai ∈ p in contributing to p’s confidence, based
upon relative precedence (1 ≤ i ≤ n denotes the location of a in a plan p of n activities):

6

confavg(p,Bp) =

 n∑
i=1

conf (ai ,Bai
)×wi

n∑
i=1

wi

For example, wi may be greater for lower values of i, reflecting more imminent execution; e.g.
wi = (n−i)/i to determine the weight of ai. This would reflect the likelihood of the environment
changing over time, and consequently increasing uncertainty regarding the execution context
– and confidence – for latter activities. Additionally, in some environments it may be difficult
to always generate plans where every activity has confidence above the defined threshold. An
averaged value allows incremental improvement in iplan confidence, by allowing insertion of
maintenance plans that still offer an overall confidence improvement over a threatened activity.

When calculating composite capability confidence, we assume the highest confidence plan is
always selected for a goal. Composite capability confidence is therefore the highest of a selectable
plan (i.e. where preconditions hold – if none are selectable, 0 is returned), where agoal is the
activity being performed using the composite capability and Bagoal it’s execution context:

conf(agoal , Bagoal) = max p∈Pcapability

pre(p)⊂Bagoal

conf(p, Bagoal)

This equates to formation and traversal of an AND-OR tree (similar to goal-plan trees in
Thangarajah et al. [2003]) representing all potential plan and subplan execution ‘paths’ to de-
compose and achieve agoal . The return value derives from visiting every leaf activity (O(n) worst
case complexity, for n leaf nodes), and originates from either a primitive or external capability
confidence value (i.e. as estimated for a leaf node activity). Cyclical loops are assumed not to
occur, due to the decompositional nature of plans; this property is also prevents infinite loops
in agent activity itself. Use of advertised confidence for external capabilities – rather than re-
questing that potential dependants calculate a value locally – restricts the semantic knowledge
requirements to the advertising agent.

There is considerable scope for domain specific optimization of confidence calculation for
both primitive and composite types; the specific implementation of plan confidence evaluation
(whether based on minima, averaging, or some other approach) is likely to be influenced by
the environment’s properties and the agent’s planning implementation. In the confmin case, α-β
pruning can to improve common-case complexity if estimation is being performed to determine
whether confidence is below a set threshold value (for example, a policy maintenance threshold).
Finally, composite capabilities representing runtime planning abilities require custom implemen-
tation of confidence estimation, similar to as for primitive capabilities.

3.2 Obligation and Dependency Contracts

Dependency contracts are assumed to be formed as far in advance of execution as possible, to
protect against contention from others for both agent capabilities (i.e. to form dependencies upon)
and environmental resources. CAMP-BDI agents are aware of their obligation and dependency
contracts; these state the mutual beliefs established between dependants and obligants regarding
a delegated activity. CAMP-BDI requires the following fields to be represented and established
as part of contract formation;

– An activity, which the obligant(s) agree to perform upon the dependant’s request. We refer to
the dependant’s iplan containing that activity as the dependent intention.

– Causal link states; states the dependant intends to establish, representing the effects of pre-
ceding activities in the dependent plan, prior to execution of the delegated activity.

7

– An external capability, used by obligant(s) to convey the (anticipated) post-effects and confi-
dence for the activity – the latter estimating the execution context using the causal link states.
If there is more than one obligant, the individual obligant capabilities will be merged:
• Confidence is set as the minimum individual obligant confidence
• Preconditions are formed as the conjunction of all obligant preconditions
• Effects are set as the union of all obligant post-effects

– A maintenance policy, used to guide maintenance behaviour (see 3.3).

3.3 Maintenance Policies

A maintenance policy1 defines specific fields, applied to a defined set of agents and/or capa-
bilities, which influence maintenance behaviour:
– Threshold: the minimum confidence (quality) value for an activity; runtime modification of

this value also allows compensation for over-sensitive confidence estimation
– Priority: guides relative prioritisation within maintenance behaviour, when multiple activities

in an iplan are identified as being under threat of failure
These fields allow the additional computational costs incurred by proactive maintenance to

be balanced against the benefits of avoiding failure; lower threshold values can be associated with
those activities carrying more severe failure penalties, increasing the effective frequency under
which an agent will attempt to identify and perform confidence-raising modifications to iplan .
Similarly, if an activity has little or no significant failure consequences (and reactive failure han-
dling is provided), the associated maintenance threshold can be set to a very low or zero value –
‘turning off’ maintenance in favour of reactive recovery.

Maintenance policies are intended to be dynamically modifiable; both field values and the sets
of agents and/or capabilities the policy applies to can be altered during runtime. This allows a de-
gree of tailoring for the implementation-time defined maintenance behaviour; agent-capabilities
associated with activities with greater (in either probability or severity) failure consequences can
be given lower thresholds and higher priorities. In this context, maintenance policies provide
an additional layer of maintenance behaviour definition, aiding genericization of the underlying
maintenance algorithm and even potential reuse of agents in differing environments.

Contract maintenance policies merge dependant and obligant policies; these are respectively
matched to the dependent’s igoal (i.e. where iplan contains the delegated activity) and that associ-
ated with the obligant and delegated activity (i.e. obligant’s igoal). To restrict changes to a minimal
subset of the overall distributed plan, the merged maintenance policy uses the most constrained
field values (lowest threshold and highest priority), ensuring that obligants will have met their
conditions for maintenance (i.e. will have performed any confidence improving modifications
they are capable of) before informing dependants of confidence changes.

4 The CAMP-BDI algorithm
CAMP-BDI agents extend the generic BDI reasoning cycle (Rao and Georgeff [1995])

through the addition of contract formation and maintenance steps (Algorithm 1). The maintain
function is invoked in three contexts. Firstly,(1) after an intention i is selected; secondly, (2) after
a dependency is updated as indicated by receipt of obligationMaintained messages from the rele-
vant obligant(s); finally (3) to maintain mutual beliefs by maintaining preformed or cached plans
for existing obligations when the agent is otherwise idle (has no intentions).

The formAndUpdateContracts function forms new, and updates existing, dependency and
obligation contracts (the latter sending obligationMaintained messages). This function executes
after maintain, to account for changes in either the relevant iplan or associated dependencies

8

Algorithm 1: The CAMP-BDI reasoning cycle; changes from the generic algo-
rithm given by Rao and Georgeff [1995] are highlighted by bold text

initializeState();
while agent is alive do

D ← optionGenerator(eventQueue, I , B);
i← deliberate(D, I , B);
/* (1) Maintenance of currently selected intention i */
if i 6= ∅ & i not waiting on a dependency to complete then

i← updateIntentions(D, I , B);
Bi ← estimated execution context of i;
maintain(i, Bi);
formAndUpdateContracts(i);
execute();

/* (2) Maintenance of intentions in response to
dependency changes received from obligant */

for each obligationMaintained message ∈ eventQueue do
idependency ← the associated dependant intention;
Bdependency ← estimated execution context of idependency ;
maintain(idependency , Bdependency);
formAndUpdateContracts(idependency);

/* (3) Maintenance of obligants held by this agent, if no
intentions were selected */

if i = ∅ then
for each obligation contract ∈ agent’s Obligations do

iobgoal ← activity defined in obligation;
iobplan ← cached plan for obligation (to achieve iobgoal);
iob ← iobgoal , iobplan ;
Bob ← execution context estimated using (causal links in
obligation ∪ B);
maintain(iob , Bob);
formAndUpdateContracts(iob);

getNewExternalEvents();
I ←dropSuccessfulAttitudes();
I ←dropImpossibleAttitudes();
I ←postIntentionStatus();

(i.e. propagating changes received within obligationMaintained messages). The obligationMain-
tained message itself contains a contract (i.e. as given in 3.2) as a body, with that contract updated
to account for the changes to the iplan resulting from maintenance.

If there are multiple possible intentions (|I| > 1), the agent only attempts to maintain the
specific i ∈ I which was selected for execution. We view intention selection as goal driven be-
haviour, such that subsequent changes to iplan by maintenance would not invalidate the original
choice to select i. This avoids the cost of maintaining every potential intention prior to selection
– especially as any changes made by maintenance to (the iplan of) unselected intentions could be
rendered futile or even unnecessary by the subsequent execution of the selected i.

Algorithm 2 defines the maintain function. Given an intention i, maintain first identifies any
threats to activities within iplan , and – if any are found – will subsequently (attempt to) modify

9

iplan appropriately in mitigation. We use a two step process – firstly forming an ordered agenda
(described in 3) of maintenance tasks (see 4.1), each representing a threatened activity, before
iterating through that agenda until either a task is successfully handled or the entire agenda has
been iterated through. The function handleMaintenanceTask (described in 4.3) attempts to mod-
ify iplan to address the issue represented by a given maintenance task, returning true if successful
(i.e. iplan is modified).

The algorithm terminates after the first successfully handled maintenance task, as modifica-
tions may invalidate other maintenance tasks in the agenda. An alternative approach would be to
iteratively diagnose and handle tasks, until either an empty agenda is formed or handling fails
– but this is likely to result in significantly higher computational cost, and has less certainty of
termination due to the potential for incremental growth of the agenda if tasks result from each
maintenance plan change. Agenda formation and handling are separated to allow the former to
prioritize the set of threatened activities; this decoupling also facilitates future investigation into
alternate approaches for either threat diagnosis or handling.

Algorithm 2: The maintain function
Data: i – An intention; a plan iplan to meet some goal igoal

Bi – The estimated execution context of the first activity in iplan
handled ← false;
agenda ← new empty Agenda;
agenda ← the agenda returned by formAgenda(igoal , iplan , Bi, agenda);
while ¬handled & ¬agenda .isEmpty() do

handled ← handleMaintenanceTask(agenda .removeTop());

Update Dependency contracts;
if i is an Obligation then

Update contract and send to the dependant in an obligationMaintained message;

In our motivating example (Fig. 1), formAgenda would anticipate – using the associated ca-
pability’s pre field – that flooding of F → M will violate preconditions of move(F,M) when it
is executed, and subsequently inserts a corresponding maintenance task into the agenda. The sub-
sequent handleMaintenanceTask call for the generated maintenance task would seek to modify
iplan such that igoal can be achieved; i.e. avoiding use of move(F,M) or (if capable) removing
the flooded state of F → M .

4.1 Maintenance tasks
A maintenance task mt defines a threatened activity a, a type of threat (preconditions or

effects, serving to also indicate the desired handling method), estimated execution context Ba for
a, estimated confidence confa of a givenBa, and the maintenance policy mpa associated with a;

mt = 〈a, type, Ba, confa ,mpa〉

Capability knowledge facilitates introspective reasoning for maintenance task generation.
Activities are mapped to – in precedence order – internal capabilities, contract-contained external
capabilities, and finally advertised external capabilities; this assumes activities are only delegated
where necessary and that agents adopt the least complex (fewest activities) approach for perform-
ing any activity. If an activity can be met by several external capabilities, that with highest general
confidence is selected; mirroring the most likely criteria for obligant selection. Maintenance tasks
are ordered in the agenda first by their (mpa defined) priority, and then by the precedence of a

10

(i.e. to prioritize activities with more imminent execution) in iplan .
Preconditions maintenance tasks are generated where a’s preconditions do not hold in Ba

(pre(a) 6⊆ Ba), and indicate maintenance should attempt to restore precondition states. Success-
ful handling of this type generates a plan to achieve the required preconditions (i.e. ensure that
pre(a) ⊆ Ba), then inserts that plan such that it will execute immediately before mt.a does. As
this insertion will see expansion of iplan , the preconditions type is only generated if it is desirable
to preserve a – due to a achieving a goal state, or to avoid (the costs of) cancelling a pre-existing
dependency contract for a. These restrictions aim avoid scenarios where the iterative handling
of preconditions tasks (over multiple reasoning cycles) causes the iterative expansion of iplan –
with consequent loss of optimality for achieving igoal due to focusing upon preservation of that
individual activity ahead of considering the overall plan requirements for achieving igoal .

Effects maintenance tasks are generated if either pre(a) 6⊆ Ba and a does not require
preservation, or confa < mpa .threshold (a is of unacceptable quality, i.e. considered to be at
an unacceptable risk of failure). This type indicates that a should be replaced by a maintenance
plan achieving the same stateas eff (a), but with greater confidence. We also employ this type for
violated preconditions where a is not to be preserved; this allows potentially greater reconsider-
ation of iplan , including whether a should be preserved at all, avoiding the potential for iterative
expansion associated with handling the preconditions type.

4.2 Agenda Formation

Agenda formation (algorithm 3) employs recursion (2) to support hierarchical plan struc-
tures (where composite activities are decomposed into subplans), iterating through each leaf ac-
tivity (in the case of continual planning, including any composite activities which have not yet
been refined) in execution order. The getCapability function associates each activity with it’s
appropriate representative capability. We assume that CAMP-BDI agents will hold capability
meta-knowledge covering every a they can execute; i.e. that agents must have the know-how to
perform or decompose (as appropriate) any igoal they can adopt, or any a lying within an iplan
adopted as an intention.

Capability knowledge is used to identify threats to leaf activities (1) and form representative
maintenance tasks to be inserted into the agenda. At the end of each iteration, Ba is updated with
activity effects to estimate the execution context for the subsequent activity; this is discarded
by the maintain algorithm (top level called), but preserves the estimated post-execution context
when performing recursive calls.

A consolidate function (3) merges multiple maintenance tasks for activities within the same
subplan into a single effects maintenance task – where mt.a is the composite activity being
refined by that subplan. This helps avoid recurrent costs of re-diagnosing and handling each indi-
vidual threatened activity over multiple reasoning cycles, by instead defining a maintenance task
that – when handled – entails reformation of an entire (but minimal) subset of iplan containing
multiple threatened activities, effectively handling those threats in a single maintain call.

4.3 Handling Maintenance Tasks

Handling a maintenance task (mt) requires modification of the iplan containingmt.a, by the
formation and insertion of a maintenance plan into iplan . This is performed by the handleMainte-
nanceTask function (Algorithm 4), which calls the handlePreconditionsTask ((1) – detailed in Al-
gorithm 5) and handleEffectsTask ((3) – detailed in Algorithm 6) functions to respectively handle
the preconditions and effects types of maintenance task. As part of maintenance plan generation,
capability knowledge will be used to both form an appropriate planning problem and specify an

11

Algorithm 3: The formAgenda function
Data: g – a goal met, or composite activity performed, by p

p – plan of n activities {a1, ..., an} to perform g
agenda – priority ordered list of maintenance tasks; empty in initial (top-level) call
Ba – estimated execution context of a0 in p

Result: agenda updated with maintenance tasks for p
Ba updated with post-effects of p (used by recursion)

Bstart leftarrow copy of Ba (for execution context estimation);
for each activity a ∈ p do

if a is abstract then
return agenda, Ba;

ca ← getCapability(a);
/* (1) Generate maintenance tasks for leaf activities */
if ca primitive ‖ (ca composite & (a is not decomposed into a subplan)) then

if maintenance task mt found for leaf activity a then
Add mt to agenda;
Update Ba with ca.eff(a);

/* (2) Recursion for decompositional subplans */
else if ca composite & (a is decomposed into a subplan) then

pa ← subplan decomposing a;
agenda, Ba ← formAgenda(a, pa, agenda, Ba);

/* (3) Consolidate multiple tasks into one */
agenda ← consolidate(g, agenda,Bstart);

return agenda, Ba;

operator set reflecting the capabilities of the maintaining agent (i.e. defining which activities it
can be perform). In the case where a preconditions type cannot be handled, an equivalent effects
maintenance task with the same field values is generated and handled instead ((2)) – this allows
for the replacement of mt.a rather than face definitive failure from violated preconditions, and
effectively relaxes the maintenance planning problem by removing the necessity of preserving
mt.a (i.e. as required by a preconditions task). For example, if Truck cannot restore precondi-
tions for move(F,M), it will attempt (through effects maintenance) to find an alternate method
to achieve the required goal state at(M).

4.3.1 Performing Preconditions Maintenance
Preconditions maintenance (Algorithm 5) attempts to generate a plan re-establishing precon-

ditions of mt.a, to be inserted prior to mt.a (similar to prefix plan repair in Komenda et al.
[2014]). Generated maintenance plans are only accepted for insertion if their estimated confi-
dence is above that defined by mt.mpa.threshold . This attempts to prevent requiring the sub-
sequent maintenance of the iplan as a result of accepting and inserting a suboptimal confidence
plan. However, this restriction is not applied if mt.a is the next activity in iplan to execute – in-
stead, we deem adoption of any greater confidence plan as being preferable over definite failure
(this assumes it is easier to prevent than recover from failure, as per our motivation).

Fig. 2 illustrates a preconditions maintenance scenario based upon the motivating example
shown in Fig. 1. Here Truck holds plans to travel to locationM – as the roadD → F is blocked,
a preconditions task is generated for the threatened future move(D,F) activity (in this example,
we assume Truck wishes to preserve this activity). Fig. 3 illustrates the outcome of successful

12

Algorithm 4: The handleTask function
Data: mt – A maintenance task

i – The intention requiring maintenance; i = {igoal , iplan}
Result: boolean – true if iplan is modified and mt addressed.
handled ←false;
if mt .type =preconditions then

// (1) Handle preconditions type of mt
handled ←handlePreconditionsTask(mt, i);
if ¬handled then

// (2) Create equivalent effects task for mt.a
mt←new MaintenanceTask(effects,mt .a,mt .Ba ,mt .confa);

else
return handled ;

// (3) Handle effects type of mt
return handleEffectsTask(mt, i);

Algorithm 5: The handlePreconditionsTask function
Data: task – a maintenance task
Result: true if a plan was found and inserted
imt ← plan containing task .a;
ca ← getCapability(task .a);
Define planning problem proba, with initial state = task .Bmt and goal = ca.pre(task .a);
if acceptable plan plana solving proba found then

Insert plana into imt as predecessor of task .a, and return true;

return false;

maintenance; a maintenance plan to restore those preconditions – using a Bulldozer to re-open
D → F and remove the associated blocked state – is inserted to form a prefix to mt.a.

4.3.2 Performing Effects Maintenance
Effects maintenance attempts to substitute a subset of the plan containing mt.a, with a new

(sub)plan that will achieve identical effects to the replaced subset. For example, in the plan given
by Fig. 2 preconditions may hold – yet have slippery road conditions reduce confidence in travel
over D → F to an unacceptable level – leading to generation of an effects maintenance task for
move(D,F). Successful handling will modify a (minimal) subset containingmt.a of the iplan for
deliverCargo, restoring the overall confidence in achieving that goal to an acceptable level.

Our algorithm (algorithm 6) adopts a similar approach to Hierarchical Task Network (HTN)
plan repair – upwards recursion is used to re-refine composite activities (subgoals or the root
igoal), terminating when either an acceptable confidence (greater than mt.mpa .threshold) main-
tenance plan is found and inserted, or igoal is reached without success (i.e. has attempted and
failed to reform the entire iplan , through iteration at (3) in the algorithm). We trade-off the poten-
tial cost of multiple planning calls at goal/subgoal levels against the stability loss and computa-
tional costs associated with performing complete replanning (Fox et al. [2006]).

Dependency cancellation may carry costs from communication; there is also a risk that exter-
nal capabilities may no longer be available for forming new dependencies upon following changes
in circumstance (despite having a pre-existing and now-cancelled, dependency contract). This can

13

Algorithm 6: The handleEffectsTask function
Data: mt – a maintenance task
Result: true if a plan was found and inserted into the iplan containing mt.a
a← mt.a;
imt ← intended plan containing mt.a;
if imt is a hierarchical plan then

pmt ← subplan of imt containing a;

else
pmt ← imt;

Bmt ← mt.Ba;
/* (1) Attempt replacement of mt.a only */
if a not last in imt ‖ a has subsequent dependencies then

ca ← getCapability(a);
Define planning problem proba, with initial state = Bmt and goal = ca.effects(a);
if acceptable plan plana found for proba then

Replace a in pmt with plana ;
return true;

/* (2) Attempt replacement of mt.a and it’s suffix in pmt */
if a not first in imt ‖ a has preceding dependencies then

a← goal achieved by pmt ;
ca ← getCapability(a);
Define planning problem proba , with initial state = Bmt and goal = ca.effects(a);
if acceptable plan plana found for proba then

Replace the suffix of pmt from a inclusive with plana ;
return true;

/* (3) Iterates through increasingly abstract plan levels */
while a 6= root goal of imt do

a← goal activity for pmt;
Bmt ← estimated execution context of a;
ca ← getCapability(a);
Define planning problem proba , with initial state = Bmt and goal = ca.effects(a);
if acceptable plan plana found for proba then

// (4) Use plana to re-decompose/re-refine a
Replace pmt with plana ;
return true;

return false;

stymie maintenance planning if use of a particular – now unavailable – external capability is nec-
essary to achieve igoal .

To account for these dependency associated issues, our algorithm attempts two additional re-
stricted scope planning operations at the lowest (i.e. most specific subplan) level of iteration (the
subplan containingmt.a). Firstly, if dependency contracts exist formt.a or it’s successors in that
subplan, the algorithm attempts to generate a maintenance plan that can be inserted to directly
replace mt.a (1); retaining successive activities and associated dependency contracts (Fig 4).

Secondly, if dependencies precede mt.a, the algorithm also attempts suffix plan repair (sim-
ilar to repeated lazy repair in Komenda et al. [2014]); the generated maintenance plan replaces

14

mt.a and it’s successors in that subplan, but preserve preceding activities (2). Fig. 5 depicts an
example, where the inserted maintenance plan achieves the goal state defined by the parent activ-
ity (i.e. shares the same goal as the subplan being modified with a new suffix). These two more
constrained cases attempt to reduce disruption to a distributed plan performing team, at the cost
of (potentially) requiring extra planner calls.

The algorithm in the worst case iterates and attempts to plan at all levels of a hierarchical
imt, including at the initial pmt level twice (once for a failed preconditions maintenance task,
and once for replacement of mt.a only), equivalent to O((n + 2)p) complexity (where n is the
number of plan levels, and p the cost of planning). This, however, may still entail significant
actual computational cost from performance of multiple planning operations.

5 Distributed Behaviour

Multiagent Systems (MAS) use co-operative teams of agents to achieve goals unattainable
by individuals; failure in one agent’s activity can reciprocally impact other team members and
threaten failure of the distributed plan. Our approach assumes hierarchical agent teams arise from
delegation to, and decomposition into plans by, obligants. We define a decentralized approach for
performing distributed maintenance, as centralized approaches are often infeasible for realistic
domains due to the distribution of knowledge and capabilities in these environments. We apply
the agent level maintenance algorithms to the distributed context, using structured communica-
tion to drive adoption of maintenance responsibility at increasingly abstract levels of the team
hierarchy (Fig. 8).

The supporting architecture (Section 3) is critical in supporting distributed maintenance. De-
pendency and obligation contracts provide specific capability information for delegated activities
– the external capabilities field makes this information available for use by dependants, but also
offsets semantic knowledge requirements to the obligant(s) which actually provide the contents of
that field. As internal and external capabilities share the same representative model, our mainte-
nance reasoning algorithms can reason over delegated activities using the same logic as for those
performed through internal capabilities.

Upon completing maintain for an iplan , where the associated igoal corresponds to an obliga-
tion, the (waiting, quiescent) dependent agent is messaged. This communicates changes in the
iplan (which may stem from exogenous change and/or successful maintenance) through an obli-
gationMaintained message – signifying the obligant has made any confidence-raising changes it
is capable of (by communicating the correspondingly updated contract within the message body),
through performing local-level maintenance. This allows the dependant to immediately maintain
their own dependant intention upon receipt (if necessary), with the knowledge that the obligant
has performed any possible change at it’s more specific local level. Obligants maintain intentions
both when actively performing (as an intention) an obligation, or if currently not pursuing any in-
tention (Algorithm 1) – the latter allowing otherwise idle agents to maintain (contractual) mutual
beliefs regarding the future execution of dependencies.

Dependants adopt maintenance responsibility if and when obligants cannot maintain confi-
dence (including ensuring preconditions hold) in their subpart of a distributed plan; this restricts
changes in a distributed plan to the ‘lowest’ (most specific) agent level. Responsibility will grad-
ually move up a team hierarchy until an agent maintains an intention with an outcome which
is acceptable to both itself and, if applicable, the direct dependant of that intention’s igoal (i.e.
such that the dependant does not require to maintain their dependant intention on the basis of low
confidence or unmet preconditions in the updated contract’s external capability field).

The resultant behaviour (shown in Fig. 8) can be described as follows;
1. Agents C and D call maintain within their local reasoning cycle(s).

15

2. C and D individually perform post-maintenance messaging; each sends a obligationMaintained
message to B that includes contracts updated to account for any maintenance changes.
3. B calls it’s maintain method upon receipt of obligationMaintained messages from all obligants.
Information in the messaged, updated contracts is used to update the contract held by B for that
dependency, which will subsequently be updated and sent to A after maintain completes.
4. B sends A post-maintenance messaging, again using obligationMaintained messages.
5. A calls maintain upon receipt of B’s message; as A is not an obligation, no further messaging
is required.

Contracts help synchronize this behaviour by defining a common maintenance policy for del-
egated activities, which is employed by both the obligant(s) and dependant. Shared confidence
threshold triggers – combined with the sequencing of maintain calls and the communication of
contract updates within obligationMaintained messages – ensure that, for a dependent to diag-
nose and attempt to handle an effects maintenance task, the obligant must have first done the
same. Although the above example indicates a linear approach to dependency formation, indirect
‘self dependencies’ can emerge – for example, in the above, D may form a dependency upon
some other capability of A in the course of performing it’s own intention.

As an example, Fig 6 depicts a simple distributed intention where Truck1 holds an obligation
to perform a delivery task for LogisticsHQ, but has been damaged – reducing confidence in the
intended movement. Truck1 attempts effects maintenance but, being unable to self-repair, cannot
restore confidence to an acceptable level. Logistics HQ detects loss of confidence for the corre-
sponding activity within it’s own (dependent) iplan following receipt of an obligationMaintained
message from Truck1 (conveying the change in confidence), and adopts maintenance responsi-
bility. Successful maintenance sees Logistic HQ’s iplan employ a new, undamaged, obligant –
Truck2 – able to perform delegated activities with superior confidence (Fig 7) to Truck1. The re-
sultant behaviour is equivalent to maintenance of a local iplan , but occurs across the hierarchical
team executing a distributed plan (where obligants effectively refine delegated tasks).

Our overall design aims to replicate re-refinement based HTN plan repair, over a distributed
plan where the delegation of activities (and their performance by obligants through the formation
and execution of corresponding plans) is analogous to a task refinement. Agents adopt respon-
sibility for maintenance when executing their own planned activities (as in Algorithm 1), and in
response to the outcome of obligant maintenance. In the latter case, the dependant can use con-
tractual information to judge whether obligant maintenance outcome is acceptable (using it’s own
policy-defined standards) and will modify the dependant iplan if not.

6 Evaluation

We compared a MAS of CAMP-BDI agents against a system using a reactive approach, in
our previously described motivating logistics domain. In the reactive system, agents attempted re-
planning in response to activity failure; this was similar in concept to the approach of determinization-
based probabilistic planners like FF-Replan (Yoon et al. [2007]), allowing us to argue it is an
appropriate representation for the handling of unexpected outcomes2. Finally, a system with no
failure mitigation strategy provided a ‘worst-case’ baseline for performance.

The MAS was evaluated in terms of overall goal achievement (successful deliveries), number
of activities executed per goal achieved (efficiency), and the average planning calls per achieved
goal (indicating computational cost). Possible exogenous changes in the environment included
landslips (blocking roads), locations becoming dangerous, or rainfall gradually flooding roads
(with an interim slippery state being associated with an increased probability of failure for ac-
tivities using that road). A variety of heterogeneous agent types existed, with delegation and
co-ordination used to address negative world states:

16

– Truck agents could load, unload, and transport cargo objects
– APC (Armoured Personnel Carrier) agents could render dangerous locations safe
– Hazmat agents could decontaminate roads made toxic by spills of hazardous cargo
– Bulldozer agents could unblock roads closed by landslips.

All experiments were performed on a system with an Intel i5-3750k processor (3.5Ghz) and
16GB RAM, running Java v1.8.0 31. The Jason agent framework (Bordini and Hübner [2006])
was extended to provide our experimental systems; both to support contract formation during dis-
tributed intention execution, and to integrate LPG-td (Gerevini and Serina) as the runtime planner
for both CAMP-BDI and Replanning agents. A classical planner offered both greater flexibility
than an HTN or plan library approach, and faster performance than probabilistic methods – mak-
ing it a suitable analogue to a real-world implementation.

Experiments were performed for ten runs of each approach, with each run lasting for the gen-
eration (and success or failure in meeting of) 100 cargo delivery goals and employing the same
procedurally generated geography. Three types of post-failure debilitation could occur; cargo
could be destroyed, cargo could be spilled (rendering roads toxic unless decontaminated), or
agents could become damaged (with graded degrees and associated confidence loss). In the latter
case, agents would ‘heal’ over time if idle. We evaluated performance for n = 0.2, 0.4, 0.6 and
0.8; corresponding to 20, 40, 60 and 80% chances of the above debilitation. These probabilities
were applied individually for each debilitation type, with cargo damage/spillage debilitation only
possible if a failed activity involved loading, unloading or moving whilst carrying cargo. Results
for ten experimental runs, performed under fixed simulation seeds, were averaged.

Our results show CAMP-BDI enjoyed significant advantage in goal success rate over Re-
planning, increasing with the likelihood of debilitative failure consequences (Fig. 9); CAMP-BDI
maintained around 95% goal achievement for all consequence probability ranges, whilst Replan-
ning dropped from achieving 61.9% of goals at n = 0.2, to 26.6% at n = 0.8. The Worst-Case
system was comparatively consistent, but universally poor; achieving 19.5% to 16% of goals be-
tween n = 0.2 to n = 0.6, before dropping to 8.6% at n = 0.8 as failure began to have nearly
certain consequential effects. The impact of debilitation was likely reduced at the lower values
of n in the Worst-Case system as goals would fail immediately upon the first failure, regardless
of debilitation; meaning goal failure was less likely be associated with irrecoverable debilitated
states at lower n values. Replanning agents, in contracts, would typically only fail in a goal after
repeated activity failure – with the individual risks of debilitation accumulating to increase the
overall risk of at least one debilitation during pursuit of an igoal – and reactive replanning. The
Replanning approach was also capable of recovering to achieve the goal despite debilitation in
certain cases (such as non-fatal agent damage).

We attribute the increasing performance gap between CAMP-BDI and Replanning to the
increasing frequency of debilitation, particularly as damage to agents impacted subsequent activ-
ities – with subsequent failures having a compounding debilitative effect. The proactive approach
of CAMP-BDI carried two advantages. Firstly, a focus on avoiding failure also avoided (plan-
ning and acting in) a less optimal post-failure state. Secondly, when agents were damaged, the
resultant confidence loss saw maintaining dependants seek alternative, higher-confidence (and
consequently undamaged) obligants – reducing the workload on agents with non-optimal health.

Whilst our experimental environment had agents gradually recover health through idleness,
we can imagine a similar scenario where repair activities existed; i.e. CAMP-BDI could be used
to stimulate damaged agents to proactively repair as soon as activities were deemed at risk, whilst
any reactive approach would only address damage after a failure – an event which might in itself
exacerbate that damage. Pro-active repair would, however, require capability modelling to link
agent health state to greater confidence (potentially with respect to maintenance policy defined
thresholds) in activity preconditions.

Finally, the worst-case system saw a less pronounced drop in performance over increasing

17

n values, due to immediate failure – as opposed to the potential for repeated failures, and accu-
mulated consequences, associated with reactive replanning. This is reflected by the sharp drop in
goal achievement as post-failure debilitation became virtually inevitable at n = 0.8, mirroring
our observations of goal achievement in Fig. 9.

A similar pattern can be observed in Fig. 10, where CAMP-BDI maintained a relatively con-
sistent activity success rates (99.78% to 99.70%) over n = 0.2 to n = 0.8, compared with
decreasing performance of the Replanning (90.90% to 86.66%) and Worst-Case (89.59% to
83.39%) systems. We would naturally expect CAMP-BDI to have a greater activity success due
to it’s pre-emptive, failure avoidance focus, and these results support the assertion that our proac-
tive approach was effective in preventing activity failure. Activity success rates remained gen-
erally high, even in the worst case scenario, as failures generally occurred only after multiple
successful activities. The decrease in success rates in Replanning and Worst-Case systems can be
seen as indicative of the increasing influence of post-failure debilitation.

One obvious concern with a proactive approach is cost, given CAMP-BDI’s use of planning.
Toyama and Hager [1997] note reactive approaches hold an advantage in only expending their
costs following definitive, rather than potential, failure. Indeed, our results show CAMP-BDI per-
formed significantly more planning calls at lower consequence probabilities (Fig. 12); 9.91 calls
per goal, compared to 5.62 for Replanning at n = 0.2. As the probability of post-failure debilita-
tion increased, reactive replanning became significantly less efficient; an average 19.51 planning
calls were required for each goal achieved at n = 0.8, compared to 11.03 for CAMP-BDI. This
reflects the increasing likelihood of debilitation stymieing reactive recovery – suggesting main-
tenance costs can be balanced against those incurred by failure. It may also still be preferable to
employ even a higher cost proactive approach, if failure risks sufficiently severe consequences –
such as scenarios where delivery goals concern the transport of nuclear waste or essential medical
supplies.

A possible optimization for CAMP-BDI is the consideration of temporal thresholds during
maintenance – e.g. using maintenance policies or initial configurations to define how many activi-
ties in the future an agent should consider during maintenance. This would allow the balancing of
maintenance costs for more temporally distant tasks against the value of earlier anticipation and
prevention of failure. Exact thresholds would likely be domain specific – depending on elements
such as average plan length or the probability of exogenous change between initially anticipating
a threat to an activity, and the actual time until it’s (expected) execution. It would also be neces-
sary to consider the accuracy of our algorithm in predicting future execution contexts, and how
increasing rates of exogenous change might impact the accuracy of context estimation for more
distant activities.

We also examined the average number of activities required per goal achieved (Fig. 11).
Here, CAMP-BDI remained generally consistent, requiring an average of 15.69 to 16.88 activ-
ities (from n = 0.2 to n = 0.8) per goal achieved. Replanning shown a gradual increase in
cost, from 21.47 to 29.31 activities per goal. This reflected both the increased difficulty of the
environment (greater failure consequences entailed more frequent confidence loss, failure and
consequent replanning), and decreasing goal achievement – the number of activities executed in
total actually decreased from an average 1322.9 at n = 0.2 to 700.3 at n = 0.8 per experimental
run, in contrast to CAMP-BDI’s relatively consistent average of 1504.6 to 1564.2 activities for
the same n values.

The Worst-Case system showed more variable behaviour, with a noticeable decrease in av-
erage activities per goal from 28.85 at n = 0.2 to 24.93 at n = 0.4, before rising again to a
maximum of 39.04 at n = 0.8. This may be partly a symptom of the extremely low goal success
rate in this system, combined with variation in the point in execution at which intention failure
occurred. Although the results for n = 0.6 show a comparatively modest increase, we note that
one run of the Worst-Case system was discounted after failing to achieve any goals – meaning an

18

average could not be determined for that particular run, and indicating our actual average could
be far higher (although not observed in our experimental runs, the same scenario could also fea-
sibly occur in the more difficult n = 0.8). In this context of extremely low goal achievement,
the Worst Case value may not necessarily indicate the cost to achieve goals, but how early or
late failure typically occurred during iplan execution – the latter being perhaps more random than
in the Replanning and CAMP-BDI cases, which would at least attempt to respond to actual or
anticipated failure.

Our overall results show CAMP-BDI offers a clear advantage when activity failure carries
a risk of debilitative failure. Although proactive approaches may risk excess cost from false-
positive identification of (potential) failure, these results indicate this cost can be effectively
mitigated where post-failure debilitation stymies reactive failure recovery or the achievement
of subsequent goals. However, it is infeasible to expect that a proactive system will be able to de-
tect and avoid every failure in a realistic environment – particularly if failure-causing exogenous
change may occur during activity execution.

Some form of reactive failure recovery strategy is always likely to be required to compen-
sate for random, ‘unpreventable’ failure cases. We suggest CAMP-BDI can complement reactive
approaches, by being used to target those failures which are preventable and may be difficult to
recover from. Our maintenance policy concept also allows for a degree of optimisation; such as
by reducing confidence thresholds for activities with lower risks of post-failure debilitation and
allowing their failure to instead be handled reactively This would remove the iterative costs of
maintenance, under the basis that for such activity types is should be possible to easily recover
from any failure.

7 Related Work
CAMP-BDI draws from a variety of existing work; our capability model captures concepts

of know-how-to-perform, can-perform and know-how-to-achieve defined by Morgenstern [1986]
as well as similar concepts of activity knowledge expressed in Singh [1999]. Plan confidence es-
timation adopts an approach akin to (a subset of) TÆMS quality metrics (Lesser et al. [2004b]),
such as q min; future work may investigate alternate methods. He and Ioerger [2003] also sug-
gest a quantitative estimation approach, but employed for producing maximally efficient sched-
ules. Other work has also examined using capability knowledge within BDI reasoning process;
Sabatucci et al. [2013] suggests use of capabilities representing plans and viability conditions to
evaluate whether desires are achievable during intention selection. Waters et al. [2014] suggest
an intention selection approach prioritizing the most constrained options by favouring those with
least coverage (Thangarajah et al. [2012]). This differs from CAMP-BDI as they seek to maxi-
mize overall intention throughput, whilst our approach aims to ensure existing intended goal are
achieved. Our capability knowledge model could facilitate similar reasoning during desire and
intention selection, although our work focuses upon robustness of selected intentions.

Plan Execution Monitoring (PEM) approaches, such as SIPE (Wilkins [1983]), and plan
repair approaches, such as O-Plan (Drabble et al. [1997]), share conceptual similarities with
CAMP-BDI as both respond to divergence from expected states through replanning or plan re-
pair. Typically, the latter is favoured in distributed plans due to offering greater plan stability
and, as a consequence, reduced messaging costs (for communicating plan changes to others).
CAMP-BDI differs by focusing upon BDI agent reasoning, and extension of the resultant local
agent-level behaviour to perform distributed maintenance; our confidence estimation approach
also varies from PEM approaches, which typically assess deterministic (pre)conditions to iden-
tify divergences from expected and actual states. We can also view our approach as similar to
usage of synthesized protection monitors in CPEF (Myers [1999]), which also acts to detect vio-
lation of states required by the current plan.

19

Braubach et al. [2005] define two goal types for driving agent proactivity; achievement
of a state, or maintenance of it for a defined period or whilst set conditions hold. Duff et al.
[2006] further distinguish reactive and proactive types of maintenance goal; the former requires
re-establishment of the state once violated, the latter constrains goal and plan adoption to pre-
vent it’s violation. The reactive case will stimulate adoption of achievement goals to re-establish
violated (maintained) states; CAMP-BDI could be used to maintain the resultant intentions. Pre-
condition maintenance in CAMP-BDI is similar in outcome to inferring proactive maintenance
goals, corresponding to activity precondition states and active until that activity begins execu-
tion. Effects maintenance can be viewed as somewhat similar, in that loss of high-confidence
associated states will trigger plan modification; although our approach does not necessarily entail
re-establishment of states if maintenance planning can identify acceptable alternative activities.
We assume any mechanisms used for identifying plans for intentions, and/or to find maintenance
plans, would recognise and respect maintenance goals.

Hindriks and Van Riemsdijk [2007] suggests an approach which, similarly to CAMP-BDI,
employs a (limited) lookahead – in their case with regard to respecting proactive maintenance
goals. A goal-plan tree is used to anticipate future effects of plans, to avoid intention of plans that
would violate maintenance goals. Plans in this approach are pre-defined and immutable; antici-
pated violation is suggested as best addressed by goal relaxation to allow alternative plan options.
This differs from our view of plans as modifiable, and may not be a viable approach in domains
where goals cannot be relaxed (i.e. due to safety responsibilities towards preserving or ensuring
certain states, as defined by Wooldridge et al. [2000]). Duff et al. [2006] suggest a predictive
approach, again using a goal-plan tree to filter goal adoption based upon effects of potentially
usable plans. CAMP-BDI varies by more explicitly considering exogenous change, rather than
effects from goal/plan adoption, as a source of violation. Our approach also focuses upon ensur-
ing existing intentions avoid failure after exogenous change – proactive maintenance goals are
typically employed more as constraints upon the formation and adoption of desires or intentions
(although this does also influence any subgoal refinement within continual approaches).

Continual planning handles uncertainty by deferring planning decisions (desJardins et al.
[2000]) – including decomposing certain abstract activities only upon execution. CAMP-BDI
supports this approach through composite capabilities; these allow determination of whether un-
decomposed (sub)goals can be met, by representing the set of available plans and providing an
estimation of what level of confidence should be expected from the plans represented by that
capability. Where planning incorporates sensing – representing knowledge requirements through
preconditions, and information attainment through effects – these can be represented within ca-
pabilities.

Markov Decision Processes (MDPs) offer an approach for acting within stochastic domains;
they use state transition probabilities and a reward function to generate a policy, which defines
the optimal activity to perform in each possible state. Partially Observable MDPs (POMDPs)
remove total knowledge assumptions through a probability map of state observations, which is
used to infer actual states and define a solveable MDP. Whilst MDP approaches theoretically
offer optimal behaviour, complexity issues render them intractable as state space increases (and
particularly when extending to realistic environments), with attempts to address this issue focus-
ing on abstracting the state space at the cost of overall optimality (Boutilier and Dearden [1994]).
There is also a risk that the transition probability information required to define and solve an
MDP problem is unavailable, or impractical to learn under reasonable time constraints.

The BDI model can be viewed as a more efficient alternative to MDP approaches; Schut et
al. [2002] have shown BDI agents can handle domains which are intractable for MDPs, and with
approximate performance (depending on time costs of runtime planning) to MDPs. Work has
also sought to reconcile BDI and MDP approaches; Simari and Parsons [2006] identify similar-
ities and suggest possible mapping between policies and plans. Pereira et al. [2008] extend that

20

work by defining an algorithm to form deterministic plans (for libraries) from POMDP policies
– although this assumes the latter can be formed offline, which may not hold given the known
intractability issues with POMDPs. MDP specification of a domain can also be non-intuitive, re-
stricting it’s usability; Meneguzzi et al. [2011] suggest a method to map more intelligible HTN
domains onto MDPs, where they define transition probabilities based upon the presence of indi-
vidual states within operator preconditions, rather than through probabilities in the environment.
In defining CAMP-BDI, we assume realistic domains will necessitate use of deterministic plans
and operator specifications, due to the intractability issues associated with MDPs. Our confidence
estimation does resemble the information provided by MDP transition functions, but we only re-
quire a scalar estimate of quality (with flexible granularity) rather than an exact probability.

8 Conclusion
This paper contributes the CAMP-BDI approach for distributed plan execution robustness.

We defined a pre-emptive plan modification (maintenance) algorithm, including provision capa-
bility and contract meta-knowledge, and tailored through provision of maintenance policies. This
local behaviour was extended to the distributed case through a structured messaging approach.
Although we do not argue that CAMP-BDI, or any proactive approach, can entirely replace reac-
tive methods – that all failures can be avoided – it can offer a valuable complementary approach.

Our approach does entail an analytical cost in learning and modelling capability knowledge,
which must be balanced against the likelihood and severity of post-failure debilitation. We argue
the domain analysis requirements for capability modelling are justifiable, as specification of plans
or planning domains – particularly operator preconditions – would require similar knowledge of
which states impacting activity success and with what significance, regardless. Specification costs
are also mitigated by our confidence model not requiring exact probability estimation, but only
an appropriate indicative value – with granularity being limited to whatever level is feasible for
the domain. Capability knowledge may also have applications in other robustness approaches, or
for desire and intention selection – helping justify analysis and specification costs.

In future, we intend to examine methods to minimize planning costs and further extend the
use of maintenance policies. Potential expansions can include defining maintenance policy fields
that specify proactive maintenance goals, allow relaxations during maintenance planning, provide
conditional rules denoting where maintenance is intractable (allowing handling to be deferred to
dependants instead of performing futile planning), or to better focus upon activities whose failure
is associated with greater risks of debilitation. Another possible extension is to allow definition of
conditional response rules for maintenance planning – i.e. to define specific known maintenance
plan recipes for given conditions, allowing circumvention of the cost of runtime planning. We
may also investigate the possible use of heterogeneous planning approaches, as our algorithms
do not prescribe a specific plan formation method. For example, more specific agents could adopt
HTN or plan library solutions to improve reactive speed, with upper level (more abstract, logical
organizer or broker types) employing more flexible classical planners when confidence loss could
not be addressed by those lower in the team hierarchy. A final area for potential optimization is
confidence estimation and agenda formation, although the most effective approaches are likely to
be domain-specific.

Acknowledgements
This work was funded with support from EADS Innovation Works. Alan White would like to
extend additional thanks to Dr. Stephen Potter for his invaluable help and advice. The authors
and project partners are authorized to reproduce and distribute reprints and online copies for their
purposes, notwithstanding any copyright annotation hereon.

21

Notes

1Maintenance policies are not related to the MDP policy concept, but derive from those em-
ployed in experiments such as the Coalition Agents Experiment (Allsopp et al. [2002]). There,
policies provide runtime-modifiable extension of planning constraints; as with CAMP-BDI, they
allow a degree of dynamic modification to agent and system behaviour.

2FF-Replan determinizes a probabilistic domain to take advantage of historical optimizations
in classical planning. Differences in actual and anticipated (by classical operator) outcomes are
handled through reactive replanning. Our reactive system effectively used single-outcome deter-
minization where success was the most probable outcome if preconditions held. Failure triggered
re-planning, mirroring FF-Replan’s eponymous response to unexpected outcomes.

References

D. N. Allsopp, P. Beautement, J. M. Bradshaw, E. H. Durfee, M. Kirton, C. A. Knoblock, N. Suri,
A. Tate, and C. W. Thompson. Coalition Agents Experiment: Multiagent Cooperation in In-
ternational Coalitions. IEEE Intelligent Systems, 17(3):26–35, 2002.

R.H. Bordini and J.F. Hübner. BDI Agent Programming in AgentSpeak Using Jason. In F. Toni
and P. Torroni, editors, Computational Logic in Multi-Agent Systems, volume 3900 of Lecture
Notes in Computer Science, pages 143–164. Springer Berlin Heidelberg, 2006.

C. Boutilier and R. Dearden. Using Abstractions for Decision Theoretic Planning with Time
Constraints. In Proceedings of the 12th National Conference on Artificial Intelligence, pages
1016–1022. San Francisco, CA: Morgan Kaufmann, 1994.

L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation for BDI Agent
Systems. In R.H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Pro-
gramming Multi-Agent Systems, volume 3346 of Lecture Notes in Computer Science, pages
44–65. Springer Berlin Heidelberg, 2005.

M.E. desJardins, E.H. Durfee, C.L. Ortiz Jnr., and M.J. Wolverton. A Survey of Research in
Distributed, Continual Planning, 2000.

B. Drabble, J. Dalton, and A. Tate. Repairing Plans On-the-fly. In Proceedings of the NASA
Workshop on Planning and Scheduling for Space, 1997.

S. Duff, J. Harland, and J. Thangarajah. On Proactivity and Maintenance Goals. In AAMAS-06,
pages 1033–1040, 2006.

M. Fox, A. Gerevini, D. Long, and I. Serina. Plan stability: Replanning versus plan repair. In In
Proc. ICAPS, pages 212–221. AAAI Press, 2006.

A. Gerevini and I. Serina. LPG: A planner based on local search for planning graphs. In In Proc.
of 6th Int. Conf. on AI Planning Systems (AIPS’02. AAAI Press.

L. He and T.R. Ioerger. A Quantitative Model of Capabilities in Multi-Agent Systems. In Pro-
ceedings of the International Conference on Artificial Intelligence, IC-AI ’03, June 23 - 26,
2003, Las Vegas, Nevada, USA, Volume 2, pages 730–736, 2003.

K.V. Hindriks and M.B Van Riemsdijk. Satisfying maintenance goals. In IN PROC. OF
DALT’07. Springer, 2007.

A. Komenda, P. Novák, and M. Pechoucek. Domain-independent multi-agent plan repair. J.
Network and Computer Applications, 37:76–88, 2014.

V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman, R. Podor-
ozhny, M. NagendraPrasad, A. Raja, R. Vincent, P. Xuan, and X.Q Zhang. Evolution of
the GPGP/TAEMS Domain-Independent Coordination Framework. Autonomous Agents and
Multi-Agent Systems, 9(1):87–143, July 2004.

22

V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman, R. Podor-
ozhny, M. Nagendra Prasad, A. Raja, R. Vincent, P. Xuan, and X.Q. Zhang. Evolution of
the GPGP/TÆMS Domain-Independent Coordination Framework. Autonomous Agents and
Multi-Agent Systems, 9(1-2):87–143, 2004.

J. McCarthy. Programs with Common Sense. In Proceedings of the Teddington Conference on
the Mechanisation of Thought Processes, pages 77–84, 1958.

F. Meneguzzi, Y. Tang, K. Sycara, and S. Parsons. An approach to generate MDPs using HTN
representations. In Decision Making in Partially Observable, Uncertain Worlds: Exploring
Insights from Multiple Communities, Barcelona, Spain, 2011.

L. Morgenstern. A First Order Theory of Planning, Knowledge, and Action. In Proceedings
of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, TARK ’86,
pages 99–114, San Francisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc.

K. L. Myers. Cpef: A continuous planning and execution framework. AI Magazine, 20(4), 1999.
D.R. Pereira, L.V. Gonçalves, G.P. Dimuro, and A.C.R. Costa. Constructing BDI plans from

optimal POMDP policies, with an application to AgentSpeak programming. In Proc. of Conf.
Latinoamerica de Informática, CLEI, volume 8, pages 240–249, 2008.

A.S. Rao and M.P. Georgeff. BDI Agents: From Theory to Practice. In In Proceedings of the
First International Conference on Multi-Agent Systems (ICMAS-95), pages 312–319, 1995.

L. Sabatucci, M. Cossentino, C. Lodato, S. Lopes, and V. Seidita. A Possible Approach for
Implementing Self-Awareness in JASON. In EUMAS’13, pages 68–81, 2013.

M. Schut, M. Wooldridge, and S. Parsons. On Partially Observable MDPs and BDI Models. In
Selected Papers from the UKMAS Workshop on Foundations and Applications of Multi-Agent
Systems, pages 243–260, London, UK, UK, 2002. Springer-Verlag.

G.I. Simari and S. Parsons. On the Relationship Between MDPs and the BDI Architecture. In
Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’06, pages 1041–1048, New York, NY, USA, 2006. ACM.

D. Singh, S. Sardinia, L. Padgham, and S. Airiau. Learning Context Conditions for BDI Plan
Selection. In Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: Volume 1 - Volume 1, AAMAS ’10, pages 325–332, Richland, SC, 2010.
International Foundation for Autonomous Agents and Multiagent Systems.

M.P. Singh. Know-How. In M. Wooldridge and A. Rao, editors, Foundations of Rational Agency,
volume 14 of Applied Logic Series, pages 105–132. Springer Netherlands, 1999.

J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Avoiding Interference Between
Goals in Intelligent Agents. In IJCAI-03, pages 721–726, 2003.

J. Thangarajah, S. Sardina, and L. Padgham. Measuring Plan Coverage and Overlap for Agent
Reasoning. In Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems - Volume 2, AAMAS ’12, pages 1049–1056, Richland, SC, 2012. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems.

K. Toyama and G. Hager. If at First You Don’t Succeed... In Proc. AAAI, pages 3–9, Providence,
RI, 1997.

M. Waters, L. Padgham, and S. Sardina. Evaluating Coverage Based Intention Selection. In
Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS), pages 957–964, Paris,
France, May 2014. IFAAMAS. Nominated for Jodi Best Student Paper award.

D. E. Wilkins. Representation in a Domain-Independent Planner. In Proceedings of the 8th
International Joint Conference on Artificial Intelligence. Karlsruhe, FRG, August 1983, pages
733–740, 1983.

M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia Methodology for Agent-Oriented Analy-
sis and Design. Autonomous Agents and Multi-Agent Systems, 3(3):285–312, September 2000.

S. W. Yoon, A. Fern, and R. Givan. FF-Replan: A Baseline for Probabilistic Planning. In Pro-
ceedings of the Seventeenth International Conference on Automated Planning and Scheduling,
ICAPS 2007, Providence, Rhode Island, USA, September 22-26, 2007, page 352, 2007.

23

I

D

G

C

F

B
E

A

H J

K
L

M

Fig. 1: Example of Truck executing a plan to travel from A to M.

Fig. 2: Example where Truck’s plan to deliverCargo is threatened by violated precondi-
tions of Move(D,F), indicated by the arrow, following closure of D → F .

Fig. 3: Example insertion of a successfully identified maintenance plan, restoring the
preconditions of the threatened Move(D,F) through unblock clearing D → F .

Fig. 4: Example insertion of a maintenance plan as a substitute for Move(D,F), which
achieves the same goal state (being at location F) from the estimated execution context
(including start location) of Move(D,F).

24

Fig. 5: Example insertion of a successfully identified maintenance plan in the suffix
case; the initial context of the threatened Move(D,F) is employed as the initial state
for planning, with the goal defined as that of the parent MoveTo(B,M) activity

Fig. 6: Example of a distributed intention, where Truck1 holds an obligation to perform
the two activities moveTo(B,M) and unload(Cargo1 ,M).

Fig. 7: Result of adoption of maintenance responsibility by Logistics HQ in response
to low confidence in Truck1’s obligation (Fig 6). The new obligant Truck2 originates
at a different initial location and must first travel to B to retrieve Cargo1 – which was
previously carried by, and now must be unloaded by, Truck1.

Fig. 8: The adoption of responsibility process in a hierarchical team, where B is an
obligant of A, and C and D are obligants for a joint activity in B’s plan.

25

CAMP-BDI Replanning Worst Case
0.8 Avg 93.3 26.6 8.6

(Std.dev.) 7.99 9.2 4.34
0.6 Avg 91.6 37.5 16

(Std.dev.) 7.57 8.95 10.02
0.4 Avg 93.3 47.9 18.33

(Std.dev.) 2.69 9.25 9.18
0.2 Avg 95.9 61.9 19.5

(Std.dev.) 2.62 4.13 13.37

Fig. 9: Average goal achievement rate (%) for 0.2 to 0.8 post-failure damage probabil-
ity, with standard deviation. CAMP-BDI results are shown as solid lines, Replanning
dashed, and Worst-Case as dotted.

CAMP-BDI Replanning Worst Case
0.8 Avg 93.3 86.66 83.39

(Std.dev.) 7.99 2.54 5.4
0.6 Avg 91.6 88.03 85.46

(Std.dev.) 7.57 1.62 5.29
0.4 Avg 93.3 89.83 88.72

(Std.dev.) 2.69 1.83 2.06
0.2 Avg 95.9 90.91 89.59

(Std.dev.) 2.62 1.25 3.6

Fig. 10: Average activity success (%), for 0.2 to 0.8 post-failure damage probabil-
ity, with standard deviation. CAMP-BDI results are shown as solid lines, Replanning
dashed, and Worst-Case as dotted.

CAMP-BDI Replanning Worst Case
0.8 Avg 16.88 29.31 36.04

(Std.dev.) 1.66 9.19 11.35
0.6 Avg 17.23 24.41 26.98

(Std.dev.) 1.59 5.34 8.89
0.4 Avg 16 23.27 24.93

(Std.dev.) 0.81 3.58 8.61
0.2 Avg 15.7 21.47 28.85

(Std.dev.) 0.42 1.67 16.78

Fig. 11: Average Activities per Goal, for 0.2 to 0.8 post-failure damage probability, with
standard deviation. CAMP-BDI results are shown as solid lines, Replanning dashed,
and Worst-Case as dotted.

CAMP-BDI Replanning
0.8 Avg 10.7 19.51

(Std.dev.) 1.78 10.22
0.6 Avg 11.06 11.55

(Std.dev.) 1.57 4.27
0.4 Avg 9.93 7.88

(Std.dev.) 3.29 2.99
0.2 Avg 9.91 5.62

(Std.dev.) 1.37 1.45

Fig. 12: Average planner calls per goal achieved for 0.2 to 0.8 post-failure damage
probability, with standard deviation. CAMP-BDI results are shown as solid lines and
Replanning as dashed.

