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Abstract

1. In many birds, hatching asynchrony is a common phenomenon, primarily driven12

by patterns of incubation behaviour. However, experimental results in blue tits (Cyanistes

caeruleus) have shown that asynchrony is reduced by intrinsic properties of later eggs that14

accelerate pre-natal development.

2. These intrinsic differences between early and late eggs could be driven by changes in16

resource availability to females, which are then passively passed onto the egg. Alternatively,

it may be due to an anticipatory maternal effect, wherein some signal or resource is actively18

placed within the egg, which is beneficial to those eggs laid late within the clutch.

3. In order to distinguish between these hypotheses we designed a supplementary20

feeding experiment, wherein females were provided with food at certain times during

the laying phase. This had no discernible effect on development rate, or other egg22

characteristics, consistent with anticipatory maternal effects.

4. Using a larger data set we also tested whether natural environmental variation24

(weather) during egg formation affected maternal investment in eggs. Similarly, egg

characteristics were found to be relatively insensitive to the environmental variation,26

supporting the experimental results.

Keywords: anticipatory maternal effect, Cyanistes caeruleus, development, eggs, food28

supplementation, passive effects, weather

Introduction30

Parents influence the phenotypes of their offspring, both through the genes they pass

on, and by directly modulating the environment offspring experience. These parental32
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effects have been shown to be present in many systems, and can have a major causal

contribution to an individual’s phenotype (Roach & Wulff 1987; Mousseau & Dingle 1991;34

Mousseau & Fox 1998; Badyaev & Uller 2009; Wolf & Wade 2009). The effects are often

context-dependent – varying with the environment that the parents themselves experience36

(Rossiter 1996, 1998). This could occur through the direct response of a parent to changes

in their own environment, which are then passed to offspring, regardless of the phenotypic38

or fitness consequences of these effects to the offspring. Alternatively, parents may use

changes in their own environment to anticipate that which their offspring will experience,40

and actively modulate their offsprings’ phenotypes accordingly (Marshall & Uller 2007).

Although the context-dependency of parental effects is unequivocal, whether anticipatory42

responses are a common feature of context-dependency remains contentious (Uller et al.

2013; Burgess & Marshall 2014). Anticipatory parental effects (Marshall & Uller 2007)44

are expected to occur when the environment experienced by parents is a predictor of the

environment that will be experienced by the offspring (Burgess & Marshall 2014), and46

selection therefore favours parents producing offspring of an appropriate phenotype for

that environment. Whilst there has been some convincing evidence for such effects, such48

as adaptation to maternal light environments (Galloway & Etterson 2007; Galloway 2005),

and transgenerational induction of defences in plants and animals (Agrawal et al. 1999), a50

recent meta-analysis concluded that anticipatory effects were not widespread (Uller et al.

2013): In experiments that subjected parents and their offspring to two environments52

in a fully factorial design, there was only weak evidence that offspring do better when

environments are matched rather than mismatched (Uller et al. 2013). Although at face54

value this suggests that evidence for anticipatory parental effects is limited, studies such as

those included in the meta-analysis are open to the criticism that the environment parents56

are subject to is not necessarily a good predictor of the environment offspring would have

experienced under natural conditions (Uller et al. 2013; Burgess & Marshall 2014)58
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In species that experience age-related sibling competition, anticipatory parental effects

are hypothesised to evolve in order to mediate these age-related effects, and may be related60

to changes in the size and composition of eggs. Unlike those studies reviewed in Uller et al.

(2013), parents are assumed to know (rather than predict) where offspring from specific62

eggs will be placed in any age hierarchy, and thus the competitive environment they may

experience. As a consequence, anticipatory parental effects may more easily evolve. For64

example, Plaistow et al. (2007) found that female spider mites increase the size of their eggs

as they age, and attributed this to female anticipation of the level of sibling competition66

later laid eggs will encounter. In birds, egg size (Slagsvold et al. 1984) and many egg

constituents have been shown to vary, both between females and across the laying sequence68

of individuals (Williams 2012). These include carotenoids (Royle et al. 2001; Blount et al.

2002; Török et al. 2007; Saino et al. 2002), vitamin E (Royle et al. 2001) and hormones70

(Gil 2008). Whilst egg size has downstream consequences on juvenile traits (Krist 2011),

hormonal changes in particular have been invoked as mediators of anticipatory parental72

effects (e.g. Schwabl 1993; Schwabl et al. 1997; Lipar et al. 1999; Muller & Groothuis 2013),

and have also been shown to have downstream effects on multiple aspects of offspring74

competitiveness (Schwabl 1993, 1996; Gorman & Williams 2005; Groothuis et al. 2005;

Smiseth et al. 2011; Williams 2012).76

There is an alternative explanation, however, that changes in egg components across

the laying sequence may be the passive outcome of the response of females to their own78

changing environments, rather than acting in anticipation of the environment offspring

will experience. For example, if dietary carotenoids increase over the season whilst eggs80

are being laid, then the change in eggs may simply reflect the direct effect of carotenoid

availability (Török et al. 2007). Similarly, changes in female hormones may be seen in82

preparation for and upon the onset of incubation, leading to different hormonal exposure

of eggs (Goldsmith & Williams 1980; Sockman & Schwabl 1999, 2000), reflecting changes84
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in cumulative exposure to the female’s endocrine state. Thus, care is needed to distinguish

between anticipatory and passive parental effects.86

Previously, we found that prenatal development in blue tits (Cyanistes caeruleus) is

faster for eggs laid later in the laying sequence, and showed experimentally that this was in88

part caused by something intrinsic to the eggs at the time of laying (Hadfield et al. 2013b).

Although consistent with an anticipatory parental effect that acts to reduce the extent of90

hatching asynchrony, we offered the alternative explanation that it may simply be a result

of females being better able to provision later eggs as the amount of resource available to92

them increases as spring progresses (Hadfield et al. 2013b), as there is a rapid change in

food availability in this time period (e.g. Dixon 1976). Here, we aim to test this hypothesis94

by manipulating a female’s resource availability during the laying period to see if this

accelerates the prenatal development of her offspring. To ensure that any effects detected96

are the result of changes to the size or composition of the eggs and not due to any effect

of the treatment on post-laying behaviour, we cross-fostered half the eggs of each nest on98

the day they were laid. We are primarily interested in any effects of this treatment on the

hatching time of eggs, but also model whether it has any effect on egg weight or hatching100

success.

The results of our experiment showed little to no effect of the additional resources102

on prenatal development and other egg characteristics. An alternative explanation is

that seasonal changes in the environment are causing laying-order effects on pre-natal104

development, but in a way that was not be recapitulated in the feeding treatment. Thus,

using a larger data set we performed a more general (but correlative) test of whether the106

rate of pre-natal development varied systematically with three weather variables, which

could be drivers of seasonal changes.108
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Materials and Methods

The experiment was carried out during the springs of 2012 and 2013 on a nest box110

population of blue tits (Cyanistes caeruleus) on the Dalmeny estate, Edinburgh, UK. Nest

boxes were placed approximately 30m apart, on two study sites – 180 boxes on Cragie Hill112

(grid reference NT 156 766) and 45 boxes along the Almond River (NT 179 758). From

early in the spring, next boxes were checked systematically to detect nesting and onset of114

laying. When nest boxes were empty, or had a very small amount of nesting material within

them, they were checked every 4 days. When ¿15mm of nesting material was present, boxes116

were checked every 2 days, and once the nest was lined it was checked every day. This

method meant that in all but very few cases, nests were checked on the day in which laying118

began, and thus a single egg was found.

Cross-foster Design120

The study was carried out within an ongoing partial cross-foster design used in this

population (for full details see Hadfield et al. 2013a). On the day of clutch initiation, nests122

were randomly allocated into groups of three where possible (or two, four, or five if not),

between which eggs were switched. First eggs were then moved within triads, such that the124

egg from nest A was placed in nest B, that from nest B in nest C, and that from C placed in

A. One egg is laid per day, so on alternate days, eggs were either moved between nests, or126

remained within their own nests, and every egg was weighed and marked. Crossing ceased

when one or more nests had a laying pause and resumed when all nests recommenced128

laying. Daily checks ceased when the female was incubating for the second day in a row, or

was found incubating after laying had ceased. The crossing of eggs within a triad stopped130

when one nest in a given triad finished laying.
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Feeding experiment132

Within this cross foster design, a feeding experiment was also carried out in order

to determine how food availability to parents affects the hatching time of eggs. We used134

those nests that were in crosses of 3 or more, and each group was assigned randomly to

either a control group or one of two feeding treatments. When a group was assigned a136

feeding treatment, two nests within that group were fed, and the remaining nest (or nests

if the group was larger than 3) remained as a control. Nests in the feeding treatments138

were provided with twenty wax worms (the larvae of the wax moth, Gralleria mellonella)

per day, which were pinned to narrow tree branches close to the nest box (¡5m) early each140

morning. On the following day, the number of wax worms consumed was recorded, and any

uneaten wax worms were removed. We set up video cameras at some nests to check that142

the resident birds were taking the food. In some cases other birds were observed taking the

wax worms, but this was relatively rare. Blue tits carry out high levels of courtship feeding144

during the egg laying period (Royama 1966; Krebs 1970; Cramp & Perrins 1993), so we

hope that resources from any wax worms taken by the male are passed to feed the female,146

either directly or indirectly. Nests in the feeding treatments were split into an early group,

which were provided with wax worms on days 1 to 4 of the laying sequence, and a late148

group that received wax worms on days 5 to 8. Both fed nests within a cross-fostering group

were given the same treatment. If development of the embryo is resource limited we expect150

chicks from eggs laid in the treated nests to have more rapid prenatal development if the

food provided lifts this constraint. We predict that this effect should be more pronounced152

in chicks from eggs in the early treatment if resource limitation is more acute at the onset

of laying than later in the sequence. Development of eggs takes around 4 days from the154

onset of rapid yolk development (Haywood 1993), and so eggs 5-8 are expected to be the

most affected in the early treatment, and 9 to 12 in the late treatment. During 2012 there156

were 20 nests in each of the early and late treatment, and 18 in each treatment in 2013, so
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there were equal numbers in each treatment overall. There were 63 control nests in 2012,158

and 60 in 2013. In addition, those nests that were not in cross-fostering groups of three

or more were never included within the feeding treatment, and so are classed as having no160

treatment, as they were not true controls. There were 29 such nests in 2012, and 17 in

2013. The mean number of wax worms eaten per day in the early treatment was 15.8, and162

17.7 per day in the late treatment.

The clutch sizes of the nests included in each treatment are shown in Figure 1, along164

with the distribution of eggs within the laying sequences from each of these treatments. It

is worth noting that the clutch size and maximum egg number (a measure for each egg of166

the days since the first egg was laid in a nest, with the first egg being numbered one) of a

nest do not necessarily match due to interruptions in the laying sequence. For example,168

a female may lay a total of 9 eggs, but may pause in laying, such that eggs were not laid

on day 3 and 4 (i.e. there are no eggs three or four), and the maximum egg number is 11170

rather than 9. Thus although mean clutch size is 8.26, many nests have several eggs with

egg numbers substantially greater than this, even if the total number of eggs in that nest is172

less than this mean.

Figure 1 here174

Hatching times

Nests were checked daily for hatching from 11 days after clutches had been completed.176

As nests were checked daily, we found chicks within twenty-four hours of the first individual

hatching. On this occasion (day 0), the identities of any unhatched eggs were recorded, and178
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the same was done on the following two visits (day 1 and day 3). No eggs hatched after this

point.180

Weather

Hourly temperature (◦C), rain (ml), and wind speed (knots) measurements were182

obtained from the Met Office (UK Meteorological Office 1853-Current). Wind and

temperature data were from Turnhouse weather station (NT15988 73905, 2.72km from184

Craigie Hill, and 2.69km from Almond River), whereas rain data were from Gogar Bank

(NT17088 71601, 5.21km from Craigie Hill, and 4.27km from Almond River). Hourly data186

were used to calculate daily mean temperature, daily mean wind speed, and daily total

rainfall.188

Analysis

Analyses were carried out in R (R Development Core Team 2012), using the package190

MCMCglmm (Hadfield 2010) to fit Bayesian generalized linear mixed models. For those

models which had a binary or ordinal response, residual variances were fixed at 1, as these192

could not be estimated from the data. For other models a flat improper prior for residual

variances was used. For the random effects, parameter expansion was used resulting in194

scaled F1,1 priors on the variances with scale 1000. Fixed effects had independent normal

priors with zero mean and large variances (108) except in binary/ordinal models. Here, a196

prior correlation matrix was defined as one in which the fixed effects are identically and

independently distributed had the covariates been subject to Gelman’s (2008) scaling and198

centering. The prior correlation matrix was then scaled by six (which in all models was

approximately the sum of the variance components) plus π2/3 or 1, depending on whether200
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the logit or probit link was used. Feeding models were run for 130000 iterations, with

a burn in of 30000 and a thinning interval of 50, whereas weather models were run for202

1300000 iterations, with a burn in of 300000 and a thinning interval of 500 as the chains

within these models took much longer to mix well.204

Fixed effects are considered significant if the 95% credible intervals did not overlap

zero, and pMCMC (twice the posterior probability that the estimate is either negative or206

positive, depending on which is the smaller probability) is less than 0.05. For groups of

fixed effects (e.g. year, treatment) their significance was tested using omnibus Wald tests.208

Feeding Experiment: egg-level effects

A series of models were developed to look at the effect of the treatment on individual210

egg characteristics. The main focus was on hatching time, although we also analysed

hatching success, egg weight, and pausing in laying. In all models, clutch size, year, day212

of clutch initiation (from 1st April) and whether the egg was laid after a pause in the

laying sequence or not were fitted as fixed effects. Where necessary, we distinguish between214

variables measured in the nest-of-origin and nest-of-rearing using the subscripts o and r

respectively. The rankr of the egg (the number of days between it and the final egg in216

the nest-of-rearing being laid), was fitted as a spline to capture any non-linearity in the

relationship induced by incubation behaviour (Hadfield et al. 2013b). In all models we218

excluded eggs that had not been found on the day they were laid, and those from clutches

smaller than three eggs (due to early desertion of the clutch). We also excluded three220

eggs that weighed less than 0.6g, as these were abnormally small (below half the mean egg

weight), and do not develop.222

For each egg we also included the treatment group of its nest-of-origin (treatmento) and
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its nest-of-rearing (treatmentr) as a fixed factor. Nests that were neither fed nor assigned224

as controls were included in the analysis as a fourth level in treatment group (coded as

‘none’). Generally, these were nests that initiated laying early or late in the season when226

few nests initiated, so that they could not be assigned to groups of three or more.

Eggs within nests of a given feeding treatment vary in when and how many wax worms228

were consumed by their mother during their development. For example, the fifth egg in

an early-treated nest could be affected by up to 80 wax worms provided over the four230

consecutive days prior to it being laid, whereas the second egg could only be influenced by

up to 20 wax worms on the day prior to it being laid. Blue tits are income breeders, and232

eggs develop over a period of four days (Haywood 1993), and thus the main eggs expected

to be affected by the feeding are those laid around four days after feeding occurs (e.g. egg234

5 for extra food given on day 1) if supplementary feeding has a direct effect on eggs. To

accommodate this, we included the number of wax worms that were consumed on each day236

prior to the laying of an egg as multiple predictors. Their effects were modelled using a

varying coefficient model (Wood 2006; Hastie & Tibshirani 1993): a type of spline that in238

this context allows changes in the effect of the predictor (number of wax worms eaten) to

be a smooth function of some other covariate (the interval of time between the wax worms240

being eaten and the egg itself being laid). These models have recently been used in an

ecological context (Roberts et al. 2015) and in our context can capture any physiological242

lags that exist between the consumption of food and any effect of that food on the egg.

Separate varying coefficient splines were fitted for the early and late groups.244

The degree to which the treatment splines improved model performance was assessed

using 20-fold cross-validation (Stone 1974, 1977), where models were rerun using data with246

the kth subset removed. The posterior mean predicted values for the omitted data were

obtained with the random nest-of-origin and nest-of rearing effects marginalised using248
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posterior predictive simulation. Where responses were discrete, the correct classification

of the response variable was used as a measure of predictive ability. For continuous250

responses the coefficient of determination (R2) was used. Differences between models in

their predictive ability were often small, and so we tested whether an increase in predictive252

ability relative to that of the null model (i.e. one without treatment splines) was greater

than expected from Monte Carlo error (i.e. differences were not solely due to random254

allocation of observations to subsets). This was achieved using repeat-measure ANOVA

with subset as a random effect.256

Hatching time was analysed in two ways. Firstly, hatching asynchrony was fitted as

an ordinal response, which considers the hatching interval of an egg within a clutch (i.e.258

the hatching day, relative to the first egg in the clutch to hatch, which could be 0, 1 or

2-3). Secondly, as a censored Gaussian response, which fits the time from the final egg in a260

nest being layed to the hatching of each egg with the censoring points being the day/time

of nest visits between which an egg hatched. Eggs were assumed to be laid at 6am, as262

the exact laying time was not known, but eggs had always been found after this time

(Pullen 1946; Perrins 1979). This measure captured differences between nests in incubation264

behaviour of females (time to commence incubation, and duration of incubation), and

within-nests it captures intrinsic differences in hatching time between eggs. Hatching266

success was analysed as a binary response (hatching/not-hatching) and all abandoned nests

were excluded. Egg weight was analysed as a Gaussian response, and the probability of an268

egg being laid as a binary response (where an egg being laid was given the value 1). These

two phenotypes are not dependent on post-laying (and therefore post-crossfostering) effects270

and so nest-of-rearing terms (both fixed and random) were dropped from the model. In

addition, clutch sizeo was dropped from the model of pausing, as the two are confounded.272
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Feeding Experiment: nest-level effects

A second set of models investigated the nest-level effects of the feeding experiment,274

specifically how it affected clutch size and the onset of incubation. The onset of incubation

is taken as the number of days before (negative value) or after (positive value) the last276

egg was laid that the female was found incubating, or the eggs were found to be warm.

Both traits were treated as Gaussian and the models had the same form as above, although278

treatment was included only as a fixed effect, without spline terms, and egg rank was not

included in the model. In addition, only nest-of-origin level terms were retained.280

Weather

In addition to the main analyses, we ran the same models as those described above,282

but also included terms to model how weather (a measure of external conditions) affects

egg- and nest-level characteristics. In these analyses we used comparable data collected in284

the previous two years (Hadfield et al. 2013b,a) although egg weight data were unavailable

for 2010. Treated nests from 2012-13 were excluded, as were those eggs included in an286

experiment performed in 2010-2011 (Hadfield et al. 2013b). Consequently any terms

associated with treatments were dropped from the model. The effect of weather variables288

(daily mean temperature, daily mean wind speed, and total daily rainfall) were modelled

using varying coefficient splines, as was done for the effect of wax worm consumption. Thus290

each model had three varying coefficient splines within it. Daily weather 50 days prior to,

and 40 days after, laying of a given egg was used in these splines, so that both long- and292

short-term effects of weather might be captured. The sample sizes for each model, along

with those eggs and nests that have been excluded are shown in Table 1.294

Table 1 here
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Results296

Feeding Experiment: egg-level effects

Overall, we found little support for any effects of the feeding treatment on hatching298

time and other egg characteristics. This is seen particularly in the fitting of treatment

splines – in all models the treatment splines did not improve the predictive ability of the300

model, as evaluated using cross-validation (Table 2). Consequently, we report the results

of these models with the treatment splines removed in the text and tables. However, in302

Figure 2, and Figure S2 in the Supporting Information, we present the predictions based on

the full model.304

Figure 2 here

Table 2 here306

The fixed effects for the best model for hatching asynchrony are shown in Table 3. The

95% credible intervals of all fixed treatment effects overlapped zero, and thus there was no308

significant effect of treatment on asynchrony. There were significant positive effects of clutch

sizer, and the day of clutch initiation, showing nests are more asynchronous when clutches310

are larger and laid later in the season. The spline of egg rank (Figure S1a) shows that lower

rank eggs hatch later (i.e. late laid eggs hatch late), although this ceases to be the case for312

eggs of rank > 3 which tend to have equivalent hatching times. Nest-of-origin explained

a small amount of variance in hatching asynchrony (0.068 [0.018 - 0.149]), whereas the314

nest-of-rearing explained a greater proportion of variation in the spread of hatching, 0.562

[0.446 - 0.613].316
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Table 3 here

The fixed effects from the censored Gaussian model of hatching time (from the laying318

of the last egg in a nest) are summarised in Table 4, again this is the best model (without

the treatment splines). Overall, the results are broadly similar to the hatching asynchrony320

model with all fixed treatment effects overlapping zero and therefore non-significant. There

was a significant negative effect of clutch sizer, with eggs hatching 0.287 days ([0.127 -322

0.445], P¡0.001) faster for each additional egg in a nest, and eggs in later clutches hatched

faster by 0.106 days ([0.074 - 0.137], P¡0.001) for each day later in the season. In addition324

the rank spline (Figure S1b) shows that there is a decrease in time from laying to hatching

with increasing rank, although this change is most prominent for those eggs of low rank.326

The variance explained by the nest-of-origin was small, with an intraclass correlation of

0.002 [0.000 - 0.007], but the variance explained by the nest-of-rearing was much larger328

(0.972 [0.962 - 0.976]) as the censored Gaussian model also includes variation due to

differences in incubation behaviour between females. However, the nest-of-origin effect330

within nest-of-rearing explained more variance (0.079 [0.000 - 0.202]).

Table 4 here332

For the best model of hatching success, the fixed effects are summarised in Table 5 (no

treatment splines were in the best model). No significant differences between treatment334

groups were found, although eggs in none-fed none-control nests were significantly less

likely to hatch (-0.863 logits [-1.684 - -0.100] P=0.040). Eggs laid after a pause show a336

significantly lower probability of hatching than those not laid after a pause. The rank spline

(Figure S1c) shows that later laid eggs in a clutch (low rank) are more likely to hatch than338
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earlier ones, and Figure 2c suggests this is mainly due to first eggs having lower hatching

probability. Both the intraclass correlation for nest-of-origin (0.153 [0.000 - 0.264]), and340

nest-of-rearing (0.167 [0.055 - 0.287]) were reasonably small and of similar magnitude.

Table 5 here342

The fixed effects from the best model of egg weight are summarised in Table 6; this

model did not include any treatment splines. The 95% credible intervals of all treatment344

effects overlapped zero, thus treatment did not have an effect on egg weight. Eggs were

significantly smaller (-0.080 g [-0.111 - -0.049] P¡0.001) in 2013 than 2012 and egg weight346

increased by 0.002 g per day ([0.000 - 0.003], P=0.028) as clutch initiation day increased.

There was also a significant effect of being laid after a pause, with eggs laid after an348

interruption in laying being 0.051 g ([0.043 - 0.059], P¡0.001) heavier. The rank spline

(Figure S1d) shows that there is a general decrease of egg weight with increasing rank,350

implying that late laid eggs tend to be heavier than earlier ones. A large proportion of the

variance in egg weight was explained by nest-of-origin (0.800 [0.768 - 0.832]).352

Table 6 here

The fixed effects from the best model of the probability of an egg being laid are354

summarised in Table 7 (treatment splines did not improve the model). These results

suggest that feeding had no significant effect on the probability that an egg is laid. There356

is a significant negative effect of the day of clutch initiation, such that pausing occurs more

frequently later in the season. The rank spline, Figure S1e, shows a negative effect of egg358

rank on the probability that an egg is laid, such that interruptions in the laying sequence
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are more likely to happen early in a clutch. The intraclass correlation for nest-of-origin was360

moderate: 0.179 [0.088 - 0.312].

Table 7 here362

Feeding Experiment: nest-level effects

The fixed effects from the model of clutch size are summarised in Table 8. Neither364

treatment had a significant effect on clutch size – early treatment resulted in 0.413 more eggs

([-0.130 - 0.964], P=0.136) than control nests; late treatment resulted in 0.386 more eggs366

([-0.197 - 0.947], P=0.170). The difference between early and late treatments overlapped

zero (0.026 [-0.640 - 0.676] P=0.917), and the omnibus test showed there was no overall368

significant effect from the treatments (Wald test χ2=3.172, P=0.205). There is a significant

negative effect of the date on which the clutch started, with females laying 0.073 fewer eggs370

([0.049 - 0.095], P¡0.001) with each additional day after April 1st that the clutch started.

Table 8 here372

The fixed effects from the model of incubation onset are summarised in Table 9. There

was a marginal effect of early treatments on the onset of incubation, with incubation374

commencing 0.639 days later ([-0.119 - 1.309], P=0.090) than in controls. Although there

was no effect of the late treatment, the difference between early and late treatments376

overlapped zero (0.703 [-0.164 - 1.609] P=0.107). As with clutch size, there was a significant

negative effect on the incubation onset of the clutch initiation day – incubation began 0.080378
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days ([0.048 - 0.114], P¡0.001) earlier, relative to the final egg, with each day after 1st of

April that the female commenced laying. Additionally, there is a significant negative effect380

of clutch size, such that incubation onset advanced by 0.261 days ([0.087 - 0.417], P=0.003)

for each additional egg in a clutch.382

Table 9 here

Weather384

Generally, we found little support for weather having effects on hatching time, and

other egg characteristics. In all models, except the censored gaussian model of hatching386

time and the model of clutch size, the weather splines did not improve the predictive

ability of the model as evaluated using cross-validation (Table 10). The results of the null388

models were qualitatively similar to the feeding treatment models and are presented in the

supplementary information. The main difference was support for inter-annual differences390

in all models, even for those egg characteristics and nest effects for which no significant

differences between 2012 and 2013 were found. In addition, the significant effect of eggs392

laid after a pause having a lower probability of hatching (-0.842 logits [-1.520 - -0.126]

P=0.028), were not replicated in the larger data set (-0.306 logits [-1.016 - 0.370] P=0.377).394

The splines for each weather variable are shown in Figures S3, S4 and S5.

Table 10 here396

The best supported model for the censored Gaussian model of hatching time was that

with temperature and rain splines included, however the full model had a very similar398
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classification rate so there was little difference between models with and without wind

included (correct classification rate of best model 0.2190; Full model 0.2189; Null model400

0.2181). The fixed effects from the best model are shown in Table S3, whilst those for the

full and null model are shown in Table S2. The weather spline in Figure S4b shows that402

there was a positive effect of temperature on hatching time (days from last egg laid in a

nest to hatching), up to three weeks prior to the egg being laid, implying that eggs that404

are developing in the female when conditions are warmer then hatch later. However, the

converse appears to be the case post-laying, where there is a negative effect of temperature406

on hatching time, such that warm conditions after an egg has been laid leads to an

acceleration in hatching time. Both rain (Figure S5b) and wind (Figure S3b) prior to laying408

appear to have little effect on hatching time in the full model, although the effect of rain

is supported by cross validation. Year has a significant effect on hatching time in the best410

model (Wald test on year χ2=13.651, P=0.003), with the biggest estimated difference of

an increase of 1.746 days ([0.721 - 2.675], P¡0.001) to hatching between 2011 and 2012.412

However, year effects were larger in the null model with an increase of 2.429 days ([2.045 -

2.847], P¡0.001) to hatching between 2011 and 2012 (Wald test on year χ2=153.13, P¡0.001),414

implying that year and weather effects may be confounded. Similarly, laydate was not

significant in the best model, although it was in the null model. In contrast to the feeding416

model, clutch sizer did not have a significant effect in the full model, but did in the null

model, whereas clutch sizeo had a significant positive effect on hatching time in both the418

full and null model.

Inclusion of splines of temperature and wind improved the predictive ability of the420

model of clutch size (R2=0.308; Null model R2=0.259). The weather splines for wind and

temperature are seen in Figures S3f and S4f respectively. Wind appears to have a negative422

effect on clutch size, such that females lay fewer eggs as mean daily wind speed increases.

Similarly, temperature negatively affects clutch size, such that smaller clutches are laid424
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as daily mean temperature increases. Year has a non-significant effect (Wald test on year

χ2=0.305, P=0.883), although this then appears significant in the null model. Laydate did426

not have an effect on clutch size, although this was significant and negative in the null

model, suggesting that seasonal effect as well as year are confounded with weather in this428

model.

Discussion430

The experiment described above was designed to test whether the increased rate of

prenatal development across the laying sequence of blue tits could be directly caused by an432

increase in the resource availability to the mother at the time of laying. We found little

support for supplementary feeding accelerating prenatal development; If anything, there434

was a positive effect of food consumption on hatching time, i.e. hatching occurred later

due to supplementary feeding. Thus, we conclude that the changes in resource availability436

are not likely to be responsible for the intrinsic acceleration of hatching of late laid eggs

observed in Hadfield et al. (2013b). We do not see any significant effect of treatment on438

female behaviour, although the effect size for the fixed effect of treatment on clutch size

is reasonable large (increased clutch size by half an egg), suggesting that we may lack the440

power to estimate this effect.

Our results suggest that differences between eggs across the laying sequence are the442

result of changes in the female that are independent of either the nutritive or climatic

environment. Consequently, these results are consistent with the idea that females are444

manipulating the developmental rate and consequent hatching time of their offspring

independently of their own state. The mechanism by which they achieve this could be446

through increasing the provision of resources to eggs laid later. Consistent with this idea

is the fact that egg size increases over the laying sequence, and larger eggs hatch faster448
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(Rubolini et al. 2005; Hadfield et al. 2013b). This is a clear extension of previous work

that suggested that larger size of late-laid eggs should benefit late-hatched chicks through450

the effect on the size at hatching of those chicks (Howe 1976; Clark & Wilson 1981), and

thus reducing the effect of hatching asynchrony. Where size also affects hatching time,452

then size differences may affect the extent, as well as the effect, of hatching asynchrony. In

addition, Ferrari et al. (2006) and Alquati et al. (2007) found that experimental removal454

of albumen delayed hatching, thus the relative amount of albumen and yolk within an egg

may be important in influencing prenatal development. Maternally deposited hormones are456

a more commonly invoked candidate as a mediator of anticipatory maternal effects. More

specifically, androgens generally act to accelerate pre- and post-hatching development (e.g.458

Lipar & Ketterson 2000; Eising et al. 2001), reviewed in von Engelhardt & Groothuis (2011),

although contrary results have been found (Sockman & Schwabl 2000; Von Engelhardt460

et al. 2006). Previous work on blue tits, however, suggests there is little variation across

the clutch in androgen concentration (Kingma et al. 2009); a pattern predicted from462

interspecific comparisons of initial size differences between first and last hatching chicks

and yolk testosterone compensation (Muller & Groothuis 2013). Thus, it seems unlikely464

that androgens, are driving the differences in prenatal development in this particular

case, although other hormones may be at play. Nonetheless, our experiment is unable to466

differentiate between a passive effect of changes in the females endocrine state and an active

anticipatory role if hormones are mediating such effects. It is not known whether females468

are able to independently control blood plasma and egg hormone concentrations, but most

hormones in egg yolks are derived from cells in the developing follicle (Huang et al. 1979;470

Hackl et al. 2003; Williams et al. 2004; Gil 2008), and so the possibility of independent

control exists (Groothuis & Schwabl 2008).472

It is also possible that laying order effects are a direct maternal response to changing

nutritive conditions, but such an effect might not be seen if providing wax worms failed474
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to recapitulate such conditions. However, the wax worms provided to the birds should

contain sufficient calorific and protein content to lift seasonal resource constraints; twenty476

wax worms constitute 12kcal and 0.67g protein (Sauter et al. 2006), whereas blue tits

require 13.8kcal per day (Gibb 1957, winter conditions) and each egg contains about 0.12g478

of protein (Bourgault et al. 2007; Murphy 1994, given a mean egg weight of 1.18g) . Thus,

although there is evidence that responses to feeding experiments depend upon the protein480

content of the food provided (Nager et al. 1997; Ramsay & Houston 1997, 1998), we

believe our supplementary feeding would lift any constraints imposed by limited protein482

availability. Furthermore, if changing nutritive conditions were generating changes in

hatching time, this would be detected in the models using climatic variables as predictors,484

which was not seen. In addition to macronutrients, it is possible that birds become less

constrained by micronutrients as laying progresses. In particular, blue tits do not use486

skeletal calcium for egg production, so all calcium must be obtained in the diet (Woodburn

& Perrins 1997) mainly through consumption of snail shells, bones and grit (Betts 1955;488

Graveland & Berends 1997; Reynolds & Perrins 2010). Twenty wax worms contains just

0.230mg calcium, much less than the content of an eggshell (58mg; Graveland & Berends490

1997). However, although the wax worms may be limiting in certain resources, the energy

they provide may still allow greater time and resources to be spent in obtaining those492

micronutrients.

Previous feeding experiments lend support to the idea that supplementary feeding can494

lift constraints associated with breeding, since supplemented birds often show advanced lay

dates and increased clutch size (see Christians 2002; Robb et al. 2008a). However, these496

experiments usually commence feeding prior to laying, ranging from several months prior

to breeding (e.g. Robb et al. 2008b) to a few days (e.g. Ramsay & Houston 1997), and498

the few that have looked at effects on prenatal development often attribute differences to

behavioural changes in the female rather than changes in egg characteristics (e.g. Wiebe &500
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Bortolotti 1994). In the experiment shown here we failed to find any effect of supplementary

food on female behaviour, either through clutch size or incubation. Nevertheless, there is502

limited evidence that supplementary feeding can alter egg characteristics. Effects on egg

size in particular have been investigated, and some increases in response to supplementary504

food have been found (Wiebe & Bortolotti 1995; Horsfall 1984; Ramsay & Houston 1997),

although the results are not always replicated (Nilsson & Svensson 1993; Nager et al. 1997),506

and the majority of studies have failed to find any significant effect of feeding (reviewed

in Christians 2002). A recent paper from Ruuskanen et al. (2016) carried out a similar508

experiment to the one shown here, and found increased egg mass in fed nests. However,

there appear to be differences between mass of eggs in control and fed treatments prior to510

feeding, and thus the conclusions from this may be questionable.

In this study we fail to see any major effect of the environment on the prenatal512

development of chicks, either through the provision of food or through correlations with

the weather at the time of laying. Thus it seems that egg characteristics and prenatal514

development are insensitive to external conditions as experienced by the mother. Consistent

with this insensitivity is the high repeatability of egg size (Christians 2002; Williams 2012),516

and other egg constituents (Postma et al. 2014), within females. This suggests that the

observed laying-order effects are regulated by the female without regard to her external518

environment. If the laying-order effects are the result of differential resource provisioning

by the female, then we suggest that this is in anticipation of the level of sibling competition520

the chicks will experience. However, if the laying-order effects are mediated by maternal

androgens our results are silent as to whether they are passive by-products of the females522

endocrinological state or whether they constitute an anticipatory parental effect.
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Fig. 1.— The clutch sizes (upper panel) and egg numbers included in the data for each of

the treatments. An egg’s number is the day on which it was laid (relative to the first egg

in the clutch), such that egg 1 is the first egg, and egg 3 is laid 2 days after the first egg.

Numbering is irrespective of whether a pause in the laying sequence has occurred, so does

not necessarily reflect the total number of eggs in the nest.
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Fig. 2.— The cumulative effect of wax worms eaten on (a) hatching asynchrony within

nest, (b) time from laying of the final egg in a nest to hatching, (c) probability of hatching, (d)

weight of eggs, and (e) the probability that an egg is laid. Boxplots and barplots show

the raw data, split by treatment, together with predictions (solid lines) and 95% credible

intervals (dashed lines). Predictions were made holding all predictors at their mean value

except rank and the number of wax worms eaten for which we use the mean for each egg-

number/treatment combination.
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766

Table 1: Sample sizes (n), the number of eggs that are excluded, and the number of nests

that those eggs are found in, for each model

Feeding Weather

Included Excluded Included Excluded

Eggs Nests Eggs Nests Eggs Nests Eggs Nests

Ordinal Hatching 1649 214 67 3 3076 426 775 39

Censored Gaussian Hatching 1649 214 67 3 3076 426 775 39

Hatching Success 1825 215 49 2 3425 428 829 37

Weight 1979 235 51 12 2754 319 730 91

Pausing 1739 235 0 0 3259 431 794 93

Clutch Size 229 18 409 115

Onset of Incubation 210 24 391 104
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Table 2: Mean predictive power from 20-fold cross validation of feeding experiment models,

comparing the full model (all fixed and random effects included, along with splines of the

effects of the feeding experiment) with those that drop the splines for each of the early

and late treatments, and the null model in which both are dropped (but all other fixed and

random effects are retained). Ordinal and Censored Gaussian are the two models of hatching

time.. For weight, predictive power is measured as an R2 value, and for other models it is

the rate of correct classification. In all cases the predictions are marginal with respect to

nesto and nestr (where appropriate). The final column is the probability that the estimated

predictive power of the best model (in bold) exceeds that of the null model more than would

be expected from Monte Carlo error alone.

Full

Model

Early

Spline

Dropped

Late

Spline

Dropped

Both

Dropped

Pr(¿W)

Ordinal 0.616 0.615 0.616 0.615 0.1240

Censored Gaussian 0.178 0.178 0.178 0.177 0.0830

Hatching Success 0.842 0.842 0.842 0.843

Weight 0.094 0.095 0.096 0.097

Laying Success 0.793 0.793 0.794 0.793 0.5090
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Table 3: Summary of the fixed effects from an ordinal model of hatching asynchrony (day

of hatching relative to the first day of hatching within the nest). These results are from a

model without treatment splines since they did not significantly increase predictive ability

(Table 2). P-values from wald tests on fixed effects are also presented. The mean is the

posterior mean, l-95% and u-95% are the lower and upper 95% credible intervals.

mean l-95% u-95% pMCMC Pr(¿W)

Intercept -6.067 -8.539 -3.654 ¡0.001

Treatmentr.None 0.288 -0.442 1.120 0.464

Treatmentr.Early -0.200 -1.150 0.675 0.646 0.223

Treatmentr.Late 0.731 -0.210 1.588 0.121

Treatmento.Early 0.585 -0.057 1.285 0.101 0.232

Treatmento.Late -0.082 -0.789 0.586 0.803

Clutch sizer 0.284 0.105 0.495 0.002

Clutch sizeo 0.083 -0.048 0.212 0.221

Year.2013 -0.389 -1.156 0.403 0.308

Laydater 0.052 0.014 0.091 0.007

After pause 0.365 -0.131 0.867 0.163
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Table 4: Summary of the fixed effects from a censored Gaussian model on the time (in days)

from laying to hatching of eggs. These results are from a model without treatment splines

since they did not significantly increase predictive ability (Table 2). P-values from wald tests

on fixed effects are also presented. The mean is the posterior mean, l-95% and u-95% are

the lower and upper 95% credible intervals.

mean l-95% u-95% pMCMC Pr(¿W)

Intercept 21.347 19.327 23.197 ¡0.001

Treatmentr.None -0.430 -1.106 0.189 0.193

Treatmentr.Early 0.079 -0.675 0.711 0.822 0.663

Treatmentr.Late -0.277 -0.978 0.377 0.438

Treatmento.Early 0.101 -0.018 0.219 0.107 0.264

Treatmento.Late 0.015 -0.118 0.136 0.818

Clutch sizer -0.287 -0.445 -0.127 ¡0.001

Clutch sizeo 0.018 -0.005 0.040 0.111

Year.2013 -0.358 -0.972 0.337 0.295

Laydater -0.106 -0.137 -0.074 ¡0.001

After pause 0.049 -0.038 0.146 0.322
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Table 5: Summary of the fixed effects from a model of hatching success of eggs. These

results are from a model without treatment splines since they did not significantly increase

predictive ability (Table 2). P-values from wald tests on fixed effects are also presented. The

mean is the posterior mean, l-95% and u-95% are the lower and upper 95% credible intervals.

mean l-95% u-95% pMCMC Pr(¿W)

Intercept 0.331 -2.086 3.032 0.809

Treatmentr.None -0.863 -1.684 -0.100 0.040

Treatmentr.Early -0.490 -1.557 0.499 0.349 0.56

Treatmentr.Late 0.258 -0.794 1.319 0.627

Treatmento.Early 0.149 -0.830 1.195 0.778 0.918

Treatmento.Late -0.155 -1.162 0.899 0.784

Clutch sizer 0.150 -0.050 0.365 0.160

Clutch sizeo 0.133 -0.024 0.318 0.116

Year.2013 -0.630 -1.499 0.128 0.125

Laydater 0.034 -0.003 0.076 0.089

After pause -0.842 -1.520 -0.126 0.028



– 44 –

Table 6: Summary of the fixed effects from a model of egg weight. These results are from a

model without treatment splines since they did not significantly increase predictive ability

(Table 2). P-values from wald tests on fixed effects are also presented. The mean is the

posterior mean, l-95% and u-95% are the lower and upper 95% credible intervals.

mean l-95% u-95% pMCMC Pr(¿W)

Intercept 1.160 1.059 1.251 ¡0.001

Treatmento.None -0.005 -0.035 0.027 0.728

Treatmento.Early -0.012 -0.045 0.020 0.467 0.766

Treatmento.Late -0.004 -0.037 0.031 0.771

Clutch sizeo -0.001 -0.009 0.007 0.896

Year.2013 -0.080 -0.111 -0.049 ¡0.001

Laydate 0.002 0.000 0.003 0.028

After pause 0.051 0.043 0.059 ¡0.001
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Table 7: Summary of the fixed effects from a model of the probability that an egg is laid.

These results are from a model without treatment splines since they did not significantly

increase predictive ability (Table 2). P-values from wald tests on fixed effects are also

presented. The mean is the posterior mean, l-95% and u-95% are the lower and upper 95%

credible intervals.

mean l-95% u-95% pMCMC Pr(¿W)

Intercept 4.469 3.466 5.530 ¡0.001

Treatmento.None -0.530 -1.232 0.082 0.094

Treatmento.Early 0.394 -0.330 1.116 0.286 0.504

Treatmento.Late -0.091 -0.782 0.603 0.820

Year.2013 -0.283 -0.987 0.379 0.399

Laydate -0.039 -0.069 -0.004 0.024
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Table 8: Summary of the fixed effects from a gaussian model of clutch size. P-values from

wald tests on fixed effects are also presented. The mean is the posterior mean, l-95% and

u-95% are the lower and upper 95% credible intervals.

mean l-95% u-95% pMCMC Pr(¿W)

Intercept 10.828 10.092 11.564 ¡0.001

Treatmento.None -0.112 -0.620 0.467 0.689

Treatmento.Early 0.413 -0.130 0.964 0.136 0.205

Treatmento.Late 0.386 -0.197 0.947 0.170

Laydate -0.073 -0.095 -0.049 ¡0.001

Year.2013 0.232 -0.312 0.692 0.402
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Table 9: Summary of the fixed effects from a gaussian model of the onset of incubation

relative to the date on which the last egg in a nest was laid. P-values from wald tests on

fixed effects are also presented. The mean is the posterior mean, l-95% and u-95% are the

lower and upper 95% credible intervals.

mean l-95% u-95% pMCMC Pr(¿W)

Intercept 6.185 4.018 8.138 ¡0.001

Treatmento.None -0.154 -0.820 0.519 0.687

Treatmento.Early 0.639 -0.119 1.309 0.090 0.187

Treatmento.Late -0.064 -0.731 0.715 0.838

Laydate -0.080 -0.114 -0.048 ¡0.001

Year.2013 -0.371 -1.002 0.311 0.298

Clutch sizeo -0.261 -0.417 -0.087 0.003
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Table 10: Mean predictive power from 20-fold cross validation of weather models, comparing

the full model (all fixed and random effects included, and splines of the effects of temperature,

rain and wind) with those with each of the individual weather splines dropped, and the null

model in which all three weather splines are dropped (but all other fixed and random effects

are retained). Ordinal and Censored Gaussian are the two models of hatching time. For

weight, predictive power is measured as an R2 value, and for other models it is the rate of

correct classification. All are run with nesto and nestr (where appropriate) marginalised.

The final column is the probability that the predictive power of the best model (in bold)

exceeds that of the null model more than would be expected from Monte Carlo error alone.

Full

Model

Wind

Spline

Dropped

Temperature

Spline

Dropped

Rain

Spline

Dropped

All

Dropped

Pr(¿W)

Ordinal 0.574 0.592 0.578 0.569 0.593

Censored Gaussian 0.219 0.219 0.219 0.218 0.218 0.0180

Hatching Success 0.831 0.831 0.831 0.831 0.830 0.0730

Weight 0.066 0.062 0.063 0.064 0.063 0.4000

Pausing 0.868 0.869 0.868 0.868 0.868 0.1990

Clutch Size 0.303 0.305 0.271 0.308 0.259 0.0020

Incubation 0.243 0.247 0.248 0.249 0.256


